1,264 research outputs found

    Applying Formal Methods to Networking: Theory, Techniques and Applications

    Full text link
    Despite its great importance, modern network infrastructure is remarkable for the lack of rigor in its engineering. The Internet which began as a research experiment was never designed to handle the users and applications it hosts today. The lack of formalization of the Internet architecture meant limited abstractions and modularity, especially for the control and management planes, thus requiring for every new need a new protocol built from scratch. This led to an unwieldy ossified Internet architecture resistant to any attempts at formal verification, and an Internet culture where expediency and pragmatism are favored over formal correctness. Fortunately, recent work in the space of clean slate Internet design---especially, the software defined networking (SDN) paradigm---offers the Internet community another chance to develop the right kind of architecture and abstractions. This has also led to a great resurgence in interest of applying formal methods to specification, verification, and synthesis of networking protocols and applications. In this paper, we present a self-contained tutorial of the formidable amount of work that has been done in formal methods, and present a survey of its applications to networking.Comment: 30 pages, submitted to IEEE Communications Surveys and Tutorial

    From MARTE to Reconfigurable NoCs: A model driven design methodology

    Get PDF
    Due to the continuous exponential rise in SoC's design complexity, there is a critical need to find new seamless methodologies and tools to handle the SoC co-design aspects. We address this issue and propose a novel SoC co-design methodology based on Model Driven Engineering and the MARTE (Modeling and Analysis of Real-Time and Embedded Systems) standard proposed by Object Management Group, to raise the design abstraction levels. Extensions of this standard have enabled us to move from high level specifications to execution platforms such as reconfigurable FPGAs. In this paper, we present a high level modeling approach that targets modern Network on Chips systems. The overall objective: to perform system modeling at a high abstraction level expressed in Unified Modeling Language (UML); and afterwards, transform these high level models into detailed enriched lower level models in order to automatically generate the necessary code for final FPGA synthesis

    A Cognitive Routing framework for Self-Organised Knowledge Defined Networks

    Get PDF
    This study investigates the applicability of machine learning methods to the routing protocols for achieving rapid convergence in self-organized knowledge-defined networks. The research explores the constituents of the Self-Organized Networking (SON) paradigm for 5G and beyond, aiming to design a routing protocol that complies with the SON requirements. Further, it also exploits a contemporary discipline called Knowledge-Defined Networking (KDN) to extend the routing capability by calculating the “Most Reliable” path than the shortest one. The research identifies the potential key areas and possible techniques to meet the objectives by surveying the state-of-the-art of the relevant fields, such as QoS aware routing, Hybrid SDN architectures, intelligent routing models, and service migration techniques. The design phase focuses primarily on the mathematical modelling of the routing problem and approaches the solution by optimizing at the structural level. The work contributes Stochastic Temporal Edge Normalization (STEN) technique which fuses link and node utilization for cost calculation; MRoute, a hybrid routing algorithm for SDN that leverages STEN to provide constant-time convergence; Most Reliable Route First (MRRF) that uses a Recurrent Neural Network (RNN) to approximate route-reliability as the metric of MRRF. Additionally, the research outcomes include a cross-platform SDN Integration framework (SDN-SIM) and a secure migration technique for containerized services in a Multi-access Edge Computing environment using Distributed Ledger Technology. The research work now eyes the development of 6G standards and its compliance with Industry-5.0 for enhancing the abilities of the present outcomes in the light of Deep Reinforcement Learning and Quantum Computing

    Working Notes from the 1992 AAAI Workshop on Automating Software Design. Theme: Domain Specific Software Design

    Get PDF
    The goal of this workshop is to identify different architectural approaches to building domain-specific software design systems and to explore issues unique to domain-specific (vs. general-purpose) software design. Some general issues that cut across the particular software design domain include: (1) knowledge representation, acquisition, and maintenance; (2) specialized software design techniques; and (3) user interaction and user interface

    Hardware/Software Co-Design via Specification Refinement

    Get PDF
    System-level design is an engineering discipline focused on producing methods, technologies, and tools that enable the specification, design, and implementation of complex, multi-discipline, and multi-domain systems. System-level specifications are as abstract as possible, defining required system behaviors while eliding implementation details. These implementation details must be added during the implementation process and the high effort associated with this locks system engineers onto the chosen implementation architecture. This work provides two contributions that ease the implementation process. The Rosetta synthesis capability generates hardware/software co-designed implementations from specifications that contain low level implementation details. The Rosetta refinement capability extends this by allowing a system's functional behavior and its implementation details to be described separately. The Rosetta Refinement Tool combines the functional behavior and the implementation details to form a system specification that can be synthesized using the Rosetta synthesis capability. The Rosetta refinement capability is exposed using existing Rosetta language constructs that have, previous to this work, never been exploited. Together these two capabilities allow the refinement of high level, architecture independent specifications into low level, architecture specific hardware/software co-designed implementations. The result is an effective platform for rapid prototyping of hardware/software co-designs and provides system engineers with the novel ability to explore different system architectures with low effort

    Emerging research directions in computer science : contributions from the young informatics faculty in Karlsruhe

    Get PDF
    In order to build better human-friendly human-computer interfaces, such interfaces need to be enabled with capabilities to perceive the user, his location, identity, activities and in particular his interaction with others and the machine. Only with these perception capabilities can smart systems ( for example human-friendly robots or smart environments) become posssible. In my research I\u27m thus focusing on the development of novel techniques for the visual perception of humans and their activities, in order to facilitate perceptive multimodal interfaces, humanoid robots and smart environments. My work includes research on person tracking, person identication, recognition of pointing gestures, estimation of head orientation and focus of attention, as well as audio-visual scene and activity analysis. Application areas are humanfriendly humanoid robots, smart environments, content-based image and video analysis, as well as safety- and security-related applications. This article gives a brief overview of my ongoing research activities in these areas

    Automated Formal Analysis of Internet Routing Configurations

    Get PDF
    Today\u27s Internet interdomain routing protocol, the Border Gateway Protocol (BGP), is increasingly complicated and fragile due to policy misconfigurations by individual autonomous systems (ASes). To create provably correct networks, the past twenty years have witnessed, among many other efforts, advances in formal network modeling, system verification and testing, and point solutions for network management by formal reasoning. On the conceptual side, the formal models usually abstract away low-level details, specifying what are the correct functionalities but not how to achieve them. On the practical side, system verification of existing networked systems is generally hard, and system testing or simulation provide limited formal guarantees. This is known as a long standing challenge in network practice --- formal reasoning is decoupled from actual implementation. This thesis seeks to bridge formal reasoning and actual network implementation in the setting of the Border Gateway Protocol (BGP), by developing the Formally Verifiable Routing (FVR) toolkit that combines formal methods and programming language techniques. Starting from the formal model, FVR automates verification of routing models and the synthesis of faithful implementations that carries the correctness property. Conversely, starting from large real-world BGP systems with arbitrary policy configurations, automates the analysis of Internet routing configurations, and also includes a novel network reduction technique that scales up existing techniques for automated analysis. By developing the above formal theories and tools, this thesis aims to help network operators to create and manage BGP systems with correctness guarantee

    MATrA: meta-modelling approach to traceability for avionics

    Get PDF
    PhD ThesisTraceability is the common term for mechanisms to record and navigate relationships between artifacts produced by development and assessment processes. Effective management of these relationships is critical to the success of projects involving the development of complex aerospace products. Practitioners use a range of notations to model aerospace products (often as part of a defined technique or methodology). Those appropriate to electrical and electronic systems (avionics) include Use Cases for requirements, Ada for development and Fault Trees for assessment (others such as PERT networks support product management). Most notations used within the industry have tool support, although a lack of well-defined approaches to integration leads to inconsistencies and limits traceability between their respective data sets (internal models). Conceptually, the artifacts produced using such notations populate four traceability dimensions. Of these, three record links between project artifacts (describing the same product), while the fourth relates artifacts across different projects (and hence products), and across product families within the same project. The scope of this thesis is to define a meta-framework that characterises traceability dimensions for aerospace projects, and then to propose a concrete framework capturing the syntax and semantics of notations used in developing avionics for such projects which enables traceability across the four dimensions. The concrete framework is achieved by exporting information from the internal models of tools supporting these notations to an integrated environment consisting of. i) a Workspace comprising a set of structures or meta-models (models describing models) expressed in a common modelling language representing selected notations (including appropriate extensions reflecting the application domain); ii) well-formedness constraints over these structures capturing properties of the notations (and again, reflecting the domain); and iii) associations between the structures. To maintain consistency and identify conflicts, elements of the structures are verified against a system model that defines common building blocks underlying the various notations. The approach is evaluated by (partial) tool implementation of the structures which are populated using case study material derived from actual commercial specifications and industry standards
    • …
    corecore