1,241 research outputs found

    Coverage Protocols for Wireless Sensor Networks: Review and Future Directions

    Full text link
    The coverage problem in wireless sensor networks (WSNs) can be generally defined as a measure of how effectively a network field is monitored by its sensor nodes. This problem has attracted a lot of interest over the years and as a result, many coverage protocols were proposed. In this survey, we first propose a taxonomy for classifying coverage protocols in WSNs. Then, we classify the coverage protocols into three categories (i.e. coverage aware deployment protocols, sleep scheduling protocols for flat networks, and cluster-based sleep scheduling protocols) based on the network stage where the coverage is optimized. For each category, relevant protocols are thoroughly reviewed and classified based on the adopted coverage techniques. Finally, we discuss open issues (and recommend future directions to resolve them) associated with the design of realistic coverage protocols. Issues such as realistic sensing models, realistic energy consumption models, realistic connectivity models and sensor localization are covered

    3D Multi-Objective Deployment of an Industrial Wireless Sensor Network for Maritime Applications Utilizing a Distributed Parallel Algorithm

    Get PDF
    Effective monitoring marine environment has become a vital problem in the marine applications. Traditionally, marine application mostly utilizes oceanographic research vessel methods to monitor the environment and human parameters. But these methods are usually expensive and time-consuming, also limited resolution in time and space. Due to easy deployment and cost-effective, WSNs have recently been considered as a promising alternative for next generation IMGs. This paper focuses on solving the issue of 3D WSN deployment in a 3D engine room space of a very large crude-oil carrier (VLCC), in which many power devices are also considered. To address this 3D WSN deployment problem for maritime applications, a 3D uncertain coverage model is proposed with a new 3D sensing model and an uncertain fusion operator, is presented. The deployment problem is converted into a multi-objective problems (MOP) in which three objectives are simultaneously considered: Coverage, Lifetime and Reliability. Our aim is to achieve extensive Coverage, long Lifetime and high Reliability. We also propose a distributed parallel cooperative co-evolutionary multi-objective large-scale evolutionary algorithm (DPCCMOLSEA) for maritime applications. In the simulation experiments, the effectiveness of this algorithm is verified in comparing with five state-of-the-art algorithms. The numerical outputs demonstrate that the proposed method performs the best with respect to both optimization performance and computation time

    Applications of Soft Computing in Mobile and Wireless Communications

    Get PDF
    Soft computing is a synergistic combination of artificial intelligence methodologies to model and solve real world problems that are either impossible or too difficult to model mathematically. Furthermore, the use of conventional modeling techniques demands rigor, precision and certainty, which carry computational cost. On the other hand, soft computing utilizes computation, reasoning and inference to reduce computational cost by exploiting tolerance for imprecision, uncertainty, partial truth and approximation. In addition to computational cost savings, soft computing is an excellent platform for autonomic computing, owing to its roots in artificial intelligence. Wireless communication networks are associated with much uncertainty and imprecision due to a number of stochastic processes such as escalating number of access points, constantly changing propagation channels, sudden variations in network load and random mobility of users. This reality has fuelled numerous applications of soft computing techniques in mobile and wireless communications. This paper reviews various applications of the core soft computing methodologies in mobile and wireless communications

    The Deployment in the Wireless Sensor Networks: Methodologies, Recent Works and Applications

    Get PDF
    International audienceThe wireless sensor networks (WSN) is a research area in continuous evolution with a variety of application contexts. Wireless sensor networks pose many optimization problems, particularly because sensors have limited capacity in terms of energy, processing and memory. The deployment of sensor nodes is a critical phase that significantly affects the functioning and performance of the network. Often, the sensors constituting the network cannot be accurately positioned, and are scattered erratically. To compensate the randomness character of their placement, a large number of sensors is typically deployed, which also helps to increase the fault tolerance of the network. In this paper, we are interested in studying the positioning and placement of sensor nodes in a WSN. First, we introduce the problem of deployment and then we present the latest research works about the different proposed methods to solve this problem. Finally, we mention some similar issues related to the deployment and some of its interesting applications

    Planning the deployment of multiple sinks and relays in wireless sensor networks

    Get PDF
    Wireless sensor networks are subject to failures. Deployment planning should ensure that when a data sink or sensor node fails, the remaining network can still be connected, and so may require placing multiple sinks and relay nodes in addition to sensor nodes. For network performance requirements, there may also be path-length constraints for each sensor node. We propose four algorithms, Greedy-MSP and GRASP-MSP to solve the problem of multiple sink placement, and Greedy-MSRP and GRASP-MSRP for the problem of multiple sink and relay placement. Greedy-MSP and GRASP-MSP minimise the deployment cost, while ensuring that each sensor node in the network is double-covered, i.e. it has two length-constrained paths to two sinks. Greedy-MSRP and GRASP-MSRP deploys sinks and relays to minimise the deployment cost and to guarantee that all sensor nodes in the network are double-covered and noncritical. A sensor node is noncritical if upon its removal, all remaining sensor nodes still have length-constrained paths to sinks. We evaluate the algorithms empirically and show that these algorithms outperform the closely-related algorithms from the literature for the lowest total deployment cost

    A Multi-objective Evolutionary Algorithm to solve Complex Optimization Problems

    Get PDF
    Multi-objective optimization problem formulations reflect pragmatic modeling of several real-life complex optimization problems. In many of them the considered objectives are competitive with each other; emphasizing only one of them during solution generation and evolution incurs high probability of producing a one-sided solution, which is unacceptable with respect to other objectives. An appropriate solution to the multi-objective optimization problem is to investigate a set of solutions that satisfy all of the competing objectives to an acceptable extent, where no solution in the solution set is dominated by others in terms of objective optimization. In this work, we investigate well known Non-dominated Sorting Genetic Algorithm (NSGA-II), and Strength Pareto Evolutionary Algorithm (SPEA-II), to find Pareto optimal solutions for two real-life problems: Task-based Sailor Assignment Problem (TSAP) and Coverage and Lifetime Optimization Problem in Wireless Sensor Networks (CLOP). Both of these problems are multi-objective problems. TSAP constitutes five multi-directional objectives, whereas CLOP is composed of two competing objectives. To validate the special operators developed, these two test bed problems have been used. Finally, traditional NSGA-II and SPEA-II have been blended with these special operators to generate refined solutions of these multi-objective optimization problems

    A 3D multi-objective optimization planning algorithm for wireless sensor networks

    Get PDF
    The complexity of planning a wireless sensor network is dependent on the aspects of optimization and on the application requirements. Even though Murphy's Law is applied everywhere in reality, a good planning algorithm will assist the designers to be aware of the short plates of their design and to improve them before the problems being exposed at the real deployment. A 3D multi-objective planning algorithm is proposed in this paper to provide solutions on the locations of nodes and their properties. It employs a developed ray-tracing scheme for sensing signal and radio propagation modelling. Therefore it is sensitive to the obstacles and makes the models of sensing coverage and link quality more practical compared with other heuristics that use ideal unit-disk models. The proposed algorithm aims at reaching an overall optimization on hardware cost, coverage, link quality and lifetime. Thus each of those metrics are modelled and normalized to compose a desirability function. Evolutionary algorithm is designed to efficiently tackle this NP-hard multi-objective optimization problem. The proposed algorithm is applicable for both indoor and outdoor 3D scenarios. Different parameters that affect the performance are analyzed through extensive experiments; two state-of-the-art algorithms are rebuilt and tested with the same configuration as that of the proposed algorithm. The results indicate that the proposed algorithm converges efficiently within 600 iterations and performs better than the compared heuristics
    • …
    corecore