
MATrA : Meta-modelling Approach to 
Traceability for Avionics 

Paul Andrew James Mason 

Submitted in partial fulfilment of the requirements for the degree of 

Doctor of Philosophy 

Department of Computing Science 

University of Newcastle 

March 2002 

NEWCASTLE UNIVERSITY LIBRARY 

---------------------------- 
201 22860 6 

---------------------------- 
Ihesis L1 %ý1 C, 



Abstract 

Abstract 

Traceability is the common term for mechanisms to record and navigate relationships between artifacts 

produced by development and assessment processes. Effective management of these relationships is 

critical to the success of projects involving the development of complex aerospace products. 

Practitioners use a range of notations to model aerospace products (often as part of a defined technique 

or methodology). Those appropriate to electrical and electronic systems (avionics) include Use Cases 

for requirements, Ada for development and Fault Trees for assessment (others such as PERT networks 

support product management). Most notations used within the industry have tool support, although a 
lack of well-defined approaches to integration leads to inconsistencies and limits traceability between 

their respective data sets (internal models). 

Conceptually, the artifacts produced using such notations populate four traceability dimensions. Of 

these, three record links between project artifacts (describing the same product), while the fourth relates 

artifacts across different projects (and hence products), and across product families within the same 

project. 

The scope of this thesis is to define a meta-framework that characterises traceability dimensions for 

aerospace projects, and then to propose a concrete framework capturing the syntax and semantics of 

notations used in developing avionics for such projects which enables traceability across the four 

dimensions. The concrete framework is achieved by exporting information from the internal models of 

tools supporting these notations to an integrated environment consisting of. i) a Workspace comprising 

a set of structures or meta-models (models describing models) expressed in a common modelling 

language representing selected notations (including appropriate extensions reflecting the application 

domain); ii) well-formedness constraints over these structures capturing properties of the notations (and 

again, reflecting the domain); and iii) associations between the structures. To maintain consistency and 
identify conflicts, elements of the structures are verified against a system model that defines common 
building blocks underlying the various notations. 

The approach is evaluated by (partial) tool implementation of the structures which are populated using 

case study material derived from actual commercial specifications and industry standards. 



Acknowledgements 

Acknowledgements 

I owe a debt of gratitude to my supervisor Dr. Amer Saeed for shaping my ideas and for his continued 
help, guidance and encouragement throughout. Thanks are also due to Amer's wife and family for 

understanding my demands on his time, especially during the period of distance supervision. 

With Amer based in the South East for the last two years, it befell Professor Tom Anderson to provide 

me with managerial supervision in Newcastle. Thank you Tom for ensuring I saw things through. 

Further thanks go to my examiners, Dr. Julian Johnson and Dr. Nick Rossiter for their valuable 

comments and observations. 

I would also like to thank all at the Centre for Software Reliability for providing a convivial and 

stimulating research environment. 

Thanks are due to BAE SYSTEMS for their sponsorship and intellectual support and for affording me 
the opportunity to evaluate my research in an industrial context. I am also grateful to the EPSRC for 

their financial support. 

A special mention goes to my dad James for his love and generosity and to my Uncle Bill who has 

encouraged me throughout. Thank you both. 

And to my mum Joyce whose strong will and resilience I inherited; you are never far from my thoughts. 

Finally to Chompoo, for the times we had and for being there almost every day during the past four and 

a half years. You gave me perspective, encouragement and so much more. You tolerated my 

grumpiness, not to mention relentless and often clu-el (sorry cruel) sarcasm. And what's more, you did 

it with a smile. Khob Khun Krub, babe!!! 



Table of Contents 

Table of Contents 

List of Figures i 

List of Tables v 
Author's Declaration vi 

Chapter One : An Introduction to Traceability 
1.1 Introduction 1 

1.2 Aerospace Industry Characteristics: The Need for Traceability 1 

1.3 Thesis Argument 4 

1.4 Survey of Traceability Literature 5 

1.4.1 A Brief History of Traceability 5 

1.4.2 Literature Definitions 6 

1.4.3 Author's Definitions 9 

1.4.4 On Formal Definitions of Traceability 11 

1.4.5 Dimensions For Traceability 12 

1.4.6 Drivers For Traceability 13 

1.4.6.1 The Emergence of Requirements Engineering (RE) 13 

1.4.6.2 Increased use of Quality Management & Compliance Frameworks 16 

1.4.6.2.1 Aerospace Recommended Practice (ARP) 4754 & 4761 19 

1.4.6.2.2 On Traceability Requirements for ARP 4754 & 4761 20 

1.5 Chapter Summary 22 

1.6 Thesis Structure 23 

Chapter Two : Techniques and Tools for Traceability 
2.1 Introduction 25 

2.2 Traceability Techniques 25 

2.2.1 Cross-Referencing 25 

2.2.1.1 Foundations 25 

2.2.1.1.1 Lower-Order Cross-Referencing 25 

2.2.1.1.2 Higher-Order: Multiple Relations 27 

2.2.1.1.3 Higher-Order: Multiple Artifacts 28 

2.2.1.2 Traceability Enhancements 29 

2.2.1.3 Traceability Applications 29 

2.2.1.4 Evaluation 35 
2.2.2 Conceptual Data Modelling 37 

2.2.2.1 Foundations 37 

2.2.2.1.1 Structural Constructs 37 

2.2.2.1.2 Constraints 39 

2.2.2.1.3 Operators 39 

2.2.2.2 Representative Conceptual Data Models 40 

2.2.2.2.1 Relational Data Model 40 

2.2.2.2.2 Entity-Relationship Model 41 

2.2.2.2.3 Object-Role Modelling (ORM) 41 



Table of Contents 

2.2.2.2.4 GEM 42 
2.2.2.2.5 IDEFIX 44 

2.2.2.2.6 DAPLEX 44 
2.2.2.2.7 EXPRESSEXPRESS-G 45 
2.2.2.2.8 O-Telos 45 
2.2.2.2.9 Unified Modelling Language (UML) & Object 47 

Constraint Language (OCL) 

2.2.2.2.10 Other Conceptual Data Models 52 

2.2.2.3 Traceability Enhancements 52 
2.2.2.4 Traceability Applications 53 

2.2.2.5 Evaluation 54 

2.2.3 Applicability of Techniques 55 

2.3 Tool Support For Traceability 55 

2.3.1 General Purpose Tools 56 

2.3.1.1 Hypertext 56 
2.3.1.2 General Purpose Database Management Systems 57 

2.3.1.2.1 Relational Database Management Systems (RDMS) 57 

2.3.1.2.2 Object-Oriented Database Systems (OODS) and 58 
Deductive Database Systems (DDS) 

2.3.1.2.3 Deductive Object-Oriented Database Systems 59 
(DOODS) 

2.3.2 Commercial Traceability Tools 60 

2.3.2.1 DOORS (Dynamic Object Oriented Requirements System) 60 

2.3.2.2 RTM (Requirements & Traceability Management) 62 

2.3.2.3 RDD-100 63 
2.3.2.4 Additional Traceability Tools 64 

2.3.3 Comment on Tools 65 

2.4 Techniques and Tools for MATrA 66 

2.5 Chapter Summary 66 

Chapter Three : MATrA: Foundations and Fundamentals 
3.1 Introduction 67 

3.2 Found ations of MATrA 67 

3.2.1 Novel Approaches to Theories Underlying Requirements Engineering 67 
(NATURE) 

3.2.1.1 NATURE Influence 68 
3.2.2 System Engineering Data Representation and Exchange Standardisation 69 

(SEDRES) 

3.2.2.1 SEDRES Influence 70 

3.2.3 Design Rationale Capture System (DRCS) 70 

3.2.3.1 DRCS Influence 72 

3.3 Fundamentals of MATrA 73 

3.3.1 MATrA Fundamentals Overview 73 

3.3.2 Notation Dependent Traceability Structures (Meta-models) 74 

3.3.3 MATrA Systems Engineering Notation Meta-class Model 75 

3.3.4 `tool2matra' Mapping Function 78 



Table of Contents 

3.3.5 Product Data Synthesis (PDS) 79 
3.3.5.1 Build Elements 80 
3.3.5.2 Build Associations 81 

3.3.6 MATrA Framework Model 83 
3.3.6.1 Aerospace Traceability Entity 84 
3.3.6.2 Aerospace Build Entity 85 
3.3.6.3 Aerospace Engineering Entity 85 

3.3.6.3.1 Aerospace Engineering Object 85 

3.3.6.3.2 Aerospace Engineering Association 85 
3.3.6.4 Aerospace Management Entity 86 

3.3.6.4.1 Aerospace Engineering Project 86 
3.3.6.4.2 Product Data Synthesis 86 
3.3.6.4.3 Traceability Workspace 87 

3.3.6.4.4 Aerospace Link Entity 87 
3.3.7 Circuit Diagrams: A Meta-model Worked Example 88 

3.3.7.1 Motivation 88 

3.3.7.2 Concepts 88 
3.3.7.3 Circuit Diagram Structure (Meta-model) 89 

3.3.7.3.1 Specification of Circuit Diagram Meta-model in UML 89 

3.3.7.3.2 OCL Constraints over Circuit Diagram Meta-model 91 
3.3.7.3.3 O-Telos Implementation of Circuit Diagram Base 92 

Classes 

3.3.7.4 Circuit Diagram Example 92 
3.3.7.5 Circuit Diagram Example Summary 94 

3.4 Chapter Summary 94 

Chapter Four : Structuring Development Artifacts 
4.1 Introduction 95 
4.2 MATrA Natural Language Structure 95 

4.2.1 Introduction 95 
4.2.2 Motivation 95 
4.2.3 Tracing Textual Artifacts: A Natural Language Structure 95 

4.2.3.1 Concepts 95 
4.2.3.2 Meta-Model Definitions 97 

4.2.3.2.1 MATrA Natural Language Structure Meta-model 97 

4.2.3.2.2 OCL Constraints 99 
4.2.3.2.3 O-Telos Implementation of MNLS Base Classes 100 

4.2.3.3 Worked Example 101 

4.2.4 Summary 103 
4.3 User Centred Requirements Structure 104 

4.3.1 Introduction 104 
4.3.2 Motivation 104 

4.3.2.1 Use Case Overview 104 
4.3.2.2 Scenarios Overview 106 
4.3.2.3 Message Sequence Chart Overview 107 



Table of Contents 

4.4 

4.5 

4.3.3 Tracing User Centred Requirements in MATrA: UCRS - An Integrated Use Case 108 
& Interaction Structure 

4.3.3.1 Concepts 108 
4.3.3.1.1 UCRS Notation 110 

4.3.3.2 User Centred Requirements Structure (Definition) 110 

4.3.3.2.1 User Centred Requirements Structure Meta-model 111 

4.3.3.2.2 OCL Constraints over the User Centred Requirements 111 
Structure Meta-model 

4.3.3.2.3 O-Telos Base Classes for User Centred Requirements 112 
Meta-model 

4.3.3.3 Use Case View 112 

4.3.3.3.1 Use Case View Meta-model 112 

4.3.3.3.2 OCL Constraints over Use Case View Meta-model 114 

4.3.3.3.3 O-Telos Base Classes for Use Case View Meta-model 117 

4.3.3.4 Interaction View 117 

4.3.3.4.1 Interaction View Meta-model 118 

4.3.3.4.2 OCL Constraints over Interaction View Meta-model 125 

4.3.3.4.3 O-Telos Base Classes for Interaction View Meta-model 130 

4.3.4 Relationship to the Traceability Dimensions 132 

4.3.5 Summary 132 

Real-Time Network Specification Language Structure (Graphical) 134 

4.4.1 Introduction 134 

4.4.2 Motivation 134 

4.4.2.1 RTN-SL Overview 135 

4.4.2.2 RTN-SL Graphical Syntax 136 

4.4.3 Tracing Real-Time Network Specifications in MATrA: An RTN-SLg Model 138 

4.4.3.1 Concepts 138 

4.4.3.2 RTN-SLg Meta-model Definitions 139 

4.4.3.2.1 RTN-SLg Meta-model 139 

4.4.3.2.2 OCL Constraints 142 

4.4.3.2.3 O-Telos Implementation of RTN-SLg Base Classes 150 

4.4.3.3 RTN-SLg Worked Examples 152 

4.4.4 Relationship to the Traceability Dimensions 159 

4.4.5 Summary 159 

Towards a SPARK Ada Programming Language Structure 160 

4.5.1 Introduction 160 

4.5.2 Motivation 160 

4.5.2.1 SPARK Ada Overview 161 

4.5.3 Tracing Software Implementations in MATrA: A SPARK Ada Model 163 

4.5.3.1 Concepts 163 

4.5.3.1.1 A Modelling Philosophy towards the Object-Based 163 
Representation of String Grammars for Specification & 
Code Level Languages 

4.5.3.2 SPARK Ada Meta-model Definitions 166 

4.5.3.3 SPARK Ada Meta-model: Worked Examples 190 

4.5.4 Application to RTN-SL Textual Specifications 198 



Table of Contents 

4.5.4.1 

4.5.4.2 

4.5.4.3 

4.5.4.4 

4.5.5 Retationst 

4.5.6 Summary 

4.6 Chapter Summary 

Towards An RTN-SL (Textual) Structure 198 
Meta-model Definitions 198 

Specifying Activities and Ports using the RTN-SL Structure: A 205 
Worked Example 

Relationship Between RTN Meta-Models 206 

iip to the Traceability Dimensions 208 

208 

209 

Chapter Five : Structuring Safety Assessment and Product Management Artifacts 
5.1 Introduction 210 
5.2 Fault Tree Analysis Structure 210 

5.2.1 Introduction 210 
5.2.2 Motivation 210 

5.2.2.1 Fault Tree Analysis Overview 211 

5.2.3 Tracing Safety Properties in MATrA: An FTA Model 214 
5.2.3.1 Concepts 214 
5.2.3.2 FTA Meta-model Definitions 215 

5.2.3.2.1 FTA Meta-model 215 
5.2.3.2.2 OCL Constraints 219 
5.2.3.2.3 O-Telos Implementation of FTA Base Classes 223 

5.2.4 Relationship to the Traceability Dimensions 225 
5.2.5 Summary 226 

5.3 Failure Modes and Effects Analysis Structure 227 
5.3.1 Introduction 227 
5.3.2 Motivation 227 

5.3.2.1 Failure Modes and Effects Analysis Overview 227 
5.3.3 Tracing Safety Properties in MATrA: An FMEA Model 229 

5.3.3.1 Concepts 229 
5.3.3.2 FMEA Meta-model Definitions 229 

5.3.3.2.1 FMEA Meta-model 229 
5.3.3.2.2 OCL Constraints 232 
5.3.3.2.3 O-Telos Implementation of FMEA Base Classes 233 

5.3.4 Relationship to the Traceability Dimensions 234 
5.3.5 Summary 235 

5.4 Programme Evaluation & Review Technique Structure 236 
5.4.1 Introduction 236 

5.4.2 Motivation 236 
5.4.2.1 Programme Evaluation & Review Technique Overview 236 

5.4.3 Tracing Programme Evaluation & Review Technique Networks in MATrA: A 238 
PERT Model 

5.4.3.1 Concepts 238 
5.4.3.2 PERT Meta-model Definitions 239 

5.4.3.2.1 PERT Meta-model 239 
5.4.3.2.2 OCL Constraints 240 



Table of Contents 

5.4.3.2.3 O-Telos Implementation of PERT Base Classes 241 
5.4.3.3 PERT Worked Example 242 

5.4.4 Summary 245 
5.5 The MATrA Configuration Model 246 

5.5.1 Introduction 246 
5.5.2 Motivation 246 

5.5.2.1 Configuration Management Overview 247 
5.5.3 Across Revisions and Variants in MATrA: A Configuration Model for Tracing 249 

Evolutionary Development 

5.5.3.1 Concepts 249 
5.5.3.2 MATrA Configuration Model Definitions 249 

5.5.3.2.1 MATrA Configuration Model 249 
5.5.3.2.2 OCL Constraints 253 
5.5.3.2.3 O-Telos Implementation of Configuration Model Base 256 

Classes 

5.5.3.3 MCM Worked Example : Tracing Revisions for the Airbus A320- 257 
100/A320-200 Flight Control System 
5.5.3.3.1 Background 258 
5.5.3.3.2 Scenario 258 

5.5.4 Summary 275 
5.6 Chapter Summary 277 

Chapter Six : Tracing Development and Assessment Artifacts 
6.1 Introduction 278 
6.2 Case Study I: A Hypothetical Mission Planning System for the Hawk 100 and 200 Series 279 

Aircraft 

6.2.1 Mission Planning System Overview 279 
6.2.2 BASE Control Software Requirements and MATrA Representation 280 

6.2.2.1 Use Case View 280 
6.2.2.1.1 Instantiation of Use Case View 284 

6.2.2.2 Interaction View 289 
6.2.2.2.1 Erase Cartridge - Normal Path 290 
6.2.2.2.2 Erase Cartridge - No Cartridge Present 298 
6.2.2.2.3 Erase Cartridge - No Data on Cartridge 301 
6.2.2.2.4 Erase Cartridge - Pilot Chooses Not to Erase Data 304 
6.2.2.2.5 Retrieve from Cartridge - Normal Path (Timing 307 

Fragment) 

6.2.2.2.6 Choose Mission and Aircraft (Event Group Fragment) 310 

6.2.3 Trace Relations 313 
6.2.3.1 Instantiation of Trace Relations 315 

6.2.4 Summary 316 

6.3 Case Study H: A Brake System Control Unit for a Wheel Braking System of a 317 
Hypothetical Aircraft 

6.3.1 Scope of Case Study 317 

6.3.2 Overview of S18 Wheel Braking System and Brake System Control Unit 317 

6.3.3 Preliminary System Safety Assessment - Brake System Control Unit 318 



Table of Contents 

6.3.3.1 Background on BSCU Design 318 
6.3.3.2 Fault Tree Analysis - Preliminary 319 

6.3.3.2.1 Instantiation of Fault Tree Analysis Meta-model - 321 
Preliminary Fault Tree 

6.3.4 System Safety Assessment - Brake System Control Unit 334 
6.3.4.1 Background on BSCU Power Supply Design 334 
6.3.4.2 Failure Modes and Effects Analysis 336 

6.3.4.2.1 Functional Failure Modes and Effects Analysis 336 
6.3.4.2.2 Instantiation of Functional Failure Modes and Effects 337 

Analysis Meta-model 
6.3.4.2.3 Piece-Part Failure Modes and Effects Analysis 339 
6.3.4.2.4 Instantiation of Piece-Part Failure Modes and Effects 341 

Analysis Meta-model 
6.3.4.3 Fault Tree Analysis - Updated 348 

6.3.4.3.1 Instantiation of Fault Tree Analysis Meta-model - 349 
Updated Fault Tree 

6.3.5 Trace Relations 350 
6.3.5.1 Instantiation of Trace Relations 352 

6.3.6 Summary 353 

6.4 Chapter Summary 354 

Chapter Seven : Conclusions 
7.1 Introduction 355 
7.2 Concluding Remarks 355 

7.2.1 Traceability for Avionics: Definitions & Drivers 356 

7.2.1.1 Contribution 356 
7.2.2 Modelling Concepts, Techniques & Tools 357 

7.2.2.1 Contribution 357 
7.2.3 MATrA: Towards A Concrete Framework for Traceability 357 

7.2.3.1 Contribution 358 
7.2.4 Meta-models for System Development 359 

7.2.4.1 Contribution 359 
7.2.5 Meta-models for Safety Assessment & Product Management 360 

7.2.5.1 Contribution 361 
7.2.6 Application of the MATrA Framework 362 
7.2.7 Overall Contribution 363 

7.3 Limitations 363 
7.3.1 Absence of tool2matra Function 363 
7.3.2 Duplication of CASE Tool Data in Workspace 363 
7.3.3 Object Proliferation 364 

7.4 Further Work 364 
7.4.1 Extension of Workspace Notations 364 
7.4.2 Application of MATrA to Other Safety-Critical Domains 365 
7.4.3 Survey of Domain Requirements for Trace Associations 365 
7.4.4 Enriching the Product Data Synthesis 365 



Table of Contents 

7.4.5 Specifying Requirements Using the MATrA Natural Language Structure 366 
7.4.6 Systems Engineering Process Issues for MATrA 366 

7.4.7 Investigation of an Inverse Mapping Function (matra2tool) 367 

7.4.8 Contiguous Case Study Across All Dimensions 367 

7.4.9 Investigation of Analysis Objectives 367 

7.4.10 Use of tool2matra to Optimise Workspace Revisions 367 

7.4.11 Confinement of Persistent Workspace to Trace Associations 368 

7.4.12 Incorporation of Standards Knowledge into MATrA 368 

7.4.13 Use of a Commercial tool as a Basis for Implementing MATrA 368 

7.4.14 Re-expression of Structures in EXPRESS 368 

7.5 Epilogu e 369 

References 

Glossary 

Appendix A 

Appendix B 

Appendix C 

Appendix D 

Appendix E 



List of Figures 

List of Figures 

Figure 1.1 Inter/Intra, Macro/Micro Horizontal/Vertical Traceability Types 10 

Figure 1.2 Horizontal, Vertical and Revision Traceability Dimensions 12 

Figure 1.3 Variant Traceability 12 

Figure 1.4 Overview of ARP 4754/4761 Safety Assessment Process 19 

Figure 1.5 Example Relationship Between Aircraft and System FHA and Aircraft FTA 21 

Figure 1.6 Steps in ARP 4754/4761 Safety Assessment Process 21 

Figure 1.7 Information Flow and Traceability (context ARP 4761) 22 

Figure 1.8 Relationship Between Meta (Dimensions) and Concrete (Workspace) 23 
Frameworks 

Figure 2.1 Directed Graph, with Adjacency and Reachability Matrix Representations 26 

Figure 2.2 Example Matrix Representation of Multiple Weighted Directed Graphs 28 

Figure 2.3 Example Semantic Network 29 

Figure 2.4 Example of a Defined Text Based Cross-Reference Format 30 

Figure 2.5 An Example Quality Function Deployment (QFD) Matrix 32 

Figure 2.6 An Example Project/Features Index (PFI) 33 

Figure 2.7 Cross-Referencing Techniques of Modelling Notations 35 

Figure 2.8 Examples of Conceptual Data Modelling Techniques 43 

Figure 2.9 Example UML Class Diagram 49 

Figure 3.1 Project NATURE Entity-Relationship Meta-Model 67 

Figure 3.2 SEDRES Data Exchange Concept 69 

Figure 3.3 DRCS Artifact Synthesis Structure 71 

Figure 3.4 Rationale Components of DRCS 72 

Figure 3.5 MATrA Systems Engineering Notation Meta-class Model 75 

Figure 3.6 Inter-Tool Traceability Problem 78 

Figure 3.7 Realising Inter-Tool Traceability using tool2matra 78 

Figure 3.8 Product Data Synthesis Elements 80 

Figure 3.9 MATrA Framework Model Elements 83 

Figure 3.10 Aerospace Engineering Association (and example subtypes) 85 

Figure 3.11 Aerospace Engineering Project 86 

Figure 3.12 Product Data Synthesis 86 

Figure 3.13 Traceability Workspace 87 

Figure 3.14 Aerospace Link Entity Concept 87 

Figure 3.15 Aerospace Link Entity 88 

Figure 3.16 Generic Two Pin Electrical Component 89 

Figure 3.17 Circuit Diagram Structure : Elements 90 

1 



List of Figures 

Figure 3.18 Circuit Diagram Structure : Associations 90 

Figure 3.19 Simple Electrical Circuit Diagram 95 

Figure 4.1 MATrA Natural Language Structure : Elements 97 

Figure 4.2 MATrA Natural Language Structure : Associations 98 

Figure 4.3 MNLS Sample Population : Node Splitting Stage 1 102 

Figure 4.4 MNLS Sample Population : Node Splitting Stage 2 102 

Figure 4.5 Use Case Diagram of the AGA Sub-system 105 

Figure 4.6 Message Sequence Chart for the Provide Guidance Data to 107 
Fin Controller Scenario (Normal Path) 

Figure 4.7 MSC Timer Event Types 110 

Figure 4.8 User Centred Requirements Structure (UCRS) 111 

Figure 4.9 UCRS - Use Case View : Elements 113 

Figure 4.10 UCRS - Use Case Model : Elements 113 

Figure 4.11 UCRS - Use Case Model : Associations 114 

Figure 4.12 UCRS - Interaction View : Elements 119 

Figure 4.13 UCRS - Interaction Model : Associations 120 

Figure 4.14 Scenario Event Natural Language Structure (SENLS) : Elements 122 

Figure 4.15 Interaction Model - Communication Event : Elements and Associations 123 

Figure 4.16 Interaction Model - Internal Action Event : Elements and Associations 124 

Figure 4.17 Interaction Model - Timing Event : Elements and Associations 125 

Figure 4.18 ASM Dynamic State Graphical Syntax 136 

Figure 4.19 ASM Graphical Syntax for Composite Dynamic States 137 

Figure 4.20 Example RTN-SLg Specification 137 

Figure 4.21 RTN-SLg Structure : Elements 140 

Figure 4.22 RTN-SLg Structure : Associations 141 

Figure 4.23 Hypothetical Composite Dynamic State 155 

Figure 4.24 RTN-SLg Specification for A Missile Target Tracking System 156 

Figure 4.25 library_item schema 167 

Figure 4.26 package_declaration schema 168 

Figure 4.27 package-specification schema 169 

Figure 4.28 inherit_clause schema 170 

Figure 4.29 defining-program-unit. 
-name schema 171 

Figure 4.30 package-annotation schema 172 

Figure 4.31 own_variable_clause schema 172 

Figure 4.32 own_variable_list schema 173 

Figure 4.33 initialization-specification schema 174 

Figure 4.34 package_declarative_item schema 174 

Figure 4.35 basic_declarative_item schema 175 

11 



List of Figures 

Figure 4.36 basic-declaration schema 176 

Figure 4.37 type_declaration schema 176 

Figure 4.38 full_type_declaration schema 177 

Figure 4.39 type-definition schema 178 

Figure 4.40 enumeration-type-definition schema 179 

Figure 4.41 subprogram_declaration schema 180 

Figure 4.42 procedure-specification schema 180 

Figure 4.43 parameter profile schema 181 

Figure 4.44 formal-part schema 181 

Figure 4.45 parameter specification schema 182 

Figure 4.46 defining_identifierlist schema 183 

Figure 4.47 procedure_annotation schema 183 

Figure 4.48 moded_global_definition schema 185 

Figure 4.49 entire_variable_list schema 186 

Figure 4.50 entire-variable schema 186 

Figure 4.51 dependency_relation schema 187 

Figure 4.52 dependency-clause schema 188 

Figure 4.53 imported_variable_list schema 189 

Figure 4.54 activity schema 200 

Figure 4.55 ports schema 201 

Figure 4.56 port_defs schema 201 

Figure 4.57 port_def schema 202 

Figure 4.58 id_list schema 202 

Figure 4.59 port_type schema 203 

Figure 4.60 a_type_ref schema 204 

Figure 4.61 RTN-SL Textual and RTN-SLg Meta-model Fragments 207 

Figure 5.1 Example Fault Tree for Aircraft Wheel Braking System - investigating 213 
causes of Loss of All Wheel Braking (source APR 4761) 

Figure 5.2 Fault Tree Analysis Structure Elements 216 

Figure 5.3 Fault Tree Analysis Structure : Associations 217 

Figure 5.4 FMEA Structure : Elements 230 

Figure 5.5a Functional FMEA Structure : Associations 231 

Figure 5.5b Piece-Part FMEA Structure : Associations 231 

Figure 5.6 Example of A Basic PERT Network 237 

Figure 5.7 Example of A PERT Network - Time Analysis 238 

Figure 5.8 Programme Evaluation & Review Technique Structure : Elements & 239 
Associations 

Figure 5.9 PERT Network - Worked Example 242 

111 



List of Figures 

Figure 5.10 Product First, Version First and Intertwined Models 248 

Figure 5.11 MATrA Configuration Model (MCM) 250 

Figure 5.12 A320-100 Product Data Synthesis Fragment - Properties 260 

Figure 5.13 A320-100 Product Data Synthesis Fragment - Architecture 260 

Figure 5.14 Decomposition of Inhibit Slat Retraction at High Angles of Attack 261 

(A320-100) 

Figure 5.15 Decomposition of Inhibit Slat Retraction at Low Speed (A320-100) 262 

Figure 5.16 Statechart Representation of Inhibit Slat Retraction 266 

Figure 5.17 Linking the Traceability Workspace and PDS over Aerospace Link Entities 267 

Figure 5.18 Example Configuration for A320-100 268 

Figure 5.19 Impacts Associations Showing Dependency Propagation 271 

Figure 5.20 Revising the A320-100 PDS (Including Partial Configuration Selection) 272 

Figure 5.21 Tracing Change Over SucceedsAEO, AddedTo and Removes Associations: A 273 
Statechart Example (Logical Level) 

Figure 6.1 Mission Planning System - Software Interaction 279 

Figure 6.2 Erase Cartridge Use Case Diagram 281 

Figure 6.3 Retrieve From Cartridge Use Case Diagram 282 

Figure 6.4 Choose Mission and Aircraft Use Case Diagram 283 

Figure 6.5 Hawk MPS : Services 284 

Figure 6.6 MSC: Erase Cartridge - Normal Path 290 

Figure 6.7 MSC: Erase Cartridge - No Cartridge 298 

Figure 6.8 MSC: Erase Cartridge - No Data on Cartridge 301 

Figure 6.9 MSC: Erase Cartridge - Pilot Chooses Not To Erase Data 305 

Figure 6.10 Retrieve Data from Cartridge - Normal Path (Timing Fragment) 307 

Figure 6.11 Choose Mission and Aircraft - New Mission From Open Missions (Event 310 
Group Fragment) 

Figure 6.12 Exemplar Intra-Micro Horizontal Traceability Relations 314 

Figure 6.13 ARP Assessment Process (Partial) 317 

Figure 6.14i BSCU Commands Braking in Absence of Brake Input Causing Inadvertent 320 
Braking - Preliminary Fault Tree (page 1) 

Figure 6.14ii BSCU Commands Braking in Absence of Brake Input Causing Inadvertent 320 
Braking - Preliminary Fault Tree (page 2) 

Figure 6.14iii BSCU Commands Braking in Absence of Brake Input Causing Inadvertent 321 
Braking - Preliminary Fault Tree (page 3) 

Figure 6.15 BSCU Power Supply Block Diagram 335 

Figure 6.16 BSCU +5 Volt Power Supply Monitor Circuit Schematic 335 

Figure 6.17 BSCU Commands Braking in Absence of Brake Input Causing Inadvertent 349 
Braking Updated Fault Tree (partial) 

Figure 6.18 Exemplar Intra-Micro Horizontal & Vertical Traceability Relations 351 

1V 



List of Tables 

List of Tables 

Table 1.1 Summary of Inter/Intra, Macro/Micro Vertical/Horizontal Traceability Types 10 

Table 2.1 PSSA Safety Requirements & Design Decisions Table 34 

Table 3.1 Comparison of MATrA Modelling Conventions : UML and O-Telos 77 

Table 3.2 Product Data Synthesis Build Associations 81 

Table 4.1 Example Scenario for the Autopilot Use Case 107 

Table 4.2 IDA Communication Protocols 135 

Table 4.3 Mapping Table : RTN-SL (Textual) to RTN-SLg Graphical Meta-model 207 
Elements 

Table 5.1 Fault Tree Event Types 211 

Table 5.2 Fault Tree Gate Types 212 

Table 5.3 ARP 4761 Functional and Piece-Part FMEA Contents 228 

Table 5.4 (Functional) FMEA Fragment for Break System Control Unit Power Supply 228 

Table 5.5 Activities & Relationships for Basic PERT Network 237 

Table 6.1 Chapter 6: Suggested Reading Paths 278 

Table 6.2 Summary of Traceability Relations (from figure 6.12) 314 

Table 6.3 Functional FMEA (Partial) of BSCU Power Supply 337 

Table 6.4 Piece Part FMEA (Partial) of BSCU Power Supply Monitor 340 

Table 6.5 Summary of Traceability Relations (from figure 6.18) 351 

V 



Author's Declaration 

Author's Declaration 

All work contained within this thesis represents the original contribution of the author. However, some 

of the material presented has previously appeared in the following: - 

" Mason & Saeed, 1998 Mason, P. & Saeed, A. - Tracing Support for Safety Properties: An Object- 
Oriented and Deductive Approach, Proc. 16th Int'l System Safety 
Conference, Seattle, WA, Sept. 

" Mason, 1998 Mason, P. - An Introduction to Traceability, University of Newcastle upon 
Tyne/BAe Dependable Computing Systems Centre Technical Note, TN 
DCSC/TN/98/04 

vi 



An Introduction to Traceability 

Chapter 1 An Introduction to Traceability 

1.1 Introduction 
As systems complexity has increased, so too has the complexity of their development processes. In 

effect, this usually implies a greater number of sub-processes and hence more intermediate artifacts. 
Consequently, interest has grown in the study of relationships between these artifacts'. Traceability is 

the common term for mechanisms used to record and navigate such relationships. 

In the remainder of Chapter One, we provide a context for work in this thesis. Specifically, the next 

section describes our domain of interest, namely the aerospace industry. We then introduce the thesis 

argument to be maintained throughout. Next, we consider traceability as a topic of interest among the 

wider software and systems engineering communities. This includes a brief history of the subject, 

defining terminology and forces `driving' recent growth. Finally, we provide a synopsis of the overall 

thesis structure. The chapter is based on an extensive review of existing traceability literature which we 

underpin with views of practitioners from several business units within BAB SYSTEMS. 

1.2 Aerospace Industry Characteristics: The Need for Traceability 

This thesis considers traceability for aerospace systems engineering, in particular, traceability of 

artifacts describing systems in which (often safety-critical) functions are allocated to avionics (i. e. 

electrical and electronic equipment, such as communications and datalink systems, flight control 

systems, instruments, navigation systems, radar, mission planning systems and weapons). Certain 

characteristics make traceability an issue for most aerospace projects; this section considers five key 

characteristics influencing the need for traceability within that domain. 

C1. Product Life-cycle 

A major difference between projects in the aerospace sector and those in other industries is `time-to- 

market'. Civil aircraft may be a decade or more in development, whilst military systems can be planned 

around twenty years hence. During this time, strategic and mission needs (and hence requirements) may 
be revised, sometimes instigated by sudden and unforeseen events (like the end of the cold war or the 

terrorist attacks of September 11,2001). Moreover, total product life-cycles, particularly those for civil 

aircraft, can exceed thirty years. Inevitably over such a long period, manufacturers revise their designs 

to incorporate the likes of new technologies and changes in safety regulations. They may also develop 

variants of aircraft to accommodate specific market needs. Managing the `evolving product' is therefore 

a significant problem on projects with protracted life-cycles. 

Because few engineers are involved throughout the duration of such projects, a further and often 

overlooked problem is retention of knowledge capturing what is best described as ̀ engineering 

t In keeping with the literature, we use the terms (trace) relation(ship), association and linkage interchangeably and 
synonymously throughout to describe any mechanism for linking artifacts produced by an engineering process. 



An Introduction to Traceability 

judgement', i. e., the rationale for key development and assessment decisions. This is especially 
important when engineers must revisit the design of an in-service aircraft (normally following an 

accident) that has remained static for many years - an obvious example being Concorde which first flew 

in 1969, but which required a number of modifications following the Paris crash in July 20002. 

Traceability may be viewed as the common denominator in managing these and other time related 

problems, both by structuring the relationships between multiple versions of artifacts, and by providing 

means to capture rationale relating to options, argumentation and intent. 

C2. Process Characteristics 
The development context for aerospace systems containing safety-critical functions or components can 

be described in terms of two concurrent processes (yielding two sets of artifacts) - development and 

assessment - each comprising a number of tightly coupled sub-processes. Development proceeds top- 

down through several iterations of requirements and design, gradually refining abstract aircraft level 

requirements, into systems or sub-systems and eventually detailed hardware and software component 

designs3. 

For each iteration, safety analysis determines whether the mission requirements contain any inherent 

hazards and what safeguards (safety requirements) are required to exclude them. Design proposals are 

also analysed to ensure they themselves do not introduce any hazards, that they satisfy the safety 

requirements and that they preserve the original intent (i. e., mission requirements). Following 

implementation and further safety analysis to ensure no new hazards have been introduced, assessment 

proceeds bottom up with the integration of components and verification that safety requirements have 

been satisfied at each level of abstraction. 

A major problem with complex processes such as this is lack of visibility, especially where enactment 

extends over a protracted period (as described in Cl). However, process visibility can be enhanced by 

effective traceability. In simplistic terms, if we consider all artifacts as inputs (I) to, and outputs (0) 

from the various sub-processes, then a traceability association between two artifacts, from ieI to oe 

0, may be regarded as an abstraction of the activity involved in producing o from i (where i and o 

denote requirements and designs, for example). 

C3. Complex Integrated Systems 

Aircraft functions such as automatic landing, auto-stabilisation and stall-protection are implemented by 

systems that are not only individually complex, but which involve a considerable number of interfaces 

between systems; e. g., a relatively simple automatic rudder control function with a yaw-damper to 

correct "Dutch-roll" characteristics will interconnect sensors, actuators, hydraulics, mechanical systems 

2 In particular, engineers needed to consider rationale for location of the wheel assembly, relative to the engines and engine 
intakes. Interested readers are referred to Weir (2001) for more information. 
3 Note the process we describe is simplified and takes no account, for example, of the complex interaction between technical 

definition and procurement activities. 



An Introduction to Traceability 

power plant and cockpit display units4. Artifacts describing such systems are often similarly large and 

complex, as are the relationships between them. Therefore practitioners require means to support 

traceability not only within descriptions of individual systems, but also between these descriptions, in 

particular for impact analysis and change control purposes. Traceability can also help maintain 

consistency across such complex, high-volume data sets. 

C4. Fault Tolerant Architectures 
Aircraft systems having a direct bearing on safety employ fault tolerant architectures to guard against 

the risk of faults with the potential to cause a system failure. As the name suggests, these architectures 

allow continued and correct functioning in the presence of faults, where a fault is defined as some 

defect within a system (Storey, 1996)5. 

Fault tolerance is achieved through redundancy, i. e., multiple modules that replicate means of achieving 

the same function. Fault tolerant architectures include those employing majority voting mechanisms 

which compare outputs from N modules based on identical inputs. Where a single fault means the 

output from one module differs, voter output corresponds to the majority view. Simple configurations 

use triple modular redundancy (capable of tolerating a single fault), whilst greater use of redundant 

modules affords increased protection - termed N-modular redundancy (hardware) and N-version 

programming (software). Dynamic hardware redundancy schemes and software recovery blocks are 

further, comparable techniques where fault detection mechanisms switch operation to stand-by modules 

when a unit fails6. 

A corollary of using fault tolerant architectures is that multiple redundant modules yield an increase in 

development and assessment artifacts describing them, and hence even greater need for effective 

traceability so that these descriptions may be related back to their original requirement(s). In addition, 

traceability can provide means of managing assumptions made to justify claims associated with fault 

tolerant architectures (Popov et al., 2001). 

C5. Certification 
Finally, certification is normally a legal requirement before new aircraft or aircraft systems can enter 

operational use. Certification is undertaken by an appropriate regulatory body, with different authorities 

governing projects within particular aerospace sectors; e. g., in the UK, all civil aircraft require approval 

by the Civil Aviation Authority. One of the most important documents submitted in support of an 

application for certification is the safety case, a rigorous argument and supporting evidence stating why 

the system is safe for its intended use. A safety case may run to several volumes and so maintaining this 

body of evidence is often extremely difficult. Again, traceability can help practitioners alleviate such 

problems. 

4 Dutch roll occurs when the aircraft has relatively strong lateral stability and weak directional stability. Readers are referred to 
Mair & Birdsall (1992) for more information. 
s Readers are referred to works by Laprie (1989), Leveson (1995) and Storey (1996) for definitions of the safety-critical 
vocabulary used in this thesis. 
6 For more information on these and other approaches, the reader is referred to Anderson & Lee (1991). 



An Introduction to Traceability 

However, since certification often requires conformance to a particular standard, and since many 
standards demand traceability, then traceability can itself be a requirement for certification; e. g., DO- 
178b (EUROCAE, 1992), an international standard covering certification of software in airborne 
systems, requires that safety requirements should be traceable through various stages of development to 

specific elements of the low-level implementation. 

This combination of factors demonstrate why traceability is of major significance to the aerospace 
industry and also why the traceability concerns of practitioners differ markedly from those in other 
sectors. We are unaware of any further work considering traceability from such a specialised and 
domain specific perspective. 

1.3. Thesis Argument 
Issue - We assert that characteristic properties of aerospace systems cause several distinct traceability 

problems, whilst magnifying those of a more `traditional' nature. The aim is to propose a theoretical 
basis for a practical solution to these problems. 

Position - Practitioners use a range of notations to model aerospace systems (often in conjunction with 

a process as part of a technique or methodology). For avionics, notations fall into two broad categories: 
those with a well-defined syntax and semantics (for example Circuit Diagrams and Ada) and those that 

are less rigorously defined but which offer flexibility as a result (such as Use Cases and Scenarios). 

Practitioners also require the ability to conduct safety assessment over these models using established 
techniques for hazard analysis (e. g., Fault Tree and Failure Modes and Effects Analyses) and to manage 

operations using further techniques for planning and control (notably Critical Path Analysis and PERT). 
Most of the above have tool support (normally bespoke or a commercial CASE tool), however a lack of 
well-defined approaches to integration limits traceability between their respective data sets. 

We argue that traceability across tools can be achieved by exporting these data sets to an integrated 

environment consisting of. i) a Workspace comprising a set of structures or meta-models (literally, 

models describing models) capturing data elements for a representative set of development, assessment 
and product management notations; ii) a further structure capturing fundamental elements of the 

emerging product that maintains consistency within the Workspace (where 'fundamental elements' 
refers to system components, their functions and behaviour, etc. ); iii) well-formedness constraints over 
these structures; and iv) associations and consistency constraints between the structures. 

We also argue that development and assessment information populates four traceability dimensions, of 

which three record links between project artifacts (conceptualised as a cube), while the fourth relates 

artifacts across different projects (i. e., cubes) and across product families within the same project. 
Hence, the structures must provide coverage across four dimensions. 

7 'Traditional' traceability problems concern the following: what kind of information and relationships to record?; how to 
organise the information into coherent structures reflecting stakeholder viewpoints?; how to populate the structures with 
information from development and assessment activities?; and how to analyse the populated structures? (Pohl, 1996) 



An Introduction to Traceability 

Conceptual data modelling techniques have been used previously to define traceability structures 

(including meta-models) to represent and trace between semiformal notations for IS development; first 

their syntactic structure is expressed in an appropriate notation or modelling language and then well- 

formedness constraints are added to give these constructs a semantics. Some requirements management 

tools (e. g., DOORS) already adopt this approach to an extent, although failure to capture both syntax 

and semantics undermines their potential use in developing safety or mission critical systems. 

Our position is that capturing the syntax and semantics of appropriate notations as traceability structures 

embedded in a conceptual modelling language (along with means to verify and create linkages between 

these structures) provides the theoretical basis for a practical traceability environment for avionics 

engineering. 

Evidence - To substantiate our argument, we do the following: - 

9 Develop an approach towards tackling practitioner concerns stated by our position using 

traceability structures. The approach known as MATrA (Meta-modelling Approach to Traceability 

for Avionics) provides: 

1. custom representations that define the syntax and well-formedness constraints for flexible 

notations (applicable to the aerospace domain); 

2. meta-models capturing the syntactic elements and well-formedness constraints of well 

defined notations and custom representations; 

3. a seamless environment (afforded by I and 2) that enables traceability between these 

meta-models; 
4. a mechanism for ensuring consistency across the meta-models; 

5. coverage of the traceability dimensions. 

" Demonstrate the approach using material supplied by aerospace practitioners, including actual 

commercial specifications and industry standards. 

1.4 Survey of Traceability Literature 
This subsection provides a survey of traceability literature. Among the areas considered are key 

traceability concepts and factors motivating interest in the subject, both generally and throughout the 

aerospace industry. 

1.4.1 A Brief History of Traceability 

Clearly, any engineering endeavour requires an orderly means of tracking between its initial set of 

objectives and the overall finished product. Hence traceability is nothing new! Even in software 

engineering, primitive traceability mechanisms were evident as far back as the early seventies 

(Teichroew & Sayani, 1971). 



An Introduction to Traceability 

Alford (1994) observes that traceability's emergence as a topic of concern coincided with the 'birth' of 
systems engineering in late fifties America where it was used as a means of demonstrating compliance 
with requirements under Contract Law. The term itself is thought to originate from the US military who 
subsequently introduced it as a requirement for all defence contracts. However, it was the mid-seventies 
before explicit references began to appear in published literature (Alford & Bums, 1976; Belford & 

Taylor, 1976; Boehm, 1976; Dreyfus & Karacsony, 1976; Stallman & Sussman, 1977), so clearly the 

concepts significantly pre-date the actual term. Calls for improvement (Alford, 1977) were initially 

realised as languages with inherent support for traceability (Bell et al., 1977; Davis & Vick, 1977), 

followed by the first purpose built tools (Pierce, 1978; Johnson & Merrithew, 1978). 

The eighties were marked by further calls for improved traceability (Distaso et al., 1980; Hoffnagle & 

Beregi, 1985; Roman, 1985; Tamanaha et al., 1989), as well as a succession of proprietary and research 
tools (cf. Bigelow, 1988; Dorfman & Flynn, 1984; Garg & Scacchi, 1989; Horrowitz & Williamson, 

1986; Lueders, 1984; Nejmeh et al., 1989; Pirnia & Hayek, 1981; and Sciortino & Dunning, 1984). 

However, for reasons to be discussed in subsection 1.4.6, the 1990s saw an (ongoing) surge in the 

popularity of traceability, with further calls for improvement (Fickas & Finkelstein, 1993; IEEE, 1993b; 

Morris et al., 1995; Plant & Tsoumpas, 1995) and growing academic interest, e. g. the AMES, CREWS, 

NATURE, 2RARE and LESD projects. It is worth noting that whereas with some techniques, say 
formal methods, where the 'push' has generally been from academia into industry, traceability has 

moved in the other direction - i. e., from industry to academia. 

1.4.2 Literature Definitions 

Greenspan & McGowan (1978) were among the first to propose a definition of traceability. It offers a 

useful early perspective before the scope of definitions widened and different types of traceability 

became a feature (as will become evident). 

"Traceability is a property of a system description technique that allows changes in one of 
the three system descriptions - requirements, specifications, implementation - to be traced to 
the corresponding portions of the other descriptions" Greenspan & McGowan (1978). 

Until recently, the most commonly cited `definition' of traceability featured in the ANSUIEEE Guide to 

Software Specifications (ANSI/IEEE Std. 830,1984): - 

"A SRS (software requirements specification) is traceable if the origin of each of its 
requirements is clear and it facilitates the referencing of each requirement in future 
development and enhancement documentation" ANSI/IEEE Std. 830 (1984). 

This is actually not so much a definition as a statement of the conditions necessary to establish 

traceability. However, it is notable for prescribing traceability of artifacts leading to production of the 

SRS. This contrasts with early definitions (including Greenspan & McGowan) which view the 

specification as a 'black-box'. Equally significant is the fact that it explicitly recommends backward 

traceability to previous development stages and forward traceability to all documents spawned by the 

SRS, thereby introducing the notion of direction which features prominently in later work. 



An Introduction to Traceability 

However, Davis arguably shaped current attitudes towards traceability with the following definition: - 

"traceability can be defined as the ability to describe and follow the life of an artifact, in 
both a forward and backward direction, i. e. from its origin to development and vice versa" 
Davis (1990). 

The influence of this definition can be clearly seen in later interpretations (notably that of Gotel, 1995). 

More significant is that Davis distinguishes between different types of traceability in two further sub- 

definitions, pre-traceability and post-traceability. These recognise the fact that producing an SRS 

involves tasks, problems and information which differ in content and structure from those that follow (a 

point affirmed by Feather, 1991 and Goguen, 1996a). This distinction is supported in studies by 

Ramesh & Edwards (1993) and Gotel (1995) who proposed the following definitions: - 

"pre-requirements traceability refers to the ability to describe and follow those aspects of a 
requirement's life prior to its inclusion in the requirements specification in both a forwards 
and backwards direction" Gotel (1995). 

"post-requirements traceability refers to the ability to describe and follow those aspects of a 
requirement's life that result from its inclusion in the requirements specification in both a 
forwards and backwards direction" Gotel (1995). 

Davis (1990) also reinforced the notion of direction by specifying a need for i) backward traceability 

(from requirements); ii) forward traceability (from requirements); iii) backward traceability (to 

requirements); and iv) forward traceability (to requirements). This has greater scope than ANSI/IEEE 

Std. 830-1984 (which merely recommends tracing backwards and forwards from the SRS), Ince et al., 

1993 (whose definitions of forward and 'reverse' traceability disregard pre-traceability) and Ramesh & 

Edwards, 1993 (who confine their interpretation to traceability between requirements and design). 

Pearson (1996) extended the existing divisions with definitions of Pre-Formal-RS and Post-Formal-RS 

traceability which take into account the production of a formal requirements specification document. 

Pohl (1996) meanwhile further emphasises the need to maintain traceability between requirements 

expressed using natural language and their corresponding formal representation. 

Some authors also use the terms horizontal and vertical traceability (e. g., Bersoff & Davis, 1991; 

Boldyreff et al., 1996; Gotel, 1995; Nejmeh, 1989; Ramesh & Edwards, 1993) in referring to 

associations between life-cycle objects of the same type, i. e., same development (or assessment) phase 

(e. g., a parent and its child requirement(s)) and different types (e. g. a requirement and its corresponding 

design element(s)). Although usage of these terms is fairly standard, it is worth noting that Bohner 

(1995) applies them visa versa, as does Lindvall (1997), whereas Choi & Scacchi (1989), Fiksel & 

Hayes-Roth (1993) and Lanubile & Visaggio (1995) use the designations internal and external 

traceability in preference to horizontal and vertical. Corriveau's (1996) interpretation of horizontal 

traceability is different again. Based on an incremental, object-oriented approach, he uses it to describe 

the tracking of artifact versions through various macro-iterations, where each iteration represents a 
`complete' development life-cycle. 



An Introduction to Traceability 

Consultation with practitioners revealed a further distinction in which horizontal traceability refers to 
artifacts related within a tool and vertical traceability refers to artifacts related between tools (though 
the original intent is often preserved since a separate tool is typically associated with each development 

stage). Similarly, Kalinsky et al. (1989) and Lindvall (1997) view traceability as relating dependent 
items within a model and corresponding items between models. Finally, in a document-centric approach 
based on syntax-trees, Han (1995,1996 and 1997b) differentiates between inter-document relationships 
and intra-document relationships. Again, as he considers a separate document to be produced by each 
stage in development, Han also preserves the usual intent implied by horizontal and vertical traceability. 

Apart from the early interpretation by Greenspan & McGowan, all definitions considered to date are 
what Gotel (1995) termed direction-driven. Other direction-driven definitions were proposed by 
Corriveau (1996), ESA (1991), Gieszl (1992), Ince et al. (1993), Johnson et al. (1991), Nejmeh et al. 
(1989) and Shilling & Sweeney (1989). 

Most definitions of traceability fit into this category. However, Gotel (1995) proposes some additional 
groupings as part of a simple taxonomy which also describes definitions as: - 

Purpose-driven - defined in terms of what traceability should do, for example: - 

"Traceability provides software developers with facilities to track the history of every 
feature of a system and the impact of changes to these features on the system design, cost 
and schedule" Tran et al. (1997). 

Other purpose-driven definitions include those proposed by Kelley (1990), Wright (1991), 

Jackson (1991) and Hughes & Martin (1998). The main weakness of such definitions is their 

tendency to define usage rather than meaning. 

Solution-driven - defined in terms of how traceability should be done, for example: - 

"Traceability refers to the ability of tracing from one entity to another based on given 
semantic relations" Ramamoorthy et al. (1986). 

Other solution-driven definitions include those proposed by Ecklund jr. et a[. (1996), 

Gardner (1994) and Roman (1985). The main weakness of these definitions is their tendency 

to be overly prescriptive. 

Information-driven - emphasising the information to be traced between, for example: - 

"The characteristic of a software system that allows identification and control of 
relationships between requirements, software components, data and documentation at 
different levels in the system hierarchy" NASA-Std-2202 (1993). 

Other information-driven definitions include those by Bergstein (1993), Castell et aL (1993), 

DO-178b (EUROCAE, 1992) and IEEE (1993a). The main weakness of such definitions is 

their tendency to over state (and hence restrict) what artifacts should be traced. 



An Introduction to Traceability 

1.4.3 Author's Definitions 

Most definitions of traceability (including those featured above) originate from software engineering 

literature and are couched in terms that prohibit their wider application to systems engineering. 

Moreover, they normally imply a single level of decomposition and single system perspective, while 

showing bias towards software life-cycle models. Also, the notion of traceability between artifact 

revisions (i. e., the maturation of an artifact) and between `base' artifacts and their variants 
(modifications developed for use on different products) - we collectively term these different forms of 

evolution versions - is either not considered or else is captured by overloading definitions for horizontal 

traceability (i. e. between artifacts of the same type). 

Clearly therefore significant aspects are lost when the intent of software based definitions is 'stretched 

to fit' a systems engineering context. We therefore provide our own taxonomy which, to keep as general 

as possible: - i) states meaning not usage; ii) is free of bias towards particular methods of realisation; 

and iii) avoids excessively delimiting the artifacts to trace8. The taxonomy itself comprises definitions 

of horizontal and vertical, revision and variant, pre and post requirements and forward and backward 

traceability. These are then used to provide a definition of traceability itself. 

Note: vertical/horizontal traceability is adequate for `normal' systems engineering, but for avionics (and 

aerospace systems generally), characteristics C2 and C3 (subsection 1.2) imply more complex products 

and hence more complex processes. Therefore richer definitions of traceability are required. The terms 

micro and macro are introduced to differentiate traceability within and across decomposition levels 

(e. g., system, sub-system, component). Similarly, the terms intra and inter distinguish traceability 

within and across system descriptions (i. e., systems that interact with one another). 

" Inter-Macro-Vertical Traceability - the ability to describe and navigate relationships across 

system descriptions, across levels of decomposition, between development or assessment artifacts 

of different types. 

Inter-Macro-Horizontal Traceability - the ability to describe and navigate relationships across 

system descriptions, across levels of decomposition, between development or assessment artifacts 

of the same type. 

" Inter-Micro-Vertical Traceability - the ability to describe and navigate relationships across 

system descriptions, within a decomposition level, between development or assessment artifacts of 

different types. 

" Inter-Micro-Horizontal Traceability - the ability to describe and navigate relationships across 

system descriptions, within a decomposition level, between development or assessment artifacts of 

the same type. 

" Intra-Macro-Vertical Traceability - the ability to describe and navigate relationships within a 

system description, across levels of decomposition, between development or assessment artifacts of 

8 Following Gotel's classification, these properties imply a direction driven approach. 

9 



An Introduction to Traceability 

different types. 

" Intra-Macro-Horizontal Traceability - the ability to describe and navigate relationships within a 

system description, across levels of decomposition, between development or assessment artifacts of 

the same type. 

" Intra-Micro-Vertical Traceability - the ability to describe and navigate relationships within a 

system description, within a decomposition level, between development or assessment artifacts of 
different types. 

" Intra-Micro-Horizontal Traceability - the ability to describe and navigate relationships within a 

system description, within a decomposition level, between development or assessment artifacts of 

the same type. 

These definitions are shown graphically in figure 1.1 and summarised in table 1.1. 

Level A 

Level B 

System I System 2 

R 
, rote. -m, cm-Hn noNnlº R 

rMa-Ma Horizowal 

D rMerMaooHoriwnta/ D 

Vertical 

rnta. -Macm4ertwaI 

R 

rMra-Minn-VeOrd 

D Nom, D 
R: Requirements Artifact 
D: Design Artifact 

Figure 1.1 - `Inter/Intra, Macro/Micro Horizontal/Vertical Traceability Types' 

Traceability Type Within System Within Decomposition Same Type 

Inter Macro Vertical X X 

Inter Macro Horizontal + 
I 

Inter Micro Vertical 

Inter Micro Horizontal 

Intra Macro Vertical ý1 

Intra Macro Horizontal VIP 
I 

Intra Micro Vertical 'I I X 

Intra Micro Horizontal I I I 

Table 1.1- `Summary of Inter/Intra, Macro/Micro Vertical/Horizontal Traceability Types' 

10 



An Introduction to Traceability 

" Revision Traceability - the ability to describe and navigate relationships between instances of the 

same artifact at different stages of maturity9. 

" Variant Traceability - the ability to describe and navigate relationships across different projects 
(and across product families within the same project), between base artifacts and their derivatives. 

" Pre-Requirements Traceability - the ability to describe and navigate relationships between a 

requirement and its originating artifacts. 

" Post-Requirements Traceability - the ability to describe and navigate relationships between a 

requirement and any artifacts relating to its development, assessment or evolution. 

" Forward Traceability - the ability to describe and navigate relationships between i) artifacts 

originating a requirement and (verification of) its realisation; ii) revision, and revision� of an 

artifact; and iii) base artifacts and their variants. 

" Backward Traceability - the ability to describe and navigate relationships between i) (verification 

of) some hardware or software feature and the artifacts originating its requirement(s); ii) revision. 

and revision, of an artifact and iii) a variant artifact and its base. 

" Traceability - the ability to describe and navigate relationships, forwards and backwards, within 

and across system descriptions, within and across decomposition levels, between artifacts of the 

same or different types, their revisions and variants, pre and post requirements specification. 

1.4.4 On Formal Definitions of Traceability 

At present, no formal definition of traceability exists. However, we can formally conceptualise what is 

meant by claims that a project is traceable (where a project refers to a completed product and all its 

documentation) based on the above definitions. 

For the following types of traceability, inter (ir), intra (ia), macro (ma), micro (mi), horizontal (ht), 

vertical (vt), revision (re), variant (va), forward (fw), backward (bw), pre-RS (pr) and post-RS (ps), we 
introduce the predicates, ir_ma_vt, ir_ma_ht, it mi_vt, it mi_ht, ia_ma_vt, ia_ma_ht, ia_mi_vt, 

ia_mi_ht, re, va, pr, ps, fw and bw. These are of the form type: P -4 IB, where P represents the 

hypothetical set of all projects. Each predicate holds for a project P, iff the project complies with the 

predicated type of traceability. We also introduce a predicate T, which holds when the project complies 

with our definition of traceability. We now assert the following relations: - 

T(P) = it ma_vt (P) A it ma_ht (P) A ir_mi_vt (P) A it mi_ht (P) A 

ia_ma_vt (P) ^ ia_ma_ht (P) A ia_mi_vt (P) A ia_mi_ht (P) A 

re (P) ^ va (P) 

T(P) = Pr (P) A ps (P) 

T(P) = fw (P) ^ bw (P) 

9 Note the intersection of ideas with Configuration Management literature. Ramesh & Jarke (1999) suggest the main difference 
is one of granularity such that CM mainly concerns coarse-grained relationships, whereas traceability can be finer-grained. 

11 



An Introduction to Traceability 

1.4.5 Dimensions For Traceability 

Figure 12 illustrates the concepts of pre-rcyuiren)ent, sind post-rcyuirenicnts tr ccahiliiv and 
horizontal, vertical and revision traceability1'. Henceforth, the latter three are referred to as traceability 
ilouensions; we therefore speak of the horizontal, vertical and revision dimensions. To aid readability, 

traceability is considered between just four basic artifact types (Requirement) Source, Requirement, 

Design and Implementation. 

Figure 1 .2- `Horizontal, Vertical and Revision Traceability Dimensions' 

Figure I. 3 illustrates (one aspect of) variant traceability (i. e. the variant dimension), namely traceability 

across projects, using a subset of the Airbus 'flunily' of aircraft. It depicts hypothetical relationships 

between requirements and design artifacts for the A300 and A320, which together derive inputs for the 

A340. Note, where a project is composed of a `family' of' (e. g.. A3 19, A32() and A32I) rather than 

individual aircraft, then variant associations can exist within as well as between cubes. 

I. ý 

A300 

A320 

,T- 

J 
A340 

Pe NS Tracrjb! Ir 

irauaaery HC; weer. 
Mead Variants 

Figure 1.3 - `Variant Traceability' 

"' In urdcr to mniplily figures 1.2 and 1.3, we Only illustrate the infra-micro toxins of horizontal and vertical traceability. 

12 



An Introduction to Traceability 

1.4.6 Drivers For Traceability 

The introduction referred to a growing interest in traceability, with several authors (including Gotel, 

1995; Kenny, 1996; Palmer, 1997; Ramesh et al., 1995; Watkins & Neal, 1994; White, 1994a; and 
Wieringa, 1995) highlighting some general motivations for its increased use. 

That said, traceability remains something of a paradox. Many still regard it as time-consuming, tedious 

and labour-intensive (as reported in Kotonya & Sommerville, 1998; Ramesh, 1993; Cockram et al., 
1998; and White, 1994a), with perceived 'benefits' such as reduction in rework (Palmer, 1997) and the 

ability to manage costs (Dömges & Pohl, 1998; Watkins & Neal, 1994), planning and scheduling 
(Ramesh & Edwards, 1993; Booth, 1993; Lindvall, 1997), performance (Hodge, 1994) and risk (Cross, 

1996; Wilson et at., 1997b) often seen as speculative. This is because while direct traceability costs are 

relatively easy to calculate, the return on investment is far more difficult to measure". And yet, we 

estimate around ninety percent of published work on traceability has emerged during the last ten years. 

The literature suggests two `key drivers' have contributed to this growing interest. These are as 
follows: - 

" The Emergence of Requirements Engineering 

" Increased use of Quality Management & Compliance Frameworks 

1.4.6.1 The Emergence of Requirements Engineering (RE) 
The contribution of sub-standard requirements to systems that are delivered late, over budget and which 
don't fulfil the needs of users is well-known (Boehm, 1981). Traditionally, the requirements phase of a 

project was seen as little more than a front-end to development and as a result was not accorded the 

same degree of precision as down-stream activities. 

Requirements Engineering (RE) is a relatively recent term encapsulating all of the activities involved in 

eliciting, understanding, analysing, documenting and managing requirements. The term engineering is 

intended to convey the impression that this is accomplished through a practical, systematic and 

repeatable process, even in areas with more philosophical and social underpinnings (e. g., ethnography; 
Sommerville et al., 1993). 

Though the idea of applying an engineering orientation to systems analysis dates back to the mid- 

seventies (IEEE, 1977), the last few years have seen an escalation of interest. The literature provides a 

useful barometer of this growth. Before 1990 material was both sparse and disjoint, whilst nowadays, in 

addition to being the subject of conferences, symposia and books (Kotonya & Sommerville, 1998; Pohl, 

1996; Sommerville & Sawyer, 1997; Wieringa, 1996), "RE now has its own journal, newsletter and BCS 

specialist group. 

Moves to improve Requirements Engineering within the aerospace sector are evident from its 

11 Return on traceability investment has been estimated at four per cent of total expenditure on US DoD projects Ramesh (1994). 

13 



An Introduction to Traceability 

collaboration with academia. In Europe alone, recent or ongoing involvement includes such projects as 
2RARE (Alcatel Espace), CREWS (GEC-Marconi), DCSC (BAE SYSTEMS), ISRE (GEC-Marconi), 
KARE (BAE SYSTEMS), REALMS (Aerospatiale) and STEFFIE (Lucas Aerospace and GEC- 
Marconi). This is additional to a number of in-house initiatives also taking place (e. g., the Airbus 
Industrie CARE project; Airbus, 2001). 

The emergence of RE and efforts to improve its attendant areas for eliciting, understanding, analysing, 
and documenting software requirements has had an indirect bearing on traceability. For example, the 
transition from analysis to design in object-oriented approaches is claimed to naturally enhance 
traceability by removing the 'air gaps' in disparate notations across the two sets of artifacts (Barbier, 
1994; Jacobson et al., 1993). Though beyond the scope of this thesis, a growing corpus of work reflects 
the issues (and problems) relevant to traceability for object-oriented development (cf. Börstler, 1996; 
Bosch, 1998; Buhr, 1995; Corriveau & Hayashi, 1994; Diagne & Kordon, 1996; Ecklund et al., 1996; 
Galle, 1996); Gossain, 1995; Ihme et al., 1995; Lindvall, 1997; Premerlani, 1994; Scalzo & Hugue, 
1996; Wieringa, 1998; Wood, 1995). 

However, the aspect of RE that has influenced growth in traceability more than any other is 

requirements management. It is widely acknowledged that requirements change is a major source of risk 
in terms of cost, schedule and quality (Strens, 1995), while with safety-critical systems, failure to 

properly manage its effects can pose a threat to human life (de Lemos et at., 1995). To minimise these 
difficulties, such changes must be managed effectively and for that, traceability is required. 

The first thing to say about requirements change is that it is unavoidable and while especially prevalent 
in the early phases of a project, normally occurs throughout. Indeed as Lehman & Belady (1985) 

maintain, systems must continually respond to their environment or become progressively less effective. 
Practitioners consulted during this study estimate that following the initial volatility, requirements 
typically change on average around three per-cent per month during the lifetime of a project; this is 

corroborated by published figures in Cries (1997). It is worth noting, as Chudge & Fulton (1994) and 
Harker & Eason (1993) point out, that early life-cycle based approaches had naively assumed a 

complete and static set of requirements were attainable prior to design. However, several alternative 

models have since emerged which accommodate change (Gladden, 1982; Lee & Yen; 1993; Rolland, 

1994a), some with explicit traceability mechanisms (Brouse [1992], Martin et al. [1993], Tiel [1993] 

and Hugge & Lang [1995]). 

The other key point to make is that requirements change need not necessarily reflect poor practice, such 

as basing requirements on erroneous assumptions (Ramesh & Jarke, 1999), failure to resolve conflicting 

viewpoints (Easterbrook et al., 1994; Hughes et al., 1995) or failure to identify missing information 

(Takahashi & Yamamoto, 1995). It can actually result from a combination of other factors, many of 

which are beyond a requirements engineer's control. For instance, customer's evolving knowledge of 

the target system is often a major source of instability whereby expectations grow (and their 

14 



An Introduction to Traceability 

requirements change) as the product emerges and they see new possibilities (Pohl & Jacobs, 1994); this 

is especially true for interface requirements (Lubars et al., 1993). External or environmental factors can 
force further unforeseen change on both customer and developer, especially for systems with protracted 
life-cycles. Finally, technical problems encountered when implementing a requirement may also lead to 

change. This may be due for example, to timing issues discovered during systems integration, or the 

emergence of additional safety evidence (Kelly & McDermid, 1999). Interested readers are referred to 

Kotonya & Sommerville (1998) for other factors causing requirements change. 

The main problem in change management lies in tracking the so-called ripple-effect (Collofello & 

Vennergrund, 1987; Yau & Tsai, 1987) where changes to one artifact can have an unforeseen impact 

elsewhere in the system. As Bohner (1995) observes, ripple-effects can be either direct (where 

connectivity between affected artifacts is immediate) or residual (where connectivity is transitive and 

the impact more difficult to detect). To a certain extent developers can minimise the problem by using 

modular development techniques. With software this often implies an object-oriented approach based 

on encapsulation, high cohesion and low coupling, etc. (Corriveau, 1996; Hoffman, 1990; Sugden & 

Strens, 1996). However, whilst such methods can localise the impact of change, developers still require 

means of making the ripple-effect more visible in order to address potential 'side-effects' of proposed 

changes (Freedman& Weinberg, 1981). 

Horizontal and vertical traceability provide such means and are therefore pre-requisites for effective 
impact assessment (Escudie et al., 1994; Sugden & Strens 1996; Tryggeseth & Nytro, 1997). From a 
(intra-micro) horizontal standpoint, suppose ultimate fuel pressure (UP) is defined as a function of a 

separate requirement for normal fuel pressure (NP); if NP were to change, then so too must the 

requirement for UP. Similarly, from a (inter-macro) horizontal perspective, changes to the specification 

of sensors calculating measured aircraft state may propagate to navigation system requirements and 

thence requirements for the flight control system; clearly intra/inter and micro/macro vertical 

traceability will also be needed to track any design changes arising. In addition, revision traceability is 

also useful for change management as it allows practitioners to re-construct the evolutionary history of 

an artifact which in turn, permits the point where errors were introduced to be identified, as well as 

providing useful volatility data for future projects. Finally, variant traceability is necessary for tracking 

the effects of change propagation between products. It is especially useful for changes instigated by 

requirements errors where one replicated error can potentially `contaminate' an entire product family. 

Besides dependencies among artifacts, the rationale underlying development decisions (i. e., decision 

rationale) provides important supplementary trace information to aid change management (Sugden & 

Strens, 1996)12. Most approaches to representing decision rationale are based on the argumentation 

structuring principles pioneered by Toulmin (1958); their underlying models are typically constructed 
from nodes (such as issue, alternative and claim) which are linked to form networked structures by 

relationships (such as achieves, denies and pre-supposes). Prominent examples of the form include 

12 Readers are referred to Bailin et aL (1990). Monk et al. (1995) Arango eta!. (1991), Chandrasekaran et al. [(1993), Fischer 
(1991) and Pena-Mora, et al. (1995) for further examples of its potential application. 

15 



An Introduction to Traceability 

IBIS (Kunz & Rittel, 1970) and gIBIS (Conklin & Yakemovic, 1991), DRL (Lee, 1991) and QOC 

(MacLean et al. (1991). However, these early models have been widely criticised for representing 
decisions out of context. Therefore, more recent examples attempt to link the rationale to a model of 
development artifacts; cf. Monk et al. (1995), Potts (1994), Han (1997a) and Ramesh & Dhar (1992), 

as well as the DRCS proposed by Klein (1993a) which we consider further in relation to this work in 

Chapter Three. 

It is important to remember that traceability is not about preventing change (Card, 1988). Rather it is a 

communication and control mechanism to be used, typically as part of a change control process, in 

managing its realisation (cf. Chudge & Fulton, 1994; Coyne, 1993; Kotonya & Sommerville, 1998; and 

Gries, 1997). With the trend towards larger and more complex systems, change control and impact 

analysis have become even more significant. Consequently, they rate among the more mature 

traceability sub-topics (cf. Bohner, 1995; Canfora et al., 1995; Cimitile et al., 1992; Fyson & Boldyreff, 

1998; Han, 1996; Kelly & McDermid, 1999; Lanubile & Visaggio, 1995; Lindvall, 1997; Liu et al., 

1993; Madhavji, 1992; Ramamoorthy et al., 1990; Westfechtel, 1989; Whitgift, 1991 and Yau et al., 

1988). 

Historically, the traceability information most commonly maintained for requirements management 

purposes is requirements-requirements and requirements-design traceability. However, work within the 

RE community has succeeded in evolving the practice of tracing requirements back to their source (i. e., 

pre-requirements traceability) and hence potential change provocateurs. Examples include Brouse 

(1992), Curran et al. (1994), Gotel (1995), Johnson et al. (1991,1992), Laubengayer & Spearman 

(1994), Leite et al. (1997), Moores & Champion, 1994, Morris et al. (1994), Pohl (1996), Ramesh 

(1994) and Sawyer et al. (1996). 

It can be seen therefore that the emergence of Requirements Engineering has provided a focus for work 

on traceability and a forum for the exchange of views. Improvements in traceability-practice have come 

both indirectly as a by-product of methods for the elicitation, understanding, analysis and 

documentation of requirements, and directly through better techniques for their management. 

1.4.6.2 Increased use of Quality Management & Compliance Frameworks 

Evaluative frameworks are increasingly used as arbiters of acceptability with respect to quality, safety 

and other hallmark attributes. Where quality and safety often differ is that with the former, framework 

compliance may be desirable for commercial reasons (i. e., a recognised stamp of approval can help gild 

the corporate image), whereas with the latter, it is usually necessary to achieve certification. 

The growing popularity of evaluative frameworks is largely attributable to two factors. First, the 

prevailing `quality culture' that places great emphasis on achieving quality within all fields of 

endeavour; as Storey (1996) observes, it often seems our goals in life may be encompassed by driving a 

quality car, attaining a quality home and spending quality time with our family! And second, increased 

16 



An Introduction to Traceability 

use of safety-critical systems; growth in using computers instead of electromechanical or other 

components to control safety-critical applications is largely due to their processing power 13, physical 

size and weight, and flexibility14 - all of which can lead to cost savings across a project (Storey, 1996; 

Leveson, 1995). 

According to Sheard (1997), the two main forms of evaluative framework are process improvement 

models and standards and guidelines. We now briefly consider examples of each from a traceability 

standpoint, before considering one particular set of guidelines for the aerospace domain (subsection 

1.4.6.2.1) which we refer to regularly throughout this thesis. 

Process Improvement Models (PIM) are founded on established links between the quality of a product 

and the quality of process used to create it. Though PIMs have no formal ratification (unlike standards 

which are subject to industry approval), they provide a way in which to assess the capabilities of an 

organisation based on its key processes. Perhaps the most widely known PIM is the Software 

Engineering Institute's (SEI) Capability Maturity Model (CMM). Originally proposed by Humphrey 

(1988), but later revised by Paulk et at. (1993), it was devised to help the US Department of Defense 

assess the capabilities of software contractors. CMM provides a five-layer stratum which classifies 

software processes as: i) initial, ii) repeatable, iii) defined, iv) managed and v) optimising; traceability 

is necessary to achieve level two status (and above). The model itself provides only general guidance, 

although the need to support a minimum of post-requirements traceability may be assumed. 

The systems engineering Capability Maturity Model (SE-CMM) and the systems engineering Capability 

Assessment Model (SECAM) are further examples of PIMs. SE-CMM (SEI, 1995) was again 
developed by the Software Engineering Institute and so has the advantage of association with the 

organisation that devised the original (software) CMM. As a minimum, traceability is necessary to 

support 'Process Area' Two of the model. Similarly, SECAM (INCOSE, 1996) - the product of an 

INCOSE working group - divides process capability into nineteen 'Key Focus Areas', with traceability 

influential in those on 'Tracking' (1.2) and 'Configuration Management' (1.5). The main difference 

between SE-CMM and SECAM is that the former includes non process characteristics. 

Standards and guidelines meanwhile establish contractual and regulatory requirements for development 

and assessment. Notable examples include the ISO 9000 series which can be used to develop quality 

management systems across a range of organisations, from manufacturing to service based industries 

(Rothery, 1993). The most general of these standards is ISO 9001 which applies to systems and 

software inasmuch as it concerns the quality process of any organisations that design, develop and 

maintain products. A supporting document, ISO 9003 (implemented in the UK through TickIT), 

provides a further interpretation of ISO 9000 appropriate to the software industry. Traceability is 

necessary for accreditation to the ISO 9000 series; in particular, it is an explicit requirement for 

13 This enables complex control functions, as well as sophisticated safety mechanisms such as self diagnostics and interlocks. 
14 By flexibility, we mean system characteristics can be changed through software upgrades, without need for hardware 
alterations. 

17 



An Introduction to Traceability 

realising clause 4.8 of ISO 9001, whilst Ince (1994) further notes the implicit relevance of clauses 4.3, 
4.4 and 4.16, as well as 5.3 and 6.1 from ISO 9003. Moreover, the generic language used to express 
these standards makes them applicable across the range of traceability dimensions". 

Traceability is also evident in the requirements management sections of UK Def-Std. 00-55 (MoD, 
1997), for example 31.2.3 to 31.2.6 (inclusive), as well as US Mil-Std-498 (DoD, 1994), notably 4.2.6, 
5.4.2 and 5.9.3. ARP 4754 (EUROCAE, 1996a) meanwhile provides guidance on traceability for the 
development of highly integrated or complex aircraft systems, while DO 178b does likewise for the 
production of software for airborne systems and equipment; respectively, parts 7.3 and 5.12b (pre-RS), 
8.43 and 6.2c (post-RS), 7.6.1 and 5.5a (horizontal), 5.2.1 and 5.5c (vertical), 9 and 7 (revision), and 
11.3.3 and 12.1.5 (variant) demonstrate that traceability across all four dimensions is recommended by 
both documents. ARP 4754 is discussed further in the following subsection. 

Clearly, the above-mentioned frameworks are proving to be a key driver for growth in traceability. 
From a quality perspective, organisations are increasingly obliged to tackle the issue in establishing 
processes that conform to the requirements of their industry. For instance, ISO 9000 accreditation is 

already mandatory for contractors to many European governments, while the US government normally 
favours a minimum of CMM level 2 or level 3 status when awarding defence contracts. From a safety 
perspective, standards such as DO 178b have been even more influential as conformance is normally a 

requirement for legal reasons. Note that ARP 4754 is defined in the context of Joint Aviation 
Regulations and Federal Aviation Regulations (JARs & FARs) which effectively makes it a de facto 

standard. 

Accordingly, tools and approaches are now emerging which help manage and/or demonstrate 

framework and more especially, standards compliance (cf. Dawkins, 1998; Emmerich et al., 1999; and 
Wilson et al., 1997a). Other works with potential application to framework compliance include those 

addressing traceability of safety properties. In particular, the Safety Argument Manager (SAM) which 

supports construction and analysis of safety arguments, as well as managing the inter-relationships 

between assessment techniques. SAM provides traceability at two levels: - i) an underlying data model 

underpinning the analysis techniques (Wilson & McDermid, 1995); and ii) a goal structuring notation 
(GSN)'6 for tracing safety arguments (Wilson et al., 1995; Wilson et al., 1996; Kelly & McDermid, 

1997). Further examples include Jenkins et al. (1997), Mason & Saeed (1998), Pearson et al. (1998), 

Leveson & Reese (1998) and with respect to tracing safety properties of COTS (commercial-of-the- 

shelf) components, Dawkins & Riddle (2000). 

In the following subsections we introduce ARP 4754, together with accompanying guidelines for its 

realisation, ARP 4761, and provide a brief overview of the traceability requirements they `impose'. 

This will serve as an aid to reader orientation for work in Chapters Five and Six. 

15 It should be noted that despite their common purpose (see Coallier, 1994 or Paulk, 1995 for a comparison), ISO 9000 and 
CMM are very different in approach as efforts to integrate them demonstrate (Rozman et at., 1997). 
16 GSN is conceptually similar to a number of other goal oriented methods (cf. Landes & Studer, 1995; Alvarez & Castell, 1996; 
Dardenne et aL, 1993; van Lamsweerde et al., 1995; Yu, 1993 and Mylopoulos et al., 1992) 

18 



An Introduction to Traceability 

1.4.6.2.1 Aerospace Recommended Practice (ARP) 4754 & 4761 
ARP 4754 and ARP 4761 (EUROCAE, 1996b) describe safety assessment guidelines and methods for 

the certification of civil aircraft'7. Assessment runs parallel to development and comprises four primary 

sub-processes (see figure 1.4): Functional Hazard Assessment (FHA), Preliminary System Safety 

Assessment (PSSA), Common Cause Analysis (CCA) and System Safety Assessment (SSA); we briefly 

discuss these below. A number of interdependent analysis techniques are used to support assessment, 

each providing a different insight into failure behaviour of the target system. Those used with ARP 

4754/4761 are Fault-Tree Analysis - FTA (Vesely et at., 1981) and Failure Mode and Effects Analysis - 
FMEA (IEC, 1985). 

Aircraft Level 
FHA 

Failure Condition, Effects, 

Functional Interactions Classifca on, Safety Requirements 

System Level 
Failure FHAs 

Conditions A 
& Effects Failure Condition, Effects, 

Classification, Safety Object ves 

V 
Architectural 

PSSAs Requirements 

CCAs 4º 
Separation 
Requirements A 

Item Requirements 

Item Requirements, 
Safety Objectives, 
Analyses Required 

SSAs 
Sepa ao& 

Venfic ton 

Results 

Funcsons Requirements 

V 
º Allocation of 

Aircraft Function 
sY51e to Systems 

Functiocs 

Development 
of System 

Architecture 
System' A 

kcnnecture 
" 

Allocation of 
º, Requirements 

I to Hardware 
& Software 

Implementabon 
System 

Pnysral system 

Certification 

Safety Assessment Process Safety Development Process 

Figure 1.4 - 'Overview of ARP 4754/4761 Safety Assessment Process' 

From ARP 4761, the primary assessment sub-process shown in figure 1.4 are summarised as follows: - 

Functional Hazard Assessment is conducted at the beginning of the aircraft/system development life- 

cycle. It aims to identify and classify the failure conditions" associated with aircraft functions and 

combinations of aircraft functions and to establish the rationale for such classifications. Once aircraft 

functions have been allocated to systems, each system which integrates multiple aircraft functions is re- 

examined. The FHA is then updated to consider failure of single or combinations of aircraft functions 

allocated to a system. The output of FHA provides a starting point for conducting the PSSA. 

Preliminary System Safety Assessment is a systematic examination of proposed system architectures 

17 Strictly, the former deals with the assessment process at a 'conceptual' level, whereas the latter considers application of 
specific assessment techniques in the context of that process. 
18 Classifications used with ARP 4754 and 4761 are catastrophic, hazardous, major, minor and no safety effect. 

19 



An Introduction to Traceability 

with the aim to identify failures that can lead to functional hazards identified by the FHA. The objective 

of PSSA is to establish safety requirements and to determine whether the proposed architecture can 

reasonably be expected to satisfy safety objectives identified by the FHA. PSSA is also an interactive 

process associated with design definition and is conducted at the system and item19 stages of 
development. At the lowest level, PSSA determines the safety related design requirements of hardware 

and software20. The PSSA will usually take the form of a Fault Tree Analysis, and should also include 

Common Cause Analyses. 

Common Cause Analysis supports development of system architectures by evaluating their sensitivity to 

common cause events. It is therefore largely conducted as part of PSSA, but may also form part of the 

SSA and to a lesser extent, FHA. Common Cause Analyses can comprise three sub-processes: - i) 

Particular Risk Analysis (PRA) considers threats from outside the system(s) and item(s) concerned; e. g. 

bird-strike, fire, leaking fluids, etc.; ii) Zonal Safety Analysis (ZSA) considers each aircraft zone to 

establish whether applicable safety requirements have been met; and iii) Common Mode Analysis 

(CMA) provides evidence that failures assumed to be independent, are independent. 

System Safety Assessment involves detailed examination of the implemented system to show 

compliance with all relevant safety requirements. The process is similar to PSSA, except that instead of 

evaluating proposed architectures and deriving safety requirements, SSA aims to demonstrate that all 

requirements established by the FHA and PSSA have been satisfied. For each PSSA carried out at a 

different level, there should be a corresponding SSA (the highest level being the system SSA). The SSA 

is usually based on the PSSA FTA and uses quantitative values obtained through Failure Modes and 

Effects Analysis. Note, the case study in subsection 6.3 of this thesis is based on fragments from 

Appendix L of ARP 4761 that focus on the System Safety Assessment. 

1.4.6.2.2 On Traceability Requirements for ARP 4754 & 4761 
Traceability among artifacts produced by the above sub-processes is necessary to comply with various 

validation checks described in ARP 4754 (including those in the sections previously mentioned in 

1.4.6.2). The checks themselves are phrased in broad terms and should be tailored to specific projects. 

For instance subsection 7.3 states the following check list item among an example set of questions for 

assessing requirements completeness at each hierarchical level: - 

Do requirements trace to identified sources? 

- functions, hazards and failure condition classifications identified in the FHA. 

Figure 1.5 illustrates one interpretation of this check. It depicts traceability to a fragment of the aircraft 

FHA - featuring a single function, hazard and failure classification - from the safety requirement 

excluding this particular condition. Fault Tree Analysis is then used to derive lower level requirements 

from those identified by the aircraft FHAs; figure 1.5 summarises the overall relationship between FHA 

19 An 'item' is defined as one or more hardware and/or software components treated as a unit (ARP 4761). 
20 ARP 4754 and 4761 exclude detailed coverage of software and hardware issues which are considered respectively by DO- 
178B and the working document "Design Assurance Guidance for Airborne Electronic Hardware". 

20 



An Introduction to Traceability 

Aircraft FHA 
Function Phase Failure Condition Effect Class 
Decelen[e aircraft Innding Loss of decclanstion Crow unable tu swp Cataeoophic 

on ground capability on ground aurcratt on nmway 

"Cos-to 

Aircraft Requirements 
ado Loss of dccslaration capability 

on ground shall be less than 
v 5.00E-09 per flight 

Loss of Deceleration 
Caoability 
on Ground 

S. ooE-0e traces-to 

Aircraft FTA Los 
Thrust R 

s of Loss of Effective 
eversers Wheel Braking 

500E-07 IODEl 

Loss of all 
Speadbrekaa on 
a Contaminated 

Lou of all 
Wheal Braking 

Runway 

5 00E-01 5ODE-07 

trace-t0 

System FHA 
Function Phase Failure Condition Effect Class 

Whecl braking Landing L of ell wheel hnking Crcw abilityo cop Ha , dow 

cnfi on 
xignificamly rcdoccd 

Figure 1.5 - `Example Relationship Between Aircraft and System FHA and Aircraft FTA' 

Aircraft System Item Item 
Requirement Requirement Requirement Design Item Verification System Verification Aircraft Verification 
Identification Identification Identification Implementation 

ua. n ro. +c, 
ao. a. o 

N 
FHA 

º FHA 

FHA 

Prelim "'°tltl10°"` 

CA 

`ram, 
r cti. r. ý 

CA 
Neýti aw 

PS A 
Prelim 

FTA 

f CCA 

ro a. spK. , v,,, s, aýpO 
ýrnýý 

W 
FTA 

.... r rm ý na. eý.. 
" 

& 
FTA CCA 

& Update 
CCA A 

Update 

A rW. tb. ýam. wr 

SSA FMES 
A 

FIA 
FMEA 

& r,. ý, ewmeAOO. n.. AA 
CCA 

Update 
Prelim 

FTA 
VV CCA 

iom. s FMES 

Hard- r 
ware F. w P .r lur ` FMEA 

ýrý wwaa 
llý Soft- Verification 

s. -ý... ý. ware according to llý 
DO-178b (SW) 

and 
DO-ma (HW) 

Figure 1.6 - 'Steps in ARP 4754/4761 Safety Assessment Process' 

21 



An Introduction to Traceability 

and FTA whereby aircraft FHAs generate top level events in the aircraft FTAs; likewise, catastrophic or 

hazardous basic events from the latter provide inputs to system FHAs. As section 3.2 of ARP 4761 

indicates, these paths should also be traceable. 

Figure 1.6 shows the global flow of information among the FHA, PSSA CCA, and SSA sub- 

processes21. However, it also provides a general indication of traceability requirements. Recall from 

subsection 1.2 (C2) that we may regard the activity that transforms an input to an output as an 

abstraction of a traceability association between the two. For instance, architectural requirements form 

inputs to the preliminary FTA/CCA during item requirements identification which in turn, derives 

hardware level requirements (figure 1.7A). A derives traceability association between these artifact 

types may therefore be considered an abstraction of this process (figure 1.7B). 

System hem Item 
Requirement Requirement Design 
Identification Identification Implementation 

Archeectir Rgts. 

Yq a 

Prelim 
FTA 

CCA 

HW LOW Rgts. 

NchflecWral Rqt 
ý 

denves -b HW Ievel Rqt 

Figure 1.7 - `Information Flow and Traceability (context ARP 4761)' 

In the absence of clear guidance from the standards themselves, such an approach could be used (in 

conjunction with figure 1.6) as a basis to determine traceability needs for the ARP 4754/4761 process. 

1.5 Chapter Summary 
This chapter has provided a context for the thesis by considering from a user viewpoint our domain and 

focus of interest, namely traceability for the aerospace industry. A number of characteristics were 

introduced to highlight traceability issues relevant to this domain; perhaps only the nuclear and rail 

industries offer similar challenges in the provision of effective support for traceability. 

The literature distinguishes different types of traceability according to factors such as scope (e. g., pre- 

requirements, post-requirements) and direction (e. g., horizontal and vertical, forward and backward). 

However most existing work (including attempts to define the term) concentrates on traceability for 

software (rather than system) development and as such, fails to address issues pertinent to the industry 

characteristics referred to above. We therefore proposed our own definitions, in particular, refining the 

notion of horizontal and vertical traceability to accommodate aspects of these characteristics. 

21 Not every step will be needed for assessment, but each must be considered for applicability. 

:T 

22 



An Introduction to Traceability 

A further visual conceptualisation was proposed by representing horizontal, vertical and revision 

traceability as dimensions of a cube, with variant traceability (i. e., the variant dimension) similarly 

depicted as traceability between cubes. 

The dimensions concept can be viewed as a 'meta framework' relating abstractions from the different 

stages of development or assessment (e. g., requirements and design), whereas the Workspace concept 

(alluded to in subsection 1.3) can be viewed as (part of) a 'concrete framework' relating selected 

notations used in the different stages by aerospace practitioners. The Workspace is one actualisation of 

the dimensions with the artifact nodes being realised as meta-models representing selected notations, 

and the traceability dimensions realised through associations between elements of the meta-models. The 

relationship between these two frameworks is illustrated in figure I. 8; for the concrete framework, the 

meta-models are depicted by actual notations rather than their corresponding meta-models. 

Meta Framework (Dimensions) 

Concr. Framework (Workspace) 

a 

Figure 1.8 - `Relationship Between Meta (Dimensions) and Concrete (Workspace) Frameworks' 

Finally, this chapter asserted that recent growth in both interest and application of traceability has been 

driven by two factors. Firstly, the emergence of requirements engineering which has provided a direct 

focus for traceability research, while ensuring it is not overlooked in the development of new notations 

and techniques. And secondly, growth in use of compliance frameworks as arbiters of quality (e. g., ISO 

9001), safety (e. g., ARP 4754/4761 ) and other non-functional attributes. 

1.6 Thesis Structure 
The remainder of this thesis is structural as foollows: - 

23 



An Introduction to Traceability 

Chapter Two provides an overview of current traceability techniques, together with a basis for their 

classification. For reader orientation, we demonstrate means used in this thesis to represent and 
implement the traceability structures introduced in our thesis argument. Chapter Two also considers 

means of realising traceability using a variety of proprietary and commercial tools. 

Chapter Three provides an introduction to the Meta-modelling Approach to Traceability for Avionics 

(MATrA) proposed by this thesis. The main works that have influenced its development are considered 
(foundations), together with the nature of their influence and/or perceived weaknesses. The chapter 

goes on to introduce the key principles of MATrA (fundamentals), their purpose and composition. 

Chapter Four presents a number of novel meta-models (traceability structures) capturing development 

notations used by avionics engineers in a format amenable to traceability. Specifically: - i) a Natural 

Language structure; ii) a User Centred Requirements Structure (featuring Use Case Models, Scenarios 

and Message Sequence Charts); iii) a structure for the representation of Real-Time Networks; and iv) a 

structure for the representation of SPARK Ada program code. 

Chapter Five presents novel meta-models capturing safety assessment and product management 

notations used by avionics engineers, again in a format amenable to traceability. Specifically: - i) a Fault 

Tree Analysis structure; ii) a Failure Modes & Effects Analysis structure; and iii) a Programme 

Evaluation & Review Technique structure. In addition, we extend MATrA to include support for 

traceability of artifacts across the revision and variant dimensions. 

Chapter Six features two case studies that illustrate a subset of the structures from Chapters Four and 

Five. The first demonstrates aspects of the User Centred Requirements Structure (from Chapter Four) 

using an actual commercial specification supplied by BAE SYSTEMS. The second demonstrates the 

Fault Tree and Failure Modes and Effects Analysis structures (from Chapter Five) using extracts from a 

contiguous example featured in aerospace industry guidelines (ARP 4761). 

Chapter Seven presents conclusions drawn from the thesis and the extent to which work in the 

previous chapters supports our thesis argument. A number of areas for possible future work are also 

highlighted. 

Appendix A provides some additional constraints and rules over the User Centred Requirements 

Structure from Chapter Four. 

Appendix B presents material supplementary to the work on revisions and variants in Chapter Five. 

Appendix C and Appendix D include further data for the two case studies featured in Chapter Six. 

Appendix E contains material relevant to proposals for further work discussed in Chapter Seven. 

24 



Techniques and Tools for Traceability 

Chapter 2 Techniques and Tools for Traceability 

2.1 Introduction 
At a reductionist level, traceability is simply a means of managing relations (or functions) on sets of 

artifacts; in other words, set theory provides the mathematical foundation for all traceability techniques. 

Therefore the level of sophistication afforded by a particular technique depends on what additional 

concepts it adds to basic set theoretic constructs. Working from such a premise, this chapter provides an 

overview of current traceability techniques, before considering the support provided for them by 

various proprietary and commercial tools. The aim of the survey is to establish a firm technical basis for 

MATrA. 

2.2 Traceability Techniques 
Traceability techniques broadly divide into two categories, namely cross-referencing and conceptual 
data modelling (or simply data modelling). Cross-referencing can be further partitioned into higher and 
lower-order techniques, both of which are founded on the set-oriented principles of graphs and 

matrices; the main difference being that higher-order approaches build on these underlying 

mathematical principles by introducing features which make them more amenable to practical 

application. In contrast, conceptual data modelling has its origins in software engineering which has 

spawned a number of rich semantic notations suited to the development of more sophisticated 

traceability techniques. We note that these notations can employ either a graphical or lexical 

representation, although as we shall demonstrate, some include both. 

The basis of our classification considers three aspects: - i) structure (in particular, support for the typing 

of data elements and relationships); ii) constraints (the ability to specify restrictions on the way in 

which data elements are related); and iii) operators (means of manipulating data elements). 

2.2.1 Cross- Refere9ncing 
This subsection introduces the cross-referencing technique and the support it provides for traceability. 

2.2.1.1 Foundations 

In describing the foundations of cross-referencing techniques, we distinguish higher-order cross- 

referencing from basic lower-order approaches. 

2.2.1.1.1 Lower-Order Cross-Referencing 

The simplest of all traceability techniques comprise a single set of 'traces-to' associations between a 

single set of 'artifact' types. This assertion may seem overly reductionist given the range of entities used 
in some data-modelling approaches (cf. Herzog & Tome, 1999; Oliver, 1994; Pyle et al., 1993). 

However, if we regard the pairing as traceability super-classes of which all other types are simply 

specialisations (a view supported by Ramesh & Jarke, 1999 and Riddle & Saeed, 2000), then the 

25 



Techniques and Tools for Traceability 

assertion becomes more credible. It is simply that the restriction of types within lower-order graph and 
matrix based schemes forces the extremes of abstraction. 

Graph theory and directed graphs (digraphs) in particular are an intuitive and popular means of 
representing traceability relationships (cf. Attipoe, 1996; Bohner, 1995; Cimitile et al., 1992; Fyson & 
Boldyreff, 1998; Lanubile & Visaggio, 1995; Luqi, 1990; Yau et al., 1988). Formally, a digraph is an 

ordered triple (N, A, g) where N is a set of vertices or nodes, A is a set of edges or arcs and g is a 
bijective function associating with each arc a, an ordered pair (x, y) of nodes; i. e., the function is both 

surjective as all arcs in A are assigned, and infective because arcs have only one (x, y) pair. 

As an example, consider the following function defined as: - traces-to : (N x N) ---> A where the set of 2- 

tuples in the domain [<x, y>} correspond to section numbers in a document text. As such, the nodes are 

carriers of information and therefore any graph of the function is said to be labelled. One possible graph 
is shown in figure 2.1 (centre). It should be stressed that such functions are likely to be partial since we 

would not expect an association between every section pair. A case in point is that of instances of 2- 

tuples where x=y, a feature which manifests as loops in the resultant graph and which makes little 

sense in a cross-reference context. 

0 1 0 1 1 0 0 
0 0 1 0 0 0 0 
0 0 0 0 0 0 1 
0 0 0 0 0 0 1 
0 0 0 0 0 1 0 
0 0 0 0 0 0 1 
0 0 0 0 0 0 0 
Adjacency Matrix A 

Si 

al ag 
f a2 

S2 S6 

°* S5.7 a6 

S2.4 a5 S8.1 

a7 a8 

S9 

0 1 1 1 1 1 1 
0 0 1 0 0 0 1 
0 0 0 0 0 0 1 
0 0 0 0 0 0 1 
0 0 0 0 0 1 1 
0 0 0 0 0 0 1 
0 0 0 0 0 0 0 
Reachability Matrix R 

Figure 2.1 - `Directed Graph, with Adjacency and Reachability Matrix Representations' 

Further utility can be gained by making arcs (as well as nodes) carriers of information, specifically 

some numerical value or weight describing the `strength' of association. We can therefore extend the 

digraph definition to accommodate these weightings which now reads (N, A, g, W, w), where W is the 

set of possible degrees of strength (e. g., (3,6,9} indicating low, medium and high) and w is a function 

from A into W (defined as w: A ---> W) that associates a weighting with each arc a; w is neither surjective 

nor injective since a set of arcs may be assigned to a subset of W, whilst each weighting w may be 

assigned to n>I arcs in A. 

We note that pure directed graphs of the form shown in figure 2.1 are generally limited to support for 

horizontal traceability (i. e., among artifacts of the same type) by virtue of their restriction to single node 

26 



Techniques and Tools for Traceability 

types (i. e., from a single set)'. The exceptions are bipartite graphs which partition nodes into two 

(disjoint non-empty) subsets N, and N2, such that each arc connects a node of N, to a node of N2 (i. e., x 

e N, Aye N2). Hence bipartite graphs allow the possibility of associating, for example, artifact nodes 

of type requirements and design, thereby supporting a form of limited vertical traceability (a separate 

graph would be required for horizontal traceability). 

As an alternative to the digraph representation shown in figure 2.1, the set of n nodes may be ordered 

and formed into an n2 matrix (or n, x n2 for a bipartite graph), termed the adjacency matrix A (see 

figure 2.1 - left). Cell entries in A either indicate the presence or absence of an arc between nodes 
(using a1 or a 0), or show the appropriate arc weighting. Thus, an adjacency matrix A describes 

reachability via paths of length:!. The property of reachability for a digraph is defined in terms of 

reachable nodes, such that a node n1 is reachable from node n; if there is a path from n; to np Paths 

greater than length:! are computed using boolean matrix multiplication of the adjacency matrix A; e. g., 
A(2 gives reachability via length: 2 paths and A(") reachability via length: n paths. Hence the reachability 

matrix R (figure 2.1 - right), which is computed as the boolean sum of A, A(2), ... A("), indicates the 

presence of any path of length I to n between nodes. Furthermore, entries in R belong to the transitive 

closure of the relation p, the adjacency relation of a directed graph; i. e., for the set of nodes N, if (n;, n) 
is an ordered pair of nodes, then the binary relation on the set N is n; p of H there is an arc from n; to n, 

The graphs and matrices considered thus far adhere to basic mathematical principles and are what we 

term lower-order cross-referencing techniques. As such, any traceability approach utilising them 

represents a single function and therefore permits associations of one or at best, two artifact (node) 

types over one relationship (arc) type. In contrast, higher-order cross-referencing techniques relax some 

of the mathematical restrictions, whilst building on these techniques towards a more practical 

application. For traceability, this means being able to represent multiple node types corresponding to 

different development and assessment artifacts (e. g., requirements, designs, test-cases, etc. ) and also 

multiple arc types between these nodes capturing the various semantic relationships that exist between 

artifact types (allocated-to, derives, supersedes, etc. ). Therefore in the following paragraphs, we 

consider the additional facilities provided by higher-order techniques. 

2.2.1.1.2 Higher-Order: Multiple Relations 

The first extension permits representation of multiple functions over a single set of nodes. Formally we 

define this structure as an ordered pair (N, G) where N is a set of nodes (or optionally, the union of two 

disjoint subsets N, and N2) and G is a set of digraphs defined as 4-tuples of the form (<A, g, W, w>}. As 

previously described, A is a set of arcs and g is a bijective function associating with each arc a, an 

ordered pair (x, y) of nodes. Also as described, W is a set of possible weightings, whilst w is a function 

associating a weighting with each arc a. We note that IGI =1 corresponds to a single conventional graph 

structure, whereas IGI >1 can be thought of as a set of graphs overlaid on top of one another; a matrix 

tA single digraph node type can be overloaded to impart greater utility to lower-order cross-referencing; i. e., it may be regarded 
as an abstraction of n>1 subtypes. For instance, the section number nodes in figure 2.1 may actually represent paragraphs, 
figures, tables and appendices, etc. 

27 



Techniques and Tools for Traceability 

structure (modified to accommodate multiple cell entries) can again be used as an alternative 

representation. 

Consider an example (N, G= {<Aa, a, W� w0>, <Ar, c, Wr, wa, <A� s, W� ww>)) where Nis a 

partitioned set of artifact node subsets N1 {r1, r2, rjland N2 {r4, r5, r6} and G is a set of graphs based on 

three functions a, c and s (denoting alternative, conflicts and similar respectively), each with its own set 

of arcs and strength weightings (again {3,6,9)). Here, the weightings are the same for each graph, 

though that need not necessarily be the case (indeed null weightings may be used where appropriate). It 

is therefore necessary to distinguish which weighting belongs to which particular function; hence we 
define the sets W. =(µ, a, tt), W, = {S2, (D, 0) and Ws ={«, a, ti }. The matrix in figure 2.2A integrates 

possible graphs of the functions a, c and s shown in figures 2.2B, 2.2C and 2.2D respectively. 

A 
B rl 

rl r2 r3 

3 6 
9 

6 9 
r2 

r4~ 
ý 
r5 r6 

r3 

r4 rS r6 

µ0 (1) as 

(D itOoc 0 

a0 S2 a 

C 
rl r2 r3 

3 
99 

I- 6 
'A, 

9- 

r4 r5 r6 

rl r2 0 
69 

D 

Af1 
r4 r5 r6 

Figure 2.2 - `Example Matrix Representation of Multiple Weighted Directed Graphs' 

2.2.1.1.3 Higher-Order: Multiple Artifacts 

Whilst the higher-order: multiple relation configuration improves on lower-order representations by 

allowing specification of n>1 relationships, the restriction of (at most) two artifact (node) types still 

remains. In contrast, the final cross-reference based approach (higher-order: multiple artifact) supports 

both multiple association and multiple node types by effectively collocating the previous higher-order 

graphs (or their equivalent matrices) 'end-to- end'. Formally, this can be stated as ((N, G) } where for 

each pair in the set, N is a set of nodes (or optionally, the union of two disjoint subsets N, and N2) as 

before and G is again a set of digraphs defined as 4-tuples of the form <A, g, W, w>; end-to-end 

connections exist where 3 g,, 92 e{ (N, G)) : 910 92 A N(92) S N(9 A 

Two further augmentations worthy of note build on this last approach. The first uses symbols to 

annotate sets of node pairs that share a common domain; e. g., a requirement may relate to two design 

strategies as represented by the pairs (r, dj) and (r, d2). Such associations could be described as being 

either ® (exclusive) or 0 (complementary). The second extension in which arcs are annotated with 

function names takes us into the area of semantic networks (Quillian, 1968), a classical knowledge 

representational technique used to state propositional information. An example of a semantic network 

28 



Techniques and Tools for Traceability 

associating requirements (r), design (d), implementation (i), test (t) and test-result (tr) elements is shown in 

figure 2.3; note weightings could have been used to further enhance expressiveness of the conflicts-with 
function. 

allocated-to I verified-by 
conflicts-with \- 

d 11'- 
allocated-to .= er ified-by t3 

maused-by 
r2 

hý +ý' 
A 

11 tni 

Figure 2.3 -'Example Semantic Network' 

2.2.1.2 Traceability Enhancements 
From a traceability perspective, the means by which both lower and higher-order cross-referencing 

builds on the basic concepts of sets and relations can be seen to be largely structural; i. e., through the 

visual representation of underlying mathematical concepts. We note that predicate logic and standard 

set operations may be used to define implementation independent integrity constraints (e. g., preventing 

loops or cycles), and that the literature features a number of established graph algorithms, including 

those for traversal and computation of reachability matrices. However, since graph theory per se 
includes neither a constraint sub-language nor pre-defined operators for standard analyses (i. e., a graph 

calculus), it (and by implication, lower-order traceability approaches) can only be judged on the 

structural properties of links and nodes. Furthermore, (and as previously indicated) these properties are 

relatively weak when compared to such failings as the inability to represent elements from multiple sets, 

to describe these elements in terms of attributes and to capture the semantics (in a data modelling sense) 

of their associations. 

The full extent of support for traceability afforded by lower-order approaches can therefore be said to 

come from combining labelled (bipartite) nodes with arcs enriched by weighting attributes. For this 

reason we assert that 'pure' graph-based approaches are the least sophisticated of all traceability 

techniques. In contrast, higher-order techniques that build on such basic approaches, and in particular 

semantic networks, enable representation of unlimited node and relationship types and hence support 

more detailed modelling of real world concepts. However, like lower-order approaches, the nodes 

themselves are atomic and so have no descriptive capabilities. In other words, both forms of technique 

tell us what elements are related, and how, but having navigated to a relevant node, we have to look 

elsewhere for the actual detail. 

2.2.1.3 Traceability Applications 
The principles of cross-reference based traceability are a feature of most development and assessment 

documents. Outwardly, footnotes and phrases like 'see section x' are merely navigational aids directing 

readers to a particular section, glossary or appendix. However, their underlying structures form graphs 

similar to those described above. Indeed, the use of such 'stock-phrases' implies a lower-order 

rl 

to v. 

29 



Techniques and Tools for Traceability 

approach based on a single function with either common or bipartite node types connected over a single 
set of (implicit) arcs. 

In principle, the approach can be extended to support higher-order cross-referencing procedures by 

using multiple node and statement types; e. g., in figure 2.4, Requirement A, Requirement B, 
Design Decision X and Text Case Y (together with their respective section and paragraph 
numbers) are all (3-tuple) nodes, while the associations 'determines (strong)' and 'determined-by 
(strong)', etc. are labels with strength weightings on implicit (forward and backward) ares2. 
Enumeration of different node and link types such as these, together with specific formats and 
guidelines on usage can be stipulated as part of an organisational traceability policy (Sommerville & 
Sawyer, 1997). However, without enforced typing it may be difficult to ensure all cross-references are 

rigorously maintained by project personnel. 

[Requirement A( section i, paragraph j] 

The Fuel System pipes and equipment shall be designed to a maximum 
normal working pressure of <V> psi (including surge). [determines 
(strong) Requirement B, section x, para. y]; [fulfilled-by Design 

Decision X, section n, para. m]; [verified-by Test Case Y, section f, 
para. g] 

[Requirement BI section x, paragraph y] 

The Fuel System pipes and equipment shall be designed such that the 
ultimate pressure equals 2.5 times the normal working pressure. 
[determined-by(strong) Requirement A, section i, para. j]; [fulfilled- 

by Design Decision X, section n, para. m]; J; [verified-by Test Case 
Y, section f, para. g]. 

[Design Decision XI section n, paragraph m] 

Use <X> to maintain Fuel System pipes and equipment within pressure 
tolerances ... fulfills Requirement A, section i, para. J]; [fulfills 
Requirement B, section x, para. y]. 

[Test Case YI section f, paragraph g] 

Test rig simulation of refuel, defuel (suction and pressure), and 
transfer operations ... [verifies Requirement A, section i, para. j]; 
verifies Requirement B, section x, para. yJ. 

Figure 2.4 -'Example of a Defined Text Based Cross-Reference Format' 

In representing different perspectives on the target system, practitioners typically employ a range of 

modelling techniques, each of which introduces sets of named entities, processes, behaviours and so 
forth. To ensure the view the models provide is a coherent one, adequate mechanisms must exist to 

manage such data. For development artifacts this is normally accomplished through the data dictionary, 

a centralised (higher or lower-order) cross-reference base listing the name, format and usage of all 

2 The juxtaposition of the artifacts (nodes) shown in figure 2.4 and the inclusion of both forward and backward traceability 
links, suggests some redundancy. However, in reality these elements may be diffused across several hundred pages of a 
document, whereupon the links would become essential for navigational purposes. 

30 



Techniques and Tools for Traceability 

elements employed across the set of system descriptions. The data dictionary also maintains constraints 

governing consistency of the data set and flows between the various models; e. g., all DFD (Data Flow 

Diagram) data stores and ELH (Entity Life History) entity types are traceable to the Entity-Relationship 

model, and all ELH events are referenced in DFDs. Likewise, for assessment artifacts, most regulated 
industries use a Hazard Log as the centralised safety document to cross-reference and track the results 

of analysis (Hansford et al., 2000). Its main purpose is to enumerate the hazards identified at each 

stage, together with their severities, probabilities, risk, causes, consequences and intended measures for 

exclusion or mitigation. Also referenced are the actual models and analyses that derived this 

information, such as fault trees and FMEA. Again, the level of detail (i. e. whether the cross-references 

are maintained in higher or lower-order form) should be stated in either project specific procedures, or 

as part of general organisational traceability policy. 

Explicit graphical traceability structures (where the visual representation is preserved, instead of being 

implicit to the underlying structure of some document or text) are also common. For instance, lower- 

order approaches based on single node and arc types lend themselves naturally to the representation of 

artifacts linked by some form of forward or backward chaining. Examples include the Dependency 

Structure (Riddle & Saeed, 1998) featuring an influenced-by function over a set of Module nodes, and 

the Impact Structure3 (Saeed et al., 1995) which is effectively a graph-based equivalent of traditional 

NxN charts (Lano, 1979). Meanwhile structurally at least, fault trees can be thought of as a basic form 

of higher-order approach which, despite representing a single set of arc types (causality) over a single 

set of node types (faults), include higher-order augmentations supporting disjunction and conjunction. 

Goal-graphs (Mylopoulos et al., 1992 and Chung et al., 1995) are a further example of a higher-order 

approach; these structures relate a set of system development goals over satisficing and correlation link 

types with augmentations that include use of link correlation weightings and argument annotations to 

further enrich the arcs. Finally, examples of higher-order approaches based on n>1 node and arc types 

include Safety-Specification Graphs (de Lemos et al., 1995) and the Design Rationale Capture System 

referred to in Chapter One (and described further in Chapter Three). 

Traceability applications of matrices are just as prominent in the literature. In particular, they form the 

basis of the Quality Function Deployment (QFD) methodology (Brown, 1991; Maier, 1993; West, 

1991), a product realisation strategy developed in the motor industry, but since applied across a range 

of applications (cf. Bellagamba et al., 1993, Jacobs & Kethers, 1994). As figure 2.5 indicates, the basic 

tenet of QFD (also known as ̀ House of Quality' or HoQ) is to ensure that each customer requirement is 

addressed by a design element and, that no design forms part of the final specification unless relevant to 

some customer requirement. Hence, analysis of the main relationship matrix seeks to identify empty 

rows (i. e., unfulfilled requirements) and empty columns (spurious design components). Figure 2.5 also 

shows how the correlation matrix (or roof) establishes complementary and conflicting strategies for in 

this case, designs parameters; e. g., Built-In-Test-Equipment can be seen to have a positive impact on 

3 We note that Impact Structures can support two types of impacts relationships, those derived from information in a 
specification document and those based on domain knowledge. 
4In Mason & Saeed (1998), we represent disjunction and conjunction as two distinct forms of causality relation which strictly 
places FTA among the higher-order/multiple-relation cross-reference classification. 

31 



Techniques and Tools for Traceability 

Mean Time To Repair, but a negative impact on Mean Time Between Failure (owing to the increased 

number of components). 

The relationship matrix shown in figure 2.5 essentially captures the level of information in a labelled, 

weighted, bipartite graph (but with symbols instead of numbers to denote strength weightings). This 

particular example is therefore strictly a lower-order application of a potentially higher-order technique. 

In practice, it would normally be extended to include other artifact types (test cases, implementation 

elements, etc. ) by combining matrices end-to-end to form so-called "cities" of quality and by capturing 

different functions using multiple cell entries. 

In addition to QFD, Fischer & Walker (1979), Davis (1990), Ince et al. (1993) and Moore (1993) 

provide further (mostly lower-order) examples of matrix based traceability. Matrices are also an integral 

feature of the Halley & Pirbhai (1987) methodology for real-time systems development, as well as 

popular documentation standards such as ESA-PSS-05 (ESA, 1991). 

Correlation 
+ Matrix 

Strong Postitive (not shown) 
+ Positive 

m- Negative 

.ý -- Strong Negative (not shown) 

Design Parameters ý_ E . 2n to 
at d 

CL EE 
cöII Vy-cc 
at mm Customer Importance ? ýe y 

Rating (0, least - 9, most) FwF 
load 8  

ige 6 " 

m 

Customer Attributes 

a 

C 

Relationship 
Matrix 

  Strong Relationship (9) 
Medium Relationship (3) 
Weak Relationship (1) 

Objective LL 

Target Values $YER 

Absolute Importance Rating 

Figure 2.5 - `An Example Quality Function Deployment (QFD) Matrix' 

Most applications of cross-referencing trace artifacts in the horizontal and vertical dimensions. 

I lowever, Dick (1999) uses matrices to manage revisions and variants using an extended lower-order 

approach. A Project/Features Index (PFI) lists past and current projects (x-axis), together with the 

features, or alternatively modules they incorporate (y-axis); alpha-numeric cell entries denote the 

variant (alpha) and revision (numeric) of modules used on each particular project. Figure 2.6 shows a 

hypothetical example cross-referencing component modules against aircraft projects; i. e., it captures the 

partial function incorporates : (Module X Variant x Revision) x Project -A (where A is an implicit set 

of arcs). The main aim of PFI is to promote and help manage reuse. Where analysis shows sufficient 

32 



Techniques and Tools for Traceability 

commonality exists, a previous requirements configuration can be simply copied as the baseline for a 

new project and then modified accordingly. 

d ö 000 
p N e? N r? 0 

d 0 6066 

Module 
Q QQQQ 

Newvarant 
of ELAC module 

FCS 
. AI. S BI 5 A1.5 required 

ELAC Az. o 0 Az. a BI. n 

SEC Ass cz. s al. s 

SFCS B3.1 CI. I C21 

SFCC AI. 0 Al d 
ModuleSFCC 
not required 

GAF Al 

k 30-300 is selected 
ase for A340-500, 

Cas 

ue to similarity 

Figure 2.6 - `An Example Project/Features Index (PFI)' 

We note that the terms traceability matrix and traceability table are often used interchangeably ((J: 

Sommerville & Sawyer, 1997; Polack, 1990). However, whereas matrix cell entries may only indicate 

associations between up to two entity types, each row of a table is capable of representing relationships 

among n>I types (which is consistent with higher-order techniques). Furthermore, while matrices are 

essentially just collections of `pointers' among identifiers, table entries normally contain actual 

information. Therefore, structurally at least, tables exhibit basic data modelling capabilities as is evident 

from the Relational Model considered in subsection 2.2.2.2.1. 

A table can be said to comprise (in database terminology), an intension (column headings naming the 

entity sets concerned) and an extension (a set of occurrences consistent with the intension). Typically, 

the left-most column in a traceability table is used as an identifier on which the other column types are 

functionally dependent; if we adhere to the basic representation of cross-references used throughout 

(i. e., a set of (x, y) node pairings into a set of arcs), then that column becomes the first element of pairs 

in the domain of each function. Examples and variations of tabular traceability approaches are 

described by Armstrong (1993), Hermens (1991), Jackson & Renton (1993), Mejzak (1990) and Polack 

(1990). Note also the concept of a traceability-list (Sommerville & Sawyer, 1997), a two column table 

in which the first column is an identifier (typically a requirement) and the second, a set of identifiers of 

related artifacts. 

Tables are also the staple means of representing safety information, he it the results of a particular 

analysis technique (cf. FMEA and HAZOP), or summaries of assessment sub-processes. Indeed tabular 

structures dominate the range of admissible certification data listed in ARP 4754. This includes FHA, 

33 



Techniques and Tools for Traceability 

PSSA and SSA summary tables, validation and verification `matrices' (again, strictly tables) and the 
configuration index (detailing all physical elements of a system and their interconnections). Table 2.1 
features an example PSSA table showing (intra-micro) vertical traceability between requirements and 
designs (together with a remarks column that itself includes cross-references to supporting documents). 
Another standard advocating use of tabular structures is Def. Std. 00-55 (Annex E) which proposes 
them as a means of representing safety arguments (with columns for claims, arguments and 
evidence/assumptions). 

Safety Requirement Design Decisions Remarks 
1. The probability of "BSCU Dual channel BSCU design. The overall BSCU system can 

Fault Causes Loss of Braking reasonably satisfy this 
Commands" shall be less requirement - See FTA page 
than 3.3E-5 per flight. X 

2. The probability of Each BSCU system contains BSCU integrity can achieve 
"Inadvertent Braking due to independent command and this requirement - See FTA 
BSCU" shall be less than monitor channels page 'X' 
2.5E-9 per flight. 

3. The BSCU shall be designed Development of the Command Development Assurance 
to Development Assurance Channel to Development Levels assigned according to 
Level A. Assurance Level A and the guidance in Section 5.4 of 

Monitor Channel to Level B ARP 4754 

Table 2.1 - `PSSA Safety Requirements & Design Decisions Table' (source, ARP 4761) 

Finally, we note that graphical and formal modelling techniques often provide their own built-in cross- 

referencing support. For instance, UML (Unified Modelling Language) includes the <<trace>> 

stereotype5 indicating dependencies among elements of different models (figure 2.7A). The fault tree 

transfer symbol is a further example (figure 2.7B); each transfer is bound to a particular event and 

composed of two types (comparable to forward and backward traceability): a triangle with a vertical 
line from its top shows 'transfer-in' of a fault tree section from another branch of the tree, whereas a 
triangle with a horizontal line from its top indicates the event is 'transferred-out'. Similar to this are 
EXPRESS-G cross page symbols (figure 2.7C); relationships on separate pages terminate with a 

rounded box containing page and reference numbers. Page numbers indicate the location of the 'to' 

definition, whilst reference numbers distinguish multiple references onto a page. The 'to page' also 

contains page numbers of 'from pages' referring to a reference, whilst the 'from page' contains the 

name of the 'to definition'. Other approaches include DFD numbering schemes (enabling navigation 
between process decomposition levels), the ELH 'quit/resume' formalism (which relates an abnormal 

event termination to a resumption event elsewhere in the hierarchy) and the ZA (delta) symbol (which 

indicates where an operation in one schema definition causes a change to occur in the state space of 

another) - figures 2.7D, 2.7E and 2.7F respectively. % 

All the techniques in figure 2.7 differ slightly from previous higher and lower-order approaches. 
Specifically, they have fixed parameters in terms of purpose, and the association and node types they 

connect. They also carry varying degrees of semantic force; e. g., whilst the EXPRESS and FFA 

5 Stereotypes are an extensibility mechanism for defining new classes on top of the pre-defined UML kernel (Muller, 1997). 

34 



Techniques and Tools for Traceability 

notations mean simply `see page x', ELH `quit and resumes' (analogous to GoTo statements) and Z 

deltas (similar to #include in C++, meaning 'look here' for schema variables, etc. ) are actually control 

statements with inherent cross-referencing. 

Tracing across 
UML models using 

«traue» stereotva 

/semantics is definition 
attribute from page 6, defined 

on page 7 as ref. 41 of 

C 

E 

Requirement Test 
Model--ý Model 

Design 

ý. 

/ 

Model / 

P. Ps 

ntauremrtmhwoe 
0.1 

ws1 

Data Record 

ib Wnt, b Cie red WJdeb OUT Pon from eulbr 
R1 

Rewd 

t» 

VI' cross-references 
R 1- semantics is that rejected 

sensor data is cleared from buffer 
with no write to OUT port/ 

semantics is 
Loss of BSCU I' 

basic event (page M) B 
traces to o top top 

event(page N) 

sscu 1 .... _ 

PPM R" 

Irr d 
BSCU 1 

'pM 

PPR 

0 

Numbering convention 
0.2 supports traceability of 

process decomposition 

Fuel Tank 
F 

fus on boart 
tank_cäpanty 
bw fu& Mv&: 
low_-luel_ilerm: {on, on) 

Iwl_on boarrc a tsnl_capacdy 
IowJw_alerm. on o- fuN_onJaua -tanl_apacoy 
UnltcapecBy. 50000 

Refuel 

tFL* Tank 
nius imount 

fuN_on board+refuN_$mount<. tank_capeoity 
tue_m_boarQ . fuel_on boeni . Mwl_umunt 

semantics is that 
'Refuel' operation schema 
references (and updates) 

fuel on board in 
Fuel Tankschema_ 

Figure 2.7 " `Cross-Referencing Techniques of Modelling Notations' 

Other applications of cross-reference based traceability schemes include those maintaining some form 

of explicit requirements labelling, numbering or indexing (Evans, 1989; Jenkins, 1994; Mays et al., 
1985; Ramsay & Bernsen, 1995; and Yu, 1994), as well as those expressing and maintaining specified 

relationships between keyphrase dependencies (Jackson, 1991). 

2.2.1.4 Evaluation 
In evaluating cross-reference based traceability we consider its potential from two perspectives: - i) as a 
framework for representing and navigating the underlying structure of relationships between project 

artifacts; and ii) as a means for reader orientation within complex, integrated texts. The first perspective 

concerns a basic practitioner need - to identify relationships among project artifacts. Such analysis is 

potentially an end in itself (e. g., where the goal is to verify non-existence of circular dependencies); else 

35 



Techniques and Tools for Traceability 

it is the means of achieving an end such that consideration of artifact detail follows the traceability 

analysis (e. g., determining which design nodes relate to a particular requirement and then acting to 

modify them as a result)6. Practitioners of the second perspective meanwhile are again concerned with 

navigation, but only in a 'reader' sense and only of final deliverables (or interim baselines). Hence they 

use cross-references as embedded pointers to navigate within and between artifacts along paths pre- 
defined by the writer (developer)7. Together, the two perspectives provide an insight into the role of 

cross-referencing in the context of a development project. Further consideration should be given to the 

level of support for horizontal, vertical, revision and variant traceability 

On the first perspective, directed graphs give a succinct visual representation of dependencies between 

nodes (artifacts) and are of practical benefit irrespective of whether the traceability activity is a means 

to an end, or an end in itself. They are however especially useful for highlighting instances of circular 

dependencies and general over use of cross-references. At a coarse granularity, graphs can also be used 

to aid reader orientation; e. g., the preface of a text with sections aimed at specific subsets of its 

readership may include a graphical steer showing suggested reading paths for analysts, designers, safety 

engineers, etc. Matrices derived from graphs offer an informationally equivalent though more concise 

abstraction of dependencies and are also amenable to automated analysis. Reachability matrices are 

particularly beneficial when preparing or checking artifacts containing multiple cross-references as they 

can help identify instances of poor structuring or unreachable nodes. They can also support change 

management by helping to highlight nodes along affected paths and to reaffirm their continued 

reachability once the changes have been made. 

On the second perspective, we regard actual 'in-document' cross-references as a feature used mainly in 

presenting results to end-readers engaged in content analysis, rather than for the analysis of either 

artifact-relationships or document structures. Besides being vital to document navigation, cross- 

references are compatible with human thought processes. Indeed, readings from the social sciences 

suggest a purely linear exposition actually conflicts with the brain's non-linear character (Buzan, 1989). 

However, multiple cross-references (either high or low level) can disrupt the flow of a document and 

prevent transfer of ideas from writer to reader. The problem lies in maintaining awareness of 

navigational paths, whilst understanding the information in course. As a result, errors may be concealed 

which with safety related material (notably safety cases), can compromise the integrity of a system. We 

note that recent work on web-based technologies indicates the need to base document structures on 

conceptual models that take into account why and by whom they will be used (Smith et al., 1997). 

In principle (and despite the inability to describe properties of nodes), cross-referencing is capable of 

supporting traceability across all the dimensions discussed in Chapter One. Inevitably, restrictions on 

type mean lower-order approaches struggle to go beyond simple horizontal traceability, or at best, 

vertical traceability using bipartite nodes (without that is, recourse to overloading and the information 

loss that occurs when disjoint node types are treated as a single supertype). However, the multiple node 

6 Exponents of this perspective might include requirements engineers and designers. 
7 This perspective is appropriate to requirements review and safety assessor roles. 

36 



Techniques and Tools for Traceability 

and relationship types of semantic networks do allow for representation of complex vertical traceability 

paths, as well as (potentially) supporting revision and variant traceability. 

2.2.2 Conceptual Data Modelling 
This subsection provides an introduction to conceptual data modelling and the support it provides for 

traceability. 

2.2.2.1 Foundations 

Relative to cross-referencing techniques, conceptual data models offer practitioners a greater range of 
`tools' (or concepts) for developing an effective traceability approach. Structural modelling constructs 
include entity types (or classes), relationships, attributes and domains, whilst many data models also 

support the established abstraction principles of classification and aggregation; note that in moving 
from a cross-reference based to a data-modelling approach, we are effectively replacing nodes with 

entities and arcs with relationships. Most conceptual data models further include means for stating 

constraints and manipulating the data sets of populated models. Indeed strictly, a data model is defined 

by this trio of components - structural aspects, means to express constraints and manipulative operators 

(Date, 1995). Recall that these form the basis of criteria used to evaluate traceability techniques 

discussed in this chapter and as such, biasing the evaluation in this way may appear somewhat unjust. 
However, the literature suggests that data modelling and traceability have now become inexorably 

linked in that data modelling features map readily to the requirements for effective traceability tools 

(Riddle & Saeed, 1999b). In the following paragraphs, we briefly introduce key structural constructs, 

constraints and operators. 

2.2.2.1.1 Structural Constructs 

41 Entities 

Entities capture real-world concepts, whether they be physical (e. g., a fuel tank), or abstract (e. g., a 

requirement for a fuel tank). All entities with similar properties are assigned to a particular entity type 

or class (in object-based terminology). Note, entity types, classes and indeed `relations' (as described in 

the original data model by Codd, 1970) are analogous to mathematical sets. 

9 Attributes and Domains 

Entities (and relationships) may be described in terms of their characteristic features, variously referred 

to in the literature as attributes or properties. For instance, possible characteristics of requirements 

could include a unique identifier, author and specification. Individual values for these attributes are 

termed scalars, the smallest semantic unit of data (Date, 1995), while a named set of scalar values is 

termed a domain (also known as a value-set). Most of the models in the paragraphs that follow include 

primitive domains for integer, string , boolean, etc. From these, we may wish to define more specific 

value-sets; e. g. the domain of integrity levels according to ARP 4754 is precisely (a, b, c, d, e). Thus, 

domains are simply pools of values from which attribute values are drawn. 

37 



Techniques and Tools for Traceability 

" Relationships 
The data modelling literature lacks a clear consensus on relationships, what they are and how best to 

represent them. Peckham & Maryanski (1988) contend they can be modelled as entities, attributes, 
independent connections or even as functions. A relationship is modelled as an entity if it is a distinct 

concept whose properties describe the actual association, rather than one of the entities being related - 
e. g., an Interface type between instances of a Module entity. Alternatively, relationships may be 

represented as attributes if the attribute of one entity points to or is derived from another; e. g., a Module 

entity with an attribute condition relating to the Condition type. Relationships can also be expressed as 

simple connections described using a verb phrase or 'claim', e. g., a realised by relationship between 

Requirement and Design entities. Similarly, connections may be labelled with rolenames indicating the 

purpose of each entity participating in a relationship. Rolenames are especially useful in clarifying 

reflexive relationships, or in situations where two entities participate in multiple relationships. 
Connections can also be expressed as entities if we have cause to describe them using attributes, or else 

wish to relate them to other connections; e. g., where a Requirement is realised by a Module and where 

this claim is itself related to a TestCase entity via a validated by connection. Finally, and though less 

common, we note that some textual modelling languages specify relationships through function 

definitions. 

9 Classification and Aggregation 

Classification and aggregation are both abstractions originating from research in Cognitive Psychology, 

with Smith & Smith (1977) being the first to apply them to conceptual data modelling. Classification 

has two attendant viewpoints, namely generalisation and specialisation. Generalisation describes the 

factoring of common features among related entities to form a generic high level type, while 

specialisation (often seen as the basis of reuse) relates to the capture of features not already 

distinguished in existing types; e. g., Systems and Components may both be classified as specialisations 

of a generic Module entity. The generalised type is often termed a supertype or superclass and the 

specialised type or class, its subtype or subclass. Given that entity types and subtypes can be said to 

correspond to sets and subsets, then generalisation can be said to equate with the inclusion relationship. 

Similarly, multiple generalisation (where a subtype incorporates features from n>1 supertypes) may be 

thought of as the intersection of two sets that are not subsets of the same superset. 

Aggregation is simply a special and stronger (in the sense of coupling) form of relationship. Such 

relationships are transitive, bi-directional, asymmetric and possibly reflexive and are used to show that 

one kind of entity (the whole) is composed-of (i. e., contains), one or more other entities (the parts); e. g., 

in the context of ARP 4754, an aircraft can be said to comprise several system modules, each made-up 

of many item modules that in turn contain multiple hardware and software modules. In other words, 

aggregation expresses the semantics of 'has part/part-of or `has-component/component-of 

associations. It is also worth noting that while seldom treated as such in the literature, relationships 

between entity types and their attributes are merely a particular form of aggregation. 

38 



Techniques and Tools for Traceability 

2.2.2.1.2 Constraints 

Most conceptual data modelling techniques support means for expressing constraints over model 

constructs (a feature largely absent from cross-referencing approaches). Notwithstanding domains 

(discussed previously), the most basic form of constraints are those reflecting 'real-world' restrictions 

on relationships between entities. Such constraints are said to specify cardinality and participation. 
Cardinality describes the number of possible relationships for each participating entity; e. g., a single 

requirement statement may produce (and therefore relate to) several design artifacts. This is usually 

expressed as a ratio, in this case one-to-many. A more precise constraint may limit entities to some 
lower or upper bound; e. g., 'good practice' may restrict the number of derived requirements spawned 

by a source requirement to thirty8. Conversely, participation constraints describe whether the existence 

of some entity depends on it being related to another entity through a relationship. Such participation is 

referred to as either total or partial, or more commonly, mandatory or optional. 

The other type of restriction of interest to traceability practitioners can be broadly categorised as 

integrity constraints (or static dependencies) which typically verify consistency and completeness of a 

data set. Consistency checks are necessary, for example, to maintain uniqueness among elements of sets 

(such as requirement identifiers), or to ensure referential integrity where models are related via a 

common entity (cf. Klein, 1993a; and Pearson et al., 1998). Conversely, completeness checks are 

necessary to verify `required data'; e. g., in the structure for recording failure behaviours by Pearson et 

al. (ibid. ), a constraint ensures that for each Failure, there is at least one Error leading to that Failure, and 

at least one Fault stated as a consequence. A proviso of integrity checks for completeness is that they 

should not inhibit partial population since the nature of the aerospace domain for example, means 

engineers often have to work with incomplete information. Support for specification of integrity 

constraints is widespread (though by no means universal) among conceptual data models. The most 

leverage comes from those enabling formal definition of invariants using predicate logic, set and 

boolean constructs. 

2.2.2.1.3 Operators 

The final issue of concern to traceability practitioners and again a deficiency of cross-reference based 

approaches, is support for manipulating the data set of a populated model; i. e., the ability to produce 

`new' information from existing elements. The first form of manipulation relates to means of specifying 

queries over a data set, to select and retrieve a subset of elements according to specified criteria using 

either standard or user defined query expressions. Another form of manipulation describes means of 

specifying expressions projecting views on the data model and which typically evaluate to the complete 

data set for a subset of elements reflecting (for instance) the information needs of particular stakeholder 

groups. In both cases, manipulation merely implies packaging (or re-packaging) of existing information. 

A further basis for manipulation (and a more authentic 'take' on newness) relates to the use of 

deductive logic to infer new propositions; i. e., rules operating over a subset of elements within a model 

(or group of models) that derive information populating other elements. It should be noted that in each 

case, the ability to traverse complex hierarchical structures is of paramount importance. Moreover, 

8 More may suggest the original requirement is either vague or trying to state too much. 

39 



Techniques and Tools for Traceability 

while most conceptual data models include some basic operators, they tend to be less well developed 

than means of specifying constraints and structural features. 

2.2.2.2 Representative Conceptual Data Models 

Having introduced the foundations of conceptual data modelling approaches, we now consider a 

number of actual models embracing some or all of the constructs discussed (i. e., entities, relationships, 

constraints, etc. ). The ordering is arbitrary, although we begin with the Relational Model since it is 

widely regarded as being the very fast data model, and conclude with O-Telos and UML/OCL which 

together provide a basis for developing the MATrA framework. 

It will be shown that conceptual data models may be represented using a graphical and/or a lexical 

formalism; graphical representations are effectively higher-order graph-theoretic approaches (i. e., 

multiple-overlaid graphs capable of capturing n>1 node and relationship types), but with a range of 

additional capabilities. Both employ a finite set of pre-defined symbols (graphical icons and words 

respectively), with rules on how they may be composed. 

2.2.2.2.1 Relational Data Model 

Based on set theory and predicate logic, the relational model (Codd, 1970) supports data structuring, 
integrity constraints and manipulation operators. The data are structured as tables of records (one table 

per entity type), with each row or tuple (horizontal subset) corresponding to an instance of a record and 

each column (vertical subset), an attribute (whose value is drawn from a domain) describing a particular 
facet of the tuples. However, neither classification nor aggregation (other than entities being composed 

of attributes) are a feature. 

The relational model enforces constraints on data integrity through keys. Specifically, the primary key is 

the (minimum) combination of columns (attributes) within a table necessary to ensure uniqueness of 

each tuple. Mappings between tables are handled through foreign keys, such that the value of a set of 

attributes in one table matches those of the primary key in another. The latter is a major limitation of the 

model; handling logical relations implicitly through shared values means associations can neither be 

named nor given attributes. It also means the semantics of relationships are embodied in query 

operations and that users of tools implementing the model must know which attributes define inter- 

relational connections in order to extract instances of such mappings. 

Further, the leanness that comes from expressing data in 'third normal form' (a desirable model 

property that removes repetition and hence scope for inconsistencies) results in fragmentation of the 

tables. This is especially true where the multiplicity of association is M.. N, or when relating objects of 

the same type (e. g., to support horizontal traceability). As a result, there is likely to be some divergence 

between the entities and relations as they exist at the conceptual level and the collection of tables 

representing them. However, despite these limitations, manipulative aspects of the model are strong, 

supported as they are through a relational algebra which defines a range of operators over the data. 

These comprise traditional set operations for union, intersect, difference and Cartesian product, as well 

40 



Techniques and Tools for Traceability 

as unique relational operations for projection, join and divide. 

2.2.2.2.2 Entity-Relationship Model 

As its name suggests, founding constructs of the Entity-Relationship (E-R) model (Chen, 1976) are 

entity and relationship types. The former are denoted as rectangles and the latter as rhombi (both name 
bearing) on relationship arcs connecting entities. Attributes are represented as annotations on both 

entities and relationships, although the model lacks a convention for denoting either unique identifiers 

or domains. Existence dependencies (termed weak entities) are enclosed within a double rectangle, but 

in Chen's original work at least, neither classification nor aggregation (save for entities and their 

attributes) is supported. Cardinalities of the form one-to-one, one-to-many and many-to-many can be 

specified, while optional and mandatory relationships are denoted using single and double relationship 
lines respectively. On the issue of integrity constraints, the E-R model includes a set of in-built rules 

corresponding to those for foreign keys in the relational model; in-built because a pure relational system 

requires formulation of explicit foreign key rules, whereas E-R demands only that users state the kind of 

relationship involved. Finally, in terms of operators, the model basically provides a subset of those in 

Codd's work (subset in the sense that there is no explicit join, for example). However, this aspect is 

generally less clearly defined than structural aspects. 

A number of enhanced or extended E-R models (EE-R) have emerged, including those by Czejdo et al. 
(1992) and Gogolla (1994), while Gogolla & Hohenstein (1991) and Parent et al. (1989) are among 

those seeking to give the model a formal semantics. Additional concepts proposed by EE-R models 
include classification (normally denoted by a rectangle within a rectangle), as well as the notion of table 

types - preliminary text listings of attributes for each entity. Table types may be optimised through 

normalisation and thus map intuitively onto the relational model (with some loss of subtypes and weak 

entities). Figure 2.8A shows a simple example of the ER approach illustrating a subset of the principles 
found in Chen's original model. Elements from this example will be used to demonstrate all the 

techniques in the subsections that follow. 

2.2.2.2.3 Object-Role Modelling (ORM) 

Object-Role Modelling (Halpin, 1998) also known as the Natural language Information Analysis 

Method (NIAM) is a graphical modelling technique in which 'facts' or predicates are described as 

combinations of objects (entities), attributes and roles (relationships). Objects are represented using 

ellipse icons and attributes as circles (both name bearing); object identifiers (termed labels in ORM) are 

shown as dashed circles, while a plus sign (+) within an attribute circle indicates a calculable sequence 

number (typically system generated). Roles are analogous to relational tables, or columns within tables 

to be precise; i. e., they are the foreign keys to the entities being related. They are represented by 

adjacent (name bearing) rectangles and connect objects to objects and objects to attributes via solid 
lines (no separate notation exists for aggregation), allowing the relationship of an attribute to its object 

to be precisely defined. Finally, classification is represented using a 'heavy' arrow pointing from the 

supertype. 

41 



Techniques and Tools for Traceability 

ORM provides a number of symbols for capturing constraints. For instance, domain constraints can be 

listed and attached to attributes in braces (if values are ordered, the range may be declared by 

separating first and last values with ...... ; e. g. (a1 .. a�}). Cardinality meanwhile is denoted using double- 

headed arrows; with one-to-many relationships the arrow is on the 'many' side, whereas for one-to-one 

relationships, it appears on both sides. If the relationship is many-to-many, arrows span both halves of 

the role rectangle (i. e., both halves are required to identify each occurrence in the relationship). A 

circled 'U' symbol denotes instances where two or more attributes or relationships are required to 

establish uniqueness, while mandatory role (participation) constraints are designated by placing a solid 

circle adjacent to the appropriate object or attribute. Many further symbols exist for the specification of 

additional constraint types, including frequency constraints (imposed over roles, meaning instances 

must 'play' a role n times) and ring constraints (indicating that binary relations formed by the role 

population must be irreflexive, intransitive, acyclic, asymmetric, antisymmetric, or symmetric). 

ORM has evolved through several iterations, including a number of extensions supporting query 

operators. Of note are RIDL (Reference and IDea Language), a hybrid declarative and procedural 
language and ConQuer (Conceptual Query) which enables ORM models to be queried without 
knowledge of the underlying schema (unlike the relational model). 

It can be seen that ORM is a highly expressive language, although the corollary is that diagrams can 

often appear cluttered. Figure 2.8B shows a simple example illustrating a subset of the principles 
discussed. 

2.2.2.2.4 GEM 

The General Entity Manipulator (Zaniolo, 1983) is a textual modelling language that extends Codd's 

relational model. GEM is based on the elements entity and attribute; entities are made up of attributes 

which may be atomic, set-valued (i. e., elements from a domain), a generalisation list (means for 

classification allowing definition of sub-entities), or a reference relating to another entity (providing 

support for aggregation). GEM has some similarities with object-based approaches in the sense that 

entities can conceptually contain other entities (as opposed to having foreign keys that are pointers to 

those objects). The dot notation is used as a means of referring to the `join' paths necessary to access 

contained entities. Participation of reference attributes is mandatory (i. e., a value must be supplied) 

unless explicitly defined as 'null allowed'. GEM also includes the notion of alternative attributes 

allowing for example, instances of a Module type to populate either a weight attribute or a language 

attribute depending on whether they represent a physical or logical entity. 

Like the relational model, designated key attributes enforce uniqueness, while domain rules restrict set- 

valued attributes. Essentially, these along with the treatment of null values constitute the extent of 

support for constraints in GEM. However, a simple but powerful sub-language (based on QUEL) 

provides a range of operators for specifying queries and updates over the data model. Again, figure 

2.8C presents a basic example illustrating a subset of GEM constructs. 



Techniques and Tools for Traceability 

I. Requhem SpecN c on: C) kWRequh. MMMNO) 

Isbmmt: A ProduadFmm : REQUIREMENT) 

Irr NO : N, NnplOnv w: G Realism : 
hq) 

C 

tip 
H_ 

"OýPpýmý 

G regwremerrt My-d 
design 

ENTITY mqukwnwt 
mgwwn n. no : INTEGER; 
requkenwrjpedficabm : STRING, 

UNIQUE 
uA : mqukwnonLna 

END EWITY; 

ENTITY Eesq ,, 
d Ilyn n&m.: STRING; 
des4gn_ftatwnW : STRING; 
piOdt&from : -0--t 

UNIQUE 
url : desgnJw* 

END ENTITY 

ENTITY YnpNmvUatbl_modulx 

Ynpkma iWi no : INTEGER. 

YnplemwdOm-dBI iption : STRING; 

DERIVE 

nebst : lequvemut a 
wbuon_a. urod-d_fn; 

UNIQUE 
w2 : "ffwtadon no, r" an 

END ENTITY; 

F 

Won d 

DECLARE Repuiromento - ENTITY 
DECLARE RequiromxIl o(Rgqulnmena - INTEGER 
DECLARE ReQul emamSpec(Requlrsmam) - STRING 

DECLARE Dool" b ENTRY 
DECLARE DWgnName(Design).. a STRING 
DECLARE DesignMaWn q(Deslgn) - STRING 
DECLARE ProduoWFrom(Dwign) .u Requaematp 

DECLARE Impadodulso - ENTITY 
DECLARE ImpNu"b@jImp*IOCUN)-a INTEGER 
DECLARE In Deecrptbn(Impabduk)-STRING 
DECLARE Imp1G1(ImpWodule) - Design 
DEFINE Realiees(ImplModuk) -a (Imp10f(ImpIModuk)) 

E 

WER 
impbmemanon_moduls 

INTEGER O. J. 
avg. 

r--ýý_ dra4uon 

Cluj Entity 
With Intu4 

0eealptbt ; String 

W4 

Class Rrrguir nt M Entity 
with rr@Dul 

rpuimmw4wi :I tags , 
rpuWwn tSpecXklitlar : String 

.4 

Om Design IsA Entity 

with allmatt 

desl9INam.: SVYIQ: 

EesoStat~ : String; 

pmduoedFmm : Rpulrsmert 

"d 

Class ImplModuk IaA Entity 

MM atUbuss 
kWNO : UbgsG 
r pDeacAOtlon : String; 
YnpKW Da9M 

mdWs : Rpukrrnwt 
rule 

DlMeRepukemeMRuk: 
$ tNl rAequIarll reign YImpModUN 
Q Arpgl». 4 (d ptdwOFran r) 
-o0wslhmq$ 

"" H 

Figure 2.8 -'Examples of Conceptual Data Modelling Techniques -A (ER Model); B (ORM); C (GEM); 

D (IDEFIX); E (DAPLEX); F/G (EXPRESS); H (0-Telos)' 

43 



Techniques and Tools for Traceability 

2.2.2.2.5 IDEFIX 

IDEFIX (FIPSP, 1993) is a graphical, quasi-relational modelling approach developed by the United 

States Air Force. Basic constructs are the entity, attribute and relationship; entities are denoted by 

round-cornered or square-cornered rectangles (with names appearing above). The former indicate 

dependent entities whose unique identifier includes at least one relationship to another entity, whereas 

the latter signify independent entities whose identifiers are not derived from other entities. In both cases 

a dividing line separates identifier attributes (above the divide) and non-identifier attributes. 

Relationship lines (bearing an appropriate name) associate entities. In addition, the foreign key (fk) 

'implementing' that line features as an attribute of the corresponding entity. Contrary to most modelling 

notations, different line styles and symbols are used to describe different combinations of participation 

and cardinality. For instance, a dashed line between two entities A and B, with a solid circle adjacent to 

entity B has the semantics 'one to zero or more'. Conversely, a solid line between two entities A and B, 

with a solid circle and a `P' symbol adjacent to entity B (where B is dependent) has the semantics 'one 

to one or many dependent'. All told, IDEFIX specifies no less than twenty four symbol combinations 

and we therefore refer readers to (FIPSP, 1993) for further details. 

IDEFIX also supports supertype (generic entity) and subtype (category entity) classification through 

the notion of `categorisation relationships'. However, neither aggregation (except through attributes), 

nor operators are a feature. Moreover, semantic anomalies mean certain situations may be represented 

by more than one set of symbols, while the same symbol can mean different things according to context. 

This both reduces readability and makes the notation difficult to learn. It is also worth noting that 

IDEFIX effectively imposes third normal form and therefore assumes all attendant dis-benefits of the 

Relational Model. Again, figure 2.8D shows a simple example of the approach illustrating a subset of 

these principles. 

2.2.2.2.6 DAPLEX 

DAPLEX forms the data definition component of the Functional Data Model (Shipman, 1981). 

Although arguably the best known example, it is nevertheless just one of several attempts to construct a 

modelling approach based on functions rather than relations. In general, it can be said of such models 

that the basic navigational ('path-following') style is similar to that of object-based approaches in terms 

of addressing objects that are functionally related to other objects, that are functionally related to other 

objects and so on (Date, 1995). 

The most striking features of DAPLEX are its simplicity and syntactic leanness. Whereas most 

conceptual data models feature a range of modelling constructs, DAPLEX relies on just two, the 

function and the entity (i. e., no relationships, attributes or value-sets). A function declaration can take 

one or more parameters and return a set of entities of a given type. Entities are specified using functions 

that take no parameters, whilst attributes are defined as functions taking the entity to which they belong 

as a parameter. Relationships are also represented as functions. A number of built-in types are provided 

including entity, and simple types such as integer and string. No explicit means are provided for 

44 



Techniques and Tools for Traceability 

representing either classification or aggregation, although users can define their own functions for such 

purposes. 

Constraints are specified using the model's functional programming language, though even basic 

restrictions are far from straightforward to impose. Finally, a powerful query sub-language enables 

manipulation of the data-model using English-like statements and expressions. Figure 2.8E presents a 

simple example illustrating the main principles of DAPLEX. 

2.2.2.2.7 EXPRESS/EXPRESS-G 

EXPRESS (Schenk & Wilson, 1994) is a structured textual language based on an extended entity- 

relationship formalism. Its main constructs are entities and attributes, the latter specifying a data type 

(either user defined or chosen from one of the in-built data types such as integer, string and boolean, 

etc. ), a cardinality and also a possible value-set; relationships between entities are subsumed in the 

domains of attributes. We note also that the main abstraction concepts of classification and aggregation 

are both supported. Attributes and derived attributes can be designated unique, whilst entities, attributes 

and relationships may be constrained using rules written in a procedural language. Finally, the query 
language EQL defines a number of operators for analysing EXPRESS data structures. 

EXPRESS-G meanwhile provides a graphical means of representing models specified in the language's 

textual form, although only a subset of constructs are supported, including entity, relationship and 

cardinality. Rectangular boxes represent entities, whilst their attributes are shown as a labelled arcs 

branching off and connected to a domain type - either in-built (denoted by a solid rectangular solid box 

with a double vertical line at the end) or user defined (denoted by a dashed rectangular box); dashed 

and solid arcs indicate whether an attribute is optional or mandatory. The destination of relationships 
between entities, or between entities and their domain types is conveyed as a circle at the end of an arc, 

while the convention for inheritance uses bold arcs9. Asterisks denote a constraint over an entity or 

attribute (although the constraints themselves are not shown), whilst the characters `DER' enclosed in 

parentheses indicate derived attributes. 

We return to EXPRESS in Chapter Three (subsection 3.2.2) when considering work by ESPRIT project 

SEDRES (Johnson, 1997) and also in Chapter Seven (7.4.14) when discussing future work. In the 

meantime, figures 2.8F and 2.8G respectively show a subset of EXPRESS and EXPRESS-G 

conventions. 

2.2.2.2.8 O-Telos 

O-Telos (Jarke et al., 1995) is of particular interest in the context of this thesis as object management 
features of its implementation in ConceptBase are used throughout to provide a 'flavour' of tool support 
for the MATrA structures. O-Telos is an extension of Telos (Mylopoulos et al., 1990) and includes the 

key structural mechanisms of specialisation, aggregation and association, as well as means to specify 

9 It is debatable whether the thickness of a line should carry semantic force, although the same criticism also applies to ORM 
(discussed in subsection 2.2.2.2.3) and also to the graphical form of O-Telos (to be considered in 2.2.2.2.8). 

45 



Techniques and Tools for Traceability 

constraints and deductive rules. Thus, O-Telos constitutes what its authors term a deductive object base 
(DOB). 

A DOB is a triple, (OB, R, IC), where OB is the extensional object base and R and IC are deductive rules 
and integrity constraints respectively. Given the set of object identifiers ID and the set of labels LAB, an 

extensional object base is formally defined as a finite subset, OB c (P (oid, x, lab, )) I oid, x, ye IDA lab 

e LAB); elements (propositions) P(oid, x, lab, y) of the object base are referred to as 'OB objects', where 
oiddefines the object identifier, xis the object source, lab the name, and y the destination. 

An O-Telos object base distinguishes four kinds of objects: - 

" Individuals -a real world object is represented as P(oid, oid, lab, oid), where object identifier, source 

and destination have the same oid10; 

" Instances -a relationship between an object P(oid_o, oid_o, obj_name, oid_o) which is an instance of a 

class P(oid_c, old-c, class_name, oid_c) is represented by P(oid_rel, oid_o, in, oid_c) - i. e. the relationship 
is an object with oid_o as its source, in as its label, and oid_c as its destination; 

" Specialisations - specialisation of a class P(oid_cl, oid_c1, class-name, oid_cl) by a class P(oid_c2, 

oid_c2, class name, oid_c2) is represented by an object P(oid_rel, oid_02, isA, oid_cl); 

" Attributes - P(oid, x, lab, y) states that object x has a relationship lab to an object y. 

O-Telos supports an infinite number of modelling levels. At the lowest level, real-world objects are 

modelled as individuals or Tokens. In turn, Tokens instantiate SimpleClasses which are likewise 

instances of MetaClasses that are themselves instances of MetametaClasses, and so on". MATrA is 

defined in ConceptBase using the Token, SimpleClass and MetaClass levels. 

Both textual and graphical representations are supported in O-Telos12. The textual form featured in this 

thesis employs a frame syntax which uses object-labels for identification; all objects with a particular 

object as their source are grouped around that object. For each attribute, the frame description includes 

labels of attribute classes. Meanwhile, the corresponding graphical notation resembles a semantic 

network, with Individuals represented as nodes, Instances as dashed arcs, Specialisation using bold arcs 

and Attributes as 'solid' labelled arcs. 

0-Telos also provides an assertion language to express DOB integrity constraints and rules. These are 

defined as instances of the pre-defined constraint and rule classes and included as attributes of the class 

to which they are attached. Constraints take the form <quantification> <formula> and rules, <quantification> 

<condition> => <result>, where quantification involves evaluation of universal and existential operators 

over 0-Telos classes, formula and condition are logical combinations of literals describing relationships 

among 0-Telos objects and result is a literal describing the logical consequence when a condition 

10 The object model of O-Telos includes around thirty in-built constraints that maintain integrity of an object base and ensure 
(among other things), that each object has a unique identification and that each referenced object exists. 
I The uppermost layer of any object base (irrespective of the number of levels) is pre-defined by the objects Object and Class. 

12 In ConceptBase, the graphical notation may only be used to browse elements. 

71" 

46 



Techniques and Tools for Traceability 

holds. Constraints are mainly used in this thesis to model value-sets; e. g., a class AssuranceLevel of type 

integer with values in the range 1 to 4 could include the constraint: AssLevlto4: $ forall a/AssuranceLevel 
(a >=1) and (a <=4). 

Finally, O-Telos defines operators for updating and querying an object base. Specifically, Tell and Untell 

operations allow for adding and deleting of objects respectively, while Ask permits their retrieval. 
Objects retrieved using Ask are represented as instances of the QueryClass and as a specialisation of one 

or more O-Telos classes. Constraints can be used to restrict possible answers by specifying particular 

attributes and attribute values. 

Again, figure 2.811 features a simple example incorporating a subset of O-Telos constructs expressed in 

the textual frame syntax. An illustration of the graphical representation appears in Chapter Three 

(subsection 3.2.1). 

2.2.2.2.9 Unified Modelling Language (UML) & Object Constraint Language (OCL) 

We conclude our discussion on data modelling approaches by considering the Unified Modelling and 

Object Constraint Languages. The level of detail is necessarily greater than for previous techniques as 

they provide a foundation for the modelling of MATrA structures in Chapters Four and Five. 

" Unified Modelling Language 

The Unified Modelling Language (Rational Software Corporation, 1997a; Muller, 1997) adapts and 

extends modelling techniques developed by Booch (1994), Rumbaugh et al. (1991) and Jacobson et al. 

(1993). UML defines nine different types of diagram, each one capturing a different system viewpoint. 

However, we concentrate exclusively on Class Diagrams as these are used to represent all MATrA 

structures. 

The main elements of Class Diagrams are class and relationship icons. Individual classes are 

represented as solid outline rectangles, with a mandatory compartment for the name, plus optional 

compartments in which to list attributes and operations (see figure 2.9). Note that operations are 

primarily used in software development to describe parameters of member functions and are therefore 

not of concern to us in modelling the traceability structures. 

The simplest form of relationship depicted on Class Diagrams represents a dependency between 

(generally two different) classes and is denoted by a connecting line. Such associations may be labelled 

with either a passive or active verb (e. g., produces in figure 2.9), with the direction it should be read 

indicated using a small arrowhead. Alternatively, both ends can be labelled with rolenames that 

describe how each class `sees' the other (e. g., architecture and build_element from the Design and 

Implementation Module classes in figure 2.9). Reflexive associations linking classes of the same type can 

also be defined; e. g., an instance of Stakeholder with rolename responsibility_, principal may be associated 

with another instance with rolename responsibility_holder (again, see figure 2.9). UML further supports 

47 



Techniques and Tools for Traceability 

multiplicity adornments for `1' (one and only one), `0.. 1' (zero or one), `0.. *' (from zero to any 
integer), ' l.. *' (from one to any integer) and 'M.. N' (from M to N integers) 13. 

Dependency associations can themselves be represented as classes (complete with attributes, operations 

and constraints) and so participate in relationships with other classes (including other dependency 

associations). We use this particular approach to represent dependencies between MATrA structures 

(and elements) since it also provides a useful placeholder for decision rationale. In modelling 

dependencies in this way we chose to use aggregation, the semantics of which are that the claim being 

expressed by a dependency is `composed-of' the adjoining classes; see for example Validates and 

RealisedBy in figure 2.914. 

UML denotes aggregation associations using a small, hollow diamond situated next to the aggregate 

class (as depicted by the above-mentioned Validates and RealisedBy dependencies and also the reflexive 

association on ImplementationModule). A variation of this formalism is used where attributes must 

participate in relationships with other classes. This is termed composition and denoted through a small, 

black diamond adjacent to the aggregate (as shown between Requirement and Stakeholder in figure 2.9). 

Composition also implies a multiplicity of zero or one on the aggregate side. Note, the nature of 

concepts modelled in this thesis, i. e., traceability structures composed of elements which in turn are 

composed of other traceability structures and elements, makes aggregation the dominant association 

type used throughout. 

Finally, UML denotes classification using an arrow pointing from the specialised class towards the 

general class; e. g., in figure 2.9, Requirement, Design and ImplementationModule are all forms of Artifact. 

The generalised class is termed a superclass and its specialised counterpart, a subclass such that a 

subclass inherits all attributes specified in its superclass, together with any relationship dependencies 

that the superclass has against other classes. A subclass then specialises the superclass through addition 

of its own attributes and associations. Note, the Artifact class in figure 2.9 is abstract meaning it is not 

instantiated directly, but instead is used to (transparently) manipulate instances of its subclasses. 

Figure 2.9 will now be used to provide a context for consideration of OCL. It must be stressed that our 

interest in the figure is purely as a platform for exhibiting the basic modelling constructs used in 

developing MATrA (and not the content of the schema itself). 

13 Where two classes are related by more than one association, we sometimes adopt the readability convention of using a single 
-ý=- 

association annotated with multiple rolenames and multiplicities. For example: 

14 Note a dashed line can also be used to attach an 'Association Class' to a connecting line denoting a dependency between two 

classes (for more information, readers are referred to Muller, 1997). 

48 



Techniques and Tools for Traceability 

Artifact (abstract) 

sstartDate : Date 
. status : anum (chosen, abandoned) 

assembly 

Requirement Design Impismemanonmoome 
produces architecture #implementNo: Integer 

#requlrementNO: Integer #oesignName : String 
> >ý #designStatement: String build_element *+mplementDesc: String 

ponent OrgtSpecification: Slung 
l.. #slzeMb: Integer 

source 

o. " 1. 
responsibiliry_hader stakeholder 

responsibility-principal 
0. ' OraUOnale : Stdnp 

source I 

target 11 

Validates target 
TestCase 

. testtd: Integer 

. testDesc : String 

. testResult : enum(pass, tall) 

Figure 2.9 - `Example UML Class Diagram' 

" Object Constraint Language 

Notwithstanding multiplicity, UML itself has no actual syntax for specifying constraints; natural 
language, pseudo-code and formal expressions can all be used on condition that definitions are enclosed 
in braces adjacent to the appropriate model elements. However, version 1.1 prefers use of the Object 

Constraint Language (Rational Software Corporation, 1997b; Warmer & Kleppe, 1999) which extends 
UML in much the same way as Syntropy (Cook & Daniels, 1994) previously extended OMT. 

OCL is a precise (and strongly typed) language with a simple, non-symbolic syntax for expressing 

constraints over elements of UML models. It can be used for a range of different purposes, including 

specification of pre and post-conditions on operations as well as detailed behavioural constraints such 

as guards on state transitions. However, as regards means of representing the traceability structures, we 

are solely concerned with specifying rules and invariants over elements of Class Diagrams. 

Before discussing these aspects further, we introduce some basic OCL conventions. As figure 2.9 

shows, Class Diagrams express a vocabulary of classes, attributes and associations describing the 

subject being modelled. OCL uses these in conjunction with its own pre-defined basic (integer, real, 

string and boolean) and collection (set, bag and sequence) types to form expressions. OCL types also 
have pre-defined operations, e. g., those over basic types include real and integer modulus, boolean 

implication and string concatenation (we consider collection operations later). Several meta-types that 

apply to all objects are also available, including oclisKindOf (which evaluates to true if a type t is either 

the direct type or one of the supertypes of an object); Oeilype (which evaluates to the type of an object); 

and most importantly of all, allinstances (which gives the set of all instances of a type and its subtypes). 

An OCL expression is stated within the context of an instance of a specific type. The name self is used 

to refer to the contextual instance. The type of contextual instance of an OCL expression is written with 

49 



Techniques and Tools for Traceability 

the name of the type underlined as follows's: 

Requirement self. requirementNo - evaluates to the value of the requirementNo attribute 

Another important concept when stating expressions is the convention for navigating Class Diagrams. 

This enables us to refer to other objects (and their properties) that are either directly or transitively 

related to a context class. Navigation is accomplished using the rolename of an opposite (destination) 

association end, i. e. self. rolename. For example, starting from the context of Design in figure 2.9, we can 

state: - 

Design self. build_element - navigates to objects of type ImplementationModule 

Evaluation of such expressions results in the objects on the other side of the rolename association (in 

this case, of type ImplementationModule). If multiplicity is either '0.. 1' or '1', the value of the expression 

is an object, otherwise (as it is here), the result will be a collection or more specifically, a set16. 

If rolenames are not specified on a Class Diagram, navigation can be accomplished using the names of 

types at association ends. The convention is to refer to them using lower case for the initial character. 

Note however that if this results in an ambiguity, as for example with a reflexive association, then 

rolenames are mandatory. Again, from figure 2.9, we can state the following: - 

Requirement self. design - evaluates to objects of type Design 

As previously indicated, the OCL collection type comprises set, bag and sequence subtypes. These 

support a number of pre-defined operations, among them size (cardinality), isEmpty and notEmpty (for 

boolean evaluation of a null set), includes and includesAll (for the 'e 'and 'c' set operators) and select 

and reject (for criteria based inclusion and exclusion of elements from operation results), together with 

the existential and universal qualifiers, exists and forAll ('3' and 'V'). Note each collection subtype also 

has its own specialist operations - e. g., those for set include difference, intersection and union. 

A collection operation is accessed using an arrow `->`, followed by the operation name. For instance: - 

Requirement 
self. design->size - returns the number of Design types of the Requirement self 

Requirement 
self. design->isEmpty - evaluates to true if the set of Design types of Requirement self is 

- empty 

Requirement 
seif. design. build_element->includesAll(self. realisedBy. target) 

- evaluates to true if the set of ImplementationModule types reachable 
- via Design includes all ImplementationModule types reachable via 
- the RealisedBy class 

15 An alternative to this notation precedes the contextual instance type with the keyword context. 
16 Unless that is, the association carries an '(ordered)' adornment, in which case a sequence results. 

50 



Techniques and Tools for Traceability 

Implementation Module 
self. realisedBy. validates. target->select (self. realisedBy. validates. target. testResult = Vail) 

- evaluates to TestCase types whose testResult attribute has the 
- value #fail'7 

Note the same class can be treated as both an object and as a set, depending on whether the self. object 

->set-property or self. object. object-property convention is being applied. 

The forAll operation can be used to constrain all elements of a collection. Again we use the arrow syntax 

with a boolean parameter; the result of evaluation is true iff the expression holds for all elements. For 

instance, in the context of a Requirement: - 

Requirement 
self. realisedBy. validates. target->forAll (t I t. testResult = #pass) 

- evaluates to true if the testResult of each TestCase is #pass 

Likewise, the exists operation can be used to determine whether a constraint holds for at least one 

element of a collection. Again, in the context of a Requirement: - 

Requirement 
self. realisedBy. validates. target->exists (t I t. testResult = #pass) 

- evaluates to true if the testResult of at least one TestCase is #pass 

As previously stated, the ocllsKindOf operation results in true if a type t is either the direct type or one of 

the supertypes of an object. For instance: - 

Requirement 
self. ocllsKindOf(Artifact) - evaluates to true because Requirement is a subtype of Artifact 

Remember also that evaluation of the ociType and alllnstances operations will result in the type of an 

object, and the set of all instances of a type (and its subtypes) respectively; for example we can combine 

these operations to state the following expression testing the abstract property of Artifact (i. e., to test that 

Artifact has no instances): - 

Artifact 
self. alllnstances->select (oclType = Artifact)->isEmpty 

- evaluates to true because Artifact is designated abstract 

The conventions outlined above will now be used to express two simple invariants over elements of the 

Class Diagram in figure 2.9. An invariant is a boolean expression which either limits the value of an 

attribute or association role, or else states a relationship between the values of attributes and association 

roles. The result must evaluate to true for all instances of the associated class at any point in time. 

Our first example restricts values for the sizeMb attribute of ImplementationModule to less than 10Mb 

17 The # syntax is used when referring to enumerators of enumerated types. 

51 



Techniques and Tools for Traceability 

(i. e., it defines the domain of permissible values). This can be expressed as follows (note use of the 
keyword invariant): - 

ImplementationModule invariant 
self. alllnstances->forall(i I i. sizeMb < 10) 

In the above, the alllnstances operation is used to obtain the set of all instances of self, in this case 
Implementation Module; forAll then constrains the appropriate attribute for all elements of that particular 
collection. 

Our second example ensures that Requirement identifiers are unique. Again the forall operation is used, 
this time over the Cartesian product of all instances of self (i. e., Requirement): - 

Requirement invariant 
self. alllnstances->forAll (r,, r2 l not (n. requirementNo = r2. requirementNo and ri o r2)) 

In keeping with the style to be used in Chapters Four and Five, we use the proof by contradiction 
principle to express this invariant (i. e., negate the condition we wish to hold). 

The UML and OCL conventions introduced above are for reader orientation and hence consider only a 

subset of their respective language features. Nevertheless, they represent the main constructs used in 

expressing the MATrA traceability structures. For a more exhaustive consideration of UML and OCL, 

readers are referred to (Rational Software Corporation, 1997a and 1997b) respectively. 

2.2.2.2.10 Other Conceptual Data Models 
The previous discussion provides an overview of conceptual data modelling approaches spanning over 

a quarter of a century. Some older examples, e. g., GEM and DAPLEX are of little more than historical 

interest nowadays, although age is not necessarily an accurate barometer given that the two oldest 

approaches considered (namely the E-R and Relational models) remain prevalent to this day. Space 

prevents the inclusion of further examples, however interested readers may refer to works on TAXIS 

(Nixon et al., 1987), SDM (Hammer & McLeod, 1981), SAM* (Su, 1986) and SHM+ (Brodie, 1984). 

2.2.2.3 Traceability Enhancements 

From a traceability perspective, the means by which data-modelling techniques build on basic set 

theoretic concepts can be seen to include structural, integrity and manipulative aspects. Structurally, all 

of the techniques offer rich graphical and/or lexical representations of the underlying mathematical 

concepts. The representations themselves are generally more expressive than graphs in the sense of 

capturing multiple overlaid relations, as well as enabling practitioners to describe domain elements in 

greater detail (using attributes) and to express stronger (in terms of coupling) set-theoretic relations 

such as multiple inheritance. 

In addition (and to varying degrees), all featured notations further support the expression of constraints, 

ranging from multiplicity and participation, to entity integrity. Sometimes the mechanisms are in-built 

52 



Techniques and Tools for Traceability 

(e. g., referential integrity in the relational model), while more specific user-defined restrictions can 

often be stated using some form of assertion sub-language (as in O-Telos). Many techniques further 

provide data manipulation operators, including the relational model with its select, project and join 

constructs and OCL with its array of built-in functions over set, bag and sequence types. It should be 

noted that whilst all of the featured techniques are structurally rich (relative to cross-referencing), some, 

such as the E-R model, require charitable reading to conclude that they are in fact data models; the 

integrity and operator constituents are often either weak or else not clearly defined in the literature. 

Thus a degree of care is necessary when assessing the full extent of support for traceability afforded by 

data-modelling approaches. Those allowing the definition of sets of artifact and relationship types, with 

basic support for integrity constraints and some means of manipulation (e. g., the Relational, E-R and 

IDEF1X models) afford a basis for what is often referred to as 'syntactic traceability' (Pearson & 

Saeed, 1995). However, formalisms such as O-Telos and UMUOCL that combine rich structural 

abstraction mechanisms with a predicative sub-language, potentially permit what may be termed 

`semantic traceability' (Palmer & Evans, 1994). In other words, they support precise formal definition 

of complex artifacts, their relationships and constraints imposed over them, as well as rules for 

reasoning with the data. This is the most sophisticated form of traceability achievable. It is also the most 

ambitious, requiring that each artifact and dependency is given a formal semantics. With MATrA, we 

are seeking to provide a foundation towards semantic traceability for the aerospace domain. 

2.2.2.4 Traceability Applications 
We purposely limit discussion on applications of conceptual data-modelling in this subsection since it 

constitutes a key aspect of the thesis and is demonstrated extensively throughout Chapters Four to Six. 

There are numerous examples of data modelling approaches to traceability in the literature, although the 

emphasis is very much on presenting structural aspects, with little space devoted to semantic issues. 

This is perhaps understandable given that establishing the kinds of information and relationships to 

record is fundamental to any traceability approach and is the foundation on which the other aspects are 

built. The bias towards structural issues may explain why authors often present their work using 

arbitrary 'box-and-line' notations (which lack support for both constraints and operators), rather than 

using recognised data modelling techniques (cf. Laubengayer & Spearman, 1994; Ramesh, 1994). 

However, there are many examples of models based on the approaches considered in subsection 

2.2.2.2, including Canfora et al., (1995), Eberlein et al. (1997), Herzog & Törne (1999), Mason (1996) 

Oliver, (1994) and Pohl (1996). 

Work on data modelling and traceability tends to be situated in the horizontal and/or vertical 

dimensions, as is the case with these examples. Again, this reflects the more specialised nature of the 

variant and revision axes. However interested readers are referred to work on data modelling for 

variants by McKay et at. (1996) and on revisions to Rolland (1994b). 

53 



Techniques and Tools for Traceability 

2.2.2.5 Evaluation 

In evaluating conceptual data-modelling as the basis of a traceability approach, we must consider what 

practitioners gain, both directly and indirectly, from using such techniques. 

The main product of data modelling for traceability is a logical representation of project artifacts in 

terms of entities, relationships and well-formedness constraints. As we demonstrate in Chapters Four 

and Five, the expressive capabilities of data-modelling techniques allow practitioners to represent 

artifacts employing text-based, graphical and even formal notations in a way that with appropriate tool 

support, enables horizontal and vertical traceability between them; we note this normally requires links 

from the data-models into appropriate tools, thereby removing the need to capture information twice - 
once in the tool itself and once in the data-models (an issue addressed in Chapter Three). Data- 

modelling further allows revisions and variants to be structured in a way that supports traceability, 

while depending on which notation is being used, standard operations may also be produced for 

projecting different views of the data. 

However, this perspective belies the fact that developing a conceptual data model (or set of models) 

requires deep understanding of the artifacts involved in a project and the life-cycle processes that 

produce them. As such the modelling task itself is actually a project within a project, comprising a 

requirements phase to elict user needs, a design phase to develop the models themselves and an 
implementation phase in which the necessary tool support is produced (see subsection 2.3). Thus, 

improved understanding of notations used to express the artifacts being modelled, of the processes 

employing them and of the relationship between notations and process activities can be said to be an 

indirect benefit of the modelling activity. 

It is important the resultant data model(s) are continually re-evaluated throughout a project. Indeed, 

since inputs and outputs from process activities ultimately map to model entities, any modifaction of 

`live' data-models may indicate a growing gap between the perceived process, and that being enacted. 

This in turn might suggest the need for process re-definition, thereby completing a product/process 
feedback loop. Therefore, practioners further benefit indirectly from the fact that data models 

supporting traceability make the process model more visible, enabling greater scope for process 

monitoring and improvement. 

Finally, development of the data model(s) involves close interaction with a cross-section of stakeholder 

groups. This is necessary to establish not only what artifacts need to be modelled and the required ways 

of tracing between them, but also who will employ what information. This is especially important as 

project data is often used by people other than those involved in its capture. Thus, another indirect 

benefit of the data modelling activity is that it helps establish a control framework for accessing 

information, as well as determining `ownership' and responsibilities for its maintenance and 

management. 

54 



Techniques and Tools for Traceability 

2.2.3 Applicability of Techniques 
Clearly, while generally inferior to data-modelling approaches, cross-referencing is still of value since 

the degree of sophistication an organisation requires from traceability will broadly correspond to its 

level of maturity's. At lower levels, a properly maintained if rudimentary cross reference-scheme is 

infinitely preferable to sophisticated, but neglected data-models where information becomes 

progressively less useful and there is little incentive to either update or use it. 

It is further clear that cross-referencing techniques can benefit from tool support, whereas data- 

modelling requires it in order to be practical. However, tools are also essential given our domain of 
interest, where aerospace practitioners must often capture and analyse vast data sets. We address the 

issue of tools in the following section. 

2.3 Tool Support For Traceability 
Before considering tools supporting traceability directly, we briefly mention some other tools that 

provide limited traceability capabilities as a by-product of their stated purpose. These include the KJ 

editor (Takeda et al., 1993), the T tool test case generator (Sodhi, 1991) and AGE (Keys, 1991), as well 

as code analysers such as Microscope (Ambras & O'Day, 1988), MasterScope and CScope 

(summarised by Devanbu et aL, 1991). Traceability is also an inherent feature of some languages used 
in the development process (cf. Bell et al., 1977 and Davis & Vick, 1977; Dubois, 1994) and in the 

notion of parasitic languages described by Hill (1996). Also worthy of mention are tools supporting 

automatic transformation of specifications into source code; research in this area dates back to (Balzer 

et al., 1983), whilst other works include Fraser et al. (1991), Reubenstein & Waters (1991), Börstler & 

Janning (1992), Duke & Harrison (1995) and Goguen (1996b). 

All remaining tools considered in this section are themselves, or are built on-top of, some form of 
database. We note that imperative programming languages such as C++ and logic programming 
languages such as Prolog - both potential alternatives to a database approach - are undermined by lack 

of specialist capabilities for file handling and recovery. 

A number of guidelines and heuristics exist for the evaluation of CASE tools generally (cf. Anderson, 

1989; IEEE, 1992; Mosley, 1992; Sodhi, 1991; Thompson, 1994) and traceability tools in particular 

(cf. Gotel, 1995; Arango et al., 1991; Brown, 1993; Edwards & Bergstein, 1993; Fiksel & Hayes-Roth, 

1993; and Kelley 1990). However, our assessment is based on work by Riddle & Saeed (1999b) as it is 

specific to the aerospace domain. Their 'wish-list' of features for an ideal traceability tool can be 

summarised as support for: - 

" Elicitation - i) varied means of extracting data (such as forms/templates); ii) integrity checks (to be 

applied to new data or triggered by updates); and iii) tolerance of incomplete information. 

" Expression - i) representation of complex hierarchical structures; ii) specification of dynamic 

18 Maturity as implied by the evaluation frameworks introduced in subsection 1.4.6.2. 

55 



Techniques and Tools for Traceability 

dependencies (enabling propagation of updates); and iii) features for extension of the underlying 
information schemas. 

" Analysis - i) means of traversing complex hierarchical structures/transitive relations; ii) standard 

queries (including checks for consistency and completeness); iii) an expressive query definition 

language; and iv) predefined report formats. 

We also address support for the traceability dimensions discussed in Chapter One. 

2.3.1 General Purpose Tools 
Specialist traceability tools or CASE tools providing explicit traceability support have only recently 

emerged. Prior to that, practitioners had little alternative but to use general purpose technologies. For 

cross-reference based schemes, that meant basic text editors (Davis, 1990; Kelley, 1990), UNIX Nroff 

and Troff text processing macros (Ni et aL, 1994; Yu, 1994), spreadsheets (Dean, 1992) and in 

particular, hypertext (Conklin, 1987) and hypermedia (Grmnbaek & Trigg, 1994) technologies19. 

2.3.1.1 Hypertext 

Hypertext in general provides a natural means of presenting inter-related information for browsing and 

on-line document analysis. However, lack of user operations on the underlying structure (database) has 

traditionally made it unsuitable as a basis for interactive development tools and as such, the Riddle and 

Saeed elicitation criteria are largely inapplicable. 

From (Halasz & Schwartz , 1994) we have identified some further general criticisms of hypertext with 

regard to expression and analysis, including: - i) weak support for link typing; ii) lack of support for 

consistency checks; iii) weak support for view-based presentation and lack of support for view-types; 

iv) lack of support for inferred links; and v) lack of support for queries and reports using selective 

retrieval20. We also note the general absence of mechanisms for revision control (and by implication, 

revision traceability). 

Despite such failings, hypertext is adept at representing hierarchical document structures, as well as in 

handling coarse and fine-grained inter and intra-document relationships. Also (and in contrast to its 

graph theoretic base), hypertext systems normally provide limited node typing and can therefore 

support both horizontal and vertical traceability using relationships between nodes of the same and 

different types. 

Examples of tools supporting traceability based on hypertext have been proposed by Börstler (1994), 

Corriveau & Hayashi (1994), Cybulski & Reed (1992), Gardner (1994), Garg & Scacchi (1989,1990), 

Hughes et al. (1995), Kaindl (1993), Kydd et al. (1994), Lee & Yen (1993), Papaioannou & 

19 Hypertext refers to text only systems and hypermedia describes systems supporting multiple-media. 
20 Note work by Pohl & Haumer (1995) - on which the MATrA structure in 4.2 is based - seeks to address issues such as view 
typing and selective retrieval. 

56 



Techniques and Tools for Traceability 

Theodoulidis (1996), Smith (1993), Takahashi et al. (1996) and Westfechtel (1989). 

It is also worth noting that generic mark-up languages such as HTML and its sibling XML (which both 

provide annotations for the digital representation of hypertext documents using tags21) are now being 

challenged by domain specific variations. For instance, SML, a mark-up language for safety 

engineering includes tags for hazards, safeguards, failures and other key safety related terminology. 

Such languages further improve traceability, in addition to making the analysis process potentially more 

efficient (Fan & Yih, 1999). 

2.3.1.2 General Purpose Database Management Systems 
To provide tool support for data-modelling approaches, practitioners have typically employed 

commercial database management systems (DMS). Of these, relational databases remain the most 

popular despite innovations in the object-oriented and deductive fields. We base material presented in 

this subsection on work in DCSC investigating use of relational (Mason, 1996) and deductive object- 

oriented databases (Riddle & Saeed, 1997; Stephenson, 1997; Mason & Saeed, 1998; and Pearson et 

al., 1998) as potential platforms for traceability tools in the aerospace domain. Note that Chen et al. 
(1993) provide a general set of criteria against which to evaluate DMS for use in systems engineering. 

2.3.1.2.1 Relational Database Management Systems (RDMS) 
RDMS are based on implementations of Codd's Relational Model developed in 1970 (and described in 

subsection 2.2.2.2.1). The most significant development since then has been adoption of SQL 

(Structured Query Language), a non-procedural approximation of the underlying relational algebra, as 

the official standard relational query language. Examples of RDMS include Informix, Sybase, DB2, 

Ingres and Oracle. 

Most commercial RDMS support means to develop form-based interfaces that shield users from the 

underlying SQL syntax. Some systems allow these forms to include derived attributes based on 

arithmetic operators or aggregates. Constraints preserving domains as well as referential and entity 
integrity are also normally enabled, as is the definition of triggers22; constraints are usually attached to 

forms in order to validate input at source. Support for partial completion of forms typically depends on 

the status (i. e., optional/mandatory) defined for individual attributes when creating the underlying 

schema. 

As regards expression, RDMS permit the representation of complex, hierarchical structures. However, 

`shoe-horning' them into tables expressed in third normal form leads to fragmentation of the data and 

often creation of many intermediate tables (requiring query via outer-natural-join to prevent information 

loss). The notion of dynamic dependencies, enabling propagation of changes caused by updates, are 

handled through transactions. Essentially, a transaction is a sequence of operations that transforms the 

21 Tags are used to structure text into headings, paragraphs and links etc., e. g., <hl> Heading </hl>. 
tt Events initiating triggers are typically updates, deletions, or insertions of tuples, with the actions to be executed on triggering 
defined as standard SQL statements. 

57 



Techniques and Tools for Traceability 

database from one consistent (initial) state to another via a series of potentially inconsistent states 23 

One notable weakness of RDMS expression-wise is that once populated, edits to the underlying schema 

are often either prohibited, or else difficult and cumbersome to perform. 

As previously indicated, SQL provides the basis for defining standard query operations and for 

projecting virtual tables (or views) over a repository. However, RDMS have no inferencing capabilities 

and are largely unable to support recursive queries that compute the transitive closure of a relation. As 

Mason (1996) demonstrated, this is potentially a major weakness in terms of their potential application 

to the aerospace domain, although the SQL3 standard (Elmasri & Navathe, 1997) does now include an 

explicit recursion feature. Alternatively, SQL statements can be embedded in a host programming 
language such as C++ or Pascal, with recursion supported by means of loops. Finally, most RDMS 

systems include a report-generator for specification of pre-defined report formats, with the content 

again determined using query language operations. 

Examples of traceability tools built on RDMS include those described in Buus et al. (1997), Cockram 

et al. (1998), Dorfman & Flynn (1984), Flynn & Dorfman (1990), Garcia (1994), Mason (1996), Neely 

& Hartley (1993), Patel et al. (1993) and Watkins & Neal (1994). These works demonstrate horizontal 
_ 

and vertical traceability capabilities, whereas variants can be handled by RDMS using appropriate 

attributes (Silva & Agusta, 1998); versioning is not normally supported in relational systems. 

2.3.1.2.2 Object-Oriented Database Systems (OODS) and Deductive Database 
Systems (DDS) 

Two approaches seeking to address the problems inherent in RDMS are object-oriented databases 

(OODS) and deductive databases (DDS). OODS date back to the late 1970s, with commercial products 

first emerging in the late 1980s. They provide rich facilities for representing both structural and 

behavioural information by combining features from database technology with those of object-oriented 

programming languages; examples include 02, ObjectStore, GemStone, Ontos and Versant. For a 

comprehensive review of ODDS, readers are referred to McFarland et at. (1997). 

In contrast, development of precursors to deductive databases can be traced back to the late 1950s and 

to subsequent advances in logic programming in the 1970s. This was followed by work towards 

efficient implementation of recursion and reinterpretation of the conventional model-theoretic 

perspective on databases in proof-theoretic terms (both during the 1980s). Thus, DDS combine 

database technology with the formal reasoning capabilities of logic programming; examples include 

LDL and Coral. Interested readers are referred to Minker (1988) for an account of the development of 

DDS and to Grant & Minker (1992) for an early assessment of the impact of logic programming on 

databases. 

Note, while the potential exists, we are not aware of any work describing traceability tools based 

23 Thus, where the transaction fails to complete, a rollback operation must be applied to restore the database to its initial state. 
As indicated in 2.3, a lack of such facilities undermines potential use of programming languages as a basis for traceability tools. 

58 



Techniques and Tools for Traceability 

specifically on either object-oriented or deductive databases. They are therefore not considered further 

in this thesis. 

2.3.1.2.3 Deductive Object-Oriented Database Systems (DOODS) 
Both OODS and DDS have inherent weaknesses. For instance the former are seldom based on formal 

semantic models and lack declarative query languages, whilst the latter have poor data structuring 

mechanisms and limited facilities for update and I/O operations. Deductive Object-Oriented Database 

Systems (DOODS) attempt to combine these two paradigms in a manner which utilises their respective 

strengths to overcome these respective weaknesses, but without compromising the characteristic 
benefits of either. The resulting systems provide a rich modelling capability combined with a formal 

mathematical foundation; examples include Coral++ (Srivastava et al. 1993), Rock & Roll (Barja et at., 

1995) and ConceptBase (Jarke et al., 1995), an implementation of O-Telos (described in subsection 

2.2.2.2.8) that provides a target platform for the MATrA structures24. Note that since the features of 

DOODS tend to vary significantly, we concentrate on ConceptBase for the purpose of this evaluation. 

An immediate criticism of ConceptBase is its lack of either a form based or template interface, though 

this is probably due to being developed for research rather than commercial use. However, data can be 

loaded from pre-edited files and therefore a template of sorts could be provided as a commented text 

file if required; work in DCSC towards development of a JAVA based interface to ConceptBase for a 

Requirements-Engineering tool (Sukamaran, 1999) is also noted. In terms of constraints, the tool 

provides good support for integrity checks which are encoded as attributes of classes (although the 

restriction of operators to universal and existential quantifiers is a limitation); new and updated 

instances must conform to these constraints which can enforce various domain, real-world and entity 

integrity restrictions. Note, new instances of a class need not by default have values associated with the 

attributes defined, so enabling partial population. 

The underlying object model supports definition of complex, hierarchical structures using O-Telos' 

mechanisms for specialisation, aggregation and association (described in section 2.2.2.2.8), while the 

tool's axiomatic basis means querying such structures is not problematic. ConceptBase further enables 

definition of deductive rules (again, as attributes of a particular class) that can be used to derive 

dynamic dependencies, allowing propagation of changes to related objects. As regards extendability, 

the underlying schema can be arbitrarily changed provided constraints and dependencies are not 

violated. 

Standard queries can be defined via the special QueryClass construct (as introduced in section 

2.2.2.2.8); these become classes within the database which may be selected from a menu and applied at 

any time. QueryClass can be thought of as generalising the notion of relational views in that its instances 

are answer objects to the query. This form of 'lazy evaluation' is one of the tools strengths and is often 

preferable to expressing constraints on the classes themselves which can be overly restrictive. 

2' In providing a flavour of automation for MATrA structures, we focus on representation of the base classes and hence on 
object-oriented rather than deductive features of ConceptBase (see subsection 2.4). 

59 



Techniques and Tools for Traceability 

Conversely, one area where ConceptBase is particularly weak is its reporting facilities, with no means 
for defining standard report formats or templates. 

It should be noted that application of DOODS has largely been confined to academia, including some 

work on the development of traceability tools (cf. Eberlein et al., 1997 and Pohl, 1996). 

2.3.2 Commercial Traceability Tools 

This section analyses three commercial traceability tools, namely DOORS (QSS, 1998), RTM 

(Integrated, 1997) and RDD-100 (Ascent, 1997). We base our appraisal on a combination of `hands-on' 

evaluation and discussions with various user groups, including experiencedu, intermediate26 and 
beginner27 levels, together with findings in surveys by INCOSE (1999) and Riddle & Saeed (1999a, 

1999b). It should be stressed that as commercial tools, DOORS, RTM and RDD-100 are constantly 

evolving and therefore any appraisal is likely to become rapidly outdated. We therefore indicate which 

particular releases were considered, whilst highlighting subsequent developments of note where 

appropriate. 

2.3.2.1 DOORS (Dynamic Object Oriented Requirements System)28 
DOORS is a dedicated requirements management tool capable of interfacing with the likes of 
Statemate, Teamwork, Rational ROSE and Word. It also provides a C-like scripting facility - the 

DOORS eXtension Language (DXL) - which may be used (among other things) to construct custom 
interfaces with non-supported tools. However, relative to this thesis at least, a more significant means of 
interfacing with other CASE tools, or to be precise, capturing their project data within the DOORS 

environment, is the `DOORS Connect Programme'; we return to this issue below. 

In essence, DOORS adopts a document-centric approach; i. e., it presents the information via a word- 

processor-like interface, with requirements displayed as hierarchically organised `document' segments. 
Requirements may be captured in DOORS in several ways; e. g., automatic parsing mechanisms can 

read information from multiple file formats (including ASCII and RTF) so that structures, attributes and 

links may be set up without manual input. The parsers operate by analysing text and identifying 

requirements according to keywords. A manual mark-up facility (using mouse highlighting) is also 

available, while requirements and links can be further loaded in batch mode directly from file. Finally 

(notwithstanding the above-mentioned DOORS Connect Programme), there is the template based 

approach, where DXL scripts generate data entry forms with pre-defined headings for users to populate; 

templates are supplied for standard format requirements such as Mil-Std-498 (DoD, 1994). 

DOORS uses a proprietary object-oriented database which is reflected in the way information is 

structured. A DOORS 'project' contains a set of 'formal modules', each one typically containing a 

u Aerospace practitioners. 
26 Academic colleagues in the BAE Systems Dependable Computing Systems Centre. 
27 Undergraduate and post-graduate MSc. students (cf. Duvall, 1997; Brown, 1999; Casemore, 1998). 
23 Considers release 4.0. 

60 



Techniques and Tools for Traceability 

specific requirements sub-group (e. g., aircraft-level, system-level, item-level, etc. ); traceability is 

realised through links ('link modules') both within and between modules. DOORS handles individual 

requirements as discrete objects (which it allocates unique identifiers) organised under numbered sub- 
headings. Each object is described by typed attributes, some of which are standard and may be attached 

automatically (e. g., date of creation/last update, creator, etc. ), whilst others are defined by the user (note 

that links can also have attributes). However, the use of headings and sub-headings naturally encourages 

a hierarchical structure which though supporting inheritance between levels, is not always appropriate. 
It should also be noted that the absence of an underlying graphical schema underlines the need for a 

clear understanding of entities and relationships involved in a project before creating the actual objects 

and links; that said, extensions (or changes) to the database are easily performed. 

As indicated previously, the DOORS Connect Programme is an important feature of the tool allowing 

users to capture data from other CASE tools inside the DOORS environment. Technically an interface 

to a particular CASE tool is achieved through a `surrogate' formal module which shares common 
(unique) identifiers with the data set of that CASE tool. Surrogate formal modules are populated 

automatically by directly importing data into the DOORS database. Data is synchronised between 

DOORS and the CASE tool by updating the surrogate module with changes made to the data set of the 

CASE tool. As will be seen from Chapter Three, a similar approach is used for development of the 

MATrA framework described in this thesis. 

For simple analysis, the Traceability Explorer offers an on-line-browser tool showing all incoming or 

outgoing links for a particular module. Meanwhile the `Traceability Wizard' allows selection of 
forward and backward traversal paths over links between modules. Custom analysis is achieved using 
filters or DXL coded queries; filters are constructed by combining filter criteria (such as operations on 

attributes), the results of which can be saved as views. In addition DOORS provides a 'View Wizard' to 

guide selection of filter operations, such as the columns to display and sorting operations to conduct 

over filter results. Views further provide the basis for producing printed reports; a view is used to select 

the information required which is then included in the report definition. Basic consistency checks (e. g., 

on attributes) may be conducted by filtering, although more complex checks (e. g., of links) require 
DXL code (note as a procedural language, recursive querying of hierarchical structures is relatively 

easy). Several standard DXL queries are provided which may be adapted or extended as needs dictate. 

In terms of output, DOORS provides a number of report generation templates that comply with software 

engineering standards (including Mil-Std-499b and ESA PSS-05), while further reports can again be 

created using DXL. It is also possible to extract a detailed audit trail detailing the 'who, what, when and 
how' of changes to objects for revision control purposes. 

To summarise, DOORS is mainly a tool for managing textual requirements and specifications 29. 

Consequently vertical or horizontal traceability to non-textual artifacts comes either through interfaces 

29 The ability to capture information expressed in other tools through the DOORS Connect Programme and to represent textual 
data from all project phases (not just requirements) - including design and testing - has recently lead to DOORS being marketed 
as an 'information management tool'. 

61 



Techniques and Tools for Traceability 

into other development tools, or else through data stored as surrogate formal modules within DOORS 
itself. For artifacts stored as DOORS modules (including surrogate modules), vertical and horizontal 
traceability links may be inserted between any two object classes. DOORS also enables revision 
traceability through change histories and while no explicit support for variants exists, this may be 

partially offset through the use of appropriate object attributes. 

2.3.2.2 RTM (Requirements & Traceability Management)30 
RTM like DOORS, is intended to form the requirements management component of a life-cycle wide 
CASE tool environment. Pre-defined interfaces are provided for a range of development tools 
(including Teamwork and Statemate), as well as text processing tools (such as MS Word). For tools 

without pre-defined bridges, RTM provides aC and C++ driven API (Application Programming 
Interface), enabling users to develop their own custom interfaces to third party tools. In addition, later 

releases include a mechanism for representing data transferred from CASE tools directly into RTM 

using concepts similar to the DOORS Connect Programme discussed in 2.3.2.1. 

Normally, the first stage in using RTM is to define an information model known as the Class Definition 

Diagram (essentially an ER schema for the underlying ORACLE relational database). Its purpose is to 

capture information elements to be used on a project, the relationships between them and the rules 

governing these relationships. Essentially, a `class' equates to an entity (in the entity-relationship 

sense), each one defined as a set of attributes and each attribute specified from a range of types (e. g., 

alpha-numeric, character, etc. ). It should be noted that since changes to the schema once populated are 
difficult to make, developers are under pressure to get the schema right first time. We also note that 
(unlike DOORS) the need to construct a Class Definition Diagram means RTM cannot be used 'out-of- 

the-box'. 

There are several ways of entering requirements into RTM; e. g., the Capture tool provides a language 

parsing mechanism for automatic identification of requirements within a source text (by keywords, 

unique identifiers, etc. ). Users can further identify requirements interactively by highlighting 

appropriate document sections. Requirements and links can also be entered in batch mode by importing 

the data from file (such as ASCII text), or failing that, created manually using a form based editor with 

pre-defined fields taken from the Class Definition Diagram. 

For structuring, RTM enables links to be established between any type of class in any direction via two 

relationship types - genealogical and generic - each representing a different aspect of requirements 
flowdown. Genealogical flowdown describes the decomposition or refinement of a requirement where 

one or more subsidiary requirements are derived from an existing higher level requirement (with flow 

down links inserted automatically). Generic flowdown meanwhile supports the definition of 

relationships between different information types, e. g., from requirements to acceptance tests. The tool 

further allows users to identify inconsistencies such as orphan (i. e. unlinked) elements. 

30 Considers release 4.0. 

62 



Techniques and Tools for Traceability 

RTM provides three basic interfaces for viewing, analysing, and maintaining link and traceability 
information: - i) the Trace tool displays links between individual items in different classes as a cross- 

reference matrix ; ii) the Visual Network Tool graphically traces relationships between any linked 

classes using a tree format; and iii) the DocTool uses scripts expressed in an SQL-like query language 

to generate reports based on information selected for inclusion. The DocTool also provides an 

alternative means of generating inconsistency reports. 

RTM supports configuration management by establishing separate database objects for each revision of 

a requirement, with further support for establishing and comparing project base-lines. In addition, the 

tool enables propagation of links to new revisions of requirements. This is achieved either automatically 

or by manual intervention, i. e. existing links are broken and must be physically re-established by the 

user (preventing situations where the revision is linked, for instance to an irrelevant test). Alternatively, 

all links are copied to the new requirements and deleted from the old revision. 

To summarise, RTM is a tool for textual requirements management and as such, traceability to non- 

textual artifacts again comes mainly via interfaces with appropriate tools. For artifacts represented 

within RTM itself, both vertical and horizontal traceability are supported, although recursive queries 

are potentially problematic owing to the tool's underlying relational architecture (i. e., the depth of 

recursion involved in a query must be known in advance). As with DOORS, variant traceability is not 

explicitly enabled, although again, it can be achieved using appropriate attributes. Revision traceability 

is however supported (the RTM practice of establishing a separate object for each modification being 

arguably more effective than DOORS' change histories). 

2.3.2.3 RDD-10031 

Whilst DOORS and RTM focus on requirements management, RDD-100 (which is built on the `Visual 

Works' object-oriented database) provides an extensive systems engineering tool-set that in principle, 

reduces the need for tool integration. That said, the ASCII interface provides a basic bridge to a range 

of CASE tools including Teamwork, Software Through Pictures and Statemate. There is also a bi- 

directional interface between MS Word and the RDD-100 text editor, RDD Word. 

In addition to a standard form based approach, RDD-100 accepts input in a variety of ways. Among 

them: i) a parser tool for identifying single or compound requirements in source documents based on 

key words and unique identifiers; ii) manual selection and extraction of requirements text from ASCII 

format documents; iii) the RDD-100 Command Reader and Report Writer facilities which can capture 

and create requirements in batch mode; iv) the RDD Word facility which may be used to associate MS 

Word formatting with entity instances in RDD-100; and v) manual entry using various diagram formats, 

including Function Block, Data Flow and Behaviour Diagrams. Incomplete information is tolerated 

provided that integrity checks have not been violated. These are encoded using the consistency 

31 Considers release 4.1.1 

63 



Techniques and Tools for Traceability 

checking mechanism and supplement standard, pre-defined constraints for consistency and 
completeness. 

RDD-100 includes a wide range of standard system engineering entity and relationship types. These can 
be extended with the addition of user defined elements as needs dictate. The types are categorised in a 
hierarchical manner, with inheritance between different levels. RDD-100 allows users to interrelate 

elements between hierarchies, as well as supporting reflexive relationships. It should be noted that the 
linking of elements in RDD-100 is bi-directional in the sense that when a link between two elements is 

established, an inverse link is automatically inserted. Extensions to the database (i. e., the addition of 

new element and link types) are best accomplished when the database is un-populated, otherwise the 

complete data set must first be exported to a schema copy and then re-imported into the extended 

schema. 

RDD-100 provides two main mechanisms for analysing the database, namely Custom Hierarchies and 
Behaviour Diagrams. Custom Hierarchies provide a graphical or textual view of entities and 

relationships based on standard pre-defined templates. For more complex analysis, Behaviour Diagrams 

can be used as a form of visual programming tool, exploiting facilities offered by language constructs 

such as loops and recursive procedure calls. One of RDD-100's real strengths meanwhile lies in its 

ability to produce reports, including pre-defined formats for a range of recognised documentation 

standards (e. g., Mil-Std-498); further, user specified styles can be defined using RDD Word. Again, 

behaviour diagrams are used to select information and to produce the final printed reports. 

RDD-100 also provides users with the ability to track changes to data during the course of a project 
(using the `creation date' and 'modification date' attributes). Revision control is accomplished through 

the Model Configuration Management Facility (MCMF) which as its name suggests, tracks 

configuration of the system throughout development and enables management not only of item 

revisions, but also variants. 

To summarise, RDD-100 is a systems engineering tool which in addition to various functional, data and 

behavioural modelling, provides support for requirements traceability. On the dimensions referred to 

throughout, it is clear the ability to link any user defined or in-built element types (including elements 

of the same type) enables both horizontal and vertical traceability. RDD-100 also supports revision 

traceability (although like DOORS this does not extend to the maintenance of separate objects) and 

variant traceability via the MCMF facility. 

2.3.2.4 Additional Commercial Traceability Tools 
In addition to the above, a host of other commercial tools now offer support for traceability. These 

include: - i) SLATE (System Level Automation Tool for Engineers), which like RDD-100, is intended 

more as a systems engineering tool; ii) Requisite Pro, a tool aimed at the requirements management 

market and a direct competitor of RTM and DOORS; iii) Vital Link, another requirements tool which 

like DOORS manages traceability via a document-centric interface; iv) XTie-RT an entry level 

64 



Techniques and Tools for Traceability 

requirements tool with basic traceability facilities; and v) Cradle, another systems engineering tool with 

traceability support (this time based on the Yourdon methodology). 

2.3.3 Comment on Tools 

In the past, there has been a tendency in developing traceability tools (particularly those managing 

textual requirements) to simply automate paper based techniques (cf. Horrowitz & Williamson, 1986, 

Lefering, 1993; Queille et al., 1994 and Singh & Han, 1996); the literature suggests this is no longer the 

case. However, despite advances reported by Dömges & Pohl (1998), INCOSE claim that traceability 

remains the on-going tool related issue among systems engineering practitioners. 

It has long been felt that traceability approaches (and therefore tools) should be capable of reasoning 

about the artifacts they link instead of merely creating navigable paths between them (Ramesh & 

Edwards, 1993). However, in order to do so, models32 on which the tools are based must also capture 

the semantics of the artifacts they represent; we address this issue in the development of MATrA 

structures. 

White (1993) highlights a lack of tool support for the tracing of behavioural and non-functional 

requirements such as reliability and fault-tolerance. Save a few exceptions (Boyd, 1993; Haveman & 

Pearson, 1997; Landes & Studer, 1995; Mylopoulos et al., 1992; Prowell & Poore, 1998; and White, 

1994a, 1994b), work on traceability largely excludes these areas (possibly because they are often 

satisfied by an entire system and therefore cannot be traced to a particular set of design elements). 

MATrA partly addresses this issue through its range of Workspace notations (subsection 3.3.2) and by 

primitives in the structure that maintains Workspace consistency33 (subsection 3.3.5). We also propose 

topics for further work in this area as described in subsections 7.4.1 and 7.4.4. 

Another problem is that again, apart from a few exceptions (cf. Ni et al., 1994; Yu, 1994; Pearson & 

Saeed, 1996; Silva, 1998; Tran et al., 1997), work on tool support for traceability seldom considers the 

method by which the tools will be used. According to Jayaratna (1994), a method generally contains 

guidance on steps to be taken, how the steps are to be performed and why the steps must be followed in 

a specified order. Though not explicitly addressed by this thesis, MATrA raises a number of method 

related issues and is identified as an area for future work (see subsection 7.4.6). 

Finally, and especially significant as regards this particular piece of research, is the problem of CASE 

tool fragmentation where separate applications (often with overlapping capabilities) are used for 

different development and assessment activities. A lack of tool integration (to be discussed further in 

Chapter Three) makes it difficult to establish traceability between, and maintain consistency across, 

artifacts produced by these activities; this thesis seeks to address both issues. 

32 The need to define artifacts (nodes) in detail implies a data-modelling rather than a cross-referencing approach. 
37 These concepts were introduced by the thesis argument in subsection 1.3 and are discussed in more depth in the subsections 
identified. 

65 



Techniques and Tools for Traceability 

2.4 Techniques and Tools for MATrA 
From the investigation of tools and techniques described above it was possible to establish an 

appropriate technical basis for MATrA. Cross-Referencing was immediately discounted as we wish to 

represent artifacts (i. e., nodes) as more than atomic elements. 

Regarding data modelling, UMIJOCL, EXPRESS and O-Telos are the only formalisms featured in this 

chapter which broadly support the range of foundations outlined in 2.2.2.1. As indicated, the 

UML/OCL combination was our eventual choice since it is widely used by BAE SYSTEMS and 

throughout the aerospace sector generally. This obviously made it easier to communicate ideas to 

practitioners than if we were using an unfamiliar language. However, for reasons outlined in a future 

work item (subsection 7.4.14), there are strong reasons to consider re-expressing MATrA in EXPRESS 

at a later date. 

As previously indicated, we chose the ConceptBase implementation of O-Telos to provide a flavour of 

tool support. This was motivated by the fact that O-Telos supports both object-oriented and axiomatic 

constructs and hence is (relatively) close in spirit to the combination of UML and OCL. That said, we 

largely elect to concentrate on implementing structural aspects of MATrA, while noting that expressing 

the constraints and rules using O-Telos may be difficult as the range of set and boolean operators 

available in OCL is far greater. Therefore subsection 7.4.13 commits to investigate various commercial 

tools, of which DOORS (with its procedural extension language that can potentially replicate all 

necessary operators) is a leading candidate. 

2.5 Chapter Summary 
Following on from Chapter One which provided a user view on the need for traceability, this chapter 

has taken an applied perspective on how it can be realised using different techniques and tools. 

Traceability techniques were classified as based on either a cross-reference or conceptual data 

modelling approach. We further differentiated between lower and higher-order cross-referencing, and 

thence higher-order multiple relation and higher-order multiple artifact techniques. Various means of 

automation were also considered, including hypertext, general purpose database and commercial 

traceability tools. 

The chapter concluded with a brief summary of techniques and tools used to develop the MATrA 

framework which we consider in the following chapter. 

66 



MA TrA: Foundations and Fundamentals 

Chapter 3 MATrA: Foundations and Fundamentals 

3.1 Introduction 
This chapter considers the main works that have influenced MATrA (foundations), together with the 

nature of their influence and/or perceived weaknesses we address in our thesis. It goes on to introduce 

the basic principles of MATrA (fundamentals), their purpose and composition. 

3.2 Foundations of MATrA 
In this subsection we consider three key works from current literature that have influenced the 
development of MATrA. 

3.2.1 Novel Approaches to Theories Underlying Requirements Engineering 
(NATURE) 

Our thesis argument in Chapter One (subsection 1.3) posited the notion of a traceability Workspace as a 

mechanism to support traceability across data from the various tools used by aerospace practitioners. A 

key constituent of this Workspace is a set of meta-models capturing elements of notations supported by 

these tools. The origins of our approach to representing such meta-models stems from work by ESPRIT 

project NATURE (summarised in [Pohl, 1996]), a three year programme with the aim to develop a 
framework, tool environment and models for process-centred requirements engineering. 

The NATURE framework supports functional, data and behavioural modelling through the following 

quasi-standard techniques: - Structured Analysis, Entity Relationship Models and OMT (including 

object and dynamic models). They further provide a hypertext model for recording informal 

representations and an argumentation structure (based on the IBIS model - Kunz & Rittel [1970]) for 

asserting rationale. 

ER_Model 

ER Card 

consists_ 
of 

Figure 3.1 - `Project NATURE Entity-Relationship Meta-model' 

67 

consists_ consists_ I ER_Role 
of of 



MA TrA: Foundations and Fundamentals 

NATURE partners capture elements of these techniques in the form of conceptual meta-models (i. e.,, 
they adopt a data-modelling approach) expressed using the O-Telos knowledge representation language 

(Pohl, 1996); to provide tool support, they implemented these models in the ConceptBase object 

management system. Figure 3.1 demonstrates an example of one such meta-model (expressed in the 

graphical O-Telos language) which captures information elements for Entity Relationship diagrams 

(ER_Model), specifically entity (ER_Entity), relationship (ER_Relation), attribute (ER_Attribute), cardinality 
(ER_Card) and role (ER_Role). 

NATURE records associations between models structured in this way using a 'dependency' class with 

attributes 'to' and 'from'. Dependencies are typed (and organised as a taxonomy - the Dependency 

Model) in order to restrict instantiation of these attributes; examples of dependencies include 

'elaborates', 'based-on' and 'formalises' (of taxonomy type evolutionary dependency) and 'compares', 

'contradicts' and 'conflicts' (of taxonomy type content dependency). Though drawn from a survey of 

requirements engineering literature, many of the associations identified (including those above) have 

potential for wider application in linking 'down-stream' artifacts. 

3.2.1.1 NATURE Influence 

MATrA is perhaps closest in spirit to the work by project NATURE. We have been particularly 
influenced by their use of a conceptual modelling language to structure object-based representations of 

various requirements notations. Accordingly, in this thesis we use a similar approach to develop meta- 

models covering a representative subset of notations employed by aerospace practitioners (introduced 

in 3.3.2), including examples used for design and implementation, for developing heterogeneous 

systems, for stating real-time and non-functional properties, for safety analysis, and for product 

management, etc. Moreover, like NATURE meta-models, those in MATrA instantiate elements of a 

common meta-level structure (subsection 3.3.3) such that each model (ER_Model in the above) is 

composed of elements (ER_Entity, ER_Relation, ER_Attribute, etc. ); this is similar to the approach 

employed by Pearson & Saeed (1996). 

We have also been influenced by the NATURE way of creating associations between meta-model 

representations (subsection 3.3.6.3.2). Indeed, this thesis largely concentrates on meta-modelling 

aspects; whilst the case studies in Chapter Six demonstrate example associations between elements of 

these models, the approach used is essentially as described above. Moreover, the featured associations 

are fairly arbitrary and a detailed investigation (including a literature survey, together with practitioner 

consultation) will be required to establish a set of domain specific associations. We return to this issue 

in the concluding chapter (subsection 7.4.3). 

Finally, whilst NATURE regard their framework as autonomous (each model has a graphical interface 

providing an appropriate 'look-and-feel' for the notation represented), aerospace practitioners are 

unlikely to willingly relinquish existing tools for bespoke alternatives. Therefore MATrA aims to 

integrate with, rather than replace such tools; this is the basis of our SEDRES influence. 

68 



MA TrA: Foundations and Fundamentals 

3.2.2 System Engineering Data Representation and Exchange Standardisation 

(SEDRES) 

In order to populate Workspace meta-models, a mechanism is required to transfer data from the models 

underlying various CASE tools used by practitioners. As previously indicated, our thesis focuses on a 

framework to support traceability of this data once 'inside' MATrA, with the transfer process itself 

treated as a 'black-box'. However, in doing so it is necessary to show feasibility of such a process based 

on reputable research from the public domain. For this we turn to work by partners of ESPRIT project 

SEDRES (Johnson, 1997) and its follow-on SEDRES-2 (Johnson, 2000). 

The objective of SEDRES has been to produce a usable and standardised data exchange capability for 

systems engineering tools, based on STEP (Standard for the Exchange of Product Data - ISO 10303), a 

framework for the unambiguous representation and exchange of computer-interpretable product data. 

Johnson (1997) summarises the design benefits of data exchange as follows: - i) support for the 

movement of data between tools; ii) the possibility of tool-independent data-storage (as opposed to 

proprietary formats); iii) support for verification and analysis of the emerging design across tool 

boundaries (something that is currently both difficult and labour intensive); and iv) greater scope for the 

way in which a design can be viewed (e. g., using data from one or more tools). 

To realise these benefits, SEDRES developed a comprehensive information model capturing primitives 

relevant to systems engineering. The model provides, in conjunction with STEP framework services, 

what Herzog and Törne (1999) describe as an `infrastructure' for data exchange. We now brielly 

describe the SEDRES concepts underlying this infrastructure using a simple scenario (from Harris & 

Candy 11999]) involving the transfer of information between two tools. 

Source 
Tool 

No 

, ma c.; 

SEDRES/STEP 
'Part 21' Flat File 

Source Tool 
Export Interface Data File 

Transmission 

0 
Sink 
Tool 

0 

no 
I* 

" 

Sink Tool 
Import Interface 

Figure 3.2 - `SEDRES Data Exchange Concept' 

From figure 3.2, it can he seen that SEDRES' export interface maps data from the internal data model 

of a source tool, onto the SEDRES model - its boundary of influence on MATrA - and thence into a flat 

ASCII file (or "Part 21" in STEP terminology) for transmission to a receiving or 'sink' tool. The import 

69 



471, 

MA TrA: Foundations and Fundamentals 

interface of the receiving tool then maps this file onto the SEDRES model and thence onto its own . ", 
internal representation. For further consideration of these concepts, readers are referred to Johnson 

(1998) and Johnson eta[. (1999). 

The SEDRES data model is represented in EXPRESS (the standard language for STEP) and divides - 
into several loosely coupled Units of Functionality (UoF). These include the following (readers are 

referred to Herzog & Scerri (1998) for the details on each): - 

" The Requirements UoF contains entities for representing requirements, the system under 

specification and allocation of requirements onto systems, functions, behaviour specifications, etc. 

" The Functional Architecture UoF contains entities for representing composite and leaf functions. 

These can be assigned to physical elements realising the specified functionality. Support for 

recording how and with which external functions a system interacts is also provided. 

" The Physical Architecture UoF contains entities for the specification of physical system objects, 
including physical component and data link definitions, physical context definition and physical 

ports (defining the component interfaces). 

0 The Configuration Management UoF contains entities supporting version and variant management. 
A mechanism for object-grouping (or `packaging') is also provided. 

3.2.2.1 SEDRES Influence 

The Functional and Physical Units of Functionality provided a steer in developing a model to verify 

consistency across the MATrA Workspace (subsection 3.3.5), while the Configuration Management 

UoF has influenced our means of managing versions (described in subsection 5.5). 

However, SEDRES' main influence on MATrA has been at a conceptual level in providing evidence of 

the ability to map data from CASE tools onto information models. In confirming that this is indeed 

possible, SEDRES has enabled us to treat all such mappings at a very abstract level (subsection 3.3.4) 

and to concentrate on other aspects of the traceability framework. 

It should be stressed that MATrA requires the support of a slightly different form of `tool-to-model' 

mapping to that shown in figure 3.2. Rather than mapping a source tool model onto a generic 

information model (as illustrated), MATrA depends on the ability to map a source tool model onto a 

corresponding notation dependent structure. We note that SEDRES also has this capability, as 

evidenced by the fact the project has produced several working implementations of import/export 

interfaces. Similarly, recall from subsection 2.3.2.1 that this form of one-to-one mapping is possible in 

recent releases of DOORS using 'surrogate' formal modules (Telelogic, 2001). 

3.2.3 Design Rationale Capture System (DRCS) 

The origins of our approach to maintaining consistency across the MATrA Workspace stem from the 

Design Rationale Capture System - DRCS a (higher-order cross-referencing) technique for expressing _ 

70 



MA TrA: Foundations and Fundamentals 

argumentation over an emerging design (Klein, 1993a). We have been particularly influenced, not by 

means to record the arguments themselves, but by the way in which they are placed in context. 

Recall from 1.4.6.1 that early models of this type were criticised for being detached from their subject 

matter; i. e., they merely structured elements of an argument (claims, issues, positions, etc. ) and not the 

artifacts over which they were being expressed. What sets Klein's approach apart is the use of a top- 

down representation of fundamental system elements as a basis for expressing decision rationale. 

DRCS is constructed from a decision rationale language which provides a vocabulary of assertions 

about a system and its components. The vocabulary includes a pre-defined set of entities, and claims 

relating them. Klein divides DRCS into a number of self-contained information structures (connected 

through common entities), each focusing on a particular aspect of development information. 

The Artifact Synthesis structure (figure 3.3) records the physical system architecture. Basic entities 

include modules, attributes, interfaces and connections. Modules can have sub-modules or specialisations, 

while attributes can have values expressed over them. The DRCS vocabulary represents these features 

using claims such as has-attribute, has-interface, has-value, etc. 

18of-type CONNECTION 
f has-submodule 

has-speciallsallon 
Is-of-type 

connIds 

is-of 
type 

v INTERFACE 4 -- MODULE 

hasattribute has-attibute 

Is-0, 1 ý has-aft 

ATTRIBUTE 

has-value 

CONSTRAINT 

Figure 3.3 - `DRCS Artifact Synthesis Structure' 

The rationale language (figure 3.4) embodies a set of question-spaces proposed by Lee (1991). It 

includes the following structures for expressing various aspects of rationale over Artifact Synthesis 

components (abstracted into the claim entity in the figure): - 

" The Evaluation structure (figure 3.4A) links requirement specifications to the versions that achieve 

them over achieves and best-achieves associations'. Both can have absolute or relative priorities. 

" The Version structure (figure 3.4B) captures alternatives for a decision-problem, with the chosen 

option represented by an is-best-option for claim. Versions have a status (abandoned, suspended, or 

conflict), and again can be assigned an absolute or relative priority. 

I Note requirement usually represents 'attribute-has-value-constraint' relationships from the Artifact Synthesis (see figure 3.3). 

71 



MA TrA: Foundations and Fundamentals 

-------------------- -, --- - ý B issotvedby 
b°sChievs 

Jeves 

ABANDONED 
' SUSPENDED 

pior"en CONFLICT 4- VERSION has-gn, 
-----------A --------T-' 

------------------------------------- 
has-option 

ý- --- 
ls-bastoptfon-f 

= ---- -__ --- ------ denles 
- -------------------- 

hasýreater pfforlty then 
has has -input qualifies 

I 

as prionty 

PROCEDURE 

ýsuppats 1 

DECISIO i. : 

- -º CWM - -10-PROBLEM- iR -º STRATEGY 
- 

---------------- ----- Js-o/-type \1 ý 
L` 

i 
has-sub procedure has, xtion 

---------------- ------------- ------------ 
raises- has- 

question ans. 1\ 
/ 

A- Evaluation Structure 
B- Version Structure 

/ C- Intent Structure 
D 

QUESTION D- Argumentation Structure 

Figure 3.4 - 'Rationale Components of DRCS' 

" The Intent structure (figure 3.4C) relates a decision-problem to both the claim that raised the issue and 

a strategy to resolve it over raises-issue and has-strategy relations respectively. Like requirements, 
decision-problems can have absolute or relative priorities. 

" The Argumentation structure (figure 3.4D) records beliefs pro and contra to a claim. Questions can be 

raised about the validity of a claim and answers asserted in response, while has-result and has-input 

may be used to link claims to the procedures that derive them and to inputs to those procedures. 

3.2.3.1 DRCS Influence 
The main DRCS influence has been on development of a model to verify consistency across the 
MATrA Workspace (subsection 3.3.5) which we base on the Artifact Synthesis structure. However, 

extensions are necessary as it lacks elements to record functional architecture and behaviour. The 

literature provides a sound basis for developing these extensions; in particular, works by Pyle et al. 
(1993), Oliver (1994) and Wilson & McDermid (1995) as well as the SEDRES model discussed 

previously. 

Klein's rationale language component highlights an important trade-off between expressive power and 

usability. Put simply, discussions with practitioners indicate that these structures are too complex for 

use on real projects. Therefore as part of this work, a single optimised structure composed of fewer 

elements and capable of use in conjunction with almost any MATrA element has been produced 
(Appendix B, Part Two). 

With the above influences in mind, remaining sections of this chapter set out the fundamental elements 

of MATrA. 

72 



MATrA: Foundations and Fundamentals 

3.3 Fundamentals of MATrA 
This subsection introduces the fundamental principles or 'building-blocks' of MATrA. Where 

appropriate, we highlight our scope of interest. 

MATrA is an object-based approach to tracing artifacts for the development and assessment of aviation 

electronics (avionics) systems. It is based on a set of interconnected `traceability structures' specified 

using the Class Diagram view of UML, with integrity constraints over these structures expressed in the 

Object-Constraint Language (OCL). To provide a flavour of tool support, a subset of elements for each 

structure are embedded in the ConceptBase object management system which implements the O-Telos 

modelling Language. Alternative representations and tool support are considered in Chapter Seven. 

3.3.1 MATrA Fundamentals Overview 

MATrA consists of five main principles. For reader orientation, these are introduced below with the 

details to follow in subsections 3.3.2 through 3.3.6: - 

1. A Workspace of notation dependent structures (meta-models) representing project data 

transferred from CASE tools (see 3.3.2). 

2. A Meta-class model to maintain consistency of definition across Workspace meta-models by 

providing a common underlying representation (see 3.3.3). 

3. A tool2matra (tool-to-MATrA) mapping function to provide data transfer from bespoke and 

commercial CASE tools to the Workspace (see 3.3.4). 

4. The Product Data Synthesis (PDS), a notation independent structure representing fundamental 

elements of the emerging system (e. g., components, functions, behaviour, etc. ), together with 

associations describing their composition; it maintains Workspace consistency by preventing 

'bad' data from CASE tools entering via tool2matra (i. e., preventing data being mapped to a 

notation dependent structure) unless the PDS contains corresponding data elements, and by 

preventing violations once the data is 'inside' (see 3.3.5). 

5. A Framework Model that gathers together MATrA elements to allow common behaviour to be 

managed more easily. In addition, means to create relations among notation dependent 

structures, and between these and the PDS are introduced (see 3.3.6). 

Note, Workspace and PDS structures are intended for use by avionics engineers, rather than by method 

engineers who design the procedures that avionics engineers follow2. Thus, in confining our scope to 

modelling and implementation of the structures themselves, we do so in the knowledge that graphical 

interfaces are necessary to `hide' these definitions and so render MATrA practical. As evidence of the 

feasibility of creating these interfaces, we again highlight work within the department (Sukamaran, 

1999) and also by the NATURE project which implemented graphical interfaces to various information 

structures (expressed in O-Telos) using a combination of C++ and the Andrew tool-kit (Pohl, 1996). 

2 In this thesis, the term method engineer refers to persons who construct dedicated methods for engineering avionics systems. 
Avionics engineers then apply these methods to produce avionics systems. 

73 



MA TrA: Foundations and Fundamentals 

3.3.2 Notation Dependent Traceability Structures (Meta-models) 
As previously stated, practitioners use a range of notations to model avionics systems (often in 

conjunction with a process as part of a technique or methodology). These notations fall into two broad 

categories: those with a well-defined syntax and semantics (such as Circuit Diagrams and Ada) and 

those that are less rigorously defined but which offer flexibility as a result (for example Use Cases and 

Scenarios). Practitioners also require the ability to conduct safety assessment over these models using 

established techniques for hazard analysis (e. g., Fault Tree and Failure Modes and Effects Analyses). In 

addition, the scale and complexity of avionics projects normally dictates use of further notations and 

techniques to aid product management (for instance, Gantt Charts and the Programme Evaluation & 

Review Technique). 

To maintain a tractable scope, we only feature a small subset of notations used throughout the industry 

drawn from the requirements, design, implementation, safety assessment and product management 

domains. Selection has been guided not only by their relevance to avionics engineering (determined 

from the literature, standards and discussions with practitioners), but also by a desire to demonstrate 

different representation formats (textual, graphical, tabular and program code) and hence tackle the 

respective modelling challenges presented by each. Featured notations are therefore as follows: - 

" Natural Language Structure - means to represent informal artifacts (typically constituent parts of 

other notation dependent structures) at variable and user determined granularities (section 4.2); 

" User Centred Requirements Structure - means to model functional requirements from a user 

perspective as Use Case Models, and to describe them using Scenarios and Message Sequence 

Charts (section 4.3); 

" Real-Time Network Specification Language (RTN-SL) Structure - means to model architectural 

designs where concurrent processing components exchange information and synchronise through 

shared data in the connections (section 4.4); 

" SPARK Ada Structure - means to model artifacts expressed using the SPARK Ada software 

implementation language (section 4.5); 

" Fault Tree Analysis (FTA) Structure - means to model the results of FTA, a deductive safety 

analysis technique that identifies causes of some hazardous event and allows calculation of a 

probability of occurrence for that event (section 5.2); 

" Failure Mode and Effects Analysis (FMEA) Structure - means to capture the results of FMEA, an 

inductive safety analysis technique that considers the failure of components of a system and tracks 

their effects to determine the ultimate consequences (section 5.3); 

" Programme Evaluation and Review Technique (PERT) Structure - means to manage the planning 

and control of projects which represents relationships between the timing of events and activities as 

a network (section 5.4). 

74 



MA TrA: Foundations and Fundamentals 

When developing these structures, we must first establish the concepts to be modelled. Note that most 
MATrA structures either represent domain specific 'dialects' of less rigorously defined notations, or 

else rigorously defined notations whose arrangement has been enhanced to reflect domain usage. In 
both cases the models proposed and the concepts they contain are assumed to correspond to those 

underlying existing bespoke tools. For well-defined notations without domain enhancements, we make 
assumptions about the concepts and elements underlying hypothetical COTS tool. 

Having identified the relevant concepts for a given notation, a meta-model is created using the Class 

Diagram view of UML. We then add OCL constraints defining well-formedness and PDS consistency; 

note with the former, we are guided by the literature for well-defined notations and by our own analysis 

of constituent elements for flexible notations. PDS checks verify integrity of the tool2matra transfer 
function by stating appropriate invariants for Workspace elements that must hold following its 

invocation. However, their main purpose is to determine whether consistency is preserved (between the 
Product Data Synthesis and the traceability Workspace) following changes to the PDS. Finally, we 

provide a flavour of tool support by encoding base class elements for each structure in the ConceptBase 

implementation of O-Telos. For reader orientation, subsection 3.3.7 has a worked example developed 

using the above approach which follows the format used with our featured meta-models in Chapters 

Four and Five. 

3.3.3 MATrA Systems Engineering Notation Meta-class Model 
The Systems Engineering Notation Meta-class model (SENM) provides a common basis for describing 

(and readily extending) notations and techniques supported within the MATrA Workspace. It does so 

through meta-level class definitions whose instances define the structures and elements of notations 
featured in 3.3.2. Given that we are defining meta-level classes - i. e., classes whose instances are classes 

- we use the UML «MetaClassu stereotype. 

«MetaClass» 
Artifact 

«MetaClass» ý.. 
has-part Str, rtureElement 

has-element 

has_transitive_part p, " 

<<MetaClass>> «MetaClass>> 
DevelopmentStructure AssessmentStructure 

«MetaClass» 
TraceArtifact (abstract) 

r. has_property : ArtitactProperty 

<<MetaClass» 
TraceabilityStructure 

has Structure 

<<MetaClass>> 
ProductManagementStructure 

Figure 3.5 -'MATrA Systems Engineering Notation Meta-class Model' 

75 



MA TrA: Foundations and Fundamentals 

The model itself (figure 3.5) consists of seven classes organised in a specialisation hierarchy; at its root 
is the artifact (Artifact) class, whose sole instance is the (abstract) AerospaceEngineeringObject class (see 

subsection 3.3.6.3.1) which serves to generalise all Workspace structures and elements for ease of 

manipulation. 

Artifact is specialised by trace artifact (TraceArtifact), an abstract class containing the has-property attribute 

of type artifact property (ArtifactProperty). ArtifactProperty subsumes all predefined types as instances, 

e. g., String, Integer, Boolean, etc., together with user defined types such as Voltage. Note, we could simply 

state the latter as an instance of ArtifactProperty and specialisation of Real. However, it is often necessary, 

to compose attribute definitions from other ArtifactProperty types. For example, Voltage could be stated in 

terms of a voltage attribute of type Real and a unit attribute of type String (with default "V"). Thus the 

actual definition of ArtifactProperty (see table 3.1) is as an instance of MetaClass with attribute 
described-by (stated using a reflexive composition association) of type ArtifactProperty. 

TraceArtifact is specialised by the traceability structure (TraceabilityStructure) and structure element 
(StructureElement) classes. These provide the basis for representing all MATrA notation dependent 

structures such that each traceability structure (or sub-type) is defined as an aggregation of structure 

elements (over rolename has_element). In addition, TraceArtifact propagates its aggregation association 

(has_structure) with TraceabilityStructure to both subtypes (so for example decomposition of a DFD 

Function StructureElement may be represented using a separate model). StructureElement also bears two 

reflexive aggregation associations (has-part and has_transitive_part), as most of its instances are actually 

composed of other elements. 

TraceabilityStructure is further specialised to differentiate between structures for development 

(DevelopmentStructure), assessment (AssessmentStructure) and product management 

(ProductManagementStructure). The ability to distinguish these different 'viewpoints' is convenient for 

manipulation purposes, in particular for constraining the source and target of associations between 

traceability structures and elements. 

O-Telos implementation of the SENM base classes from figure 3.5 is as follows: - 

Artifact in MetaClass end has_transitive_part 
StructureElement 

ArtifactProperty in MetaClass with 
attribute 
described_by : ArtifactProperty 
end 

TraceArtifact in MetaClass isA Artifact 
with attribute 

has property : ArtifactProperty; 
has-structure TraceabilityStructure 

constraint 
abstract_TA: $forall t/Token 
s/SimpleClass (t in s) --> not (t in 
TraceArtifact)$ 
end 

StructureElement in MetaClass isA 
TraceArtifact with attribute 

has-part : StructureElement; 

end 

TraceabilityStructure in MetaClass isA 
TraceArtifact with attribute 

has_element : StructureElement 
end 

DevelopmentStructure in MetaClass isA 
TraceabilityStructure 
end 

AssessmentStructure in MetaClass isA 
TraceabilityStructure 
end 

ProductManagementStructure in MetaClass 
isA TraceabilityStructure 
end 

76 



MATrA: Foundations and Fundamentals 

Notice O-Tclos' uniform treatment of aggregation relationships and attributes which are both 

represented using the with attribute convention. It is also worth commenting on the information 

loss from UML to O-Telos, in particular as regards multiplicity. This can however be stated by 

specifying appropriate constraints (not shown) as described in 2.2.2.2.8. 

Table 3.1 clarifies the relationship between UML and O-Telos modelling levels and conventions. It 

does so by demonstrating specification and instantiation of ConnectorPin and Connection 

(StructureElement) types for a Circuit Diagram meta-model, to be featured in subsection 3.3.7. 

UML 0-Telos 

«MetaClass» Meta Class StructureElement in MetaClass with 
Level Level 

attribute 
«MetaClass» has-property : ArtifactProperty 

StructureElement has-part : StructureElement 
has part ehas_property : ArtifactProperty end 

ArtifactProperty in MetaClass with 
attribute described by 

«MetaClass» 
described-by : AxtifactProperty 

Artifact Property end 

Connection in St ructureElement, 
Class Level -Structure Element> Simple Class SimpleClass with 

Connection Level nas_part 
pin : ConnectorPin 

end 

ConnectorPin in Str ucturel'lcment 
pin SimpleClass with 

-Structure Element> has-property 
ConnectorPin v: Voltage 

pv : Voltage end 

«ArtifactPropeRy» 
Voltage in Artifactl'rope, rty, 

Voltage 
SimpleClass with 
described-by 

pvoltage: Real 
voltage : Real 

0unit . 
String "V 

unit : String = "V" 

end 

«ArtifactProperty> 
String String in ArtifactProperty 

end 

«ArtifactProperty> 
Real in Artifact Property 

Real end 

Object Level Not Considered in this Thesis - All Token Level ExampleConnection in Connect ion, 

Instantiations in 0-Telos token with 
pin 

pinl : ExamplePinl 

end 

ExamplePinl in ConnectorPin, Token 
with 
v 

Pin1V : PinlVoltage 

end 

PinlVoltage in Voltage, Token with 
voltage 

Voltage : 100 
end 

Table 3.1 - `Comparison of DIATrA Modelling Conventions : UML and O-Telos' 

77 



MATrA: Foundations and Fundamentals 

3.3.4 `tool2matra' Mapping Function 
The difficulty faced by aerospace practitioners in establishing traceability linkages between data stored 

across disparate CASE tools was indicated at the outset (subsection 1.3); this point is emphasised by 

figure 3.6. One solution is to transfer data from the tools to a Workspace of notation dependent 

structures (introduced in 3.3.2) capable of receiving this data. By expressing these structures in a 

uniform format (i. e., in a common language), links (expressed in the same language as the structures) 

can be inserted that capture dependencies among data in CASE tools, within the Workspace. 

Figure 3.6 - `Inter-Tool Traceability Problem' 

The potential volume of data generated by aerospace projects means that all mappings across the CASE 

tooUMATrA interface should (as far as possible) be achieved with limited human intervention. In this 

research we treat the mapping process as a `black-box', such that all transfers are considered in terms of 

an undefined function, tool2matra, that maps data from the internal models of CASE tools onto 

notation dependent structures as figure 3.7 illustrates. 

Product Data Synthesis 
pCDS Populated CASE Tod Data Structure 

uNDS Unpopulated Notation Dependent Structure 

pNDS Populated Notation Dependent Structure 

CASE Tool A 

pCDS 

Lwi 

Ab 
Workspace dw 

pNDS pNDS 

ºim 
" 

CASE Tool B 

pCDS 
ti 

F. ` KI 

Figure 3.7 - `Realising Inter-Tool Traceability using tool2matra' 

78 

CASE Tool A CASE Tool B 



MA TM Foundations and Fundamentals 

The function takes as its input parameters, a populated CASE tool data structure (pCDS) with a 

corresponding unpopulated notation dependent structure (uNDS) and the Product Data Synthesis 

(PDS), and returns a populated notation dependent structure (pNDS). The interface to this function may 
be defined as follows: - 

pNDS tool2Matra (pCDS, uNDS, PDS) 

The resulting Workspace provides an integrated environment allowing traceability linkages to be 

established between otherwise disjoint data (as shown in figure 3.7); by `dropping' from CASE tool 
level into the Workspace, engineers can move around the complete data set wherever traceability links 

exist - but especially between notations. For instance, from a use case in a Use Case Model tool, to an 
Activity in RTN-SL, to a SPARK Ada package specification -a combination unlikely to be supported 

at tool level. 

It should be stressed that where a 'clean' mapping of elements to the Workspace is not achieved, 

tool2Matra will create an error-log. The reasons for failure are likely to be attributable to bad data 

detected by PDS cross-checks and due to: - i) misnomer errors on the part of developers when referring 
to legitimate elements of the target system (caused for example by typos); ii) developers referring to 

elements of the target system that do not and should not exist; or iii) developers referring to legitimate 

system elements that have not as yet been added to the Product Data Synthesis. We consider the PDS in 

more depth in the following subsection. 

3.3.5 Product Data Synthesis (PDS) 
As subsection 3.3.4 has demonstrated, the Product Data Synthesis plays an important role in MATrA by 

preventing bad data from entering the Workspace during tool2matra mapping. However, it is also 

required to maintain consistency once data are inside the Workspace, notably following updates to the 
PDS itself. This is ensured by rules that maintain the integrity of links associating elements of the PDS 

with corresponding Workspace elements. The links are introduced in subsection 3.3.6.4.4, while 

constraints on their instances are specified in Chapters Four and Five. 

Product Data Synthesis is a notation independent structure populated by engineers with appropriate 
design authority (see also 7.4.6). It represents fundamental elements of the emerging system and 

associations between these elements. By fundamental elements we mean generic types for modelling 

architecture and behaviour, while the associations enable meaningful combination of these elements. 

It can be see from figure 3.8 that core PDS constituents are referred to as build elements (BuildElement) 

and build associations (BuildAssociation)3, both of which are abstract. Each build association subtype has 

single source and target build elements. Correct usage (i. e., legitimate combination) of the various 

element and association subtypes is maintained through appropriate constraints (see 3.3.5.2). 

3 Representing Build Associations as classes allows rationale to be expressed over the claims made by these associations using 
the structure in Appendix B (Part 2). 

79 



MA TrA: Foundations and Fundamentals 

BuildAssociauai (abstract) 

HasPropery 
Module 

#nadule_name : Stmp 
Encapsulates 

BehavesAcwrdtrpTO 
~ace 

*"'leface-name: Stnr 

ProduosaExtwnall0 Function 

44unc"_namo: String 

ConsumesExtema[IO 

Transactor 

ConaumeslMSmallO drama name 

Condmon 
PfeduCBSlmema110 . cayopon_IaW : String 

CerrlesCondthon w--we 
ow_neme : Stmp 

SentTo Pam 

ýpaperty_nam 0: String 

ReaevedFrom 

Loadsro 

Occuningln 

UseuFunetlon 

ImertacesTo 

Connection 

IHesSpecdroatlon 

Haslnterface 

HazCondrion 

HasSubmoduls 

HasFTSubmoduk 

HasSubfunctlon 

target 11 

BuiWEbmsnt (abstract) 

7 

Figure 3.8 - `Product Data Synthesis Elements' 

3.3.5.1 Build Elements 
BuildElement is specialised by classes representing modules (Module), interfaces (Interface), functions, 

(Function), transactions (Transaction), conditions (Condition), input/output (InputOutput), properties 

80 



MA TrA: Foundations and Fundamentals 

(Property) and specifications (Specification). Module (with attribute module-name of type String) describes 

a system or `component' of a system - be it hardware, software or human; modules or functions may be 

connected via an Interface (with attribute interface-name of type String). The functional architecture of a 

module is described using the Function element (with attribute function_name of type String); a Transaction 

(with attribute transaction-name of type String) is a combination of functions that perform some task or 

unit of work. Flows (energy, material or signals) within and between modules are described using the 

InputOutput element (with attribute flow-name of type String). Meanwhile, Condition (with attribute 

condition-label of type String) expresses some "state of affairs" and is a generalisation of state and event4. 

All of the above can be described by the Property element (with attribute property-name of type String), 

which in turn has a Specification (with attribute value-specification of type String). 

3.3.5.2 Build Associations 

In the interests of readability, we present build associations permitted between the above build elements 

in the form of a table (table 3.2). 

BuildAssociation Source Target 
HasProperty Module 

Function 

Interface 

Transaction 

Condition 

InputOutput 

Property 

Property 

Property 

Property 

Property 

Property 

Encapsulates Module Function 

BehavesAccordingTo Module Transaction 

ProducesExternallO Function 

Module 

InputOutput 

InputOutput 

ConsumesExternallO Function 

Module 

InputOutput 

InputOutput 

ConsumeslnternallO Function InputOutput 

ProduceslnternallO Function InputOutput 

CarriesCondition InputOutput Condition 

SentTo InputOutput Interface 

ReceivedFrom InputOutput Interface 

LeadsTo Condition Condition 

Occurringln Condition Condition 

UsesFunction Transaction Function 

InterfacesTo Module 

Function 

Module 

Function 

4 The notion of Condition as an abstraction of state and event is taken from Wilson & McDermid (1995) 

81 



MATrA: Foundations and Fundamentals 

BuildAssociation Source Target 
Connection Interface Interface 

HasSpecification Property Specification 

Haslnterface Module 

Function 

Interface 

Interface 

HasCondition Module 

Function 

Interface 

Transaction 

Condition 

Condition 

Condition 

Condition 

HasSubmodule Module Module 

HasFTSubmodule Module Module 
HasSubfunction Function Function 

HasSubcondition Condition Condition 

Table 3.2 - `Product Data Synthesis Build Associations' 

Note: we are not claiming this set of build elements and associations is exhaustive, but rather sufficient 

to demonstrate verification of Workspace elements for the notations featured in Chapters Four and Five. 

Most build associations in table 3.2 are self explanatory and based on existing systems engineering 

literature. HasProperty for example corresponds to the 'has-attribute' association in Klein's work (figure 

3.3), but with additional source types to accommodate extensions for behavioural entities; the same is 

true of Haslnterface (whose source types reflect the ability to capture functional as well as physical 

architectures). Similarly, HasSpecification corresponds to 'has-value', while the notion of module 

decomposition using 'has-submodule' (HasSubmodule) is extended to fault-tolerant architectures 

(HasFTSubmodule5), functions (HasSubfunction) and conditions (HasSubcondition). 

The remaining associations capture behaviour and are mainly derived from work by Oliver (1994). In 

particular Encapsulates relates modules to functions, BehavesAccordingTo, modules to transactions and 

UsesFunction transactions to functions. HasCondition meanwhile captures states and events of module, 

function, interface and transaction entities. Events provide stimuli that are carried in input-output flows 

(represented by CarriesCondition6) and which trigger state changes, denoted using Occurringln and 

LeadsTo associations. 

Flows within and between systems are recorded through ProduceslnternallO/ConsumeslntemallO and 

ProducesExternallO/ConsumesExternall0'respectively; these may be exchanged via interfaces using 

SentTo and ReceivedFrom. Where two interfaces join to one another, the Connection class is used; if the 

connection itself is an entity and needs to be modelled as such, then it too is classed as an interface. If 

S This BuildAssociation is based on work by Pearson et al. (1998). 
fi This is also compatible with Pyle et al. (1993). 
' The fact that modules can also consume and produce InputOutput enables external entities to be treated as black boxes. 

82 



MA TrA: Foundations and Fundamentals 

no interface is explicitly stated between two interacting modules or two functions, an InterfacesTo 

association is employed. 

Constraints restricting the source and target of these associations follow a similar pattern. This can be 

parameterised in the Object Constraint Language8 as follows: - 

fBuildAssociation Subtvae t} invariant 
self. alllnstances->forall(t I 
(t. source. ocllype = (Type S) or t. source. oclType ... ) and (t. target. oclType = (Type T} or t. target. oclType ... )) 

For instance, the following invariant instantiates these parameters by constraining source and target of 
Encapsulates associations to Module and Function types respectively: - 

Encapsulates invariant 
self. alllnstances->forall(e I e. source. oclType = Module and e. target. oclType = Function) 

Note: additional rules could be stated over build associations to prevent, for instance, circular 

dependencies among build elements (e. g., modules containing themselves as sub-modules). 

3.3.6 MATrA Framework Model 
The Framework Model (figure 3.9) assembles core MATrA elements, many of which are abstract, 

allowing common behaviour to be managed more easily. Means to create relations between notation 

dependent structures and to link these to the Product Data Synthesis are also introduced. Elements of 

the model are described in the subsections that follow. 

O-Telos implementation of the base classes in figure 3.9 (along with their associations) appears below: - 

8 Note the () generalisations are non-standard OCL. 

83 

Figure 3.9 - `MATrA Framework Model Elements' 



MA TM Foundations and Fundamentals 

AerospaceTraceabilityEntity in 
SimpleClass with 
constraint 

abstract-ATE: $ forall t/Token, 
s/SimpleClass 

(t in s) --> not (t in 
AerospaceTraceabilityEntity)$ 
end 

AerospaceBuildEntity in SimpleClass isA 
AerospaceTraceabilityEntity with 
constraint 

abstract-ABE: $ forall t/Token, 
s/SimpleClass 

(t in s) --> not (t in 
AerospaceBuildEntity)$ 
end 

BuildElement in SimpleClass isA 
AerospaceBuildEntity with 
constraint 

abstract_BE: $ forall t/Token, 
s/SimpleClass 

(t in s) --> not (t in BuildElement)$ 
end 

BuildAssociation in SimpleClass isA 
AerospaceBuildEntity with 
attribute 

source : BuildElement; 
target : BuildElement 

constraint 
abstract_BA: $ forall t/Token, 

s/SimpleClass 
(t in s) --> not (t in 

BuildAssociation)$ end 

AerospaceEngineeringEntity in SimpleClass 
isA AerospaceTraceabilityEntity with 
constraint 
abstractJ, EE: $ forall t/Token 
s/SimpleClass 
(t in s) --> not (t in 

AerospaceEngineeringEntity) $ end 

AerospaceEngineeringObject in Artifact, 
SimpleClass isA 
AerospaceEngineeringEntity 
with 
constraint 
abstract AEO: $ forall t/Token 
s/SimpleClass 
(t in s) --> not (t in 

AerospaceEngineeringObject) $ 
end 

AerospaceEngineeringAssociation in 
SimpleClass isA 
AerospaceEngineeringEntity with 
attribute 

from_entity 

AerospaceEngineeringEntity; 
to_entity : 

AerospaceEngineeringEntity 
constraint 

abstract_lEA: $ forall t/Token, 
s/SimpleClass 

(t in s) --> not (t in 
AerospaceEngineeringAssociation)$ 
end 

AerospaceManagementEntity in SimpleClass 
isA AerospaceTraceabilityEntity with 
constraint 

abstract__AME: $ forall t/Token, 
s/SimpleClass 

(t in s) --> not (t in 
AerospaceManagementEntity)$ 
end - 

AerospaceEngineeringProject in 
SimpleClass isA AerospaceManagementEntity 
with 
attribute 

project_title : String; 
has_pds : ProductDataSynthesis; 
has_workspace : 

TraceabilityWorkspace; 
has_link_entity : AerospaceLinkEntity 

end 

ProductDataSynthesis in SimpleClass isA 
AerospaceManagementEntity with 
attribute 

build entity : AerospaceBuildEntity 
end 

TraceabilityWorkspace in SimpleClass isA 
AerospaceManagementEntity with 
attribute 

engineering_entity 
AerospaceEngineeringEntity 

end 

AerospaceLinkEntity in SimpleClass isA 
AerospaceManagementEntity 
with 
attribute 

build element : BuildElement; 
aerospace-engineering-object: 

AerospaceEngineeringObject 
constraint 

abstract_ALE: $ forall t/Token, 
s/SimpleClass 

(t in s) --> not (t in 
AerospaceLinkEntity)$ end 

BEmodelAEO in SimpleClass isA 
AerospaceLinkEntity end 

BEelementAEO in SimpleClass isA 
AerospaceLinkEntity end 

3.3.6.1 Aerospace Traceability Entity 
The root of the Framework is termed aerospace traceability entity (AerospaceTraceabilityEntity) or ATE, 

an abstract class that generalises every constituent MATrA element. Its presence is motivated by the 

desire to allow argumentation to be expressed over any of these constituents. This is achieved by 

placing ATE at the hub of our Argumentation Structure (Appendix B) which optimises the DRCS 

rationale components from figure 3.4. AerospaceTraceabilityEntity is specialised by aerospace build entity 

(AerospaceBuildEntity), aerospace engineering entity (AerospaceEngineeringEntity) and aerospace 

management entity (AerospaceManagementEntity). These are described below. 

84 



MA TrA: Foundations and Fundamentals 

3.3.6.2 Aerospace Build Entity 
AerospaceBuildEntity (ABE) is an abstract class that generalises BuildElement and BuildAssociation from 

3.3.5. We use it in modelling the Product Data Synthesis (see subsection 3.3.6.4.2). 

3.3.6.3 Aerospace Engineering Entity 
AerospaceEngineeringEntity (AEE) is again abstract and is used to model the traceability Workspace 

(subsection 3.3.6.4.3). It has two subtypes, aerospace engineering object (AerospaceEngineeringObject) 

and aerospace engineering association (AerospaceEngineeringAssociation) which are described below. 

3.3.6.3.1 Aerospace Engineering Object 
AerospaceEngineeringObject or AEO (also abstract) instantiates the Artifact meta-class (from 3.3.3). Its 

subtypes subsume all notation dependent structures and their constituent elements. This is evident from 

the worked example (3.3.7) and the structures featured in Chapters Four and Five. 

3.3.6.3.2 Aerospace Engineering Association 
AerospaceEngineeringAssociation (figure 3.10) or AEA is again an abstract class whose subtypes realise 

traceability between two AEEs (with rolenames from_entity and to_entity), or more specifically, subtypes 

of the two specialisations of AEE which as indicated in 3.3.6.3 are AerospaceEngineeringObject and 
AerospaceEngineeringAssociation itself. AEAs can link two AEOs - at either element or model level - or 

alternatively, an AEO and another AEA (though not two AEAs9); the need to connect two associations 

was highlighted by our featured example in 2.2.2.2.9. As with build associations, correct usage is 

maintained through constraints (not shown) expressed over AerospaceEngineeringAssociation subtypes. 

9 This is preserved by a constraint - not shown. 

85 

Figure 3.10 -'Aerospace Engineering Association (and example subtypes)' 



MA TrA: Foundations and Fundamentals 

While this thesis concentrates on developing meta-models for notation dependent structures, i. e. the 

from-entity and to-entity (AEO type) ends of AerospaceEngineeringAssociation subtypes, the case studies in 

Chapter Six do include instances of the examples shown in figure 3.10. We therefore state the O-Telos 

base classes for these associations to help reader understanding: - 

Base Classes for AEAs Used in Case Study in Subsection 6.2 
PathThrough in SimpleClass isA AerospaceEngineeringAssociation end 
IsARoleOf in SimpleClass isA AerospaceEngineeringAssociation end 
IllustratedBy in SimpleClass isA AerospaceEngineeringAssociation end 
HasCommonlnstance in SimpleClass isA AerospaceEngineeringAssociation end 

Base Classes for AEAs Used in Case Study in Subsection 6.3 

ImplementedBy in SimpleClass isA AerospaceEngineeringASsociation end 
AssessedBy in SimpleClass isA AerospaceEngineeringAssociation end 
Effects in SimpleClass isA AerospaceEngineeringAssociation end 
ContributesTo in SimpleClass isA AerospaceEngineeringASsociation end 

3.3.6.4 Aerospace Management Entity 
AerospaceManagementEntity (AME) is an abstract class, subsuming specialisations for key MATrA 

elements, namely aerospace engineering project (AerospaceEngineeringProject), Product Data Synthesis 
_rt 

(ProductDataSynthesis) and traceability Workspace (TraceabilityWorkspace). In addition, ANTE includes a 

further specialisation providing means of linking Workspace and PDS elements through the notion of 

aerospace link entities (AerospaceLinkEntity). Each of these concepts is described below. 

3.3.6.4.1 Aerospace Engineering Project 

AerospaceEngineeringProject (AEP) is simply a 'container' for all artifacts relating to a particular project 

and to that extent, is analogous to a traceability cube (as introduced in subsection 1.4.5). AEP is 

modelled as an aggregation of a ProductDataSynthesis and a TraceabilityWorkspace, together with linkages 

between the two described by means of AerospaceLinkEntity subtypes, as indicated in figure 3.11. 

pproject_title : String 

I ProductDataSynthesis 
has_. pds 

11 Traceability Workspace 
has_workspace 

1 0.. " AerospaceLinkEntity (abstract) 
has link entity 

Figure 3.11 - `Aerospace Engineering Project' 

3.3.6.4.2 Product Data Synthesis 

ProductDataSynthesis is defined as an aggregation of AerospaceBuildEntity types, as described in 

subsection 3.3.6.2 (see figure 3.12). 

ProductDataSynthesis 
1". 0°. AerospaceBuildEn4ty(abstract) 

build_enfity 

Figure 3.12 - `Product Data Synthesis' 

86 



MATrA: Foundations and Fundamentals 

3.3.6.4.3 Traceability Workspace 

Similarly, TraceabilityWorkspace is defined as an aggregation of AerospaceEngineeringEntity types, as 
described in subsection 3.3.6.3 (see figure 3.13). 

TraceabilityWorkspace ' 11 0.. * AerospaceEngineeringEntity (abstract) 

engineenng_entity 

Figure 3.13 - `Traceability Workspace' 

3.3.6.4.4 Aerospace Link Entity 

AerospaceLinkEntity (ALE) is an abstract class whose subtypes provide means by which to navigate 

between the PDS and Workspace. From the Framework Model (figure 3.9), it can be seen that the 

subtypes in question are BEmodelAEO and BEelementAEO. These represent associations between build 

elements and meta-models, and between build elements and meta-model elements respectively. 

Conceptually, this distinction is best illustrated by an example. 

In figure 3.14 (A), BuildElement '(BE)X' is linked via a BEmodelAEO association to a Workspace meta- 

model for which it is the subject10. In figure 3.14(B), BuildElement '(BE)Y' is linked over a similar 

association to another Workspace meta-model in which (BE)X is named as a model element - namely 

'(ME)X'; (BE)X and (ME)X are therefore related via a BEelementAEO association. Moreover, it can he seen 

that in the PDS, build element (BE)Y is linked to (BE)X over an (unspecified) BuildAssociation, such as 

HasSubmodule or HasFunction. 

A 

B 

Figure 3.14 - 'Aerospace Link Entity Concept' 

10II will be seen f rom Chapters Four and Five that most of the meta-models featured have it subject-module (or similarly named) 
attribute identifying them with a PDS Module. 

87 



MA TrA: Foundations and Fundamentals 

Again we choose to simplify the model through a common definition (figure 3.15), with constraints 
(below) restricting instantiation of the aerospace_engineering_object end to type TraceabilityStructure (or a 
subtype thereof) for BEmodeIAEO associations, and to type Structure Element for BEelementAEO 

associations. 

AerospaceUnkEntity (abstract) 0. '1 BuildElement (abstract) 
build_element 

0.. 

<<Artifacb> 
AerospaceEngineeringObject (abstract) 

Figure 3.15 -'Aerospace Link Entity' 

BEmodelAEO invariant 
self. alllnstances->forall(b I b. aerospace_engineering_object. ocrType. ocrType. ocllsKindof(TraceabilityStructure)) 

BEelementAEO invariant 
self. alllnstances->forall(b I b. aerospace_engineering_object. oclType. ocrType = Structure Element) 

3.3.7 Circuit Diagrams: A Meta-model Worked Example 
As previously indicated, this thesis concentrates on the notation dependent structure (i. e., meta- 

modelling) aspects of MATrA introduced in 3.3.2. Therefore to aid reader orientation, we present a 

worked example based on Circuit Diagrams which follows the approach adopted for our featured 

notations in Chapters Four and Five. Specifically, we discuss motivation for their inclusion, along with 

key concepts, a meta-model expressed using the Class Diagram view of UML and appropriate 

constraints stated in OCL. To provide a flavour of tool support, we embed and instantiate base classes 
for the model in the ConceptBase implementation of O-Telos. 

3.3.7.1 Motivation 

Electronics (i. e., avionics) have been used in aircraft command and control systems for over half a 

century. Their physical designs are expressed as Circuit Diagrams and whilst not considered here in 

depth, it is nevertheless important to show the feasibility of representing them within MATrA. In doing 

so, we draw reader attention to Modelica - an object-oriented language for the modelling and simulation 

of physical systems that has influenced this aspect of our work (Mattsson & Elmqvist, 1998). Readers 

should also be aware that this section provides background to the case study in Chapter Six (subsection 

6.3) which includes a Failure Modes and Effects Analysis of Circuit Diagram components for part of an 

aircraft braking system. 

3.3.7.2 Concepts 
Complex electrical circuits may contain a wide range of components. However, our interest is restricted 

to a small subset necessary to demonstrate the basic wiring schematic in 3.3.7.4, specifically voltage 

88 



MA TrA: Foundations and Fundamentals 

source, resistor, inductor and capacitor elements", together with a ground point. These are connected 
using a standard pin type interface; for the purpose of this example, we assume each of the above types 
has two pins (as shown in figure 3.16), p and n, denoting positive and negative - the exception being 

ground-point, which has a single positive pin. The connection of two pins along a wire forms a node. 

pv 

Pi n. i 

Figure 3.16 - 'Generic Two Pin Electrical Component' 

Two basic properties, voltage (v) and current (i) are necessary to define interactions among components 

connected via wires. These in turn allow calculation of further properties (e. g., the potential difference 

or `voltage drop' between the value of v on entering a component at p and leaving at n), along with 

well-formedness constraints expressing first principles (e. g., Kirchhoff's Current Law requires that the 

current flowing into a node equals the current flowing out). Therefore besides modelling the basic 

components, we will also state a number of key invariants. 

3.3.7.3 Circuit Diagram Structure (Meta-model) 
This section introduces a UML model representing Circuit Diagrams (3.3.7.3.1), together with OCL 

constraints over elements of the model (3.3.7.3.2) and O-Telos implementation of its base classes 
(3.3.7.3.3). 

3.3.7.3.1 Specification of Circuit Diagram Meta-model in UML 
As figure 3.17 illustrates, Circuit Diagram (CircuitDiagram) instantiates the DevelopmentStructure meta- 

class and is defined as an aggregation of classes representing the circuit elements described above. 

We begin our description of these elements by mentioning the basic variables needed to model 
interaction via a wire - current (Current) and voltage (Voltage) 12 

- definitions of which instantiate the 
ArtifactProperty meta-class. These properties are used in defining connector pin (ConnectorPin), an 
instantiation of StructureElement which provides our standard interface class (verified against the PDS 

Interface type for tool2matra transfer13) with attributes 'i' and V of type Current and Voltage respectively 
(see figure 3.17). 

In turn, ConnectorPin is used towards definition of standard electronic components. For instance, the 

notion of elements with two pins is captured by the abstract TwoPin superclass (figure 3.18) whose 

rolenames p and n differentiate positive and negative pins. TwoPin is again defined as an instance of 
Structure Element with attributes 'pd' - representing potential difference - and T- denoting current into pin 

t We do not explain the detail of these circuit elements here, nor the rules constraining their behaviour; instead, readers are 
referred to Cogdell (1999). 
12 UML definitions of these classes are omitted from our example, although their O-Telos equivalents are included. Readers can 
also refer back to Table 3.1 for an indication of how ArwactProperty types are represented. 
13 In this worked example, we omit the relationship between circuit diagram elements and PDS. 

89 



MATrA: Foundations and Fundamentals 

-Development Structure- 
CircuitDiagram 

. dreuit_name : Stmg 

«StnuWre Elemer#>> 
ACsource i 

.f: Frequenq 
ac-source #va : Voltage 

<<Structure Element 
ý. , 

Resistor 

N: Resistance Astor 

-<Structure Element» 
., Capacitor 

se : Caoacitanca capacitor 

0.. 1 -Structure Ek 

ground end 

I 
<Stnicture Element» 

connection 
Connection 

<<Stnrcturn Element-> 
ConnectorPin 

cornector., pon ýv: Vdlage 
--Structure Element, > Iý " L; Uffent 

Inductor 

#I: Inductance inductor 

Figure 3.17 - `Circuit Diagram Structure : Elements' 

ýSlnpctum 
TwoPn (abstrod) 

- Vcllega 

n 

II 
<. Slnctun EM. n. nb> 

P Cmnecto. ,- 

1 ýv. VWapý 2 
ýI : Cirraril 

-Stn. 2- Ele«-9» 
conr4chon 

-Structure Elanrib> 
ACtourc. 

N' Frpu«wy 
Ova: Vokage 

«Striwurs El«n«b. 

. Stn. aun El .. t" 
c-a r 

«. o. paca . 

YMucbr 
N: " 

vet 

ýstna,.. EI-w> 
ckDund 

Figure 3.18 - `Circuit Diagram Structure : Associations' 

p, across the component, and out again at pin n (note we state the invariants for these properties in 

3.3.7.3.2). 

Specialisations of TwoPin may now be defined for specific component types (which map onto Module 

elements of the PDS) - see figure 3.18. For example, a simple resistor (Resistor) adds an attribute for 

resistance (r) of type resistance (Resistance). In turn this can be used to express Ohm's law which states 

that v (potential difference) =ixr (again, see 3.3.7.2.3). Further classes representing AC power source 

(ACsource), capacitors (Capacitor) and inductors (Inductor) are similarly defined, together with the single 

pin ground point (Ground) element (all of which instantiate the Structure Element meta-class). 

Finally, it is necessary to consider connection of pairs of circuit elements via pins to form nodes. This is 

90 



MATrA: Foundations and Fundamentals 

achieved using a Connection class (which also corresponds to Interface in the PDS). Again, invariants are 
defined in the following subsection to ensure the resulting circuits are well-formed in terms of 
connecting components with (for instance) compatible voltages. 

3.3.7.3.2 OCL Constraints over Circuit Diagram Meta-model 
As indicated above, a number of restrictions over elements of the CireuitDiagram meta-model apply. 
These are expressed as follows: - 

Constraints over TwoPin type: - 

" Constraint ensuring correct potential difference across a component (i. e., pd equals positive pin 

voltage minus negative pin voltage). 

TwoPin invariant 
self. alllnstances->forall(t I t. pd. voltage = t. p. v. voltage - t. n. v. voltage) 

" Constraint ensuring that current flowing into a component at pin p flows out again at pin n (i. e., 
there is no current loss). 

TwoPin invariant 
self. alllnstances->forall(t I t. p. i. current = t. n. i. current) 

" Constraint over Resistor ensuring conformance to Ohm's Law (i. e., Potential difference = Current x 

Resistance): - 

Resistor invariant 
self. alllnstances->forall(r I r. pd. voltage = r. r. resistance * r. i. current) 

Constraints over Connection type: - 

" Constraint to ensure connection of pins with compatible voltages. 

Connection invariant 
self. alllnstances->forall(c I 
self. pin->forall(pl, p2 
not (c. pin->includes(pl) and c. pin->includes(p2) and p1. v. voltage <> p2. v. voltage))) 

" Constraint expressing Kirchhoffs Current Law (i. e., current into a node equals the current out). 

Connection invariant 
self. alllnstances->forall(c I 
self. pin->forall(pl, p2 
not (c. pin->includes(pl) and c. pin->includes(p2) and p1. i. current <> p2. i. current))) 

Note, as the complexity of the circuits increases, further and more complex rules and constraints may be 

defined - for example to identify sneak patterns for use in sneak circuit analysis14. 

14 Circuit sneaks are caused when current which is expected to flow along a particular path of wires unexpectedly flows in 
another direction causing systems to malfunction or sub-systems to activate unexpectedly. 

91 



MATrA: Foundations and Fundamentals 

3.3.7.3.3 O-Telos Implementation of Circuit Diagram Base Classes 
The following O-Telos code implements base class elements for the Circuit Diagram meta-model. 

Definition of Electrical Measures 

Voltage in ArtifactProperty, SimpleClass 
with described-by 

voltage : Real; 
unit : String = `V' 

end 

Resistance in ArtifactProperty, 
SimpleClass with described_by 

resistance : Real; 
unit : String = "Ohm' 

end 

Current in ArtifactProperty, SimpleClass 
with described-, by 

current : Real; 
unit : String = "A' 

end 

Capacitance in ArtifactProperty, 
SimpleClass with described by 

capacitance : Real; 
unit : String = `F' 

end 

Inductance in ArtifactProperty, 
SimpleClass with described_by 

inductance : Real; 
unit : String = `L' 

end 

has-property 
pd : Voltage; 
i Current 

has-part 
p: ConnectorPin; 
n: ConnectorPin 

constraint 
abstract_TwoPin: $ forall t/Token, 

s/SimpleClass 
(t in s) ==> not (t in TwoPin)$ 

end 

ACsource in StructureElement, SimpleClass 
isA TwoPin with has property 

f: Frequency; 
va : Voltage 

end 

Resistor in StructureElement, SimpleClass 
isA TwoPin with has property 

r: Resistance 
end 

Capacitor in StructureElement, 
SimpleClass isA TwoPin with has property 

c: Capacitance 
end 

Inductor in StructureElement, SimpleClass 
isA TwoPin with has-property 

1: Inductance 
end 

Frequency in ArtifactProperty, 
SimpleClass with described_by 

frequency : Real; 
unit : String = `Hz' 

end 

Definition of Circuit Primitives 

ConnectorPin in StructureElement, 
SimpleClass isA 
AerospaceEngineeringobject with 
has-property 

v: Voltage; 
i Current 

end 

Connection in StructureElement, 
SimpleClass isA 

AerospaceEngineeringObject 
with has-part 

pin : ConnectorPin 
end 

TwoPin in StructureElement, SimpleClass 
isA AerospaceEngineeringobject with 

3.3.7.4 Circuit Diagram Example 

Ground in StructureElement, SimpleClass 
isA AerospaceEngineeringobject with 
has-part 

p: ConnectorPin 
end 

Definition of Circuit Diagram 

CircuitDiagram in DevelopmentStructure, 
SimpleClass isA 
AerospaceEngineeringObject with 
has_property 

circuit-; iame : String 
has-element 

ac-source : ACsource; 
resistor : Resistor; 
capacitor : Capacitor; 
inductor inductor; 
ground : Ground; 
connection : Connection; 
connector_pin : ConnectorPin 

end 

We now present an example that instantiates the above model using a simple electrical circuit shown in 

figure 3.19. The circuit, named "Simple Circuit", comprises six connected components -a voltage 

source (AC), two resistors (R1 and R2), an inductor (L), a capacitor (C) and a ground point (G). 

Note: readers are reminded that in operational circumstances, the O-Telos objects that follow will be 

created automatically by the tool2matra function and `concealed' from users by an appropriate 

interface. 

92 



MA TrA: Foundations and Fundamentals 

f-1 

i"ý 
r. , V 

Cnl Cn4 
-13 r. y 

° 
Cl 

Cn2 Cn5 

C' r ntn 

Cn3 Cn6 
Cnj 

G 

Figure 3.19 - 'Simple Electrical Circuit Diagram (source : Mattsson & Elmqvist, 1998)' 

The (partial) 0-Telos representation of this Circuit Diagram and its featured components can be stated 

as follows: - 

Instantiation of Electrical Measures pin pl : R1n; 
p2 : Cp 

ACvoltage in Vc_tage, end 
voltage v1t : 220 

end Cn3 in Connection, Token with 
pin pl : Cn; 

Riresistance in Resistance, Token with p2 : ACn 

resistance rst : 10 end 
end 

Cn4 in Connection, Token with 
R2resistance in Resistance, Token with pin pl : Rlp; 

resistance rst : 100 p2 : R2p 

end end 

Ccapacitance in Capacitance, Token with Cn5 in Connection, Token with 

capacitance cap : 0.01 pin pl : R2n; 

end p2 : LP 
end 

Linductance in Inductance, Token with 
inductance ind : 0.1 Cn6 in Connection, Token with 

end pin pl : Ln; 

Instantiation of Circuit Primitives 

ACp in ConnectorPin, Ton, n enä 

ACn in ConnectorPin, Token end 

Rlp in ConnectorPin, Token end 

Rln in ConnectorPin, Token end 

R2p in ConnectorPin, Token end 

R2n in ConnectorPin, Token end 

Cp in ConnectorPin, Token end 

Cn in ConnectorPin, Token end 

Lp in ConnectorPin, Token end 

Ln in ConnectorPin, Token end 

Gp in ConnectorPin, Token end 

Cnl in Connection, Token with 
pin pl ACp; 

p2 : Rlp 
end 

Cn2 in Connection, Token with 

p2 : Cn 

end 

Cn7 in Connection, Token with 
pin pl ACn; 

p2 : Gp 

end 

AC in ACsource, Token with 
va voltAmplitude : ACvoltage 

p acp ACp 

n acn : ACn 

end 

R1 in Resistor, Token with 
r rResistance : Rlresistance 

p rp : Rip 

n rn : Rin 
end 

R2 in Resistor, Token with 
r rResistance : R2resistance 

p rp : R2p 
n rn : R2n 

end 

C in Capacitor, Token with 
c cCapacitance : Ccapacitance 

p cp : Cp 
n cn Cn 

end 

93 



MATrA: Foundations and Fundamentals 

L in Inductor, Token with 
L llnductance : Linductance 
p lp : Lp 
n In : Ln 

end 

G in Ground, Token with 
p 9P : GP 

end 

Instantiation of Circuit Diagram 
SimpleCircuit in CircuitDiagram, Token 
with 

circuit-name 
circuitName : "Simple Circuit" 
ac_source 

acSource AC 
resistor 

resistorl : Ri; 
resistor2 : R2 

capacitor 
capacitorl :C 

inductor 
inductorl :L 

3.3.7.5 Circuit Diagram Example Summary 

end 

ground 
groundl :G 

connector 
connectorl : ACp; 
connector2 ACn; 
connector3 Rlp; 
connector4 Rln; 
connector5 R2p; 
connector6 : R2n; 
connector? : Cp; 
connector8 Cn; 
connector9 : Lp; 
connectorlO : Ln; 
connectorll : Gp 

connection 
connectionl Cnl; 
connection2 : Cn2; 
connection3 Cn3; 
connection4 : Cn4; 
connection5 : Cn5; 
connection6 : Cn6; 
connection? : Cn7 

The above example provides an overview of our approach to representing (in this case graphical) 

notations used in avionics development. Specifically, it sets out a UML meta-model for Circuit 

Diagrams, together with some basic OCL constraints and O-Telos implementation of base classes. 

Given a common representation format such as this, associations (AEAs) can be established to support 

traceability between various different notations, including those featured in Chapters Four and Five; we 

demonstrate this aspect in Chapter Six. 

3.4 Chapter Summary 
Chapter Three described how existing work in the public domain has influenced the development of 

MATrA. We then provided an overview of key MATrA concepts, including means to represent 

notations used by aerospace practitioners in a format amenable to traceability (demonstrated by 

example). This was highlighted as being the main focus of our work and will now be explored in depth 

through Chapters Four and Five. 

94 



MATrA Natural Language Structure 

Chapter 4 Structuring Development Artifacts 

4.1 Introduction 
This chapter introduces meta-models (traceability structures) representing well-defined and flexible 

development notations used by avionics engineers that provide input to, and are supported by, the 
MATrA Workspace. In each case, we present factors motivating the inclusion of a particular notation 

and a precis of its main concepts. We also introduce a meta-model expressed in UML capturing the 

main syntactic elements, as well as population and well-formedness constraints stated in OCL and 0- 

Telos implementation of the UML base classes. Where a meta-model is not featured as part of a case 

study within Chapter Six, then smaller worked examples are provided to demonstrate key aspects. We 

further relate the models to the traceability dimensions (from Chapter One) as appropriate. 

4.2 MATrA Natural Language Structure 

4.2.1 Introduction 
This section proposes a utility structure allowing the capture and traceability of artifacts expressed 

using natural language. Its main function in this thesis is to support the design of other structures, the 
idea being to replace a standard text String type with an MNLS wherever fine-grained traceability is 

required. 

4.2.2 Motivation 

Despite a varied range of graphical abstractions and the continued 'push' from academia towards use of 
formal methods, artifacts expressed in natural language are still commonplace in aerospace systems 

engineering (especially in the civil market which is not bound by standards such as DefStan 00-55 

[MoD, 19971 which calls for a formal mathematical specification'). To render these documents 

traceable (and allow relationships with other representations), MATrA includes the notion of a Natural 

Language Structure (MNLS). Though an obvious application is the representation of requirements 

statements (an issue to which we return in our future work section in 7.4.5), the basic MNLS described 

here is intended as a utility structure. This utility stems from two key features: i) artifacts can be 

represented at varying granularities; and ii) the granularity levels are user-determined. 

4.2.3 Tracing Textual Artifacts: A Natural Language Structure 

4.2.3.1 Concepts 
Our approach to the representation of natural language artifacts has been influenced by HYDRA, a 

model for structuring informal artifacts developed as part of project NATURE (Pohl &, Haumer 1995) 

and based on the hypertext principle of nodes (Conklin, 1987)2. Where MNLS differs from HYDRA is 

that its nodes are `typed' and can therefore be verified against Product Data Synthesis elements. This in 

t Subsection 26.1 of Defence Standard 00-55 states that "Formal methods will be the primary means used for the specification 
and design processes of Safety Related Software, but other methods (for example structured design methods) should be used as 
appropriate to complement the particular formal method chosen". 
2 HYDRA works over textual descriptions that are marked up and mapped to hypertext nodes which may then be interlinked. 

95 



Structuring Development Artifacts 

turn means rules may be defined for analysis, as well as raising the possibility of developing specialised 

models where the content is regulated, as is the case with a structure for specifying Scenarios to be 

introduced in subsection 4.3. 

As with both the Dexter model (Halasz & Schwartz, 1994) and HYDRA, MNLS nodes can be either ` 

composite or atomic. Composite Nodes are used exclusively for structuring and as such contain no user- 
information; rather they are composed of other nodes (composite and/or atomic). In contrast, atomic 

nodes are data carrying in the sense that they have some form of information content depending on their 

type. Those that reference a PDS entry (i. e. are PDS-checked) such as a module, property, function, or 

condition, etc. contain the name of a corresponding Build Element (which may be 'qualified' to express 

`scope'). Those that don't are designated either as ̀ non-significant' (in the traceability sense) plain text, 

or else as null nodes. Strictly, the latter are non-information carrying, but rather a format preserving 

mechanism to which we return presently. 

It is assumed that users enter text into a single atomic node (of type plain-text) via an appropriate 

interface operating over the structure. It is further assumed that this interface includes operations 

allowing text fragments to be selected (or 'marked-up') from this single block and then 'split' to create 

separate nodes3. That is, with each split operation, the original node is transformed into three new 

atomic nodes (grouped by a composite) containing: - i) text preceding the selection; ii) the subject 

selection itself; and iii) text following the selection. Preceding and following fragments may then be 

split further to an infinite number of levels, thereby yielding a tree-like structure. 

Subject nodes (other than plain text) reference a PDS element and are therefore typed accordingly. 

Conversely preceding and following fragments (unless split further) are either plain text, or else null; 

the latter is used in situations where a subject node has no preceding or following content. For example 

in the statement 'Fuel System transfer operations are independent from all other ...... Fuel System could be 

selected as our subject node (a module) even though nothing comes before it; in which case, preceding 

fragment would be designated null, with the following fragment 'transfer operations.... ' as plain text. 

One further point; in order to minimise redundancy, we have sought to model the MNLS so that PDS- 

checked subject nodes exist only once. This assumes that the interface software is able to check whether 

its underlying object-base already contains an atomic node of the proposed type with the proposed 

label. For instance, if we were to establish a further structure containing a Fuel System subject (or 

alternatively to repeat it within the same structure), then the same node created for our previous 

statement involving this element would simply be reused; i. e., the Fuel System module node would now 

be part of two structures. 

Following definition of the MNLS, we present a brief worked example that provides a 'walk-through' 

of these concepts at both the physical and logical level. 

3 Tools such as DOORS and RTM (sections 2.3.2.1 and 2.3.2.2) allow text to be split in a similar way, normally to separate 

paragraphs into individual requirements. MNLS seeks to provide a formal basis for artifacts structured using such an approach. 

96 



MATrA Natural Language Structure 

4.2.3.2 Meta-model Definitions 
We now introduce the MATrA Natural Language Structure stated in UML (4.2.3.2.1), together with 
OCL constraints over elements of the model (4.2.3.2.2) and O-Telos implementation of its base classes 
(4.2.3.2.3). 

4.2.3.2.1 MATrA Natural Language Structure Meta-model 
Figures 4.1 and 4.2 show elements and associations making up the MNLS meta-model. Its core class, 
MatraNaturalLanguageStructure instantiates the TraceabilityStructure (rather than DevelopmentStructure) 

meta-class. This reflects the fact an MNLS may be incorporated into development, assessment or 

product management artifacts (cf. its use to represent pre and post-conditions of the Use Case Model in 

subsection 4.3 and also the detection column for FMEA tables in 5.3). 

«Traceabiity StrucUe- 
MatraNaMaLarpuageSIn uxe (MNLS) 

1Q* «Struclure Element 
NuBNods 

mule N1 

. Structure Element p, "1 
MatreNLSConpaelte 

rtnk_taýpoale 
Structure Element- 

12 0. ' ModuleNode 

mole modtie nndule_neme: String 

«Struc"o Element- 
0. "1 PleinTextNode 

. nnb_te#: Struq rtnbylairLtezt 
1_' 0... «Swcture Element> 

FuncdonNode 

rmis_h klon . (u1etbMame : Stdng 

1, " 0. , «StrucU@ Element> 
TransaclbnNode 

nnla_Raroactlon trara twn aame: Sinna 

«Swcturo Element- 
ProperlyNOde 

mnyroperry Woperty_mme: Stdng 

mnß_spadlicatlon 

«SWc[ure Element.. 

«StrucWn Element 
I.., 0. ' CondbonNode 

imIs_conditlon . caWitlonJabel: String 

1.. " 0,. «SUuctI Elementaa 
InterlaceNode 

mnlsJntertacs Antedwe_nenr : Shim 

1_' 0. " «SW twe Element. > 
InputOu"odi 

n"jn-out r#-How-naffs: Strxp 

Figure 4.1 - 'MATrA Natural Language Structure : Elements' 

A MatraNaturalLanguageStructure is defined as an aggregation of zero-or-more composite nodes 

(MatraNLSComposite), plain text nodes (PlainTextNode), null nodes (NutlNode), module nodes 

(ModuleNode), function nodes (FunctionNode), transaction nodes (TransactionNode), property nodes 

97 



Structuring Development Artifacts 

(PropertyNode), specification nodes (SpecificationNode), condition nodes (ConditionNode), interface nodes 
(InterfaceNode) and input-output nodes (InputOutputNode). 

-Structure Elemei1 Primp. -trag Matra Node (abstracQ 
1 

puaIthed; y 

II 

0 

« SUueture ElenýenD> « cL «StrucUre EbmenO> 
MatraNLSAIancNode (ebstraco MSty 

j, E nel 
fa 

0.. 1 It 
1. 

«Structure Element>> 
NulNode 

«StrucWe Elemerb> 
PlainTextNode 

4nnk_lext : Strny 

«Structure Elernerb> 
ModuleNode 

Nrodla_nwme : Strop 

«Structve ElerrenD> 
Funcaor*lode 

. funcaonseme: String 

«Structi, e Elenwb> 
TranaacöonNode 

Otrarreactro. tname : String 

«Structe Element. 
PropertyNode 

pproperty_neme : Stung 

«SWdure Element. 
SpecdicabmNode 

vvalue_specdcaaon : String 

«Strueture Element. 
ConSitlor#lode 

ccondman_Iebel : Siring 

«Structure Element, 
IMerlaceNode 

. interface-name : Siring 

«Structve Element. 

Figure 4.2 - `MATrA Natural Language Structure : Associations' 

Figure 4.2 indicates how these elements (all of which instantiate the StructureElement meta-class) are 

related. Essentially, NuIlNode, PlainTextNode, ModuleNode, FunctionNode, TransactionNode, PropertyNode, 

SpecifcationNode, ConditionNode, InterfaceNode and InputOutputNode are subtypes of the abstract 

MatraNLSAtomicNode class. All barring NuIlNode and PlainTextNode have an appropriate property of type 

String that is cross checked against the Product Data Synthesis (see rule 4.2.3.2.2(1)); PlainTextNode also 

has a property (mnls text) which provides a placeholder for non-significant String. To simplify the 

98 



MATrA Natural Language Structure 

modelling, we choose to express the reflexive qualified_by association on MatraNLSAtomicNode and to 

suppress its use on NuIINode using an appropriate constraint (see 4.2.3.2.2(2a))4. We do not however do 
the same for PlainTextNode as this may conceivably have its own qualification (of the same type) to 
clarify non-significant terms. 

MatraNLSAtomicNode is a subtype of the abstract MatraNLSNode, as is MatraNLSComposite; the latter is 

also defined as an aggregation of MatraNLSAtomicNode type elements over association rolenames 
preceding_fragment and following fragment, as well as of subject node with type MatraNLSAtomicNode (a 

constraint suppresses use of NuIlNode as the subject node - see 4.2.3.2.2(3)). This allows us to model the 
concepts involved in splitting nodes outlined in 4.2.3.1. Notice that multiplicity on the aggregation side 
of the subject node association is one-to-many (again suppressed for the NuIlNode and PlainTextNode 

pairing - 4.2.3.2.2(4)), thereby capturing the redundancy minimisation intent also discussed in that 

section. 

4.2.3.2.2 OCL Constraints 
We express a small number of possible restrictions over the meta-model from 4.2.3.2.1. These are as 
follows: - 

1. Constraint to ensure that a corresponding Build Element exists in the PDS for ModuleNode types 
(similar constraints can be stated for other types of node): - 

ModuleNode invariant 
self. alllnstances->forall(m I self. bEelementAEO. build_element->exists(be I m. module_name = be. module_name)) 

2. The following constraints apply to qualification of Atomic Nodes: - 

a) Constraint to prevent qualification of a NuIlNode. 

NuilNode invariant 
self. alllnstances->forall(n I n. qualified_by->size = 0) 

b) Constraint to force qualification (i. e., scoping) of Property Nodes which may otherwise be 

ambiguous. Other MatraNLSAtomicNode subtypes can have similar constraints (which may be 

desirable properties, rather than invariants) though these are not shown. 

ProaertyNode invariant 
self. alllnstances->forall(p I p. qualified_by->size =1) 

c) Constraint to prevent nonsensical qualification; e. g., a module qualified_by a property (again this is 

just one possible example of such a constraint - at the very least a comparable constraint inhibiting 

NullNode qualifiers is required). 

ModuleNode invariant 
self. alllnstances->forall(m I not m. qualified_by. oclType = PropertyNode) 

4 Whilst this means that NuilNode is strictly not a specialisation of MatraNLSAtomicNode, treating it as such removes the need for 
further type-preserving abstract classes. 

99 



ýý 

Structuring Development Artifacts 

d) Constraint to ensure qualifiers are correct; e. g., where a module qualifies a property, then the PDS 

must contain a BuildElement of type Module defined with that particular Property. 

PropertvNode invariant 
self. alllnstances->forall(p I 
self. qualified_by->select(oclType = ModuleNode)->not exists(m I 
p. qualified_by->includes(m) and 
m. bEelementAEO. build_element. hasProperty. target. property_name 
->not includes(p. property_name))) 

3. Constraint that a MatraNLSComposite subject node is not of type NuIlNode, and that preceding_fragment 

and following_fragment are either of type NuIlNode or PlainTextNode, or else are a MatraNLSComposite. 

MatraNLSComposite invariant 
self. alllnstances->forall(c I 
c. subject_node. oclType <> NullNode and 
(c. preceding_fragment. oclType = PlainTextNode or c. preceding_fragment. oclType = NullNode or 
c. preceding_fragment. oclType = MatraNLSComposite) and 
(c. following fragment. oclType = PlainTextNode or c. following_fragment. oclType = NuliNode or 
c. following_fragment. oclType = MatraNLSComposfte)) 

4. Constraint further restricting multiplicity to one (rather than 1.. * as shown on the Class Diagram) on 

the aggregate side of MatraNLSComposite for NullNode and PlainTextNode types. 

MatraNLSAtomicNode invariant 
self. alllnstances->forall(c I not ((c. oclType = NullNode or 
c. oclType = PlainTextNode) and c. matraNLSComposite->size > 1)) 

5. Constraint to enforce uniqueness of ModuleNode elements; similar constraints (not shown) apply to 

other PDS-checked node types. 

ModuleNode Invariant 
self. afllnstances->forall(ml, m2 l not (ml o m2 and ml. module_name = m2. module_name)) 

4.2.3.2.3 O-Telos Implementation of MNLS Base Classes 
The following O-Telos code implements base classes for the meta-model in subsection 4.2.3.2.1: - 

Definition of MNLS Constituents 

MatraNLSNode in StructureElement, 
SimpleClass isA 
AerospaceEngineeringObject with 
constraint 
abstractlde: $ forall t/Token 
s/SimpleClass 
(t in s) ==> not (t in MatraNLSNode) 
end 

MatraNLSAtomicNode in StructureElement, 
SimpleClass isA MatraNLSNode with 
has-part 

qualifiedly : MatraNLSAtomicNode 
constraint 
abstract_Atn: $ forall t/Token 
s/SimpleClass 
(t in s) _=> not (t in 

MatraNLSAtomicNOde) $ 
end 

MatraNLSComposite in StructureElement, 
SimpleClass isA MatraNLSNode with 
has-part 

preceding_fragment : MatraNLSNode; 
subject_node : MatraNLSAtomicNode; 
following_fragment : MatraNLSNode 

end 

PlainTextNode in StructureElement, 
SimpleClass isA MatraNLSAtomicNode with 
has-property 

mnls_text : String 
end 

NuliNode in StructureElement, SimpleClass 
isA MatraNLSAtomicNode end 

ModuleNode in StructureElement, 

100 



MATFA Natural Language Structure 

SimpleClass isA MatraNLSAtomicNode with 
has-property 

module name : String 
end 

FunctionNode in StructureElement, 
SimpleClass isA MatraNLSAtomicNode with 
has-property 

function_name : String 
end 

TransactionNode in StructureElement, 
SimpleClass isA MatraNLSAtomicNode with 
has-property 

transaction-name : String 
end 

PropertyNode in StructureElement, 
SimpleClass isA MatraNLSAtomicNode with 
has-property 

property_name : String 
end 

SpecificationNode in StructureElement, 
SimpleClass isA MatraNLSAtomicNode with 
has-property 

specification : String 
end 

ConditionNode in StructureElement, 
SimpleClass isA MatraNLSAtomicNode with 
has-property 

condition_label : String 
end 

InterfaceNode in StructureElement, 
SimpleClass isA MatraNLSAtomicNode with 
has-property 

interface_name : String 
end 

InputOutputNode in StructureElement, 
SimpleClass isA MatraNLSAtomicNode with 
has-property 

flow_name : String 
end 

Definition of ! *TLS 

MatraNaturalLanguageStructure in 
TraceabilityStructure, SimpleClass isA 
AerospaceEngineeringObject with 
has_element 

mnls_composite MatraNLSComposite; 
mnls_plain_text PlainTextNode; 
mnls_null : NullNode; 
mnls_module : ModuleNode; 
mnls_function : FunctionNode; 
mnls_transaction : TransactionNode; 
mnls, property : PropertyNode; 
mnls_specification 

SpecificationNode; 
mnls_condition : ConditionNode; 
mnls_interface : InterfaceNode; 
mnls_in_out : InputOutputNode 

end 

4.2.3.3 Worked Example 

Extensive application of the MATrA Natural Language Structure is demonstrated by the case studies in 

sections 6.2 and 6.3. However, to provide an overview of the structure at both a logical (i. e. user) level 

and a physical level (i. e., the underlying mechanics), we 'walk-through' an example based on a simple 

requirement statement. Note that in this thesis, MNLS is considered in terms of its integration with 

other structures, such as Use Case and Failure Modes & Effects Analysis. Whilst the following 

demonstrates a potential application to requirements specification, our research indicates the need for a 

dedicated requirements structure with additional features and verification rules. This is acknowledged 

as an area for future work and discussed in subsection 7.4.5. 

Meantime, consider the following statement. It contains several fragments that can be usefully extracted 

(in the sense of being transformed into separate formal objects) for traceability purposes: - 

"Total-Fuel-Capacity shall be >= 195,000 litres of useable fuel' 

In this case, we choose to demonstrate non-sequential5 splitting of nodes such that the engineer first 

selects the '>= 195,000 litres' text-fragment, which will become a SpecificationNode. This action 

destroys the initial atomic node creating in its place a composite C, comprising three atomic nodes - 

C, Ap, CIA, and C, A1. These contain the text before the marked section ('The Total-Fuel-Capacity shall- 

be '), the marked section itself (>=195,000litres) and the text following the marked section (' of 

3 In the sense that process does not follow a strict left-to-right pattern. 
6 The subscripts p,, and f denote preceding, subject and following nodes. 
7 Note, this assumes that Specification may be written to and contrasts with the other BuildElement types which simply provide an 
integrity check for 'incoming' data (i. e to the Traceability Workspace) transferred from CASE tools. 

101 



Structuring Development Artifacts 

useable fuel. '). A Commentary (of type PlainTextNode - C, AAQ) is then attached to CjAf qualifying 

exactly what is meant by the term 'useable fuel'. This is summarised in figure 4.3. 

Cl 

Cl 4P ý\ CIA/ 
PlamT"Jods \yWanTaaP4 

cdeCjAfQ 

Total-Fuel-Capacity shall be C1A3 of useable fuel- 
-ý 

P"TeOkde 

spxaxseorýrýods [definition of'useable fuel'] 

>- 195,000 litres 

Figure 4.3 - `MNLS Sample Population : Node Splitting Stage 1' 

Next, the engineer selects the property 'Total-Fuel-Capacity', which as previously indicated is now part 

of C1A,,. Once again, this node is destroyed and superseded by a composite C2 made up of atomic nodes 

CCA,,, C2A, and C2Aj where C2A, (containing the Total-Fuel-Capacity fragment) is demarcated as being 

of type PropertyNode. 

Note that C2A, becomes a null node which, as stated previously, occurs wherever the marked selection 

is located at the beginning (as is the case here) or end of a text fragment, whilst C2Afcontains the 

PlainTextNode ̀shall-be '. The Total-Fuel-Capacity PropertyNode is also qualified (see C2A, Q) by 

specifying its host module, in this case 'Fuel System'. This is summarised in figure 4.4. 

Cl 
MatraNLSCompodle 

C2 C1Aa 

MatraNLSComposite Node 

>- 195,000 liana 

p/ C2Af 
NuIlNOde PlainnTexiNods 

ýqs shall be 
e 

AlodukNN ds Total-Fuel-Capacity - 
Fuel System 

PIenTeAaxwode C1A fQ 
p"'r° w°d° 

of useable fuel C 
[definition of useable fuel] 

Figure 4.4 - `MNLS Sample Population : Node Splitting Stage 2' 

O-Telos code for the completed MNLS - i. e., following `Stage 2' (figure 4.4 above) is as follows: - 

ExampleM[VLS in mnlsCompositel : Cl; 
MatraNaturalLanguageStructure, Token with mnlsComposite2 C2 

mnls_composite mnls piain_text 

102 



MATrA Natural Language Structure 

mnlsPlainText2 : C1Af; 
mnlsPlainText3 : C2Af 

mnis_null 
mnlsNu111 : C2Ap 

mnls_specification 
mnlsSpecificationl : C1As 

innls_property 
mnisPropertyl : C2As 

end 

Cl in MatraNLSComposite, Token with 
preceding-fragment 

precedingFragment : C2 
subject_node 

subjectNode : C1As 
following-fragment 

followingFragment : C1Af 
end 

C1AS in SpecificationNode, Token with 
specification 

_Specification : ">= 195,000 litres' 
end 

C1Af in PlainTextNode, Token with 
mnls_text 

mnlsText : of usable fuel' 
qualified-by 

qualifiedBy C1AfQ 
end 

C1AfQ in PlainTextNode, Token with 

mnls_text 
mnlsText : `[definition of 'usable 

fuel']' 
end 

C2 in MatraNLSComposite, Token with 
preceding_fragment 

precedingFragment C2Ap 
subject_node 

subjectNode : C2As 
following_fragment 

followingFragment : C2Af 
end 

C2Ap in NullNode, Token end 

C2As in PropertyNode, Token with 
property-name 

propertyName : `Total-Fuel-Capacity' 
qualified-by 

qualifiedBy C2AsQ 
end 

C2AsQ in ModuleNode, Token with 
modulejiame 

moduleName : "Fuel System" 
end 

C2Af in PlainTextNode, Token with 
mnls_text 

mnlsText shall be 
end 

4.2.4 Summary 
Our investigation has shown that natural language continues to be a highly important format for 

representing artifacts used by engineers within the aerospace industry. Accordingly means are required 

to allow traceability of elements embedded within the text of such artifacts. 

This subsection has modified and built-on an existing meta-model (based on the hypertext principle of 

nodes) produced by partners from project NATURE, allowing its integration within the MATrA 

framework. Our main modification to the original model was to introduce node typing such that node 

types correspond to (and may therefore be verified against) build element types from the Product Data 

Synthesis. 

A worked example featuring the MATrA Natural Language Structure was considered at both the logical 

and physical levels. Further demonstration will appear in the main case studies (Chapter Six), with a full 

evaluation provided in Chapter Seven. 

103 



User-Centred Requirements Structure 

4.3 User Centred Requirements Structure 

4.3.1 Introduction 
In this subsection, we introduce an integrated structure comprising meta-models that capture syntactic 

elements of three complementary requirements elicitation, analysis and documentation notations: Use 

Case Models, Scenarios and Message Sequence Charts; a formal semantics sufficient to preserve well- 
formedness and usage restrictions is also provided. We refer to this integrated structure as the User 

Centred Requirements Structure (UCRS). 

4.3.2 Motivation 

It is now universally accepted that frailties in the requirements phase of systems engineering projects 

can prove a major factor in their failure. A corollary of this (as indicated in Chapter One) has been the 

transition of Requirements Engineering, from a special interest group within the software and systems 

engineering fraternity, to a major discipline in its own right. Accordingly, a range of formal, semi- 
formal and informal approaches have sought to address issues involved in achieving the desired output 

from RE (i. e., a consistent and complete specification capable of forming the basis of the next phase of 

system development). While developers have in the past succumbed to (often) unsubstantiated claims 

and biases made in support of some of these approaches, as RE matures, practitioners are more able to 

distinguish what 'works' - either in terms of aiding specification directly, or else in supporting 

communication among agents involved in the process - from what palpably does not. 

Use Case Models, Scenarios and Message Sequence Charts are all complementary and established 

notations used in the requirements analysis phase of projects. They allow developers to model from a 

user perspective the high-level functionality of, and interactions with, a target system. In the aerospace 

industry for example they have been used for a variety of civil and military applications, from 

exchanges between the ground crew and Fuel System, to pilot interaction with Mission Planning and 

Navigation Systems (BAe 1999). 

We now provide a brief overview of Use Case Models, Scenarios and Message Sequence Charts before 

introducing a novel meta-model (the User Centred Requirements Structure) that integrates these 

approaches in a format amenable to traceability. 

4.3.2.1 Use Case Overview 

Use cases have been acknowledged by most methodologists in the field as an effective means of support 

for user centred requirements analysis, i. e. the capture of requirements from a user perspective. Use 

Case diagrams show abstract interactions between a target system and its environment, as well as 

capturing the scope of functionality. And because they express such information in terms of the problem 

domain vocabulary, they are readily understandable to participants with a non-technical background. 

Use cases have previously been a feature of development methods by Jacobson et al. (1993), 

Rumbaugh et al. (1991) and Booch (1994), although their profile has undoubtedly been raised by being 

a constituent of the Unified Modelling Language. 

104 



Structuring Development Artifacts 

Use Case diagrams are based around a simple, though deceptively rich notation the main elements of 
which are actors and use cases. Actors represent sets of external entities who share some common 
characteristics in terms of how they interact with the target system. These may be human, or else some 
form of quasi-autonomous system built from hardware/software components. Actors are denoted on Use 
Case diagrams using 'stick-men' symbols. 

A single use case describes a subset of system functionality which delivers some unit of work to an 
actor or actors in response to an initial stimulus by one particular actor. Use cases are denoted on 
diagrams using a simple name bearing ellipse, thereby reinforcing the point that this form of analysis 

regards the system as a 'black-box' (i. e., functionality is exposed, whilst design specification - if such 
details are known at this stage - is hidden). Interactions between actor and use case symbols are 

modelled using arcs. A use case can also be annotated with pre and post conditions. 

Jacobson et al. (1993) provide two means of combining use cases via the uses (also known as includes) 

and extends associations. The former embeds new behaviour into a complete base case, while the latter 

embeds a fragmentary sub-sequence (analogous to a sub-routine) as a necessary part of a larger case 

enabling the same behaviour to occur in several otherwise disjoint use cases8. In essence, these 

associations can be said to support the principles of aggregation (uses/includes) and inheritance 

(extends). 

Figure 4.5 depicts a basic use case example for a missile subsystem known as the AGA (Attitude 

Guidance Autopilot). The diagram is reproduced from Grigg & Henderson (2000) in which use case 
diagrams provide a front-end to real-time transaction (RTT) models (Haveman et al., 1997). RTTs are 

an abstraction mechanism enabling the recording and analysis of functional and timing properties in the 

early stages of development for distributed and reactive real-time systems. Figure 4.5 identifies two use 

cases/RTTs, the Autopilot and the Attitude Guidance (notice that the former includes functionality of 

the latter), together with three actor entities present within the host missile system, namely Sensor(s), an 
Information Processing System (IPS) and a Fin Controller. 

Sensor Attitude Guidance Information Proces 
-sing System 

<dncudes>> 

(±>-Xý 

Autopuot Fin Controller 

Figure 4.5 -'Use Case Diagram of the AGA Sub-system' 

Although figure 4.5 shows which actors interact with which use cases, it tells us nothing about specific 

s Note that Rumbaugh (1994) questions whether the extends and uses associations are fundamentally different, suggesting that 
both may be treated as "special cases" of some unifying association which he terms adds between a base case and an additional 
case in which the multiplicity is (normally) either one for the uses case or optional for the extends case. This is reflected in our 
treatment of paths through use cases, as described by the Interaction View in 4.3.3.4.1. 

105 



User-Centred Requirements Structure 

usage - i. e., the sequence of individual interactions making up each potential end-to-end transaction 
between the target system and its environment. Scenarios - natural language descriptions documenting 
different paths through a use case - provide just such a facility; we consider these in the next subsection. 

4.3.2.2 Scenarios Overview 
The terms use case and scenario (in the context of projections of future system usage) are often used 

synonymously9. However, according to our interpretation, each scenario represents a separate order- 
dependent sequence of message events conveying a `path' through a use case, such that the use case 
being described is the set of all such scenarios. Put another way, each scenario can be regarded as an 
instance of a use case in much the same way that UML Object Models instantiate a Class Diagram. Like 

use cases, scenarios have also featured widely in object-oriented techniques including (Jacobson et al., ' 

1993) and Graham (1996), as well as the Unified Modelling Language. 

The overriding advantage of scenarios (at least those where the actors concerned are human) is that 

users can 'walk' analysts through typical usage situations. Such walkthroughs can take many forms, 

ranging from simple verbal descriptions, to those involving role play. In doing so scenarios can help 

validate existing requirements (Sutcliffe et al., 1998), uncover less obvious requirements (including 

those for exception handling) and surface hidden assumptions (Potts et al., 1994). Further, in an 

extensive review of their potential application and benefits, Weidenhaupt et al. (1998) also identifies 

scenarios as a means of reducing complexity (by enforcing a usage-oriented decomposition of 

requirements from an early stage), as well as promoting agreement among stakeholders (by grounding 
discussions and focusing negotiations during trade-off analysis). The fact they largely abstract away 
from design and implementation issues and are normally stated in natural language1° also means there 

are no barriers to participation in scenario based requirements analysis. 

The text of each message event within a scenario typically includes a message sender and message 

receiver, a verb-phrase indicating a sender's action, together with an indication of the message content; 

sender and receiver correspond to the actor and target system entities from the Use Case Model. 

Sometimes, the system acts as both sender and receiver, which normally indicates (at least for the 

purpose of this discussion) that some internal action (e. g., a verification, calculation or update 

operation) is performed on data received in a previous exchange. 

The following scenario (table 4.1) takes a normal path (i. e., no exceptional events) through the 

Autopilot use case from figure 4.5; the unit of work it describes is the provision of guidance data by the 

AGA to the Fin Controller subsystem. The first, third fourth and sixth events describe conventional 
information exchanges between the target system (AGA) and external actor entities (Sensors, 

Information Processing System and Fin controller), whereas events two and five are examples of 

internal system actions (both involving different forms of calculation). 

9 Note, different interpretations of the term scenario from other domains have been proposed; e. g., as a means for describing 

socio-technical systems (Kyng, 1995). 
'()Scenarios have also received formal treatment (cf. Hsia et al. 1994; Rolland & Anchor, 1998), as well as being represented 
using tabular and storyboard techniques (cf. Rubin & Goldberg, 1992; Karat & Bennett, 1991) 

106 



Structuring Development Artifacts 

Provide Guidance Data to Fin Controller - Normal Path 

1. The Sensor sends position data to the AGA subsystem; 
2. The AGA subsystem calculates the missile attitude; 
3. The AGA subsystem sends missile attitude to the Information Processing System; 
4. The Information Processing System sends aim point data to AGA subsystem; 
5. The AGA subsystem calculates guidance data; 
6. The AGA subsystem sends guidance data to the Fin Controller. 

Table 4.1- `Example Scenario for the Autopilot Use Case' 

The text of these simple one-line instructions can be given greater clarity when the scenario is viewed in 
diagrammatic form using a Message Sequence Chart as described in the next subsection. 

4.3.2.3 Message Sequence Chart Overview 
Message Sequence Charts (MSCs) are a widely used graphical notation for visualising the temporal 

nature of interactions between system components or, as is our interest, a target system and its host 

environment. Like scenarios, they do not seek to express complete behaviour, but rather a single 
execution trace (i. e., path). Historically, Message Sequence Charts have mainly been applied to the area 
of telecommunication systems (ITU-T, 1993), although the DCSC is to investigate the possibility of 
their use with RTTs since both are concerned with specifying end-to-end threads of functionality. 

Variations on the MSC are a feature of UML and other object-based approaches (e. g., Selic et al. ). 

1 
nositlon date ,I 

calculate miss- 
Ile attkude 

III 
missile attitude _t 

III 
III 

aim point data I 
ýIIII 

calculate guid- 
once data I 

IIII 
1 guldanFe data 
III 

Figure 4.6 -'Message Sequence Chart for the Provide Guidance Data to 
Fin Controller Scenario (Normal Path)' 

Figure 4.6 presents a visualisation of the scenario in table 4.1 which features the core graphical syntax 

of all Message Sequence Charts. Vertical axes represent instances, i. e., participants of the use case 
(either actor instances or the target system) as indicated through named rectangles at their head. 

Conversely, directed horizontal lines indicate messages where each message starts at an originator 
instance and ends at a target instance. Some messages are internal to an instance; i. e., they have the 

same originator and target instance (e. g., "calculation of missile attitude" and "calculation of guidance 

107 



User-Centred Requirements Structure 

data" from figure 4.6). Given our intended usage of MSCs in modelling interactions between a system 

and its environment, these are exclusively actions that are intrinsic to the target system. We note 
however that software-oriented applications based on object-modelling also use Message Sequence 

Charts to show the precise interaction of objects within the target system itself. 

The instance axis orders events in time downwards. Translated in the context of figure 4.6, this means 

that "missile attitude" is sent before "aim point data", and so on. However the time axis depicts only 

sequence in the sense that the scale is non-linear and therefore no semantic importance (e. g., interval) 

should be implied by the spacing between messages. 

The axis/instance and message elements are sufficient to construct most Message Sequence Charts. 

Nevertheless, extensions to the core syntax make it possible to express additional information such as 

arrival patterns (e. g., periodic or aperiodic), synchronisation (balking, waiting, asynchronous) and 

broadcast messages (which originate from a sender instance at the same time point and are received by 

n>1 instances at potentially different times). These are all features of the UML variant of MSCs 

known as Sequence Diagrams which can also contain state marks placed on the vertical axes in order to 

provide a bridge to the corresponding Statechart diagrams. Also of note are extensions proposed by 

Regnell et al. (1996) who employ MSCs in conjunction with Episodes (proposed by Potts et al. [1994] 

as a means of grouping the fine-grained events occurring within a use case into coherent parts) such that 

each MSC represents a single episode and a set of MSCs depicts a scenario. 

4.3.3 Tracing User Centred Requirements in MATrA: UCRS - An Integrated Use Case 

& Interaction Structure 

The notations discussed in subsections 4.3.2.1 through 4.3.2.3 provide a sound basis for the elicitation, 

analysis and documentation of user centred functional requirements in a format amenable to all 

stakeholders with an interest in this process. We now describe the User Centred Requirements 

Structure, a novel meta-model that integrates Use Case Models, Scenarios and Message Sequence 

Charts and in doing so, provides strong traceability between their constituent elements. 

4.3.3.1 Concepts 

As indicated in Chapter One (subsection 1.3), notations used by avionics engineers fall into two broad 

categories: those with a well-defined syntax and semantics and those that are less rigorously defined but 

which offer flexibility as a result. Use Case Models, Scenarios and to a lesser extent Message Sequence 

Charts are of the latter such that UCRS integrates and extends these notations to serve domain specific 

needs. The structure has been shaped by discussions with practitioners and examination of actual 

specifications featuring these notations. 

Use Case diagrams in MATrA support all of the concepts outlined in subsection 4.3.2.1, i. e., actors, 

interactions and use cases, as well as means for combining the latter through includes and extends 

associations and for their description through pre and post conditions. We do however include the 

additional notion of a service (Regnell et al., 1996); i. e., a demarcated set of functionality encapsulated 

108 



Structuring Development Artifacts 

within a single package (not in the UML sense)". 

Discussions with practitioners suggest that user centred requirements for even relatively simple systems 
(in terms of functionality) can yield a large number of use cases. In MATrA we manage their number 
through the notion of views. Essentially, a view is a composition of one or more Use Case Models; 

reuse of actor and use case entities across these models is facilitated by all elements of a model also 
being elements of the view to which that model belongs. Therefore, the set of elements available to a 

model is the union of those elements introduced by itself and all models within the same view. 

As regards descriptions of use cases, MATrA supports both textual and Message Sequence Chart 

formats. Perhaps due to their traditional prose representation, textual scenarios lack even a quasi 

standard. There are however some works proposing alternative representations as well as suggestions 

on what well-formed events should contain, ranging from structured natural language techniques (e. g. 
Leite et al. 1997) to more mathematical approaches (e. g., Rolland & Achour, 1998). On balance, we 
favour a natural language representation (for reasons of usability), underpinned with a lightweight 

formal semantics. This is realised in part through fine-grained modelling, allowing us to identify and 

validate event primitives against the PDS and also to impose a degree of well-formedness. 

The latter is further aided by differentiating between event types, for which we take work by Rolland & 

Anchor (ibid. ) as our steer. They identify two forms of atomic event: i) message communication 
between instances (i. e., actors in the Use Case View) and the target system, which may be further 

qualified as a service request, service provision, information request or information provision; and ii) 

internal system actions, which constitute operations intrinsic to the target system. 

In addition, a target system can host Timer sub-modules which they control in terms of set and reset 

events. Timers can also time-out, although the host plays a passive role in events of this form. For more 
information on the use of timers and timing events within use case descriptions, readers are referred to 

work by Regnell et al. (1996) which also inspired the UCRS mechanisms for grouping of sequential 

events and the expression of upper and lower bounds - both of which are necessary to allow iteration 

within scenarios. 

Message Sequence Charts of the UCRS contain the same core elements as textual scenarios. Indeed, 

other than the fact that MSC communication events differentiate between types of message based on 

arrival pattern (periodic or apenodic), synchronisation (simplex, synchronous, balking, etc. ) and 
delay12, they differ only in terms of presentation13. Hence, there are clear optimisation, consistency and 

traceability benefits to be gained by providing a common underlying representation. This is the 

approach adopted within MATrA through our Interaction Model. 

11 Graphically, services (represented by named rectangles) are the only deviation from traditional use case diagrams. Pre and 
post conditions simply annotate the conventional use case ellipse symbol. 
2 All of these properties have a corresponding graphical convention. 

13 This was demonstrated through our example in 4.3.2.2 and 4.3.2.3 (albeit using a subset of the concepts outlined above) 

109 



User-Centred Requirements Structure 

Notwithstanding the commonality between textual scenarios and MSCs, the labelling of apparently 

equivalent communication and action events often differs between the two formats. This is probably 

explained by a need for the former to adhere to the rules of English grammar, whereas the latter merely 

annotate symbols. To resolve the issue, we propose that each message and action is able to use an 

appropriately worded parameter which is displayed in place of the message/action name (note the latter 

are still required as they provide the basis for PDS verification). 

4.3.3.1.1 UCRS Notation 
At a logical level, some refinements to the way Scenarios and Message Sequence Charts are presented 
is necessary. For instance, with the textual representation, each scenario event is preceded by its type: 

C[SR], C[SP], C[IR], or C[IP] for Communication events (Service Request/Provision and Information 

Request/Provision respectively), or alternatively, 'A' for Action or 'T' for Timing events. With the 

MSC equivalent, we place communication event types below their corresponding message arrow. 

Our policy of validating event content against the PDS requires us to identify sender, receiver, message, 

action and other relevant primitives within text strings. Accordingly, these are enclosed within square 

brackets preceded by a typed subscript; e. g., [, d, sender], [n,, receiver], [msg message], [act action], [timer 

timer]; for message elements where a parameter is being used, the actual name (corresponding to its 

PDS entry) appears in subscript following the parameter label - i. e., [msg parameter PDS name]. Timer 

events over the (host) instance are also demarcated using [, imer_Set Instance], [, r Instance] and [hos, -0n_ 

,, )�i 
Instance]. With the graphical representation, this information is of course conveyed using symbols I;, ne 

(note a parameter appears above the message arrow and PDS name below); besides those introduced in 

4.2.2.3, we add the following to depict timer (set, reset and time-out) events. 

-Z"` 
wp. fm) Set. The timer is activated. 

STbw Reset. The timer is deactivated. 

<'""` Time-out. The timer expires. 

Figure 4.7 - `MSC Timer Event Types (from Regnell eta!., 1996)' 

Event groups in textual scenarios are enclosed within a rectangle and preceded by upper and lower 

bounds. For MSCs, the grouping formalism is displayed using a shaded rectangle. Readers are referred 

to subsection 6.2 and to Appendix C, Part Two for examples of the notation. 

4.3.3.2 User Centred Requirements Structure (Definition) 

As previously indicated, User Centred Requirements Structure provides an integrated approach to the 

representation and traceability of Use Case diagrams, Scenarios and Message Sequence Charts. The 

structure is essentially a 'container' that draws together elements from Use Case and Interaction Views, 

where the latter is simply an abstraction of concepts modelled using Scenarios and Message Sequence 

Charts. 

110 



Structuring Development Artifacts 

In modelling UCRS, we make a number of assumptions. Specifically, that the structure has bespoke tool 

support and that instances ported to the traceability Workspace include a Use Case View. We assume 

this contains at least one Use Case Model featuring a minimum definition of one use case, one actor and 

one interaction. If present, we further assume the Interaction View contains at least one Interaction 

Model and that this model is minimally defined by a single scenario with at least one communication 

event in which a message is exchanged between two instances (sender and receiver, where the target 

system is receiver). This may populate either a textual or MSC viewpoint, with provision made in the 
form of rules (see subsection 4.3.3.4.2) to derive one from the other, though user intervention is 

required to construct legitimate prose event statements around core elements from a sequence chart. 

A detailed explanation of the Use Case and Interaction Views appears in subsections 4.3.3.3 and 4.3.3.4 

respectively. However, as a precursor to this we describe a meta-model (4.3.3.2.1), OCL constraints 
(4.3.3.2.2) and O-Telos implementation of base-classes (4.3.3.2.3) for the User Centred Requirements 

Structure itself. 

4.3.3.2.1 User Centred Requirements Structure Meta-model 
The User Centred Requirements Structure (figure 4.8) is as an aggregation of a Use Case View 

(UseCaseView) and Interaction View (InteractionView). Its core class (UserCentredRequirementsStructure) - 

an instance of the DevelopmentStructure metaclass - can be compared with a banner comment or header 

in programming language terminology. As with most such classes in the MATrA Workspace, it contains 

a small number of attributes for configuration management - in this case date (ucrs_date) and subject 

module (subject_module) which is verified against the Product Data Synthesis (see subsection 4.3.3.2.2). 

UserCentredRequirementsStructure also provides means to record comments through aggregation to a 
MatraNaturalLanguageStructure, thereby allowing primitives embedded within comment strings to be 

linked to other models or model elements. 

<<Development Structure>> 
UserCentredRequirementsStructure 0.. 1 <Traceability Structure>> 

#subject_madule : String ucrs_comments 
MatraNLS 

"ucrs_date : Date 

I 11 

use_case_view 1 0.. 1 interaction-view 

<<Development Structure» <<Development Structure>> 
UseCaseView InteractionView 

Figure 4.8 -'User Centred Requirements Structure (UCRS)' 

4.3.3.2.2 OCL Constraints over the User Centred Requirements Structure 

The following constraint is applied to UCRS in order to verify its subject module property exists in the 

Product Data Synthesis (navigation is via the BEmodelAEO AerospaceLinkEntity): - 

UserCentredRepuirementsStructure invariant 
self. alllnstances->forall(u I self. bEmodelAEO. build_element->exists (be I u. subject_module = be. module_name)) 

111 



User-Centred Requirements Structure 

4.3.3.2.3 O-Telos Base Classes for User Centred Requirements Meta-model 
O-Telos implementation of the base classes featured in figure 4.8 (4.3.3.2.1) is as follows: - 

Definition of User Centred Requirements Structure 

UserCentredRequirementsStructure in DevelopmentStructure, SimpleClass isA 
AerospaceEngineeringObject with has-property 

subject_module : String; 
ucrs_date : Date 

has-structure 
ucrs_comments MatraNaturalLanguageStructure; 
use_case_view : UseCaseView; 
interaction_view : InteractionView 

end 

In the following sections, we introduce the constituents of User Centred Requirements Structure: - 
" Use Case View (4.3.3.3) and 

" Interaction View (4.3.3.4) 

4.3.3.3 Use Case View 
Use Case View captures the elements necessary to construct Use Case Models. Again, we represent 
these in terms of a meta-model (4.3.3.3.1), OCL constraints (4.3.3.3.2) and O-Telos implementation of 
base-classes (4.3.3.3.3). 

4.3.3.3.1 Use Case View Meta-model 
Elements of Use Case View (UseCaseView), with its date (ucv_date) attribute and MNLS comment 
facility are depicted in figure 4.9. Its core class instantiates DevelopmentStructure and is defined as an 

aggregation of the use case diagram elements described in subsection 4.3.2.1 - namely use case 
(UseCase) and actor (Actor) entities, together with interaction (Interaction), includes (Includes) and 

extends (Extends) associations - all of which instantiate the StructureElement meta-class. Means to record 

pre and post conditions using MATrA Natural Language Structures are also a feature (enabling PDS 

verification of embedded ConditionNode primitives as appropriate). 

Use cases and actors have (unique) name attributes (use_case_name and actor name respectively) to 

enable meaningful identification, and for verifying instances of these classes against the Product Data 

Synthesis. UseCase also contains a boolean attribute (sub_case) to indicate whether instances must 

combine with others in order to deliver a 'unit of work'. In addition, the Extends class bears a condition 

rubric (extends condition) which states the circumstances under which one use case may legitimately 

extend another. It is also worth noting that the cardinality of association between Actor and UseCaseView 

is one-to-many on both sides. The underlying rationale is that an actor can conceivably be an external 

entity to several aircraft systems and hence potentially contribute to many different views. 

Remaining UseCaseView constituents are Service (described in terms of one or more use cases through 

an aggregation association over the service_use_case rolename) and Use Case Model (UseCaseModel). 

The former is an instance of StructureElement, whilst the latter instantiates DevelopmentStructure and is 

again analogous to a program banner. 



Structuring Development Artifacts 

«Structure Element» «Development Structure» «Structure Element» 
Actor ucv_actor UseCaseView ucv_service Service 

. actorsame: String oucv_date: Date Oservice_name: String 

1. " 

<<Structure Element» 
1 1. " UseCase 

<<Development Structure>> ucv_use_case ®use_case_name : String service_usecase 
UseCaseModel I.. . sub case : Bool. False 

. model_name : String use case_rnod 

. ucm_date : Date 

1_" <<Structure Element>> 
Interaction 

ucv_interadion 

o.. - <<Structure Element» 
Includes 

ucv includes 

10, «Structure Element» 
Extends 

ucv_extends oeextends_conddwn : String 

. <<Traceabildy Structure> 10 
MatraNLS 

uw-pre_condition 0, 

0.. 1 

ucv-post_condition 

ucv_comments 

Figure 4.9 -'UCRS - Use Case View : Elements' 

<<Development Structure>> 
UseCaseModel 

®model_name : String 
. ucm_date : Date 

«Structure Element» 
t , ""* Actor 

ucm_actor . actor_name : String 
«Structure Elemenb> 1. ' 1.. ' 

Interaction 
i on ucm_lnteract 

«Structure Element>> 
1 ."1 ," 

UseCase 
name: String #use rase 

<<Struct dlemenb> p" 
rt use_ ucr _ ._ ®sub_ ase Boo[. False 

Includes 
ucm_includes 

0 . <<Traceability Structure>> 

«Structure Elemenb> . 
.. MatraNLS 

0 ' 
Extends p ýre_ ucm .. 

®extends_condition : String ucm_extends p 
I... 

ucm.. post_condition 

ucm_comments 
Figure 4.10 - `UCRS - Use Case Model : Elements' 

113 



User-Centred Requirements Structure 

A UseCaseModel (figure 4.10) is an aggregation of the diagramming elements described when 
introducing UseCaseView; recall that in order to foster reuse, all such elements (UseCase, Actor, Includes, 
Extends, etc. ) simultaneously belong both to a model and the view to which that model belongs 

(associations which can be derived using deductive rules - see ii. 8 in 4.3.3.3.2 for instance). 

Accordingly, all elements carry a one-to-many association on the UseCaseModel side. 

«Traceablllry Structure, 
MatraNLS 

0. " 
transit e_krAMes 

02 

c<Süuctun ElemenA> 0. " 
Structure Element. > 

extends_extend Usecase Extends 

extends_condltIon : Stdnp extendsJ)ase l #use_cese_name Stnng 0 
*aucase : Bool . False 

Includ Include 
IndudaJ)ase 

-Structure ElemenD> mteracta_1 7. " «Structure Element- 
Interaclabstract) 

Intel«-2 
Interaction 

0. " 
«Structire ElernenA> 

sStruGUre Elemant> Acta 
--i 

i Includes 
#acta_name : Seng 

O. el 

Figure 4.11- `UCRS - Use Case Model : Associations' 

Associations between UseCaseModel elements are illustrated in figure 4.11. Of particular interest are the 

transitive_includes and transitive_extended_by associations on the UseCase class. As the names suggest, 

their purpose is to capture the transitive closure of Includes and Extends. It is also worth explaining the 

association ends on these two classes; 'base' ends (includes_base and extends_base) signify the including 

and extending use cases such that where 'a' includes 'b' and 'a' extends 'b', 'a' is the base in both, and 

'b' is the element being either included or extended. The other significant aspect of this particular 

model is the introduction of an (abstract) Interactor class; since both actors and use cases send and 

receive messages, it is convenient to generalise this behaviour. 

4.3.3.3.2 OCL Constraints over Use Case View Meta-model 
We have defined a number of constraints and rules over elements of UseCaseView which are grouped on 

the basis of consistency and well-formedness. A selection of these are included below (readers are 

referred to Appendix A, Part One for the remainder). 

I. Consistency 
1. Constraint to ensure that use cases are declared as Transactions of the subjecLmodule in the Product 

Data Synthesis. 

UseCase Invariant 
self. alllnstances->forall(u I 
self. useCaseView. userCentredRequirementsStructure. bEmodeIAEO. build_element->exists (be I 
self. bEelementAEO. build_element->exists (t I 
u. useCaseView. userCentredRequirementsStructure. subject_module = be. module_name and 
u. bEelementAEO. build_element->includes(t) and 

114 



Structuring Development Artifacts 

u. use_case_name = t. transaction_name and 
be. behavesAccordingTo. target->includes(t)))) 

2. Constraint to ensure the target sytsem is not among Actor elements (i. e., all actors are differrent from 

the subject_module). 

Actor invariant 
self. alllnstances->forall(a I 
a. actor_name <> a. useCaseView. userCentredRequirementsStructure. subject_module) 

3. Constraint to ensure actors exist in the PDS as modules interfaced with by the Subject module. 

Actor invariant 
self. alllnstances->forall(a I 
self. useCaseView. userCentredRequirementsStructure. bEmodelAEO. build_element->exists(be I 
self. bEelementAEO. build_element->exists(m 
a. useCaseView. userCentredRequirementsStructure. subject module = be. module_name and 
a. bEelementAEO. build_element->includes(m) and 
a. actor name = m. module_name and 
(be. interfacesTo. target->includes(m) or m. interfacesTo. target->includes(b)) ))) 

ii. Well-Formedness 
1. Constraint to ensure each interaction involves an Actor and a UseCase. 

Interaction invariant 
self. alllnstances->forall(i I 
(i. interactor 1. oclType = Actor and i. interactor 2. oclType = UseCase) or 
(i. interactor 1. oclType = UseCase and I. interactor_2. oclType = Actor)) 

2. Constraint to prevent 'dangling' use cases (i. e., those not attached to an interaction) -a similar 

constraint is defined for actors (see Appendix, A Part 1). 

UseCase invariant 
self. allinstances->forall(u I 
self. useCaseView. ucv_interaction->exists(i I 
i. interactor_1= u or i. interactor_2 = u)) 

3. Constraint to prevent a UseCase from including itself (a similar constraint is defined for «extends» - 

see Appendix A, Part 1). 

Includes invariant 
self. alllnstances->forall(i I i. includes_base <> i. includes_include) 

4. Constraint to ensure that at most one «includes» association exists between two use cases (see also 

Appendix A, Part 1 for a similar constraint over «extends»). 

Includes invariant 
self. alllnstances->forall(ii, i2 I 

not (it <> i2 and il. includes_base = i2. includes_base and ii. includes_ include = i2. includes_ include)) 

115 



User-Centred Requirements Structure 

S. Constraint ensuring two use cases cannot include each other; i. e. not 'use case a' «includes>> 'b' and 
`use case b' «includes» 'a' (again, see Appendix A, Part I for similar constraint over «extends»). 

Includes invariant 
self. alllnstances->forall(i1, i2 
not (ii. includes_include = i2. includes_ base and ii. includes-base = i2. includes_include)) 

6. Constraint to prevent cycles within «includes» associations (see Appendix A, Part 1 for a similar 

constraint over «extends»). 

First, we must define a rule to determine the transitive closure for «includes» associations. 

UseCase 
self. alllnstances->forall(u1, u2 I 
self. includes->exists(i1 I 
il. includes_base = u1 and ii. includes_include = u2) or 
self. alllnstances->exists(u3 I 
self. includes->exists (i2 I 
i2. includes_base = ui and i2. includes_include = u3 and u3. transitive_includes->includes(u2)))) 
implies 
ui. transitive_includes->includes(u2) 

This rule allows us to specify the following constraint. 

UseCase invariant 
self. alllnstances->forall(u I not (u. transitive_inciudes->inciudes(u))) 

7. Constraint to ensure use cases for two services are not identical. 

Service invariant 
self. alllnstances->forall(s1, s2 I 
not (Si <> s2 and 
Si . service use case->symmetricDifference(s2. service_use_case)->isEmpty)) 

8. Rule to ensure that all uses cases associated with a particular model are also also associated with 

the UseCaseView to which that model belongs (similar rules may be found in Appendix A, Part 1 

for actors, interactions, etc. ) 

UseCaseView 
self. alllnstances->forall(v I 
self. use_case_model. ucm_use_case->forall(u I 
v. use_case_model. ucm use_case->includes(u))) 
implies 
v. ucv_use_case->includes(u) 

9. Rule to ensure a UseCase appearing in more than one model reuses the original interaction details 

(see Appendix A, Part 1 for similar rules over other use case elements). 

UseCaseModel 
self. alllnstances->forall(m I 
self. useCaseView. ucv_interaction->forall (i I 
self. ucm_use_case->exists(u I 
m. ucm_use case->includes(u) and 

116 



Structuring Development Artifacts 

m. useCaseView. ucv_interaction->includes(i) and 
(i. interactor 1=u or i. interactor 2= u)))) 
implies 
m. ucm_interaction->includes(i) and 
m. ucm_actor->includes(i. interactor 1->select(oclType = Actor)->union(i. interactor 2->select(oclType = Actor))) 

4.3.3.3.3 O-Telos Base Classes for Use Case View Meta-model 
We implement base classes for UseCaseView and UseCaseModel (shown in figures 4.9,4.10 and 4.11) as 
follows: - 

Definition of Use Case Model Constituents 

Interactor in StructureElement, 
SimpleClass isA 
AerospaceEngineeringObject with 
constraint 
abstract_Int: $ forall t/Token 
s/SimpleClass 
(t in s) ==> not (t in Interactor) 

end 

Actor in StructureElement, SimpleClass 
isA Interactor with has-property 

actor_name : String 
end 

UseCase in StructureElement, SimpleClass 
isA Interactor with 
has-property 

use-case--name : String; 
sub_case : Bool 

has-structure 
pre_condition : 
MatraNaturalLanguageStructure; 
post_condition : 
MatraNaturalLanguageStructure 

has-transitive-part 
transitive-includes : UseCase; 
transitive_extended_by : UseCase 

end 

Interaction in StructureElement, 
SimpleClass isA 
AerospaceEngineeringObject with has-part 

interactor_1 : Interactor; 
interactor_2 : Interactor 

end 

Includes in StructureElement, SimpleClass 
isA AerospaceEngineeringObject with 
has-part 

includes-base : UseCase; 
includes-include : UseCase 

end 

Extends in StructureElement, SimpleClass 
isA AerospaceEngineeringObject with 
has_property 

extends_condition : String 
has-part 

extends_base : UseCase; 
extends_extend : UseCase 

end 

Definition of Use Case Model 

SimpleClass isA 
AerospaceEngineeringObject 
with 
has_property 

model_name : String; 
ucm_date: Date 

has_structure 
ucm_comments 

MatraNaturalLanguageStructure; 
ucm_pre_condition : 

MatraNaturalLanguageStructure; 
ucm_post_condition : 

MatraNaturalLanguageStructure 
has-element 

ucm_use_case : UseCase; 
ucm_actor : Actor; 
ucm_interaction : Interaction; 
ucm_includes Includes; 
ucm extends : Extends 

end 

Definition of (additional) Use Case View 
Constituent 

Service in StructureElement, SimpleClass 
isA AerospaceEngineeringObject with 
has-property 

service_name : string 
has_part 

service_use_case : UseCase 
end 

Definition of Use Case View 

UseCaseView in DevelopmentStructure, 
SimpleClass isA 
AerospaceEngineeringObject with 
has-property 

ucv_date : Date 
has-structure 

ucv_comments 
MatraNaturalLanguageStructure; 

ucv_pre_condition : 
MatraNaturalLanguageStructure; 

ucv_post_condition : 
MatraNaturalLanguageStructure; 

use_case_model : UseCaseModel 
has_element 

ucv_actor : Actor; 
ucv_use_case : UseCase; 
ucv_interaction : Interaction; 
ucv_includes Includes; 
ucv_extends : Extends; 
ucv_service : Service 

end 
UseCaseModel in DevelopmentStructure, 

4.3.3.4 Interaction View 
The Interaction View captures elements necessary to describe paths of events through use cases (from 

117 



User-Centred Requirements Structure 

the Use Case View) represented either in textual or Message Sequence Chart form. Once again, these 
elements are represented by a meta-model (4.3.3.4.1), OCL constraints (4.3.3.4.2) and O-Telos 
implementation of the base-classes (4.3.3.4.3). 

4.3.3.4.1 Interaction View Meta-model 
Interaction View (Interaction View) - an instantiation of the DevelopmentStructure meta-class, with date 

attribute (inv_date) and MNLS commenting facility - is essentially an aggregation of Interaction Models 
(Interaction Model). 

Each InteractionModel (likewise an instance of DevelopmentStructure composed of Structure Element types) 
describes a use case from the Use Case View (as indicated by the describes_use_case attribute which is 

verified using a constraint - see i. 1 in subsection 4.3.3.4.2). These descriptions take the form of 
scenarios (Scenario) whose varied involvement within an Interaction Model is evident from the 
rolenames inm_scenario, inm_included_scenario and inm_extension_scenario. Respectively, these denote 

paths through the use case being described, and paths through other use cases that are included in, or 
which extend the use case being described (via «includes» and «extends» associations). We also provide 
means of representing the different event types introduced in 4.3.3.1 - i. e., communication 
(Communication Event), internal action (InternalActionEvent) and timing (TimingEvent) - see figure 4.12. 

The remaining InteractionModel elements reflect our intent to provide a common underlying 
representation for textual Scenarios and Message Sequence Charts. These include constituent elements 
of events such as instance (Instance), message (Message), action (Action) and timer (Timer), as well 
message description (MessageDescription) and action description (ActionDescription) parameters alluded 
to in 4.3.3.1. Note that for optimisation reasons, all such elements have a multiplicity of one-to-many on 
the Interaction Model side. 

In addition, we include constructs for describing dual perspectives on the different event types based 

around these elements. That is textual and MSC representations of communication events 
(TsnCommunication and MscCommunication), internal action events (TsnAction and MscAction) and timing 

events (TsnTiming and MscTiming), as well as means to form dual scenario viewpoints 
(TsnSeenarioViewpoint and MscScenarioViewpoint) from these representations. We now consider elements 

and associations of the InteractionModel in more detail. 

From figure 4.13, it can be seen that Scenario contains the String attribute scenario-title and Boolean 

attribute is_exception. The latter merely identifies use case paths which, for whatever reason (be it user 
intervention or a system malfunction) fail to deliver their intended 'unit of work'. Reflexive aggregation 

associations on Scenario further describe relationships formed through «includes» and «extends», either 
directly (includes scenario and extended-by-scenario) or transitively (transitive_includes_scenario and 
(transitive_extended_by_scenario). 

Scenarios are aggregated to events over scenario_event, included_event and extension_event rolenames. 



Structuring Development Artifacts 

. "" E. nt(tl, v, m) 

M cmnwb 
ý"V^ Snuelun» 

MnsrsgionVkw 

0.. 1 t 1^v-dM. DM. 
«SVUCIUn El, nrnD> 

«Trw, MMy SVu tu- 
cýý 17 

1"" Comnunk tronEvsnl 
S Imlcormwlwcnbn 

ýn, r, dcn_Iyp,: Inbr, oOmTYW 

1. " Masýbn nwdN t «Slncwn EI. m. nb> 
1 

<A>vNapnrm Snuauiua 
Intn_tlmin0. trwnl 

TMn0Ev, m «Stuc8c Eft 
... Model Se, nsýio 0_" t_" 

ý. ,. no_IMM : Sling tr 
- 

InndN_n, rtý ... 

p_, wcpnan: Boo . Fain 
-J. Wd, d-w-. ft iN 

D, 
b 

S 

0... «Snumum El-n 
1. ' Yun_, wnrq Im, m, IMbnEv, m 

Yxn aGtlm_trvwM 

«S, ""- EWmw- 
nwa� ENn,. nba T, nScxurbVNnDaim 

1 

fý tl 1. ' P. " -St 

Mllin"t, nn" *n, l, nd_mm, : Str g 

w51nctun Ebm, nD. 1.. 
MwS--iDM*. P. " 

ym, l-, n"°-vynypM 1. " i. " «6tnetun El, m, ný> 
Muup, 

-Stn , t* . EI. -nb 7. "7 TmCamun 
knllýodmuik, lcn 1-. 0. " . <SIrvM, r, EI. n. nb 

M... g, D.. oIptkn 
In IL-P-d- ýpy, rrlMw: StmO 

c<Slructun EMrrrm» 0.. 
T-A. d. 

-LWILOetlon 0.. <dlncl 
ýElwnm» 

Imn. Jctlm #m-L- S1., 0 
I «, Ou Ewnm» 0. t T-Tk"q 

E"0 ýýn0 1_" <önuclu. EMnrm» 0°. 
hctlonpasniptlon 

Yuti, mian_du0 #, etcn p.. m, tx: SlrY, g 
«Snuclun EMm, m» 

M, eCpmunk, lbn 

#I * fl. r: 6tm0. 'wup, clyd' I.. t" 0... «Stnmwn EI-W- 
O. Ywh n4atkn: Syrw; hronU, tnn "-sW Tk- 
Nrpu. nry: Fr<pu«ey. -pwcAe" b"_m¢-eamm, dcYlen hnlOm, r ýtim, r num: SlrYp 
#d. 4Y"d: Bnol - F. I. 

«fitnklun El, m, rý> 
-SI m. E40-b> 0... 0_" TMrDw, tbn 

Imtiömr_dur, llan 

c<Slnmoýn El, m, nbs 0.. 
M. Tk, " 

wllme_IminO 

-S, 
Ec 

, Ebnrnn> p1 
umßnxq 

Yun_<v, n19aW 

Figure 4.12 - `UCRS - Interaction View : Elements' 

These respectively denote events defining a scenario, and events that define other scenarios related to it 

by «includes» or «extends» associations (the latter pairing being optional). Note also the one-to-many 

aggregate side multiplicity indicating that each event may belong to several scenarios. 

As previously indicated, each scenario is composed from Communication Event, InternalAction Event and 
liming Event types. It is convenient to generalise these as specialisations of an abstract Event class in 

order that associations such as follows from and transitve follows from (identifying preceding events and 

the transitive closure of preceding events, both of which are used to maintain sequence) may be defined 

once and inherited by its subtypes. 

Due to their (potential) many-to-many relationship with scenarios, each event may have several 

sequence numbers (SequenceNumber). If we take as an example, an event that closes a scenario - by for 

119 



Ii 

aý E 
5 
0 a) cc 
b 

yC 
U 

N 

ö 

aa 

d 
aýi CL 0 

4 

. r. 3 

Ö 

y 

a 

tin 
rn 

A 

E 

3 
ý w 

V0 V® v 
N 

Ö 

E I 

d 

l 

. 
NI 

g 

l 
N .k 

cc 
Cd tj 

Em 

z' gl 
IL 

, 
gg 

w 

yam IN 
0 E " 

Ö Ný; 

o 
,p_ 

c 
d 

N7 

C 
E 

_ ym 
W5 

ý 
y 

"r 
ýI 
V 

ii 
V 

y 

N 

LL C 
(uI 

Tg co - ° W ýy 

gg v 

5S d 
I I 

° 

I 

A 

NI ýj ý C . 
lall 5 

ybb ýC 

Ec 
m wW 
d rn 

E_ 
P 

N 
v v 

A 
w EE mc 

Wp 

2E 
!ÄE 
V 
V 

m 
a 

Kp 0 
EWm 
?Dö 
Wpd 

m2 
E0 

2 
(5 ci vo 

m 

A Ac 

N 
äýp 

NC 
W 

E 
E 

v 

v 
-7T 

E 

A 
c 
aý 
Ec 

W 'p 

N 
v v 

m 

N 
E 

O 

O 

rr 

ýO+ 
F-ý 
C. " 

d ti 

mcO 
WE 

TM 

"! 

1 y'If W4 

Aý c 

F 
c0 

ýp NC 
E 
W 

°) 
E pý "C 

' E 
12 E 2 mF -- 

H A 

~ v 
» 
v v 

E T 
ö '" E 

C' 

Y3 

C 
N 



Structuring Development Artifacts 

example displaying a message to a (receiver) instance; in the normal path, this event may have a 

sequence number of say '10'. However, with exceptions, for example where an Instance chooses to 

abort an operation, several intermediate events that precede it are potentially omitted, thereby lowering 

the sequence number of that event within those particular scenarios. An event may exhibit further 

sequence numbers arising from «includes» or «extends» participation in a scenario. To accommodate 

these eventualities, Event employs three rolenames in its associations with SequenceNumber, namely 

sequence_no, included_seq_no and extension seq_no. 

Note that the composition convention is used to express Event-to-SequenceNumber aggregation. But for 

our efforts to minimise event redundancy, the latter would be simply an attribute of the former. 

However to realise multiple sequence numbers and allow their association with Scenarios, 

SequenceNumber is promoted to a class (an instantiation of ArtifactProperty). We should explain that 

sequence numbers are related to scenarios in order to establish correct usage; while an event may have 

several sequence numbers, each sequence number may belong to only one scenario. Correct coupling of 

sequence numbers to scenarios is maintained using appropriate constraints (for which readers are 

referred to Appendix A, Part Two). 

Scenarios may also contain sequential combinations of (two or more) events known as event groups, 

(EventGroup). Aggregation is defined over event group, included_event_group and extension_event_group 

rolenames. Again these respectively denote event groups that define a scenario and those that define 

other scenarios related to it by «includes» or «extends» associations. 

In order to permit iteration, lower and upper bounds (LowerBound and UpperBound) may be stated for 

both events and event groups. Note both are modelled as classes (instantiations of ArtifactProperty) to 

permit shared use (again through composition) of a single definition. Having introduced these basic 

building blocks, we are in a position to describe in more detail the elements and associations of 

scenarios and events. 

Each scenario has a textual viewpoint (TsnViewpoint) and an MSC viewpoint (MscViewpoint) constructed 

from TsnCommunication, TsnAction and TsnTiming perspectives and MscCommunication, MscAction and 

MscTiming perspectives respectively (note the multiplicity allowing each perspective to be part of one or 

more viewpoints). We now describe the composition of each event type, thereby relating event 

perspectives to the constituent elements they share. However, before doing so, we introduce means to 

model the textual perspective on each which is essentially a specialisation of the MNLS from section 

4.2 known as the Scenario Event Natural Language Structure (SENLS). 

It can be seen from figure 4.14 that SENLS introduces specialisations of MatraNLSAtomicNode for key 

primitives of the Communication, Internal Action and Timing event types. Specifically, Message, Action, 

TimerDuration, Timer and Instance. Several rolenames reflect the diverse usage of Instance as a message 

sender or receiver (tsn_sender node and tsn_receiver node), a sender and receiver in the context of 

r 121 



User-Centred Requirements Structure 

internal actions (tsn_sdr_rcr_node) and finally in timer set, reset and time-out events (tsn_timer set_node, 
tsn_timer reset_node and tsn_host_on_timeoutnode); constraints (see exclusive-or conditions in figure 

4.14 and also the restrictions in Appendix A, Part 2) ensure correct combination of these primitives. 
Note that each primitive (other than TimerDuration which is event specific) potentially belongs to many 
SENLSs and is verified against the Product Data Synthesis (e. g., instances correspond to Modules, 

messages to InputOutput and actions to Functions - readers are referred to 4.3.3.4.2 for these rule 
definitions, in particular i(3), i(4) and i(5)). We now consider definition of CommunicationEvent types. 

<<Structure Element» 
MatraNLSAtomlcNode (abstract) 

I «Structure Element» 
Message 

®message_name : String 

<<Traceability Structure>> 
MatraNaturalLanguageStructure (MNLS) 

<<Traceability Structure>> 
ScenarioEventNaturalLanguageStructure (SENLS) 

I. 

<<Structure Element>> 
Action tsn_action_node 

Message (xor) 
®action_name : String __ -- - - -- Action (xor) 

Timer 

i 
i 

<<Structure element>> 
ti d t i TlmerDuration sn_ mer_ urat on 

. duration : Time g.; t - ýý - exists only when a timer 
has role tsn_time_seL 
node 

<<Structure Elemenb> 
Timer 

{n_timerJnstance_node 
1 

ptlmer_name : String 1 

1tsn_sender_node 

«Structure Element» 1 tsn_receiver_node 

Instance (xor) 1. ' 

String 1 tsn_sdr rcr_node 
(xor) 

1 tsn hosLon_timeout_node (xor) tsn_timer_seLnode (xor} tsn_timer_reseLnode 

Figure 4.14 -'Scenario Event Natural Language Structure (SENLS) : Elements' 

CommunicationEvent (figure 4.15) includes the property interaction-type (of type InteractionType, an 

instantiation of ArtifactProperty and specialisation of String restricted to IR, IP, SR and SP denoting the 

interactions discussed in 4.3.3.1). Textual and Message Sequence Chart perspectives are represented by 

TSnCommunication and MscCommunication respectively; recall that whichever is populated, the other can 

be derived through an implementation of the rules in 4.3.3.4.2, i. 6 (and Appendix A, Part 2). However 

readers are reminded of the need for user intervention in deriving prose representations of sequence 

chart events in order to produce meaningful and legitimate statements. 

1 

.j 

122 



Structuring Development Artifacts 

TsnCommunication is described by a Scenario Event Natural Language Structure, comprising sender and 
receiver Instance (over tsn_sender node and tsn_receiver node rolenames) and Message nodes. In the 
context of textual representations, each message may be assigned a message description 
(MessageDescription) parameter (as discussed in 4.3.3.1) using the tsn_msg parameter rolename. 14 

-Structure Element>> 
CommunicationEvent 

ointeraction_type : Interaction 

11 

<<Structure Elemenb> 
«Structure Element>> MscCommunication re El m 

"Iinltname : String . 'unspecihed' 
TanCommunication 

. synchronisation : Synchronisation . 'sim' 
ofrequency: Frequency. "aperiodic' 
. delayed : Bool . False 

communication_description 1 

<<Traceability Structure>> 
ScenarioEventNLS (SENLS) 

I... 
II1. " 

msc_sender_instance msc_rece ver_instance 

«Structure Element» I 

Instance tsn_sender_node 

#instance_name : String tsn_receHer_node 
1 

msc message II 
«Structure Element>> 

I ®message_name : String tsn_message_node 

msc_mag-parameter 

0.. 1 tsn_msg_parameter 

«Structure ElemenD> 

"msg. parameter : String 

Figure 4.15 -'Interaction Model - Communication Event : Elements and Associations' 

MscCommunication has the attributes link name (link name), synchronisation, frequency and delayed. Link 

name is of type String and allows nomination of a connection between the sender and receiver instances 

(which is checked against the PDS). However, given that UCRS is intended for use primarily during the 

requirements phase of a project, such information may be as yet undetermined; hence the default link 

name is 'unspecified'. Meanwhile, the frequency and synchronisation attributes (whose eponymous types 

are both instantiations of ArtifactProperty and specialisations of String) capture arrival patterns (with 

default 'aperiodic') and synchronisation patterns (default 'simplex') respectively's. Finally, the Boolean 

delayed attribute (default false) denotes a non-negligible pause in message transmission (relative to the 

overall dynamics of the target system). 

MscCommunication is aggregated to Instance (over msc_sender instance and msc receiver instance) and 

14 Note, for added flexibility we could have allowed the textual perspective of Message to have several different parameters - 
cotentially one for each SENLS it appears in. However, that would risk obscuring the original message and intended usage. 
s All case study examples featuring these properties (see section 6.2) are confined to default values. 

123 



User-Centred Requirements Structure 

Message elements - the same SENLS elements that describe TsnCommunication. As with textual 
descriptions, sequence diagram messages may also feature a MessageDescription parameter assigned 

using the mse_msg_paramater rolename. 

As figure 4.16 indicates, InternalActionEvent is modelled in similar fashion to CommunicationEvent with 

textual and Message Sequence Chart perspectives represented by TsnAction and MscAction respectively. 
TsnAction is also described by a Scenario Event Natural Language Structure, comprising a 

sender/receiver Instance (over rolename tsn_sdr rcr_node) and Action node. In the context of textual 

representations, actions may be assigned an action description (Action Description) parameter using the 

tsn_act paramater rolename. 

<<Structure Element» 
IntemelActionEvent 

11 

msc_action_event tsn_action event 
I11 

«Structure Element» «Structure Element» 
MscActlon TsnAction 

1. " 

1.. " 1 

action description 1 

«Traceability Structure» 
ScenanoEventNLS (SENLS) 

1. " 

1. " 

msc_edr rcr Instance 1 
I «Structure Element» 1 

Instance 

. Instance-name : String 1sn_edr_rcr node 

msc_system_action 

<<Structure Element» 
Action 

#adlon_name : String tsn_action_node 

msc_act_parameter 

0.1 tsn_act_parameter 

<<Structure Element» 
ActlonDescription 

0""1 *action-parameter: String 

Figure 4.16 - `Interaction Model - Internal Action Event : Elements and Associations' 

MscAction is aggregated to the Instance (over msc_sdr cr node) and Action elements of SENLS that 

describe TsnAction. Again, sequence diagram actions may be given an ActionDescription parameter 

through the mse_act paramater rolename. 

It can be seen from figure 4.17 that TimingEvent also follows the pattern of Communication Event and 

InternalAetionEvent such that textual perspectives are represented by TsnTiming and sequence chart 

perspectives by MscTiming. TsnTiming is likewise described as an SENLS, this time composed of an 

124 



Structuring Development Artifacts 

Instance element over tsn_timer set_node, tsn_timer reset node and tsn_host_on_timeout_node rolenames, 
denoting an initiator of timer set and reset events acting on some Timer element, with passive 
involvement in time-out events. 

«Structure Element» 
TimingEvent 

11 
msc_timing_event 

1 

icture Elemenb> 
MscTiming 

1 .' 
1 .' 

[xor} 
msc_hosLon timeouLinstance 

msc timer reset instance 

<<Structure Element» 
Instance 

®instance_name : Suing tsý hoset_ 
se-ti ýut_node 

tsn_tlmer_reset_node 
(Xor) 

1 <<Structure Element» 
Timer 

msc_timer instance Otimer name : String 

1. ' timer_duration 

1 <<Structure Element» 0�1 
Timer Duration 

msc_timer duration . duration : String tsn_timer_duration 

1.. 

Figure 4.17 -'Interaction Model - Timing Event : Elements and Associations' 

It should be noted that TimerDuration, an aggregation component of Timer serves a different purpose to 

the message and action descriptions in Communication Event and IntemalActionEvent. Rather than 

providing an optional and alternative means of presentation for the aggregate class (i. e., Message or 
Action), TimerDuration is a necessary element of timer set events (and only timer set events) which states 

the timing interval. Note also that each Timer potentially appears in several timer set events and as such 

has several durations. However, each duration is event specific and so belongs to the textual and 

sequence chart perspectives of only one timer set event. 

As with our previous event models, MscTiming is aggregated to the Instance (over msc_timer set_node, 

msc_timer reset_node and msc host on_timeout_node rolenames) and Timer elements of SENLS that 

describe TsnTiming, as it is to TimerDuration. 

4.3.3.4.2 OCL Constraints over Interaction View Meta-model 
Again, a number of constraints and rules over elements of the Interaction View have been defined. As 

with Use Case View, these are grouped on the basis of consistency and well-formedness. A selection of 

Ii 
<<Structure Element>> 

TsnTlmlng 

<<Traceability Structure>> 
ScenarioEventNLS (SENLS) 

125 



User-Centred Requirements Structure 

these are included below (while readers referred to Appendix A, Part Two for the remainder). 

Consistency 
1. Constraint to ensure a UseCase described in an InteractionModel exists in the UseCaseView. 

Interaction Model invariant 
self. allinstances->forall(i I 
self. interactionView. userCentredRequirementsStructure. useCaseView. ucv_use_case->exists(u I 
i. describes_usecase = u. use_case_name)) 

2. Constraint over Communication Events (textual perspective); ensures there exists an Interaction in 

UseCaseView with the use case nominated in Interaction Model. describesuse case as one of its 

interactors, such that sender and receiver in the event specification equate (not necessarily 

respectively) to the other end of this interaction and the subject module attribute of 

UserCentredRequirementsStructure. 

Communication Event invariant 
self. alllnstances->forall(c I 
self. interactionModel. interactionView. userCentredRequirementsStructure. useCaseVlew. ucv_use_case->exists(u 
self. interactionModel. interactionView. userCentredRequirementsStructure. useCaseView. ucv_interaction->exists(i 
c. interactionModel. describes_use_case = u. use_case_name and 
(i. interactor_2 =u and 
((c. tsn communication_event. tsn_sender node. instance_name = i. interactor 1. actor name and 
c. tsn communication_event. tsn_receiver node. instance_name = 
c. interactionModel. interactionView. userCentredRequirementsStructure. subject_module) or 
(c. tsn_communication_event. tsn_receiver_node. instance_name = i. interactor 1. actor name and 
c. tsn communication_event. tsn_sender_node. instance_name = 
c. interactionModel. interactionView. userCentredRequirementsStructure. subject module))) 
or 
(i. interactor_1= u and 
((c. tsn_communication_event. tsn_sender_node. instance_name = i. interactor 2. actor_name and 
c. tsn_communication event. tsn_receiver node. instance_name = 
c. interactionModel. interactionView. userCentredRequirementsStructure. subject_module) or 
(c. tsn_communication_event. tsn_receiver_node. instance_name = i. interactor 2. actor name and 
c. tsn_communication_event. tsn_sender_node. instance_name = 
c. interaction Model. interactionView. userCentredRequirementsStructure. subject module))) ))) 

3. Constraint (over textual perspective) to ensure PDS consistency of Communication Events. That is, 

the corresponding PDS sender module produces an external flow (corresponding to the event 

message) which is consumed by a function of the corresponding PDS receiver module; both sender 

and receiver modules interface with one another. Depending on how advanced the development is, 

this may be through some as yet unspecified means (using InterfacesTo), or via a mutual interface 

(using Interface), or else via their own respective interfaces adjoined by a Connection. 

Communication Event invariant 
self. alllnstances->forall(c I 
self. tsn_communication_event. communication_description. tsn_sender node. 
bEelementAEO. build_element->exists(bei I 
self. tsn_communication_event. communication_description. tsn_receiver_node. 
bEelementAEO. build_element->exists(be2 I 
self. tsn_communication event. communication_description. tsn_message_node. 

126 



Structuring Development Artifacts 

bEelementAEO. build_element->exists(f I 
c. tsn_communication_event. communication_description. tsn_ sender node. 
bEelementAEO. build_element->includes(bel) and 
c. tsn_communication_event. communication_description. tsn_receiver node. 
bEelementAEO. build_element->includes(be2) and 
c. tsn_communication_event. communication_description. tsn_message_node. 
bEelementAEO. build_element->includes(f) and 
bel. module_name = c. tsn_communication_event. communication description. tsn_sender node. instance_name 
and 
be2. module_name = c. tsn_communication_event. communication_description. tsn_receiver node. instance_name 
and 
f. flow_name = c. tsn_communication_event. communication_description. tsn_message_node. message_name and 
bel. encapsulates. target. producesExtemall0. target->includes(f) and 
be2. encapsulates. target. consumesExtemall0. target->includes(f) and 
(f. sentTo. target. connection. target. receivedFrom. source->includes(f) or 
f. sentTo. target. receivedFrom. source->includes(f)or 
bel. interfacesTo. target->includes(be2) or be2. interfacesTo. target->includes(bel) )))) ) 

4. Constraint (again expressed over the textual perspective) to ensure that actions are declared as 
functions in the PDS. Furthermore, each function describes the behaviour of a transaction 

corresponding to the use case nominated in InteractionModel. descr bes_use_case. 

IntemalActionEvent invariant 
self. alllnstances->forall(a I 
self. tsn_action_event. action_description. tsn_sdr rcrnode. bEelementAEO. build_element->exists(be I 
self. tsn_action_event. action_description. tsn_action_node. bEelementAEO. build_element->exists(f I 
self. tsn_action_event. action_description. tsn_sdr rcr node. bEelementAEO. build_element. 
behavesAccordingTo. target->exists(t I 
a. tsn_action_event. action_description. tsn_sdr rcr node. instance_name = be. module_name and 
a. tsn_action_event. action_description. tsn_action_node. action_name = f. function_name and 
a. interactionModel. describes_use_case = t. transaction_name and 
be. behavesAccordingTo. target->includes(t) and 
t. usesFunction. target->includes(f) )))) 

5. Constraint (also expressed over textual perspective) to ensure timers are defined as sub-modules of 

the target system in the PDS. 

TiminaEvent invariant 
self. alllnstances->forall(t 
self. tsn_timing_event. timing description. instance. bEelementAEO. build_element->exists(be1 I 
self. tsn_timing_event. tlming_description. tsn timer instance_node. bEelementAEO. bulld_element->exists(be2 
t. tsn_timing_event. timingdescription. instance. instance_name = bel. module_name and 
t. tsn_timing_event. timing_description. tsn timer instance_node. timername = be2. module_name and 
bel. hasSubmodule. target->includes(be2) ))) 

6. Rules to derive Message Sequence Chart event perspectives from textual representations. 

Communication Event 
self. alllnstances->forall(c I 
self. msc_communication_event->exists(m I 
c. tsn communication_event->notEmpty 
and 
c. msc_communication_event->includes(m))) 
implies 
m. msc_senderinstance->includes 

127 



User-Centred Requirements Structure 
.. 

(c. tsn_communication_event. communication_description. tsn_sender_node) and 
m. msc_receiver instance->includes 
(c. tsn_communication_event. communication_description. tsn_ receiver node) and 
m. msc_message-> includes(c. tsn_comm un ication_event. comunication_description. tsn_message_node) 

InternalActionEvent 
self. alllnstances->forall(a I 
self. msc_action_event->exists(m 
a. tsn_action_event->notEmpty 
and 
a. msc action_event->includes(m))) 
implies 
m. msc_sdr rcr instance->includes 
(a. tsn_action_event. action_description. tsn_sdr rcr_node) and 
m. msc_system_action->includes 
(a. tsn_action event. action_description. tsn_action_node) 

TimingEvent 
self. alllnstances->forall(t I 
self . msc timing event->exists(m 
t. tsn timing event->notEmpty 
and 
t. msc timing_event->includes(m))) 
implies 
m. msc_hoston_timeoutinstance->union(m. msctimer set_instance->union(m. ms(z_timer reset instance)) 
->includes 
(t. tsn_timing_event. timing_description. tsn host_on_timeoutnode->union 
(t. tsn timing_event. timing description. tsn_timer set_node->union 
(t. tsn_timing_event. timing_description. tsn_timer reset node))) and 
m. msc timer instance->includes(t. tsn_timing_event. timing_description. tsn_timer instance_node) and 
m. msc_timer_duration->includes(t. tsn_timing_event. timing_description. tsn_timer duration) 

ii. Well-Formedness 
1. Constraint enforcing uniqueness of Instance primitives throughout an InteractionView (Appendix A, 

Part 2 includes similar constraints over Message, Action and Timer). 

InteractionView Invariant 
self. alllnstances->forall(v I 
self. interaction_model. inm_instance->forall(i1, i2 I 
not( 
v. interaction_model. inm_instance->includes(il) and v. interaction_model. inm_instance->includes(i2) and i1 <> 12 
and 
ii. instance_name = i2. instance_name))) 

2. Constraint ensuring that each InteractionModel within an InteractionView describes a different UseCase. 

InteractionView invariant 
self. alllnstances->forall(v I 
self. interaction_model>forall(ml, m2 I 
not (v. interaction_model->includes(ml) and v. interaction_model->includes(m2) and 
ml <> m2 and ml. describes_use_case = m2. describes_use_case))) 

3. Constraint ensuring that 'included scenarios' are paths through different use cases (Appendix A, 

Part 2 includes a similar constraint for 'extended-by scenarios'). 



Structuring Development Artifacts 

Interaction Model invariant 
self. alllnstances->forall(ml, m2 I 
self. inm_scenario->forall (s 1, s2 I 
not (ml. inm_scenario->includes(s1) and m2. inm_scenario->includes(s2) and 
st. includes_scenario->includes(s2) and 
ml = m2))) 

4. Constraint to ensure that for two Interaction Models (ml, m2), where the UseCaseView contains an 

«includes» association in which the use case described in ml is the base of this association and the 

use case described in m2 is the included part, then at least one Scenario forming m2 should appear 

among the included scenarios of any Scenario in ml. Readers are referred to Appendix A, Part 2 for 

a similar constraint over «extends» associations. 

InteractionModel invariant 
self. alllnstances->forall(mi, m2 I 
self. interactionView. userCentredRequirementsStructure. useCaseView. ucv_includes-> 
not exists(i I 
ml. describes_use case = i. includes_base. use_case_name and 
m2. describes_use_case = i. includes_include. use_case_name and 
(m2. inm_scenario->intersection(ml. inm_scenario. includes_scenario)->isEmpty))) 

5. 'Style rule' that the first message in a Scenario is a Communication Event. This can be enforced by 

restricting sequence numbers. 

Event 
self. alllnstances->forall(e I 
self. sequence_no->forall(s 
self. included_seq_no->forall(i I 
self. extension_seq_no->forall(x I 
not(( 
(e. sequence_no-> includes(s) and s. sequence_no =1) or 
(e. included_seq_no->includes(i) and i. sequence_no =1) or 
(e. extension_seq_no->includes(x) and x. sequence_no = 1)) and e. oclType <> Communication Event) )))) 

6. 'Style rule' that the first message in a Scenario must be from an (actor) Instance to the target system 

and must not be an included or extension event; note the rule applies only to scenarios of use cases 

not designated as a sub-case. 

Scenario 
self. alllnstances->forall(s I 
self. scenario_event->union(self. included_event->union(self. extension_event)) 
->forall(c I 
self. interactionModel. interactionView. userCentredRequirementsStructure. useCaseView. ucv_use_case 
->forall(u I 
se If. scenario_event. sequenceý-no-> union (self. includecL-event. includeCL-seq-no-> union 
(self. extension_event. extension_seq_no))->intersection 
self. scn_seq_no->union(self. scn_included_seq_no->union(self. scn_extension_seq_no))->forall(n I 
not( 
s. interactionModel. interactionView. userCentredRequirementsStructure. useCaseView. ucv_use_case 
->includes(u) and 
u. use_case_name = s. interactionModel. describes_use_case and 
u. sub_case = False and 
((s. included_event->includes(c) and c. included_sec no->intersection(s. scn_included_seq-no)->includes(n) and 

129 



User-Centred Requirements Structure 

n. sequence_no =1) or 
(s. extension_event->includes(c) and c. extension_seq_no->intersection(s. scn_extension_seq_no)->includes(n) 
and n. sequence_no = 1) or 
(s. scenario_event->includes(c) and c. sequence_no->intersection(s. scn seq_no)->includes(n) and 
n. sequence_no =1 
and c. tsn_communication_event. communication_description. tsn_sender_node. instance_name = 
c. interactionModel. interactionView. userCentredRequirementsStructure. subject_module))) )))) 

4.3.3.4.3 O-Telos Base Classes for Interaction View Meta-model 
We implement base classes for the Interaction View (shown in figures 4.12 through 4.17) as follows: - 

Definition of interaction Model has_property 
Constituents interaction-type : InteractionType 

Scenario in StructureElement, SimpleClass 
isA AerospaceEngineeringObject with 
has-property 

scenario-title : String; 
is_exception : Bool; 
scn_seq no : SequenceNumber; 
scn, _included_seq_no : SequenceNumber; 
scn_extension_seq_no SequenceNumber 

has-part 
scenario-event : Event; 
included_event : Event; 
extension_event Event; 
includes-scenario : Scenario; 
extended-by-scenario : Scenario; 
event-group : EventGroup; 
included_event_group : EventGroup; 
extension_event_group EventGroup; 
tsn_viewpoint : TsnScenarioViewpoint; 
msc_viewpoint : MscScenarioViewpoint 

has-transitive-part 
transitive-includes-scenario 
Scenario; 
transitive-extended-by-scenario 
Scenario 

end 

TsnScenarioViewpoint in StructureElement, 
SimpleClass isA 
AerospaceEngineeringObject with has-part 

tsv_tsn_comm TsnCommunication; 
tsv_tsn_act : TsnAction; 
tsv_tsn-tim TsnTiming 

end 

MscScenarioViewpoint in StructureElement, 
SimpleClass isA 
AerospaceEngineeringObject with has-part 

msv_msc_comm MscCommunication; 
msv_msc_act MscAction; 
msv_msc_tim MscTiming 

end 

has-part 
tsn_communication_event 

TsnCommunication; 
msc_communication_event 

MscCommunication 
end 

TsnCommunication in StructureElement, 
SimpleClass isA 
AerospaceEngineeringObject with 
has_structure 

communication_description 
ScenarioEVentNaturalLanguageStructure 
end 

MscCommunication in StructureElement, 
SimpleClass isA 
AerospaceEngineeringObject with 
has-property 

link_name : String; 
synchronisation : Synchronisation; 
frequency : Frequency; 
delayed : Bool 

has-part 
msc_sender_instance : Instance; 
msc_receiver_instance : Instance; 
mscjnessage : Message 

end 

MessageDescription in StructureElement, 
SimpleClass isA 
AerospaceEngineeringobject with 
has-property 

msg parameter : String 
end 

InternalActionEvent in StructureElement, 
SimpleClass isA Event with 
has-part 

tsn_action_event TsnAction; 
msc_action_event MscAction 

end 

Event in StructureElement, SimpleClass 
isA AerospaceEngineeringobject with 
has_property 

sequence_no : SequenceNumber; 
included_seq_no : SequenceNumber; 
extension_seq_no : SequenceNumber; 
lwr_bd LowerBound; 
upr_bd : UpperBound 

has_part 
follows-from : Event 

has-transitive-part 
transitive-follows-from : Event 

constraint 
abstract_Evt: $forall t/Token 
s/SimpleClass 
(t in s) _=> not (t in Event) 

end 

CommunicationEvent in StructureElement, 
SimpleClass isA Event with 

TsnAction in StructureElement, 
SimpleClass isA 
AerospaceEngineeringobject with 
has-structure 

action_description 
ScenarioEventNaturalLanguageStructure 
end 

MscAction in StructureElement, 
SimpleClass isA 
AerospaceEngineeringObject with has part 

msc_sdr_rcr_instance : Instance; 

msc_system_action : Action 

end 

ActionDescription in StructureElement, 
SimpleClass isA 
AerospaceEngineeringObject with 
has-property 

action-parameter : String 

130 



Structuring Development Artifacts 

end 

TimingEvent in StructureElement, 
SimpleClass isA Event with 
has part 

tsn_timing_event : TsnTiming; 
msc_timing_event : MscTiming 

end 

TsnTiming in StructureElement, 
SimpleClass isA 
AerospaceEngineeringObject with 
has-structure 

timing-description 
ScenarioEventNaturalLanguageStructure 
end 

MscTiming in StructureElement, 
SimpleClass isA 
AerospaceEngineeringObject with has-part 

msc_timer_set_instance : Instance; 
msc_timer_reset_instance : Instance; 
msc_host_on_timeout_instance 

Instance; 
msc_timer_instance Timer; 
msc_timer_duration : TimerDuration 

end 

EventGroup in StructureElement, 
SimpleClass isA 
AerospaceEngineeringobject with 
has-property 

grp_lb : LowerBound; 
grp ub : UpperBound 

has-part 
group_event : Event 

end 

SequenceNumber in ArtifactProperty, 
SimpleClass with 
describe2Lby 

sequence_no : Integer 
end 

LowerBound in ArtifactProperty, 
SimpleClass with described_by 

lower_bound : String 
end 

UpperBound in ArtifactProperty, 
SimpleClass with described_by 

upper_bound : String 

end 

InteractionType in ArtifactProperty, 
SimpleClass isA String with 
constraint 

enum_Int: $forall i/InteractionType 
(i = SR') or (i = "SP') or ( i= 
"IR') or (i = "IP')$ 

end 

Synchronisation in ArtifactProperty, 
SimpleClass isA String with 
constraint 

enum. Syn: $forall s/Synchronisation 
(s = `sim') or (s = "syn') or (s = "ba1') 
or (s = `tim') or (s = asy')$ 
end 

Frequency in ArtifactProperty, 
SimpleClass isA String with 
constraint 

enum_Frq: $forall f/Frequency(f = 
"periodic') or (f = `aperiodic')$ 

end 

Definition of Interaction Model 

InteractionModel in DevelopmentStructure, 

SimpleClass isA 
AerospaceEngineeringObject with 
has_property 

model_name : String; 
describes_use_case : String; 
inn_date : Date 

has-structure 
inm_comments : 

MatraNaturalLanguageStructure 
has-element 

inm_scenario : Scenario; 
inm_included_scenario : Scenario; 
inm_extension_scenario Scenario; 
inm_event : Event; 
inm_communication_event 

CommunicationEvent; 
inm_action event : 

InternalActionEvent; 
inn_timing_event : TimingEvent; 
inm_tsn_viewpoint 

TsnScenarioViewpoint; 
inm_nsc_viewpoint : 

MscScenarioViewpoint; 
inm_tsn_communication 

TsnCommunication; 
inm_tsn_action : TsnAction; 
inm_tsn_timing : TsnTiming; 
inm_msc_communication 

MscCommunication; 
inmsc_action MscAction; 
inn msc_timing MscTiming; 
inn_event_group EventGroup; 
inm_instance Instance; 
inn message : Message; 
inm_nessage_desc : 

MessageDescription; 
inm_action : Action; 
inm_action_desc : ActionDescription; 
inm_timer : Timer; 
inm_timer_duration : TimerDuration 

end 

Definition of Interaction View 

InteractionView in DevelopmentStructure, 
SimpleClass isA 
AerospaceEngineeringcbject with 
has-property 

inv_date : Date 
has-structure 

inv_comments 
MatraNaturalLanguageStructure; 

interaction_nodel : InteractionModel 
end 

Definition of SENLS Constituents 

Message in StructureElement, SimpleClass 
isA MatraNLSAtomicNode with has-property 

message-name : String 
has-part 

tsnjnsg_parameter : 
MessageDescription; 

msc. jnsg parameter : 
MessageDescription 
end 

-- Message Description specified as part 

of Interaction Model 

Action in StructureElement, SimpleClass 
isA MatraNLSAtomicNode with has-property 

action-name : String 
has-part 

tsnact-parameter 
ActionDescription; 

msc_act_parameter : ActionDescription 
end 

131 



User-Centred Requirements Structure 

-- Action Description specified as part 
of Interaction Model 

TimerDuration in StructureElement, 
SimpleClass isA MatraNLSAtomicNode with 
has_property 

duration : String 
end 

Timer in StructureElement, SimpleClass 
isA MatraNLSAtomicNode with has-property 

timer_name : String 
has-part 

timer_duration : TimerDuration 
end 

Instance in StructureElement, SimpleClass 
isA MatraNLSAtomicNode with has-property 

instance name : String 

end 

Definition of SENLS 

ScenarioEventNaturalLanguageStructure in 
TraceabilityStructure, SimpleClass isA 
MatraNaturalLanguageStructure with 
has_element 

tsnjnessage_node : Message; 
tsn_action node : Action; 
tsn_timer_duration : TimerDuration; 
tsn_timer_instance__Xiode : Timer; 
tsn_sender_node : Instance; 
tsn_receiver_node Instance; 
tsn_sdr_rcr_node : Instance; 
tsn_host_on timeout ode : Instance; 
tsn_timer_set_node : Instance; 
tsn_timer_reset_node : Instance 

end 

4.3.4 Relationship to the Traceability Dimensions 
While the focus of this thesis is on developing meta-models for well-defined and flexible notations, we 
do nevertheless introduce a few examples of potential links between these models in order to 

demonstrate the Aerospace EngineeringAssociation concept from Chapter Three. 

The fact that UCRS integrates Use Case Models, Scenarios and Message Sequence Charts suggests a 

need for traceability within the structure itself. Hence in Chapter Six we illustrate some potential (intra- 

micro) horizontal associations between these notations using associations proposed in subsection 
3.3.6.3.2. For instance, we can assert that a particular scenario constitutes a 'path-through' a use case 

(in the sense of elaborating the use case description), and that the textual view of a scenario is 

`illustrated-by' its message sequence chart equivalent. 

Discussions with aerospace practitioners indicates that Use Case Modelling is often used in conjunction 

with Real-Time Networks, a design methodology considered in the next subsection. This in turn implies 

that (intra-micro) vertical traceability should exist between elements of the two notations, a point to 

which we return in subsection 4.4.4. 

Note the need for a thorough investigation into inter/intra, macro/micro and horizontal/vertical 

associations that can exist between all artifact types used in avionics systems engineering is identified as 

a future work item in 7.4.3. 

4.3.5 Summary 

The modelling of interactions between external entities and a target system is an important facet of 

requirements engineering in the aerospace industry. Use Case Models, together with Scenarios and their 

graphical representation as Message Sequence Charts afford established means of accomplishing this. 

Accordingly, they were chosen as representative requirements notations for the MATrA traceability 

framework. 

From discussions with practitioners and examination of actual commercial specifications, we developed 

a novel structure to allow integration of these notations. Rules and well-formedness constraints provide 

132 



Structuring Development Artifacts 

a light-weight semantics for the structure, allowing verification and traceability. In particular, existing 
literature on Scenarios allowed us to develop a semi-formal foundation (featuring a specialised MNLS 

from section 4.2) to what is the least formal of the three notations, but which retains the usability of 

prose representations. 

Chapter Six (section 6.2) demonstrates application of the User Centred Requirements Structure using a 

commercial specification for a sub-system of the Hawk lead-in fighter/trainer aircraft; a full evaluation 

of UCRS appears in Chapter Seven. 

133 



Real-Time Network Specification Language Structure (Graphical) 

4.4 Real-Time Network Specification Language Structure (Graphical), 

4.4.1 Introduction 
In this section we introduce a structure capturing the graphical syntax and `light-weight' formal 

semantics (i. e., with sufficient rigour for traceability purposes) for a Real-Time Network Specification 
Language (RTN-SL) currently being developed by the MBDA-UK business unit of BAE SYSTEMS. 

4.4.2 Motivation 
In Chapter One, we alluded to scale and complexity as common characteristics of avionics systems. A 

proven method for dealing with any complex system is to partition it into smaller independently 

operating subsystems which only interact with one another and with the system environment through 

explicitly defined communication connections. For computer based systems, this approach is known as 
the Real-Time Network (RTN) architecture in which concurrent processing components exchange 
information and synchronise through shared data in the connections 16. 

MASCOT (Modular Approach to Software, Construction, Operation and Test) is a design methodology 
based on the Real-Time Network concept (Simpson, 1986). It comprises a design language and 

graphical notation, together with a process for design derivation based on structural decomposition. 

This involves identification of computational components of a system (its subsystems and processes) 

and the interactions between these components (i. e., data-flow paths), as well as protocols that 

characterise these interactions. MASCOT-3 is advocated for the design of large concurrent or 
distributed, real-time embedded software systems and has been used extensively throughout the defence 

industry. 

DORIS (Simpson, 1994), the Data-Oriented Requirements Implementation Scheme is a variant of 
MASCOT-3 developed by MBDA-UK. The main difference is that DORIS distinguishes three levels of 
design abstraction, such that application network designs and execution network designs are specified 
in addition to the functional design. The former define the logical architecture of a system, whilst the 

latter extend the application network to include all additional components required to support 
distribution across a particular processor network. This enables flexible re-mapping of a design to the 

hardware platform as the hardware platform evolves (Paynter et al. 2000). DORIS also supports a 

wider-range of synchronous and asynchronous communication protocols appropriate to both shared- 

memory and message passing implementations (Simpson, 2000a-c). 

In this thesis, we focus on support for tracing designs represented using RTN-SL, a specification and 
design language (intended for integration into MASCOT-3 and DORIS) currently being developed by 

MBDA-UK for defining the behaviour of Real-Time Networks (Paynter, 2000). RTN-SL features both 

a formal textual and graphical syntax' 7; in concentrating on the latter" we note that the textual syntax 

16 For a comparison of methods for real-time systems development, readers are referred to Hull et aL (1991). 
tý The graphical syntax captures a subset of the textual syntax. 18 This is due to the fact that whilst the graphical syntax is stable, the formal textual syntax is continuing to evolve. 



Structuring Development Artifacts 

has been influenced by Spark-Ada (Barnes, 1996) and that the same approach used in subsection 4.5 to 

develop a traceability meta-model for this language can be similarly applied to produce a comparable 

structure for the RTN-SL textual syntax (we briefly return to this issue in 4.4.3). The following 

subsection provides an overview of the RTN-SL and its graphical notation in particular. 

4.4.2.1 RTN-SL Overview 

RTN-SL is used to define flat Real-Time Networks, including the real-time and functional behaviour of 

their activities. A flat RTN comprises a set of activities (single-threaded processes) connected into a 

network by ports that interface with communication paths. Between each activity is an 

intercommunication data area (IDA) which defines the interaction protocol used on that path. Activities 

may not he directly connected together, but instead must communicate via an IDA (Paynter, 2000). 

RTN-SL supports five protocols, namely pool, channel, signal, stimulus and dataless channel; the three 

basic protocols are the pool (similar to a shared variable), channel (a bounded buffer) and signal (a 

one-place over-writing buffer). These impose different synchronisation constraints on the reader and 

writer of the protocol depending on whether they allow data to be destroyed when it is read or written 

(see table 4.2 for a summary). The other two RTN-SL protocols, namely stimulus and dntaless channel 

are variants of' signal and channel respectively; they differ in that both allow communication of' void 

(null) data. 

" Non-destructive reading of data 

" Reader cannot be delayed 
" Destructive reading of data 
" Reader can be delayed 

Destructive writing of data 
" Writer cannot be delayed 

Pool Signal (Stimulus inset) 

Non-destructive writing of data 
" Writer can be delayed 

Channel (Dataless Channel inset 

Table 4.2 - 'IDA Communication Protocols' 

Abstract data types (ADTs) may be defined to support definition of a flat Real-Time Network. These 

are necessary when a data type must he visible in more than one activity and/or IDA, where one activity 

communicates data to another which is not a built-in type (Paynter, 2000). 

Conceptually, the RTN-SL includes a sub-language known as Activity Description Language (ADL) for 

defining the behaviour of activities. In turn, the ADL includes a timed state-machine notation sub- 

135 



Real-Time Network Specification Language Structure (Graphical) 

language termed the Activity State-Machine (ASM) 19 which is used to define the structure and timing 

constraints of an activity's algorithm. 

ASM distinguishes between static and dynamic states; static states model potential blocking-points of 
an algorithm where an activity is either attempting to communicate using a synchronous protocol, or is 

engaged in a timed delay. Transitions from a static state are labelled either with the event indicating that 
the communication may continue or finish, or with the lower and upper bonds of the time delay 

(Paynter, 2000). 

Dynamic states model an activity's computation, each one encapsulating some non-reactive 
functionality. They have a best-case execution time (BCET) bound, a worst-case execution time 
(WCET) bound and worst-case response time (WCRT) bound; an optional worst-case response time on 

read may also be recorded. An activity is normally required to exit a state within these times20. 
Transitions from a dynamic state are labelled with conditions over the local activity's state which are 

evaluated when a dynamic state terminates (Paynter, 2000). A composite dynamic state comprises 

several dynamic states whose operations may execute in any order. 

4.4.2.2 RTN-SL Graphical Syntax 
To aid comprehension, RTN-SL has a graphical syntax which we term RTN-SLg and which builds 

upon the graphical syntax of MASCOT (Simpson, 1986). Activities are represented as circles; IDAs by 

the appropriate symbol from table 4.2 (which is enclosed within a rectangle where the IDA is defined 

and hence named); ADTs by diamonds; communication paths by solid arcs with arrows indicating the 
direction of data-flow; and ADT imports by dotted lines with arrows pointing towards the importing 

unit. Ports are represented by solid circles on the perimeter of activities and the state machine drawn 

within the activity circle. 

Static ASM states are represented by an ellipse and dynamic states as a rectangle. Where an input or 

output is associated with a dynamic state, then the appropriate port name is shown in the top left hand 

and right hand corners of the rectangle respectively. Labels in the bottom left and right hand corners 
indicate BCET, WCET and WCRT; the optional WCRT on read is shown in a box next to the input 

port name. The dynamic state graphical syntax is summarised in figure 4.18. 

Input Port Name Optional WCRT Output Port Name 
on Read 

Dynamic State Name 
BCET WCRT 
(Lower Bound) WCET (Upper Bound) 

Figure 4.18 - `ASM Dynamic State Graphical Syntax' 

19 Strictly, the ADL (including ASM) and RTN-SL are a single language. 
20 A discussion on the conditions necessary for this to occur is beyond the scope of this thesis. 



Structuring Development Artifacts 

Composite dynamic states are depicted by partitioning a dynamic state using dotted lines. Each 

constituent state may have its own input and output port, although one set of time bounds applies to the 

whole state. An example composite comprising three dynamic sub-states is shown in figure 4.19. 

P1 P3 P4 P5 
State l State2 State3 

L1 I U1 U2 

Figure 4.19 - `ASM Graphical Syntax for Composite Dynamic States' 

Transitions between states are depicted by directed arcs pointing from the source to the target state. 

Conditions, events and time-outs are shown as textual labels adjacent to the appropriate transition. The 

initial state is shown by being the target of a transition with no source. 

adt2 

A 

Wp4 

P3 Ul 
E 

B 
1] 1 U2 U3 

C CZ 
C3 

A2 

Al 
idal 

cýIt2] 
D 

P4 

Pl nJ3 L2 1U4 US 

\/adtl 

Figure 4.20 - `Example RTN-SLg Specification' (source Paynter, 2000) 

Figure 4.20 illustrates the main constituents of an RTN-SLg specification as described above. Activity 

A2 includes three static states, A (also the initial state), C and E, together with two dynamic states, B 

and D. When the activity is in state A and a void data value is present in the stimulus connected to port 

2 (P2), then event Sp2 occurs and the activity moves to state B which reads from the pool on port 3 (P3) 

within a finish time of U1. The computation (not shown") associated with state B is executed and takes 

between L1 and U2 time units, although interruptions from the scheduling of other activities may 

prolong this to U3; conditions C1 and C2 are then evaluated. A transition with a true condition is taken 

and either state C or D is entered. Assuming state C, the activity is de-scheduled for between t1 and t2 

21 Computations are represented solely by the RTN-SL textual syntax. 

137 



Real-Time Network Specification Language Structure (Graphical) 

time units whereupon state D is entered. The algorithm associated with state D (again not shown) is 

executed between its time bounds (as for state B) and a value written to the channel linked to port 4 
(P4). On evaluation of condition C3 to true, the activity enters and waits in state E until the Ws event 
occurs22 whereupon it returns to the initial state (A). Activity Al executes concurrently with A2, 

communicating with it via IDA idal. ADT adtl is used in the definition of Al, A2 and idal; ADT adt2 
is used in the definition of adt3, which in turn is used in the definition of A2. 

4.4.3 Tracing Real-Time Network Specifications in MATrA: An RTN-SLg Model 

In this subsection, we introduce a meta-model to support traceability of designs specified using the 
RTN-SLg notation, thereby allowing integration of Real-Time Networks into the MATrA framework. 

The fact that RTN-SLg has a corresponding textual language leads to two options for constructing the 

meta-model: - 

1. Employ an identical process to that used for the Use Case and Message Sequence Chart notations 
in subsection 4.3; i. e., examine components of the graphical notation, along with any well- 
formedness constraints restricting how these components are connected together; the resultant 

model is then verified against the textual language subset. Note that if like its textual counterpart 

the RTN-SLg syntax was also formally defined, perhaps using node-labelled graphs (cf. Paynter 

1995) or a similarly rich language, then production of the meta-model would be more 

straightforward and the result more rigorous. 

2. Examine the textual language subset that corresponds to the graphical notation; this would involve 

constructing schemas for each syntactic language element (BNF category) of the subset. It also 

assumes a function exists based on a mapping between the graphical and textual syntax that 

translates an RTN-SLg specification to an RTN-SL textual specification; tool2matra would then 

operate over the latter. 

Application of both these options should result in two isomorphic models that while potentially 
different in their labelling of classes and associations, share the same structure. In this subsection we 

pursue option one, with option two applied after developing an approach for textual languages in 

subsection 4.5. 

4.4.3.1 Concepts 
In developing a meta-model to support traceability of RTN-SLg specifications, we have sought to 

capture the complete graphical syntax described in subsection 4.4.2.2. The model therefore contains 

representations of ADTs, IDAs, Ports and Activities, together with ASMs comprising static, dynamic 

and composite dynamic states. 

There are numerous well-formedness constraints needed to ensure an RTN-SLg specification is 

22 This will be instantaneous if there is a space in the channel. 

138 



Structuring Development Artifacts 

internally consistent. In this thesis we confine our interest to the principal restrictions expressed in 
Paynter (1995) and Paynter (2000). 

4.4.3.2 RTN-SLg Meta-model Definitions 
In this subsection, we introduce the RTN-SLg meta-model (4.4.3.2.1) which is again specified using the 
Class Diagram view of UML. We also introduce constraints over the model expressed in OCL 
(4.4.3.2.2), together with an implementation of its base classes in the O-Telos language (4.4.3.2.3). 

4.4.3.2.1 RTN-SLg Meta-model 
Figures 4.21 (elements) and 4.22 (associations) depict the UML meta-model for RTN-SLg. Its core 
class (RTN-SLg), with subject module (subject-module) and other configuration attributes (plus MNLS 

commenting facility) is an instantiation of the DevelopmentStructure meta-class. RTN-SLg is further 
defined as an aggregation of StructureElement meta-classes representing both RTN and ASM primitives. 

Firstly, we consider those elements necessary to represent real-time networks, namely activity (Activity), 

abstract data type (Adt), IDA (Ida) and port (Port) entities, together with definitions (ConnectionDef) of 
network paths linking IDAs and activity ports. 

Ida and Activity are both subtypes of the abstract component class (Component) reflecting the fact that 
RTN aspects of our model are grounded on work towards the formal characterisation of MASCOT in 

Paynter (1995)23. This influence is further evident in the (derived) reflexive associations on Component 

to record predecessor (predecessor) and successor (successor), together with further associations 

capturing their respective transitive closure elements (all-predecessors and alI_successors)24. Our use of 
the ocilype operation also mirrors that of the function Node_Type in Paynter (ibid. )u 

Activity, Port, Ida and Adt carry (unique) name attributes for the purpose of meaningful identification and 
cross-verification with Product Data Synthesis elements26; the same label (name) is used across all of 
these classes as per the RTN-SL textual syntax. Ida also features a protocol kind (kind) attribute and an 
aggregation defining imported Adts (with_adt). Adt itself includes reflexive associations to identify 

imported `with' abstract data types (also labelled with_adt), along with the transitive closure of imported 

'with' (with_all). A ConnectionDef is formed from an aggregation of a Port and an Ida, the latter over an 

exclusive-or association denoting the direction of data flow from (from ida) xor to (to_ida) an Ida. 

The Activity class meanwhile is an aggregation of ports, "with-ed" Adts (again, with_adt) and a state 

machine (StateMachine) which in turn has a number of state definitions (identified through the rolename 

state_def), with subtypes static state (StaticState), dynamic state (DynamicState) and composite dynamic 

23 MASCOT designs are defined as directed-graphs: - MASCOT_DESIGNS:: NODES: COMPONENTS; ARCS: COMPONENTS x COMPONENTS. 
u Paynter (ibid. ) uses the functions Predecessors : COMPONENTS -a COMPONENTS-set and Successors: COMPONENTS -º COMPONENTS- 
set, which operate over MASCOT DESIGNS and return the set of all predecessors and set of all successors respectively; 
appropriate rules in subsection 4.4.3.2.2 (i) derive corresponding elements for our meta-model. 

Node Type : COMPONENTS -4 (IDA, ACTIVITY} is a (total) function which returns the type of a node (i. e., IDA or Activity); this is 
similar to the ociType operation (from subsection 2.2.2.2.9) which evaluates to the type of an object. 26 See OCL constraints in parts iii and iv(l) of subsection 4.4.3.2.2. 

139 



Real-Time Network Specification Language Structure (Graphical) 

c<Development Structure>> 
RTN-SL I 

#modelsame : String 
"subjectmodule : String 
#rtn_date : Date 

<<Structure Element» 
Adt 

[Ln= 

#oame: String 0. " 

<<Structure Element» 
Ida - 

*kind : Protocol 0... 

<<Structure Element>> 
Port rtn 

"name: String Z. ' 

<<Structure Element» 
Activity -i. 

<<Structure Element» 
rti ConnectionDef 
0. " 

<<Structure Element» 
StaticSta t - e 

. name : Stnng 0 .' 

<<Structure Element» 
D namicState -- 

name : String 0. 

<cStructure Elemenb> 
Composite l)ynamic 

t_i 

0. ' 

<<Structure Element» Inn 
StaticTransition 

li- 0. ' 

I 

I 

I 

1 

r 

nRd "Structure Element» 
WCRTonRd 

0. ' . finish : String 

del `<Structure Element» 
LocalOpDef 

0.1. 

f even 
<<Structure Element>> 

- Event 
0- type : 

mposite_dynamic_state 
. event_ EventTyp 

ý 

«Structure Element-> 
rtn_timin transftion_def Timin TransitionDef 

0°- "Ib_ub : Stnng 

atic transition 1 

rtn_state_machine «Structure Elemen 
StateMachint 

1. ' 

Figure 4.21 - `RTN-SLg Structure : Elements' 

its «Traceability Structure» 
MatraNLS 

0.. 1 

i-dynamic «Structure Element» 
D amicTransition 

0. " #on : String 

<<Structure Element>> 
Tmin 

rtn_timin det met : String 
0 Owcet : String 

. wcrt: String 

rin-writes-to-clause «Structure Element» 
WritesToClause 

0... 

clause «SWcture Element» 
reads rom _ _ ReadsFromClause 

0. ' 

140 



Structuring Development Artifacts 

eS *i. EIrnsr* 
ComecbnDaf 

L" 

voll sojwodocom" 
Pon 1&. ol$ 0. " 

Pon I 
Sbucfw" Flenn ,, . d3r ck" E1. nwn '. Port C-PW-t (ý mv-A 

1 I^v^ý: Stmv Pm « : Strrp 

1_" Pon 

1 
«Stucln E4nrt» 

kY 
0. " 

iaM_mmd*.. 1 
I «Slr t Elemsp> 

summ 

/ r« 

.. Sauaa ekmert 
Ida 

#wm : ßor«a ID-Id. 

0_" 

0-1 W"Lad 
-Swtc wE> 

a" WaLso 'ýM'-" #"""' : S°"p Noma 

0 

aste-del 1_" 

ocStuck" EMmsbs 
store (abewwo 

to pos$_ 1 

1 

° 
-" "I" ElsnsiD> d yrm 

ft" 
*PAM S"v 

ý tf 

perk-" ngboR. Ad (L. 1 *rArric_n n$*Dn del 
0-" «SYWn Elwýrb> -Svwkn EMmxD> 

StaIcTrris on D rwrieTmuhm 
*on: SDm9 

c<S4ucGrs Elamsb> >I «Stýcýn. Elsnýrb> 
Evsn1 ýapPON 

1°V UYW : EveWyps 

I«, brau Pmpwt 
n ho ww atsma. 
aal Imd : 0001 

Me EI nest 1 
qSWC 

Ming-de o.. 1 
«Srucn, n Ekwno t 

Tm6p t 
&bcal : Stmg 
0.0m: S"v ml-del 
. wcrt : Strirp 

«Stn t. Elemer ., 11 TimingTroroMmDef 

ub: Strng MMnC-YriNnlde&*M 0_1 msdt_Mn wteS_b 0.. 1 

-SWUCK n EMmr1D> -S*wW Ebm 
s NsýýFlmCWN WritesToCauaý 

t g_" 

0" 

Figure 4.22. `RTN-SLg Structure : Associations' 

141 



Real-Time Network Specification Language Structure (Graphical) 

(CompositeDynamic). The state class (State) itself is abstract, with a composition aggregation to initial 

status (InitialStatus) containing an attribute initial (initial) of type Bool. Prima facie, InitialStatus can be 

encapsulated as an attribute of State; however, we promote it to a class to enable its suppression on 
dynamic states that form a CompositeDynamic27. 

A StaticState has a unique name (name) attribute with a static transition definition (rolename 

static transition_def) defined by the class StaticTransition which goes to (goes to) a target State. Situations 

in which the transition is enabled may be either events (Event) of type (event type) read, write or stim to 

a particular Port, exclusive-or, a timing definition (TimingTransitionDef) with upper and lower bounds 

(denoted by the attribute Ib_ub). 

A DynamicState also has a unique name (name) attribute, together with a dynamic transition definition 

(rolename dynamic_transition_def) defined by the class DynamicTransition which again goes to (goes_to) a 

target State on the specified condition holding (denoted by the on attribute). DynamicState is also an 

aggregation of timing (Timing) and local operation definitions (LocalOpDef). The former is described in 

terms of timing attributes for best-case execution time (bcet) bound, worst-case execution time (wcet) 

bound and worst-case response time (wert) bound, whilst the latter comprises definitions of the mapping 

of input (ReadsFromClause) and output (WritesToClause) parameters from and to the appropriate ports. 

The WCRTonRd class (with attribute finish) aggregated to ReadsFromClause (using the rolename by) 

supports optional definition of a worst case read time bound. 

Finally, a CompositeDynamic state is described in terms of (two or more) dynamic states, together with 

dynamic transitions and a timing definition; again a constraint28 ensures suppression of these 

characteristics for individual dynamic states such that their definitions apply to the whole 
CompositeDynamic. 

4.4.3.2.2 OCL Constraints 
In this subsection, we express the following types of constraint over the RTN-SLg meta-model: - 

" Well-formedness of Real-Time Network elements; 
" Well-formedness of Activity State Machine elements; 

" Verification of RTN-SLg elements against the Product Data Synthesis; 

" Other structural and consistency constraints attributable to modelling decisions. 

I. Well-formed Real-Time Networks 
The constraints below apply to Real-Time Network elements of the RTN-SLg meta-model; i. e., 

activities, ports and IDAs. They are based on rules for a well-formed MASCOT subset (Paynter, 1995) 

which (as indicated in 4.4.3.2.1) views RTNs as labelled directed graphs and describes relationships 

among activities and IDAs (i. e., nodes) in terms of their predecessors and successors. 

27 See OCL constraint iv(2) in subsection 4.4.3.2.2. 
2$ See OCL constraint iv(3) in subsection 4.4.3.2.2. 



Structuring Development Artifacts 

" Immediate predecessor and successor are populated using the following deductive axioms: - 

Activi 
self. alllnstances->forall(a I 
self. port. connectionDef->forall(c I 
c. port. activity->includes(a) and c. from_ida->size =1)) 
implies 
a. predecessor->includes(c. from_ida) 

Activi 
self. alllnstances->forall(a I 
self. port. connectionDef->forall(c I 
c. port. activity->includes(a) and c. to_ida->size =1)) 
implies 
a. successor->includes(c. to_ida) 

Ida 
self. alllnstances->forall(i I 
self. connectionDef->foralf(c I 
c. to_ida->includes(i))) 
implies 
i. predecessor->includes(c. port. activity) 

Ida 
self. alllnstances->forall(i 
self. connectionDef->forall(c I 
c. from_ida->includes(i))) 
implies 
i. successor->includes(c. port. activity) 

" Similarly, the following rules - this time expressed over the abstract Component class (and by 

implication of using the allinstances operation, its Activity and Ida subtypes) - determine 

all-predecessors and all successors. These will be used in specifying several of the invariants that 
follow: - 

Component 
self. alllnstances->forall(cl, c21 
cl. predecessor->includes(c2) or 
self. alllnstances->exists(c' I 
cl. predecessor->includes(c') and c'. allpredecessors->includes(c2))) 
implies 
cl. allpredecessors->includes(c2) 

Component 
self. alllnstances->forall(cl, c21 
cl. successor->includes(c2) or 
self. alllnstances->exists(c' I 
cl. successor->includes(c') and c'. all successors->includes(c2))) 
implies 
cl. all_successors->includes(c2) 

Well-formedness Constraints for Real-Time Networks 
We are now in a position to define a subset of well-formedness constraints applicable to valid Real- 

Time Networks: - 

143 



Real-Time Network Specification Language Structure (Graphical) 

1. Each Component is connected to another Component. 

This constraint is captured by the RTN-SLg class diagram and its multiplicity semantics. 

2. Every connection path must connect to a Port at one end and to an Ida at the other, a standard 
MASCOT restriction on direct activity to activity communication. 

This constraint is also captured by the multiplicity semantics of the RTN-SLg class diagram. 

3. All design components (i. e., activities and IDAs) with no 'predecessors' are of type Ida; these are 

termed input IDAs and reflect their use in modelling protocols of the hardware/software interface. 

Component invariant 
self. alllnstances->forall(c I not(c. allpredecessors->size =0 and c. oclType <> Ida)) 

4. Similarly, all design components with no 'successors' are of type Ida (termed output IDAs). 

Component Invariant 
self. allinstances->forall(c I 
not(c. alLsuccessors->size =0 and c. oclType <> Ida)) 

5. Every design component is connected by a path to an input Ida; i. e., no (cyclic) part of a design is 

not connected to an input device and therefore independent of all inputs. 

Component invariant 
self. allinstances->forall(c I 
self. alIInstances->exists(c' I 
c. aII_predecessors->includes(c') and c'. allpredecessors->size= 0 and c'. oclType = Ida)) 

6. Similarly, every design component is connected by a path to an output Ida; i. e., no (cyclic) part of a 

design is not connected to an output device and therefore excluded from contributing to system 

output (with the result that any computations are wasted). 

Component invariant 
self. aillnstances->forall(c I 
self. alllnstances->exists(c' I 

c. all successors->inciudes(c') and c'. aII_successors->size= 0 and c'. oclType = Ida)) 

7. An Ida may only connect to more than one writing activity if it does not have a pool protocol and it 

is not an output interface Ida. 

ConnectionDef invariant 
self. alllnstances->forall(cl, c2 I 
self. to_ida->forall(i I 
not(cl <> c2 and cl. port. activity <> c2. port. activity and 
cl. to_ida->includes(i) and c2. to_ida->includes(i) and (i. allsuccessors->size =0 or i. kind = "pool")))) 

8. An Ida may only connect to more than one reading Activity if it has a pool protocol. 

144 



Structuring Development Artifacts 

ConnectionDef invariant 
self. alllnstances->forall(c1, c2 I 
self. from_ida->forall(i I not(cl <> c2 and cl. port. activity <> c2. port. activity 
cl. from_ida->includes(i) and c2. from_ida->includes(i) and i. kind <> 'pool"))) 

ii. Well-formed Activity State Machines 
The following well-formedness constraints apply to activity state machine elements of the RTN-SLg 

meta-model and are based on the principal restrictions set out in (Paynter, 2000): - 

1. A DynamicState may only read from ports that are connected to data-flows into an Activity (a) - i. e., 
from an Ida - and write to ports connected to data flows from an Activity (b) - i. e., to an Ida. 

a) 
DynamicState invariant 
self. alllnstances->forall(d I 
self. local_op_def. reads_from. port->not exists (p I 
d. Iocal_op_def. reads_from. port->includes(p) and p. connectionDef. to_ida->size <> 0)) 

b) 
DynamicState invariant 
self. alllnstances->forall(d I 
self. local_op_def. writes_to. port->not exists (p I 
d. Iocal_op_def. writes_to. port->includes(p) and p. connectionDef. from ida->size <> 0)) 

2. Three kinds of event labels may annotate transitions from static states, namely "S" (stim), "W" 

(write) and "R" (read) events. Any Port associated with an "S" event must be connected to a data- 

flow with a void protocol. 

StaticTransition invariant 
self. alllnstances->forall(t 
not(t. event. eventtype = "S" and (t. event. port. connectionDef. from_ida. kind = "pool" or 
t. event. port. connectionDef. from_ida. kind = "channel" or 
t. event. port. connectionDef. from_ida. kind = "signall"))) 

3. No Port with a void data flow may be read by any DynamicState as there can be no data to read. 

DvnamicState invariant 
self. alllnstances->forall(d I 
not(d. local op_def. reads_from. port. connectionDef. from_ida. kind = "stimulus" or 
d. Iocal_op_def. reads_from. port. connectionDef. from_ida. kind ='dataless")) 

4. A transition labelled with an "R" event must terminate at a DynamicState which reads from the same 
Port. 

StaticTransition invariant 
self. afllnstances->forall(t I 
not(t. event. event_type = "R" and t. event. port <> t. goes to. Iocal op_def. reads_from. port)) 

S. If a DynamicState reads from a holding protocol (signal or channel), each transition into it must 

originate from a StaticState, thereby modelling the wait for data. 

145 



Real-Time Network Specification Language Structure (Graphical) 

DvnamicState invariant 
self. alllnstances->forall(dl, d2 
not (dl. dynamic_transition_def. goes_to->includes(d2) and 
(d2. local op_def. reads_from. port. connectionDef. from_ida. kind = "channel" or 
d2. locai_op_def. reads_from. port. connectionDef. from_ida. kind = "signal))) 

6. No DynamicState which reads from a holding protocol may be the initial state. 

DvnamicState invariant 
self. alllnstances->forall(d I 
not((d. Iocal_op_def. reads_from. port. connectionDef. from_ida. kind = "signal" or 
d. Iocal_op_def. reads_from. port. connectionDef. from_ida. kind = "channel") and 
d. initial statusinitial = True)) 

7. Event labels on transitions from static states are different. 

StaticTransition Invariant 
self. alllnstances->forall(t1, t2 I 
not(tl <> t2 and ti. event_type = t2. event_type and 
tl. event. port = t2. event. port)) 

8. A DynamicState which writes to a Port with a channel protocol must be followed by a StaticState 

which is itself the source of a transition with a "W' (write event) associated with the same Port. This 

captures the possibility of de-scheduling should the channel be full. 

DynamicState invariant 
self. alllnstances->select(self. local op_def. writes to. port. connectionDef. to_ida. kind = "channel")->forall(d I 
self. dynamic transition_def. goes_to->exists(s I 
d. dynamic_transition_def. goes_to->includes(s) and 
s. oclType = StaticState and 
s. static_transition_def. event->size =1 and 
s. static transition_def. event. event_type = "VN" and 
s. static_transition_def. event. port = d. Iocal_op_def. writes_to. port)) 

9. The aggregated states in a CompositeDynamicState may neither write to a Port associated with a 

channel protocol, nor read from one associated with anything other than a pool. This is due to the 

need to model synchronisation points by explicit static states. 

ComrositeDynamic invariant 
self. alllnstances->forall(c I 
self. dynamic_state->forall(d I 
not(c. dynamic_state->includes(d) and 
(d. local_op_def. reads from. port. connectionDef. from ida. kind <> "pool" or 
d. Iocal op_def. writes_to. port. connectionDef. to_ida. kind = "channel")))) 

10. A StaticState may have at most one exit transition. This is handled through a multiplicity constraint, 

but can also be stated in OCL as follows. 

StaticState invariant 
self. allinstances->forall(s I s. static_transition_def->size <= 1) 



Structuring Development Artifacts 

11. ADTs must form an acyclic graph. 

" First we define a rule to populate the reflexive with_all association on the Adt class: - 

Adt 
self. alllnstances->forall(al, a2 I 
al. with_adt->includes(a2) or 
self. alllnstances>exists (a' I 
al. with_adt->includes(a') and 
a'. with_all->includes(a2))) 
implies 
al. with_all->includes(a2) 

" An invariant can now be defined to prevent cycles. 

Adt invariant 
self. alllnstances->forall(a I not(a. with all->includes(a))) 

iii. Verification of RTN-SLg Elements against the Product Data Synthesis 
To maintain consistency within the MATrA traceability Workspace, we define a number of constraints 

to verify RTN-SLg elements against the Product Data Synthesis, including: - 

1. The RTN-SLg model subject module exists in the PDS. 

RTN-SLg invariant 
self. alllnstances->forall(r I 
self. bEmodeIAEO. build_element->exists (be I 
r. subject module = be. module_name)) 

2. Activities are designated in the PDS as functions of the subject module. 

Activi invariant 
self. alllnstances->forall(a I 
self. rTN-SLg. bEmodelAEO. build_element->exists (be I 
self. bEelementAEO. build_element->exists(f 
a. rTN-SLg. subject_module = be. module_name and 
a. name = f. function_name and 
be. encapsulates. target->includes(f)))) 

3. Ports are designated in the PDS as interfaces to functions. 

Port invariant 
self. allinstances->forall(p I 
self. activity->exists(a I 
self. activity. bEelementAEO. build_element->exists(f I 
self. bEelementAEO. build_element->exists(i I 
a. port->includes(p) and 
a. name = f. function name and 
p. name = i. interface_name and 
f. haslnterface. target->includes(i) )))) 

4. IDAs are specified in the PDS as interfaces with a connection to the appropriate port. 

147 



Real-Time Network Specification Language Structure (Graphical) I I., I 

ConnectionDef invariant 
self. alllnstances->forall(c 
self. from_ida->union(self. to_ida). bEelementAEO. build_element->exists(i I 
self. port. bEelementAEO. build_element->exists(p I 
c. port. name = p. interface_name and 
(c. from_ida. name = i. interface_name or 
c. to_ida. name = i. interface_name) and 
(p. connection. target. connection. target->includes(i) or i. connection. target. connection. target->includes(p)) ))) 

5. ADTs are specified in the PDS as sub-modules of the subject_module29. 

Adt invariant 
self. alllnstances->forall(a I 
self. rTN-SLg. bEmodelAEO. build_element->exists(be I 
self. bEelementAEO. build_element->exists(m I 
a. rTN-SLg. subject_module = be. module_name and 
a. name = m. module_name and 
be. hasSubmodule. target->includes(m) ))) 

6. States are specified in the PDS as conditions of the Function that corresponds to the Activity 

containing the ASM to which a State belongs. 

State invariant 
self. alllnstances->select (oclType = Static or oclType = Dynamic)->forall(s I 
self. stateMachine. activity->exists(a I 
self. stateMachine. activity. bEelementAEO. build_element->exists(f I 
self. stateMachine. activity. bEelementAEO. build_element. hasCondition. target->exists(c I 
a. state_machine. state_def->includes(s) and 
a. name = f. function_name and 
s. name = c. condition_Iabel and 
f. hasCondition. target->includes(c) )))) 

CompositeDynamic invariant 
seif. alllnstances->forall(d I 
self. stateMachine. activity->exists(a I 
self. state Machin e. activity. b Ee lementAEO. build_element->exists(f I 
self. stateMachine. activity. bEelementAEO. build_element. hasCondition. target->exists(c I 
a. state_machine. state_def->includes(d) and 
a. name = f. function_name and 
f. hasCondition. target->includes(c) and 
c. hasSubcondition. target. condition_label->includesAll(d. dynamic_state. name) )))) 

7. Transitions (including source and target states) are defined in the PDS as corresponding and 

correctly related conditions3o 

StaticTransition invariant 
self. alllnstances->forall(t I 
self. staticState. stateMachine. activity->exists(a I 
self. staticState. stateMachine. activity. bEelementAEO. build_element->exists(f I 
self. staticState. stateMachine. activity. bEelementAEO. build_element. hasCondition. target->exists(c I 

29 An Abstract Data Type in the RTN-SL is a module in which attribute types and functions may be defined (Paynter, 2000). 

The RTN-SLg syntax names only constituent states of a CompositeDynamic (see figure 4.19); therefore it is not possible to 

verify a transition destination state of this type against the PDS. 



Structuring Development Artifacts 

self. staticState. stateMachine. activity. bEelementAEO. build_element. hasCondition. target. occurringln. source 
->exists(e I 
a. name = f. function_name and 
f. hasCondition. target->includes(c) and 
e. occurringln. target->includes(c) and 
t. staticState. name = c. condition Zabel and 
e. IeadsTo. target. condition_Iabel = 
(t. goes_to->reject(t. goes_to. oclType = CompositeDynamic)). name and 
((t. event. event_type. concat(t. event. port. name) = e. condition_label) or 
(t. timing transition_definition. lb_ub = e. condition_label)) ))))) 

DynamicTransition invariant 
self. alllnstances->select(self. compositeDynamic->size = 0)->forall(t I 
self. dynamicState. stateMachine. activity->exists(a I 
self. dynamicState. stateMachine. activity. bEelementAEO. buildelement->exists(f 
self. dynamicState. stateMachine. activity. bEelementAEO. build_element. hasCondition. target->exists(c I 
self. dynamicState. stateMachine. activity. bEelementAEO. build_element. hasCondition. target. occurringin. source 
->exists(e 
a. name = f. function name and 
f. hasCondition. target->includes(c) and 
e. occurringln. target->includes(c) 
t. dynamicState. name = c. condition_Iabel and 
e. leadsTo. target. condition_Iabel = 
(t. goes_to->reject(t. goes_to. oclType = CompositeDynamic)). name and 
t. on = e. condition_label))))) 

Note: the invariant on DynamicTransition is over transitions from a DynamicState; an invariant over 

transitions from a CompositeDynamic may be similarly expressed, but without PDS verification of the 

source state. 

iv. Other RTN-SLg Consistency Constraints 
We conclude our round-up of constraints over the RTN-SLg meta-model by considering restrictions 

arising from modelling decisions (alluded to in subsection 4.4.3.2.1). These are as follows: - 

1. All Activity, Port, Ida, Adt and State names are unique31 

Activi invariant 
self. alllnstances->forall(al, a2 I 
not(al. name = a2. name and al <> a2)) 

Port invariant 
self. alllnstances->forall(pl, p2 
not(pl. name = p2. name and p1 <> p2)) 

Ida invariant 
self. alllnstances->forall(i1, i2 I 
not(il. name = i2. name and i1 <> i2)) 

Adt invariant 
self. alllnstances->forall(al, a2 I 
not(al. name = a2. name and al <> a2)) 

31 Assumes scope is an individual RTN-SLg model. 

149 



Real-Time Network Specification Language Structure (Graphical) 

StaticState invariant 
self. alllnstances->forall(s1, s2 I 
not(sl. name = s2. name and si <> s2)) 

ynamicState invariant 
self. alllnstances->forall(d1, d2 I 
not(dl. name = d2. name and dl <> d2)) 

2. All states must have an InitialStatus except for dynamic states that form part of a CompositeDynamic. 

State invariant 
self. alllnstances->forall(s I not (s. initial status->size =0 and (s. oclType <> DynamicState or 
s. compositeDynamic->size <> 1))) 

3. Dynamic states that are part of composite dynamics have no individual timing definition or state 

transitions. 

CompositeDvnamic invariant 
self. alllnstances->forall(c I 
self. dynamic_state->forall(d I 
not(c. dynamic_state->includes(d) and (d. dynamic_transition_def-> size >0 or d. timing_def-> size > 0)))) 

4. Only one State in a StateMachine has a true initial status. 

StateMachine invariant 
self. alllnstances->forall(m I 
self. state_def->forall(sl, s2 I 
not(m. state_def->includes(s1) and m. state_def->includes(s2) and 
si. initial status=True and s2. initial_status=True and si <> s2))) 

S. Dynamic states that are not part of a CompositeDynamic have a timing definition. 

DynamicState invariant 
self. alllnstances->forall(d I 
not (d. CompositeDynamic->size =0 and d. timing_def-> size = 0)) 

4.4.3.2.3 O-Telos Implementation of RTN-SLg Base Classes 

The O-Telos code below implements RTN-SLg meta-model base class elements. 

Definition of Artifact Properties 

Protocol in ArtifactProperty, SimpleClass 
isA String 
with 
constraint 

enum-protocol: $ 
forall p/Protocol 
(p = "pool') or 
(p = signal') or 
(p = `channel') or 
(p = "stimulus') or 
(p = "dataless') $ 
end 

isA String 
with 
constraint 

enum_event_type: $ 
forall e/EventType 
(e = "S') or 
(e = "R") or 
(e = 'W') $ 
end 

InitialStatus in ArtifactProperty, 
SimpleClass 
with 
described-by 

initial : Bool 
EventType in ArtifactProperty, 
SimpleClass 

end 



Structuring Development Artifacts 

Definition of RTN-SLg Primitiven 

Adt in StructureElement, SimpleClass isA 
AerospaceEngineeringobject with 
has-property 

name : String 
has-part 

with_adt : Adt 
has-transitive-part 

with_all : Adt 
end 

Component in StructureElement, 
SimpleClass isA 
AerospaceEngineeringObject 
with 
has-property 

name : String 
has-part 

predecessor : Component; 
successor : Component 

has-transitive-part 
all-successors : Component; 
all-predecessors : Component 

constraint 
abstract_component: 
$ forall t/Token s/SimpleClass 
(t in s) ==> not (t in Component) 
end 

Ida in StructureElement, SimpleClass isA 
Component with has-property 

kind : Protocol 
has-part 

with_adt : Adt 
end 

Port in StructureElement, SimpleClass isA 
AerospaceEngineeringObject with 
has-property 

name : String 
end 

ConnectionDef in StructureElement, 
SimpleClass isA 
AerospaceEngineeringobject with has-part 

port : Port; 
from_ida : Ida; 
to_ida : Ida 

end 

State in StructureElement, SimpleClass 
isA AerospaceEngineeringObject with 
has-property 

initial-status : InitialStatus 
constraint 
abstract-state: 
$ forall t/Token s/SimpleClass 
(t in s) ==> not (t in State) $ 
end 

StaticState in StructureElement, 
SimpleClass isA State with 
has-property 

name : String 
has-part 

static_transition_def 
StaticTransition 
end 

DynamicState in StructureElement, 
SimpleClass isA State with 
has property 

name : String 
has_part 

dynamic-transition def 
DynamicTransition; 

local_op_def : LocalOpDef; 
timing_def : Timing 

end 

CompositeDynamic in StructureElement, 
SimpleClass isA State 
with 
has-part 

dynamic_state : DynamicState; 
dynamic_transition_def 

DynamicTransition; 
timing_def : Timing 

end 

StateMachine in StructureElement, 
SimpleClass isA 
AerospaceEngineeringObject with has part 

state_def : State 
end 

Activity in StructureElement, SimpleClass 
isA Component with 
has-part 

with_adt : Adt; 
port : Port; 
state_machine : StateMachine 

end 

StaticTransition in StructureElement, 
SimpleClass isA 
AerospaceEngineeringObject with 
has-part 

goes_to : State; 
event : Event; 
timing_transition`definition 

TimingTransitionDef 
end 

DynamicTransition in StructureElement, 
SimpleClass isA 
AerospaceEngineeringObject with 
has_property 

on : String 
has_part 

goes-to : State 
end 

Timing in StructureElement, SimpleClass 
isA AerospaceEngineeringObject with 
has_property 

bcet : String; 
wcet String; 
wcrt : String 

end 

WritesToClause in StructureElement, 
SimpleClass isA 
AerospaceEngineeringObject with has-part 

port : Port 
end 

ReadsFromClause in StructureElement, 
SimpleClass isA 
AerospaceEngineeringObject with 
has-part 

port : Port; 
by : WCRTonRd 

end 

WCRTonRd in StructureElement, SimpleClass 
isA AerospaceEngineeringObject 
with 
has property 

finish : String 
end 

LocalOpDef in StructureElement, 
SimpleClass isA 
AerospaceEngineeringobject with 
has-part 

reads-from ReadsFromClause; 
writes-to WritesToClause 

end 

Event in StructureElement, SimpleClass 

151 



Real-Time Network Specification Language Structure (Graphical) 

isA AerospaceEngineeringObject 
with has-property 

event-type : EventType 
has-part 

port : Port 
end 

TimingTransitionDef in StructureElement, 
SimpleClass isA 
AerospaceEngineeringObject with 
has-property 

lb_ub : String 
end 

Definition of RTN-SLQ Specification 

RTN_SLg in DevelopmentStructure, 
SimpleClass isA 
AerospaceEngineeringObject with 
has-property 

model_name : String; 
subject nodule : String; 
rtn_date: Date 

has_structure 
rtn_comments 

MatraNaturalLanguageStructure 
has-element 

rtn_adt : Adt; 
rtn port : Port; 
rtn_ida : Ida; 
rtn_activity : Activity; 
rtn_connection def : ConnectionDef; 
rtn_static_state StaticState; 
rtn_dynamic_state : DynamicState; 
rtn_composite_dynamic_state 

CompositeDynamic; 
rtn_static_transition 

StaticTransition; 
rtn_dynamic_transition 

DynamicTransition; 
rtn_timing_def: Timing; 
rtn_writes_to_clause 

WritesToClause; 
rtn_reads_from_clause 

ReadsFromClause; 
rtn_WCRTonRd : WCRTonRd; 
rtn_local_op_def : LocalOpDef; 
rtn_event : Event; 
rtn_timing_transition_def 

TimingTransitionDef; 
rtn_state_jnachine : StateMachine 

end 

4.4.3.3 RTN-SLg Worked Examples 
We now illustrate aspects of the RTN-SLg meta-model by instantiating the above classes with some 

worked examples. Specifically: - 

" Hypothetical RTN-SLg Example (from subsection 4.4.2.2); 

"A hypothetical Composite Dynamic State; 

" An RTN-SLg specification fragment for a Missile Tracking System. 

1. Hypothetical RTN-SLg Example 

In subsection 4.4.2.2 we introduced an example RTN-SLg specification (illustrated in figure 4.20) to 

demonstrate key aspects of the language's graphical syntax. The following is therefore an O-Telos 

implementation of base classes for this example: - 

Sample Population of RTN-SLQ (from figure 
4.20) 

AdtiType in Adt, Token with 
name 

adtName : "adtl" 
end 

Porti in Port, Token with 
name 

portName : "P1' 
end 

Activityl in Activity, Token with 
name 

activityName : 'Al' 
with_adt 

withAdtl : AdtlType 
port 

portl : Porti 
end 

Idal in Ida, Token with 
name 

idaName : 'Ida1' 
kind 

idaKind : "pool' 
with_adt 

withAdtl : AdtlType 
end 

Ida2 in Ida, Token with 
kind 

idaKind "stimulus' 
end 

Ida3 in Ida, Token with 
kind 

idaKind : "channel" 
end 

Adt2Type in Adt, Token with 
name 

adtName : "adt2' 
end 

Adt3Type in Adt, Token with 
name 

adt_name 'adt3" 
with_adt 

withAdtl : Adt2Type 
end 



Structuring Development Artifacts 

Port2 in Port, Token with 
name 

portName : "P2' 
end 

Port3 in Port, Token with 
name 

portName : "P3' 
end 

Port4 in Port, Token with 
name 

portName : "P4' 
end 

StaticStateA in StaticState, Token with 
name 

staticStateName : "A' 
initial-status 

initialStatus : StaticStateAStatus 
static_transition_def 

staticTransitionDef 
StaticTransitionAtoB 
end 

StaticStateAStatus in InitialStatus, 
Token with 
initial 

initialState : True 
end 

StaticTransitionAtoB in StaticTransition, 
Token with 
goes-to 

goesTO : DynamicStateB 
event 

transEvent : AtoBEvent 
end 

AtoBEvent in Event, Token with 
event_type 

eventType : "S" 
port 

eventPort Port2 
end 

DynamicStateB in DynamicState, Token with 
name 

dynamicStateName : "B' 
initial-status 

initialStatus : DynamicStateBStatus 
dynamic_transition_def 

dynamicTransitionDefl 
DynamicTransitionBtoC; 

dynamicTransitionDef2 
DynamicTransitionBtoD 
local_op_def 

localOpDef LocalOpDefStateB 
timing_def 

timingDef TimingDefStateB 
end 

DynamicStateBStatus in Initialstatus, 
Token with 
initial 

initialState : False 
end 

DynamicTransitionBtoC in 
DynamicTransition, Token with 
on 

transitionOn : `C1' 
goes-to 

goesTo : StaticStateC 
end 

DynamicTransitionBtoD in 
DynamicTransition, Token with 
on 

transitionOn : "C2' 

goes-to 
goesTo : DynamicStateD 

end 

LocalOpDefStateB in LocalOpDef, Token 
with 
reads-from 

readsFrom : ReadsFromClauseStateB 
end 

ReadsFromClauseStateB in ReadsFromClause, 
Token with 
port 

readPort : Port3 
by 

byDeadline : WCRTonRdStateB 
end 

WCRTonRdStateB in WCRTonRd, Token with 
finish 

finishTime : "U1" 
end 

TimingDefStateB in Timing, Token with 
bcet 

BCETime : `L1' 
wcet 

WCETime : 'U2' 
wcrt 

WCRTime : "U3' 
end 

StaticStateC in StaticState, Token with 
name 

staticStateName : "C" 
initial-status 

initialStatus : StaticStateCStatus 
static_transition_def 

staticTransitionDef 
StaticTransitionCtoD 
end 

StaticStateCStatus in Initialstatus, 
Token with 
initial 

initialState : False 
end 

StaticTransitionCtoD in StaticTransition, 
Token with 
goes-to 

goesTO : DynamicStateD 
timing_transition_definition 

timingTransitionDefinition 
CtoDTimingTransition 
end 

CtoDTimingTransition in 
TimingTransitionDef, Token with 
lb_ub 

1bUb : "[t1, t2)" 
end 

DynamicStateD in DynamicState, Token with 
name 

dynamicStateName : "D" 
initial-status 

initialStatus : DynamicStateDStatus 
dynamic_transition_def 

dynamicTransitionDef 
DynamicTransitionDtoE 
local_op_def 

localOpDef LocalOpDefStateD 
timing_def 

timingDef TimingDefStateD 
end 

DynamicStateDStatus in InitialStatus, 
Token with 
initial 

initialState : False 

153 



Real-Time Network Specification Language Structure (Graphical) 

end 

DynamicTransitionDtoE in 
DynamicTransition, Token with 
on 

transitionOn : "C3' 
goes-to 

goesTo : StaticStateE 
end 

LocalOpDefStateD in LocalopDef, Token 
with 
writes-to 

writesTo : WritesToClauseStateD 
end 

WritesToClauseStateD in WritesToClause, 
Token with 
port 

writePort : Porto 
end 

TimingDefStateD in Timing, Token with 
bcet 

BCETime "L2' 
wcet 

WCETime : "U4' 
wcrt 

WCRTime : "U5' 
end 

state machine 
stateMachine : Activity2StateMachine 

end 

P1toldal in ConnectionDef, Token with 
port 

outPort : Porti 
to_ida 

toida : Idal 
end 

IdaltoP3 in ConnectionDef, Token with 
port 

inPort : Port3 
from ida 

fromIda : Idal 
end 

Ida2toP2 in ConnectionDef, Token with 
port 

inPort : Port2 
from ida 

fromida : Ida2 
end 

P4toIda3 in ConnectionDef, Token with 
port 

outPort : Port4 
to_ida 

toIda : Ida3 
end 

StaticStateE in StaticState, Token with 
name 

staticStateName : "E" 
initial-status 

initialStatus : StaticStateEStatus 
static_transition_def 

staticTransitionDef 
StaticTransitionEtoA 
end 

StaticStateEStatus in Initialstatus, 
Token with 
initial 

initialState : False 
end 

StaticTransitionEtoA in StaticTransition, 
Token with 
goes-to 

goesTo : StaticStateA 
event 

transEvent : EtoAEvent 
end 

EtoAEvent in Event, Token with 
event-type 

eventType : "W" 
port 

eventPort : Port4 
end 

Activity2StateMachine in StateMachine, 
Token with 
state_def 

stateDefl StaticStateA; 
stateDef2 : DynamicStateB; 
stateDef3 : StaticStateC; 
stateDef4 DynamicStateD; 
stateDef5 StaticStateE 

end 

Activity2 in Activity, Token with 
name 

activityName : "A2" 
with_adt 

withAdtl : Adt3Type 
port 

ports : Port2; 
port2 Porti; 
port3 Porto 

Netl in RTN SLg, Token with 
model name 

modelName : `RTN-SLg Example 1' 

rtn_adt 
rtnAdtl AdtlType; 
rtnAdt2 Adt2Type; 
rtnAdt3 : Adt3Type 

rtn port 
rtnPortl Porti; 
rtnPort2 : Port2; 
rtnPort3 : Port3; 
rtnPort4 Port4 

rtn_ida 
rtnIdal Idal; 
rtnIda2 Ida2; 
rtnlda3 : Ida3 

rtn_activity 
rtnActivityl : Activityl; 
rtnActivity2 : Activity2 

rtn_connection_def 
rtnConnectionDefl : PitoIdal; 
rtnConnectionDef2 IdaltoP3; 
rtnConnectionDef3 : Ida2toP2; 
rtnConnectionDef4 : P4toIda3 

rtn_static_state 
rtnStaticStatel : StaticStateA; 
rtnStaticState2 : StaticStateC; 
rtnStaticState3 : StaticStateE 

rtn_dynamic_state 
rtnDynamicStatel : DynamicStateB; 
rtnDynamicState2 : DynamicStateD 

rtn static_transition 
rtnStaticTransitionl 

StaticTransitionAtoB; 
rtnStaticTransition2 

StaticTransitionCtoD; 
rtnStaticTransition3 

StaticTransitionEtoA 
rtn_dynamic_transition 

rtnDynamicTransitionl 
DynamicTranisitionBtoC; 

rtnDynamicTransition2 
DynamicTranisitionDtoE 
rtn_timing_def 

rtnTimingDefl : TimingDefStateB; 
rtnTimingDef2 : TimingDefStateD 

rtn_reads_from_clause 
rtnReadsFromClausel 

ReadsFromClauseStateB 

154 



Structuring Development Artifacts 

rtn_writes_to_clause 
rtnWritesToClausel 

WritesToClauseStateD 
rtn_WCRTonRd 
rtnWCRTonRdl : WRCTonRdStateB 
rtn_timing_transition_def 

rtnTimingTransitionDefl 
CtoDTimingTransition 

rtn_local_op_def 

rtnLocalOpDef1 : LocalOpDefStateB; 
rtnLocalOpDef2 : LocalOpDefStateD 

rtn_event 
rtnEventl : AtoBEvent; 
rtnEvent2 : EtoAEvent 

rtn_statejnachine 
rtnStateMachinel 

Activity2StateMachine 
end 

ii. A Hypothetical Composite Dynamic State 
We now present O-Telos implementation of an exemplar Composite Dynamic State using the graphical 
Activity State Machine fragment in figure 4.23: - 

P1 PS P2 LP4 
State1 State2 

U3 U4 

end 

LocalOpDefStatel in LocalOpDef, Token 
with 
reads-from 

readsFrom : ReadsFromClauseStatel 
writes-to 

writesTo : WritesToClauseStatel 
end 

True 

AnotherState 

Figure 4.23 - `Hypothetical Composite 
Dynamic State' 

Sample Population of RTN-SLq Composite 
Dynamic State 

ExampleComposite in CompositeDynamic, 
Token with 
initial_status 

initialStatus 
ExampleCompositeStatus 
dynamic-state 

dynamicStatel : DynamicStatel; 
dynamicState2 DynamicState2 

dynamic_transition_def 
dynamicTransitionDef 

CompositeDynamicTransition 
timing_def 

timingDef : CompositeDynamicTimingDef 
end 

ExampleCompositeStatus in Initialstatus, 
Token with 
initial 

initialState : False 
end 

DynamicStatel in DynamicState, Token with 
name 

dynamicStateName : "Statel' 
local_op_def 

localOpDef : LocalOpDefStatel 
end 

DynamicState2 in DynamicState, Token with 
name 

dynamicStateName : `State2' 
local_op_def 

localOpDef : LocalOpDefState2 

ReadsFromClauseStatel in ReadsFromClause, 
Token with 
port 

readPort : Porti 
end 

WritesToClauseStatel in WritesToClause, 
Token with 
port 

writePort : Ports 
end 

LocalOpDefState2 in LocalOpDef, Token 
with 
reads-from 

readsFrom : ReadsFromClauseState2 
writes-to 

writesTo : WritesToClauseState2 
end 

ReadsFromClauseState2 in ReadsFromClause, 
Token with 
port 

readPort : Port2 
end 

WritesToClauseState2 in WritesToClause, 
Token with 
port 

writePort : Port4 
end 

CompositeDynamicTransition in 
DynamicTransition, Token with 
on 

transitionOn : "True' 
goes_to 

goesTo : AnotherState 
end 

CompositeDynamicTimingDef in Timing, 
Token with 
bcet 

BCETime : "L2' 
wcet 

WCETime : "U3' 
wcrt 

WCRTime: "U4" 
end 

155 



Real-Time Network Specification Language Structure (Graphical) 

iii. An RTN-SLg Specification (Fragment) for a Missile Tracking System 
We conclude our demonstration of the RTN-SLg meta-model with a small example network taken from 

Paynter et al. (2000) and illustrated in figure 4.24. It is based on a design fragment for a typical Missile 

Tracking System and consists of two activities linked by a channel protocol; the arrival of a target 

Image on port P1 triggers activity Al which performs some image processing to determine the target 

co-ordinates and sends them to port P2. This information is then passed to A2 (via the Image Store 

channel) which reads from port P3, calculates movement of the target and outputs this vector to the rest 

of the system via port P4. 

Al: Identify Target A2: Calculate Target Vector 

A 

gei D 

Image Stave 
pl 

E: 
P2 

P2 P3 
Rp3 

True P4 
Wra Image Processing 

L1 U1 U2 
P3 P4 

E: Target 
Vector Calculation 

L2 U3 U4 
c 

Figure 4.24 - 'RTN-SLg Specification for A Missile Target Tracking System' 

O-Telos instantiation of the RTN-SLg meta-model capturing information contained in figure 4.24 is as 

follows: - 

Sample Population of RTN-SLQ Missile 
Tracking System Example 

Image in Adt, Token with 
name 

adtName : "Image' 
end 

Porti in Port, Token with 
name 

portName : "P1' 
end 

Port2 in Port, Token with 
name 

portName : "P2' 
end 

StaticStateA in StaticState, Token with 
name 

staticStateName : "A' 
initial-status 

initialStatus : StaticStateAStatus 
static_transition_def 

staticTransitionDef 
StaticTransitionAtOB 
end 

StaticStateAStatus in Initialstatus, 
Token with 
initial 

initialState : True 
end 

StaticTransitionAtOB in StaticTransition, 
Token with 
goes-to 

goesTo : DynamicStateB 
event 

transEvent : AtoBEvent 
end 

AtoBEvent in Event, Token with 
event_type 

eventType : "R' 
port 

eventPort : Porti 
end 

DynamicStateB in DynamicState, Token with 
name 

dynamicStateName : "B: Image 
Processing' 
initial-status 

initialStatus : DynamicStateBStatus 
dynamic_transition_def 

dynamicTransitionDefl 
DynamicTransitionBtOC 
local_op_def 

localOpDef : LocalOpDefStateB 
timing_def 

timingDef : TimingDefStateB 

156 



Structuring Development Artifacts 

end 

DynamicStateBStatus in InitialStatus, 
Token with 
initial 

initialState : False 
end I 

DynamicTransitionBtoC in 
DynamicTransition, Token with 
on 

transitionOn : `True' 
goes-to 

goesTo : StaticStateC 
end 

LocalOpDefStateB in LocalOpDef, Token 
with 
reads-from 

readsFrom : ReadsFromClauseStateB 
writes-to 

writesTo : WritesToClauseStateB 
end 

ReadsFromClauseStateB in ReadsFromClause, 
Token with 
port 

readPort : Porti 
end 

WritesToClauseStateB in WritesTOClause, 
Token with 
port 

writePort : Port2 
end 

TimingDefStateB in Timing, Token with 
bcet 

BCETime : 'L1' 
wcet 

WCETime "U1" 
wcrt 

WCRTime "U2' 
end 

StaticStateC in StaticState, Token with 
name 

staticStateName : `C' 
initial-status 

initialStatus : StaticStateCStatus 
static_transition_def 

staticTransitionDef 
StaticTransitionCtoA 
end 

StaticStateCStatus in Initialstatus, 
Token with 
initial 

initialState : False 
end 

StaticTransitionCtoA in StaticTransition, 
Token with 
goes-to 

goesTo : StaticStateA 
event 

transEvent : CtoAEvent 
end 

CtoAEvent in Event, Token with 
event_type 

eventType "W' 
port 

eventPort Port2 
end 

ActivitylStateMachine in StateMachine, 
Token with 
state_def 

stateDefl : StaticStateA; 
stateDef2 : DynamicStateB; 

stateDef3 : StaticStateC 
end 

Activityl in Activity, Token with 
name 

activityName : 'Al: Identify Targets 
with_adt 

withAdtl : Image 
port 

portl : Porti; 
port2 : Port2 

state. jnachine 
stateMachine : ActivitylStateMachine 

end 

Idal in Ida, Token with 
kind 

idaKind : `signal' 
end 

Ida2 in Ida, Token with 
name 

idaName "Image Store' 
kind 

idaKind : "channel' 
end 

Ida3 in Ida, Token with 
kind 

idaKind : "pool' 
end 

Threat in Adt, Token with 
name 

adtName : "Threat' 
end 

Port3 in Port, Token with 
name 

portName : "P3' 
end 

Port4 in Port, Token with 
name 

portName : "P4' 
end 

StaticStateD in StaticState, Token with 
name 

staticStateName : "D" 
initial-status 

initialStatus : StaticStateDStatus 
static_transition_def 

staticTransitionDef 
StaticTransitionDtOE 
end 

StaticStateDStatus in Initialstatus, 
Token with 
initial 

initialState : True 
end 

StaticTransitionDtoE in StaticTransition, 
Token with 
goes-to 

goesTO : DynamicStateE 
event 

transEvent : DtoEEvent 
end 

DtoEEvent in Event, Token with 
event_type 

eventType 'R' 
port 

eventPort : Porti 
end 

DynamicStateE in DynamicState, Token with 
name 

dynamicStateName : "E: Target Vector 

157 



Real-Time Network Specification Language Structure (Graphical) 

Calculation' 
initial-status 

initialStatus : DynamicStateEStatus 
dynamic_transition_def 

dynamicTransitionDefl 
DynamicTransitionEtoD 
local_op_def 

localOpDef : LocalOpDefStateE 
timing_def 

timingDef TimingDefStateE 
end 

DynamicStateEStatus in InitialStatus, 
Token with 
initial 

initialState : False 
end 

DynamicTransitionEtoD in 
DynamicTransition, Token with 
on 

transitionOn : `True' 
goes_to 

goesTo : StaticStateD 
end 

LocalOpDefStateE in LocalOpDef, Token 
with 
reads-from 

readsFrom : ReadsFromClauseStateE 
writes-to 

writesTo : WritesToClauseStateE 
end 

ReadsFromClauseStateE in ReadsFromClause, 
Token with 
port 

readPort : Porti 
end 

WritesToClauseStateE in WritesToClause, 
Token with 
port 

writePort : Porto 
end 

TimingDefStateE in Timing, Token with 
bcet 

BCETime : "L2' 
wcet 

WCETime "U3' 
wcrt 

WCRTime "U4" 
end 

Activity2StateMachine in StateMachine, 
Token with 
state_def 

stateDefl : StaticStateD; 
stateDef2 DynamicStateE 

end 

Activity2 in Activity, Token with 
name 

activityName : "A2: Calculate Target 
Vector" 
with_adt 

withAdtl : Image; 
withAdt2 Threat 

port 
ports Port3; 
port2 : Port4 

state_machine 
stateMachine : Activity2StateMachine 

end 

IdaltoPl in ConnectionDef, Token with 
port 

inPort : Porti 
from_ida 

fromIda : Idal 

end 

P2toIda2 in ConnectionDef, Token with 
port 

outPort : Port2 
to_ida 

tolda : Ida2 
end 

Ida2toP3 in ConnectionDef, Token with 
port 

inPort : Port3 
from_ida 

fromIda : Ida2 
end 

P4toIda3 in ConnectionDef, Token with 
port 

outPort : Port4 
to_ida 

tolda : Ida3 

end 

Net2 in RTN_SLg, Token with 
model_name 

modelName : "RTN-SLg Example 2' 
rtn_adt 

rtnAdtl : Image; 
rtnAdt2 : Threat 

rtn_port 
rtnPortl : Porti; 
rtnPort2 Port2; 
rtnPort3 Port3; 
rtnPort4 : Port4 

rtn_ida 
rtnidal Idal; 
rtnIda2 Ida2; 
rtnIda3 : Ida3 

rtn_activity 
rtnActivityl : Activityl; 
rtnActivity2 : Activity2 

rtn_connection_def 
rtnConnectionDefl : IdaltoPl; 
rtnConnectionDef2 : P2toIda2; 
rtnConnectionDef3 Ida2toP3; 
rtnConnectionDef4 P4toIda3 

rtn_static_state 
rtnStaticStatel StaticStateA; 
rtnStaticState2 : StaticStateC; 
rtnStaticState3 StaticStateD 

rtn_dynamic_state 
rtnDynamicStatel : DynamicStateB; 
rtnDynamicState2 : DynamicStateE 

rtn_static_transition 
rtnStaticTransitionl 

StaticTransitionAtoB; 
rtnStaticTransition2 

StaticTransitionCtoA; 
rtnStaticTransition3 

StaticTransitionDtoE 
rtn`dynamic_transition 

rtnDynamicTransitionl 
DynamicTranisitionBtoC; 

rtnDynamicTransition2 
DynamicTranisitionEtoD 
rtn_timing_def 

rtnTimingDef1 : TimingDefStateB; 
rtnTimingDef2 TimingDefStateE 

rtn`reads_from_clause 
rtnReadsFromClausel 

ReadsFromClauseStateB; 
rtnReadsFromClause2 

ReadsFromClauseStateE 
rtn_writes_to_clause 

rtnWritesToClausel 
WritesToClauseStateB; 

rtnWritesToClause2 
WritesToClauseStateE 
rtn-local_op_def 

rtnLocalOpDefl : LocalOpDefStateB; 
rtnLocalOpDef2 LocalOpDefStateE 

158 



Structuring Development Artifacts 

rtn_event rtnStateMachinel : 
rtnEventl AtoBEvent; ActivitylStateMachine; 
rtnEvent2 CtoAEvent; rtnStateMachine2 
rtnEvent3 : DtoEEvent Activity2StateMachine 

rtn_statejnachine end 

4.4.4 Relationship to the Traceability Dimensions 
We reiterate that this thesis is concerned mainly with providing a set of notation meta-models for an 

avionics traceability environment, rather than with defining actual linkages between them. However, it 

is worth noting that engineers might conceivably employ the Use Case approach from subsection 4.3 in 

conjunction with RTN-SLg and in doing so, create vertical trace relations between Use Case and 

Activity elements using the approach outlined in 3.3.6.3.2. Moreover, for hazard analysis purposes 

practitioners may wish to link network elements to safety techniques such as HAZOP (again giving 

vertical traceability), as shown for MASCOT designs in McDermid & Pumfrey (1994). 

4.4.5 Summary 
Real-Time Networks are a design method used extensively throughout the defence industry (including 

aerospace). On that basis, we chose RTN-SL as our representative design notation for the MATrA 

traceability framework. 

A novel meta-model capturing the graphical syntax of RTN-SLg specifications was proposed, together 

with a set of restrictions that preserve their internal and PDS consistency. A partial O-Telos 

implementation of the model was then populated to demonstrate some worked examples. 

Again, evaluation of the RTN-SLg structure is discussed fully in Chapter Seven. 

159 



Towards a SPARK Ada Programming Language Structure 

4.5 Towards a SPARK Ada Programming Language Structure 

4.5.1 Introduction 
This section introduces a structure capturing a subset of the concrete (well-formedness) syntax for 
SPARK, a programming language supporting development of software for high integrity (including 

safety-critical) applications. 

The structure was developed in parallel with a modelling philosophy -a set of principles (guidelines) b; 

which practitioners may extend the structure to encompass the complete SPARK syntax. We go on to 
demonstrate how these guidelines may be similarly applied to the development of structures for other 
languages with a concrete syntax - in this case RTN-SL (textual). 

4.5.2 Motivation 
In safety-critical systems engineering, choice of programming language is of paramount importance, 

motivated by a need to increase the likelihood of software behaving as intended and hence reduce the 

risks arising from errors to an acceptable level. Carrel et al. (1990) identify a number of factors 
determining suitability of a programming language for use in high integrity systems: - 

0 Logical soundness: the language should contain no ambiguities; 
" Simplicity of formal description: it should be relatively simple to describe the language; 

" Expressive power: the language should be sufficiently rich to describe `real' systems; 
" Security: it should be possible to determine statically if a program conforms to the language rules; 
" Verifiability: program verification should be tractable for industrial-scale applications; 
" Bounded time and space requirements: the resource requirements of a program should be 

determinable statically to avoid possible run-time errors due to exhaustion of finite resources. 

Ada (Barnes, 1996) was written specifically for use in developing such applications and includes a 

number of features amenable to the production of dependable software. However, as Storey (1996) 

notes it does not represent an ideal, partly because some of the above factors are in conflict; for instance 

the corollary of expressive power is often complexity and the attendant problems of verification and 

security. Therefore, in recent years much effort has been devoted to development of an Ada subset -a 
so-called 'safe' subset comprising only those facilities necessary for writing high integrity programs. 
Safe subsets of any language (see Cullyer et al., 1991 for a comparison) are formed by excluding and 

restricting all features or constructs present in the full version that may prevent verification. 

Arguably the most prominent Ada subset is SPARK (Barnes, 1997) which is also one of the few 

programming languages to boast complete formal semantics. The core of SPARK is an executable 
kernel derived from a subset of Ada 9532; subset in the sense that features such as gotos, aliasing, default 

parameters (for procedures and functions), recursion, tasks, user-defined exceptions and exception 
handlers have all been omitted, while the type model is simplified through removal of pointers, type 

32 A version of SPARK based on Ada 83 is also available. 



Structuring Development Artifacts 

aliasing, derived types and anonymous types. 

In addition to the kernel, SPARK also includes some additional non-executable features termed 

annotations which are added by users in the form of Ada comments and which permit analysis and 
proof. Annotations are ignored by standard Ada compilers, but processed by the SPARK tool-set that 
supports the language. They divide into two categories: those providing flow analysis and those 

providing formal verification. Flow analysis is permitted at two levels: data flow analysis which just 

concerns the direction of data flow (e. g., checking variables are not read before being initialised), and 
information flow which also checks the coupling between variables (Barnes, 1997). Proof annotations 
meanwhile permit analysis of dynamic behaviour, including the results of functions, assertions such as 
loop invariants and pre and post conditions of sub-programs33 

Ada remains the preferred language for high integrity systems in the defence and aerospace sectors 
(Wichmann, 1997), often as a means of implementing Real-Time Network design specifications 
(Paynter, 2000). However SPARK is increasingly finding favour in these domains (cf. King et al., 
2000), not least due its support for formal verification which helps satisfy the rigorous demands of 
Defence Standards 00-55 (MoD, 1997) and 00-56 (MoD, 1996). That said, we are concerned purely 
with representation and so arguments pro and contraM use of language subsets (and hence SPARK) are 
not an issue. Instead we apply a common set of principles from which meta-models representing core 

and specific features of both Ada and SPARK may be formed. 

The inclusion of SPARK also enables us to demonstrate structuring of artifacts at the software 
implementation level, which allied to Circuit Diagrams (hardware implementation) from subsection 
3.3.7, together with UCRS and RTN-SLg (subsections 4.3 and 4.4), ensures all life-cycle phases are 

represented within the MATrA framework shown by this thesis; safety and product management are 
addressed in Chapter Five. 

4.5.2.1 SPARK Ada Overview 

The SPARK kernel language comprises standard Ada features such as package, private types, typed 

constants, unconstrained array types, functions returning composite types and the library system. 
However, given our level of interest, namely to demonstrate a modelling philosophy on structuring 
SPARK programs for traceability purposes, a full discussion on these constructs is beyond our scope; 
interested readers are therefore referred to Barnes (1997). 

In order to provide proof of concept for both the philosophy and the structure, we concentrate on 

representation of a single Ada construct - the package. A package provides means to group entities such 

as data types, procedures and other packages within a common framework. They also allow information 

hiding whereby details of the private part and body are not visible to external users of the package. 

33 In MATrA, these may conceivably trace back (vertically) to pre and post-conditions of Use Case Models as discussed in 
subsection 4.3. 
34 See Wichmann for an argument against using 'safe' language subsets. 

161 



Towards a SPARK Ada Programming Language Structure 

Packages are defined in two parts, a specification which describes the interface to an external client 

(and which is the focus for this thesis) and the body which provides implementation details; the two are 

always textually distinct as the following demonstrates (words in bold, as in all examples that follow, 

denote reserved words that may not be used for any other purpose): - 

package P is -- specification 

... -- visible part 
private 

private part (optional) 
end P; 

package body P is -- body 

begin 
"", 

initialisation (optional) 
end P; 

Packages can be nested, with those at the top level - termed library packages - forming separate 

compilations; the body and specification of a library package may be compiled separately. Library 

packages can also include child packages. This is specified using a 'dot' notation prefixed with the 

parent name as follows: - 

package P. Child is 

end P. Child; 

The other form of child package is a private child, written as: - 

private package P. Child is 

end P. Child; 

As previously indicated, packages can contain types and procedures. Pre-defined types in SPARK are 

integer, float, boolean, character and string, although additional types can also be defined. For example 

in the following, BankAngle is an integer with range of values from -45 to +45, whilst WamingLight is an 

enumerated type with two literal values (On and Off): - 

type BankAngle is range -45 .. 45; 

type WarningLight is (On, Off); 

Procedure specification statements provide a procedure name, together with the types and modes of 

their parameters. Valid modes are in and out, indicating direction of information flow; thus in the 

following Present_Bank of Read_Bank_Indicator is an in parameter as it provides the in-going information 

to be read. 

procedure Reach_Bank_Indicator(Present_Bank: in BankAngle); 

In addition to language features such as those outlined above, SPARK includes a number of 

162 



Structuring Development Artifacts 

annotations. These are specified using the `--#' convention, two hyphens being the standard Ada 

comment prefix. Recall that annotations are ignored by the Ada compiler and divide into two groups, 
those for information and data analysis and those for code verification. In this thesis, we concentrate on 
a subset of the former. Specifically: - 

" --# global - global definitions in procedures (which declare 'imported' or 'exported' global 
variables) or functions (which import such variables); 

" --# derives - dependency relations in procedures (which specify the imported variables 
required to derive the value of each exported variable); 

" --# inherit - the inherit clause in package declarations (which restricts penetration of the 

package to items specifically imported from other packages); 

" --# own- the own variable clause in package specifications (which makes actions on the package 

state visible to analysis tools); 

" --# initializes - the initialisation annotation in package specifications (which indicates 

initialisation by the package of its own state). 

4.5.3 Tracing Software Implementations in MATrA: A SPARK Ada Model 

4.5.3.1 Concepts 
The previous subsection introduced our modelling scope, i. e. particular SPARK elements to be 

considered in this thesis - namely package specifications, together with the --# global, --# derives, --# 
inherit, -4 own and -# initializes annotations. 

As indicated above, SPARK has a complete formal semantics which in principle could be expressed in 

OCL as constraints over elements of our meta-model. However, the SPARK tool-set and in particular 
the Examiner tool which checks conformance to the rules of the kernel language means we can have 

considerable confidence in the integrity of code produced. It is therefore deemed superfluous to repeat 

validation during the tool2matra transfer process 35 
. 

Further, given that we stated PDS consistency checks (in OCL) for previous notations, we have not 

specified similar restrictions here. Note however that the following (informal) checks might apply: - 

" SPARK packages and child packages map to corresponding PDS modules and sub-modules; 

" SPARK procedures map to PDS functions for the corresponding module; 

" SPARK types map to PDS attributes for the corresponding module. 

4.5.3.1.1 A Modelling Philosophy towards the Object-Based Representation of 
String Grammars for Specification & Code Level Languages 

Representation of the nominated constructs takes as its starting point the concrete SPARK grammar 
(featured in Appendix One of [Barnes, 1997]) which is stated using Backus Naur Form (BNF) notation. 

ss Nor would constraints be required given the availability of an inverse 'matra2tool' function (a future work item discussed in 
subsection 7.4.7), which to ensure all edits are conducted using the SPARK tool-set, would not extend to this structure. 

163 



Towards a SPARK Ada Programming Language Structure 

In BNF, categories (i. e., entities) to be represented are defined in terms of other categories using 

productions consisting of the name being defined, followed by the :: = symbol and a defining sequence 
(which may or may not include punctuation and reserved word `tokens'); categories that cannot be 

further decomposed are known as terminals. Other symbols of note are [] square brackets enclosing 

optional items, {) braces enclosing optional items that may be omitted or appear n>0 times and the I 

vertical bar separating alternatives. 

Our philosophy (developed in parallel with the SPARK meta-model) provides a series of principles or 

guidelines allowing object-based representation of language constructs stated as BNF categories, and to 

do so at a level of abstraction which is sufficient to identify traceability primitives. The guidelines' 

phrasing is deliberately general allowing their application to other languages with a concrete BNF 

syntax. We demonstrate this in subsection 4.5.4 by representing a fragment of the RTN-SL textual 

syntax. The guidelines are as follows: - 

1. Each BNF category is represented as a class (both an instance of the Structure Element metaclass and 

a specialisation of AerospaceEngineeringObject). 

2. Categories forming the defining sequence of a category are themselves represented as classes 

(related to the subject class through aggregation), except where rule 3 applies. 

3. Where nothing is gained traceability-wise by mirroring definition of a category in terms of other 

categories (and hence the corresponding class in terms of other classes) - that is, no constituent 

categories can be represented by classes that map to PDS elements (nor trace to elements of other 

notations) - then it is treated as atomic and represented through specialisation of the standard String 

type (as well as an instance of StructureElement and a specialisation of AerospaceEngineeringObject). 

4. All tokens (i. e., reserved words - such as from, global, inherit, etc. - together with punctuation marks - 

such as commas, semi-colons, parentheses and ampersands) are represented as specialisations of 

the standard String class (and also as instances of ArtifactProperty). 

5. Categories of a defining sequence that exist exactly once are modelled with a multiplicity 

constraint of one (1) for aggregate component classes; attributes representing tokens have an 

implicit multiplicity of one. 

6. Optional items from a defining sequence (expressed in BNF using square brackets) are modelled as 

follows: - 

a) Categories are represented by applying a zero-or-one multiplicity constraint (0.. 1) on the component 

side of associations between the class representing the category being described (aggregate) and 

each class representing an optional defining category (component). 

b) Tokens are promoted from attributes to classes (linked to their host class using composition) to 

allow for expression of optionality (see also rule 8 on alternatives). 



Structuring Development Artifacts 

7. Categories of a defining sequence that may be omitted, appear once, or be repeated several times 

(expressed in BNF using the braces formalism) are modelled using a zero-to-many multiplicity 

constraint (0.. *) on the component side of associations between the class representing the category 
being described (aggregate) and each class representing an optional, singular or repeated defining 

category (component). 

8. Categories decomposed into alternatives (expressed in BNF using the vertical bar separator) are 

modelled differently depending on what form their defining sequence takes. 

(a) For a category 'c' whose alternatives are exclusively 1-tuples (e. g. c:: = aI b) and which is represented 
by a class `C', we adopt the following convention: - 

Both categories and tokens (the latter promoted from attributes as per rule 6b) are modelled as 

component classes of C with an aggregation multiplicity of 1 (or O.. 1 if optional), and with a dashed 

line (bearing an `exclusive-or' annotation) connecting their Class Diagram icons; semantics are that 

each occurrence of C must (if multiplicities are 1) or may (if O.. 1) be composed of an occurrence of 

one entity from a set of alternatives, to the exclusion of all others. 

(b) For a category `c' whose alternatives include n> 1-tuples, i. e., a set of category or token elements 

(e. g., c:: = ab I ad) and which is represented by a class ̀ C', we adopt the following convention(s): - 

where a subset of elements common to each alternative exists, e. g., a in ab I ad, then: - 
i. if a is a category, we represent it as a component class of C with multiplicity 1 (if mandatory for 

all alternatives) or O.. 1 (if optional for all); 
ii. if a is a token, we represent it as an attribute of C (if mandatory for all alternatives) or as a 

component class of C with multiplicity O.. 1 (if optional for all). 

These are the main properties of alternatives for which a modelling philosophy can be stated. We 

make the observation that following subtraction of common elements, the remaining subsets for 

each alternative in example (b) are all disjoint 1-tuples (i. e. c:: = ab I ad) and therefore corresponding 

classes may be linked using the diagramming conventions described previously for (a). 

However to preserve BNF semantics, most scenarios featuring n>1 tuples require an OCL invariant 

to unambiguously state multiplicity and/or valid element combinations. In particular, where n>1 

tuple items must be and-ed together to form an alternative, or where on subtraction of common 

elements, the remaining subsets include either zero-tuples (e. g. the middle alternative in c:: = ab IbI 

bc) or tuples whose elements are not disjoint (e. g., c:: = abd I bd I be); note elements that are 

'common' to alternatives, but which differ in terms of optionality (e. g. [b], b in c:: = a [b] Ib c) are 

treated as non-common. 

9. The modelling of a defining sequence in which an item type appears at least once, but which may 

be repeated (as a comma or semi-colon delimited list) - i. e., category:: = item f, item) - features a 

subtle variation from the BNF syntax; we represent the mandatory single item as a class 

(corresponding to a `list head') and the optional repeated part (enclosed between braces in BNF) as 

165 



Towards a SPARK Ada Programming Language Structure 

a separate 'list-item' class containing an appropriate delimiter attribute, together with an 
aggregation association (multiplicity of one) to the afore-mentioned item class. 

It should be noted that there is some information loss in terms of sequencing when moving from a BNF 

tu a UML representation". This is further to the loss (in this particular work) when moving from UML 

tu O-'I'clus glue to our not explicitly re-stating assertions for multiplicity, exclusive-or, etc. 

4.5.3.2 SPARK Ada Meta-model Definitions 
In this suhsection we present a series of schemas representing elements for a SPARK Ada structure (an 

instantiation of the DevelopmentStructure metaclass 7) capturing the language subset outlined above. 
lach element is systematically expressed in terms of its source BNF syntax, corresponding UML 

representation and implementation in O-Telos using ConceptBase; OCL constraints are also introduced 

where appropriate to supplement standard UML diagramming conventions38. We further highlight the 

influence of our modelling philosophy (from 4.5.3.1) in deriving these structures. Readers without an 
Ada background are again referred to Barnes (1997) for details on the featured syntax. 

Many of the SPARK BNF productions that follow are identical in Ada. However some - those indicated 

by an asterisk (*) - have been modified despite retaining, the Ada category name. Others - those 

highlighted with a plus sign (+) - are additional SPARK constructs not present in the core language. 

We begin by describing the library-item syntax which marks the starting point for our structure. A 

SPARK Ada program is normally written as a number of units that may be compiled and linked 

separately, or else grouped together into one or more compilations. A compilation is therefore a 

succession of compilation units, of which one permutation comprises a library_item and a context clause 

specifying interdependence among individual units. For information and to Iiighlight the origin for our 

modelling, the related 13NF syntax is shown below: - 

ron1I)ila io n :: = (compilation-unit) 

compilation unit :: = ccýntext_cl: ausc library-item I context-clause subunit 

lihrary_itcm :: _ [private] package-declaration I package-body I main-subprogram 

+ niain_suhprograni :: = l inhcritclause mainsubprogramannotation subprogram 

+ niainsubprogram 
_annotation :: _ --# h ain_hrogram; 

" library item 

IA library item (fiouic 4.25) contains either the optional 'private' (private token) reserved word, together 

with a package declaration (package-declaration), or else a package body (package-body) or main 

A with linilccI NA'flJRIL we make the ussmnpIion that issues of layout are addressed by user interfaces to this and ; III 

slrueUnrs baled in the thesis. 
"The SPARK DevelopmentStructure class (not shown) is simply ; ill aggregation of all elements featured in this section. 
Ix O CL is mainly used to sure mutual dependencies (among optional categories and tokens), as well in place of standard 
li; igi; un annotations for multiplicity in complex cases (where fur example elements are nested). 

166 



Structuring Development Artifacts 

subprogram (main_subprogram). Note how we promote private-token to a class in UML in order to 
specify its optionality, as per rule 6b (from subsection 4.5.3.1.1); rule 8b also applies. 

I <Azbtact Property»I 
private_token 

<<Structure Element» 
library-Item 

0.. l 

Structure Element>> 
package-declaration 

/(exclusive-or) 

c<Structure Element>> 
package body 

"Structure Element 
main subprogram 

1 

BNF Syntax I OCL I O-Telos (base classes) 

library_item :: _ [private] 
package-declaration I 
package-body I 
main-subprogram 

library hem Invariant 
self. alllnstances->forall(I I 
not (I. private token->notEmpty and 
. package_declaration->isEmpty)) 

Constraint (in conjunction with 
`exclusive-or' in figure) 

ensuring private_token can exist 
only when package_declaration 
exists 

library-item in 
StructureElement, 
SimpleClass isA 
AerospaceEngineeringObject 
with has-property 

private-token 
private_token 
has-part 

package-declaration 
package-declaration; 

package_body 
package-body; 

main-subprogram 
main_subprogram 
end 

private_token in 
ArtifactProperty, 
SimpleClass isA String with 
constraint 
private_Is_Private: 
$ forall p/private_token p 
= `private' 
$ end 

Figure 4.25 - `library_item schema' 

All remaining featured elements enable representation of package declarations, the syntax for which is: - 

package_declaration :: = package_specification; 

*package_specification 
[inherit clause] 
package defining_prograryLuniLname package-annotation 
is 
{ renaming_declaration ) 
{ package_declarative_item } 

end [parent unit name .] identifier; 

Note, again the above syntax is for reader orientation only; individual schema representations will now 

167 



Towards a SPARK Ada Programming Language Structure 

be developed for each of these constructs (except renaming_declaration). 

" package_declaration 
Each package-declaration is defined in terms of a single package specification (package-specification) and 

terminates with a semi-colon (semi_colon token) as the schema below (figure 4.26) demonstrates: - 

package-declaration 

«Structure Element>> 
package-declaration 

. semi colon_token: semi-colon-token 

1«Structure 

Element>> 

package_specftication 

BNF S ntax O-Telos 

package_declaration:: = package_specification; package-declaration in StructureElement, 
SimpleClass isA AerospaceEngineeringObject 
with 
has-property 

semi_colon_token : semi-colon-token 
has-part 

package-specification 
package-specification 
end 

semi_colon_token in ArtifactProperty, 
SimpleClass isA String with constraint 
semicolon_Is_Semicolon: 

$ forall s/semi_colon_token 
S$ 

end 

Figure 4.26 - `package_declaration schema' 

" package_specification 
In addition to the 'package' (package-token), 'is' (is_token) and 'end' (end_token) reserved words, and 

semi colon token and period (period token) punctuation, package_specification includes the inherit clause 

(inherit_clause), defining program unit name (defining-program-unit-name), package annotation 

(package-annotation), renaming declaration (renaming_declaration), package declarative item 

(package_declarative_item), parent unit name (parent_unit_name) and identifier category elements. 

In UML, we again promote an attribute - period_token - to a class in order to express its optionality (rule 

6b); the zero-or-one (O.. 1) multiplicity constraint on this class and on parent unit_name is supplemented 

by an OCL constraint to preserve the BNF optionality syntax such that both or neither of these elements 

exist. Further, both parent_unit_name and identifier are treated as atomic (and hence as specialisations of 

the built-in String class which is not shown on the UML diagram, but does feature in the corresponding 

O-Telos representation) since this granularity is sufficient for traceability purposes (as per rule 3). The 

package specification schema is shown in figure 4.27. 

168 



Structuring Development Artifacts 

package-specification 
<<Structur e Element>> 

«Artifact Property > 
package- specification 

periodtoken . package token :p ackage token 
0.. 1 OIs_token : is token 

end token : end to ken 
Osemi_cdon token : seml_colon_token 

Stnicture Elemenb> 
e 

fhe&claus1 

0.. 1 
«Structure Element>> 

parentung_name 
0.. 1 

<<Strucure Elemenb> 
defining-program_unit_name 

1 

Structure Element» {tation 

«Structure Element>> 
renaming_dedaration 

I 

0' 

<<Strucure Element» 
package_dedarative_Item 

0 .' 

«Structure Element» 
Identifier 

BNF Syntax O-Telos (continued) 

* package-specification end_token in ArtifactProperty, SimpleClass 
[inherit clause] 

isA String with constraint end_Is_End: 
$ forall e/end_token e= `end` $ 

package defining_program_unit_name end 
package-annotation period token in ArtifactProperty, 

is SimpleClass isA String with constraint 
(renaming declaration) period_Is_Period: 

p= $ forall p/period _token 
$ 

{package_declarative_item} 
end 

end [parent_unit name .] identifier; 
parent_unit_name in StructureElement, 

parent unit name :: = name 
SimpleClass isA String, 
AerospaceEngineeringObject 

identifier :: = identifer_letter ([underlined] 
end 

letter or digit} identifier in StructureElement, 
SimpleClass isA String, 

ineerin object end eEn A 
OCL 

g g erospac 

--package_specification class 
package specification Invariant package-specification in StructureElement, 
self. alllnstances->forall(pI SimpleClasa isA AerospaceEngineeringObject 
(p. perio(ttoken->isEmpty and p. parent_unit_name-> isEmpty) xor with 
(p. period token->notEmpty and p. parent_unit name->notEmpty)) has_property 

package-token : package_token; 
k i t k 

O-TeloS en; is-to en s- o 
end-token : end-token; 
period_token : period-token; 

--Token classes semi_colon_token : semi_colon_token 
package-token in ArtifactProperty, has part SimpleClass isA String _ inherit-clause : inherit_clause; 
with constraint defining_program_unit_name 
package_Is_Package: defining_program_unit_name; 

$ forall p/package_token p= `package' package_annotation $ package_annotation; 
end renaming-declaration 

renaming-declaration; in ArtifactProperty, SimpleClass package-declarative-item isA String package_declarative_item; 
with constraint w n parent_unit_name : parent_unit_name; 

_I : i_Is : identifier identifier 
$ forall i/is_token i= `is' $ 

end end 
Figure 4.27 - 'acka es ecification schema' 

169 



Towards a SPARK Ada Programming Language Structure 

" inherit clause 
This construct includes the '--# inherit' (inherit_token) reserved word annotation together with at least 

one, but optionally a comma delimited list of package name (package_name) elements. It too terminates 

with a semi-colon. 

In accordance with rule 9, our UML representation (and hence the O-Telos implementation) introduces 

an additional class - package_name_list_item - as a means of representing elements following the 

mandatory initial package-name instance. Further, package_name is treated as atomic in accordance with 

rule 3. The inherit_clause schema is shown in figure 4.28. 

inherit clause 

<<Structure Element» 
inherit_dause 

oinherit_token : inherit_token 
osemi_oolon token : semi_colon_token 

1 0. " 

«Structure Element>> 1 «Structure Element» I 

package-name ackage_name_Iist_item 
. comma token : comma token 

BNF Syntax O-Telos 

+inherit clause = 
inherit-clause in StructureElement, 

_ SimpleClass isA AerospaceEngineeringobject 
--# inherit package-name {, package_name}; with 

has-property 

package_nameidentifier 
inherit_token : inherit-token; 
semi_colon_token : semi_colon_token 

has-part 
package_name : package_name; 
package_name_list_item 

package_name_list_item 
end 

inherit-token in ArtifactProperty, 
SimpleClass isA String 
with 
constraint 
inherit_Is_Inherit: 

$ forall i/inherit_token 
i= "--# inherit' $ 

end 

package_name in StructureElement, 
SimpleClass isA String, 
AerospaceEngineeringObject 

end 

package_name_list_item in 
StructureElement, SimpleClass isA 
AerospaceEngineeringObject 
with 
has-property 

comma-token comma-token 
has-part 

package_name : package-. name 

end 

Figure 4.28 - 'inherit-clause schema' 

170 



Structuring Development Artifacts 

" defining_program_unit_name 
A defining_program_unitname (figure 4.29) contains defining identifier (defining-identifier) and 
parent unit name elements, together with the period_token punctuation. 

The UML representation of this category includes certain characteristics present in package_specification. 
Again, period_token is promoted to a class to allow specification of optionality (as per rule 6b); again, 
the zero-or-one multiplicity imposed on this class and on parent_unit_name is supplemented by an OCL 

constraint to preserve the BNF optionality syntax such that both or neither of these elements exists; and 
again defining-identifier is treated as atomic. 

definin ro ram unit name 

«Slncnuý Elend.. 
deM1nrg_fdeieti t 

-Stnctm Element- 

F de1mg-pm9, >ý tiý 
<eMllad Propely» 

P«ý4 ý 
0.. 1 

0.. 1 

«S7nxtwa Ekmenb> 
Pare&I l nerM 

BNF S ntax OCL O-Telos (base classes) 
defning_program_unitname defining program unit name Invariant defining_program_unit_name 

[parent_unit_name 
.] 

self. alllnstances->forall(d I in StructureElement, 
SimpleClass isA 

defining-identifier d. pareniodt _unitokenme->isEmpty) xor name isEmpty . part AerospaceEngineeringobject 
_ _ (d. period_token->notEmpty and with 

has_property 
defining-identifier :: = identifier d. parenLunit_name->notEmpty)) period-token 

Constraint preserving the BNF hasipa_token 
mart 

optionality syntax such that parent_unit_name : 
both period token and parent_unit_name; 

defining-identifier 
parent unit_name exist or defining-identifier 

neither exists end 
defining-identifier in 
StructureElement, 
SimpleClass isA String, 
AerospaceEngineeringObject 
end 

Figure 4.29 - `defningprogram_unit_name schema' 

" package_annotation 
This construct comprises an optional own variable clause (own variable_clause); if this element exists, 

then it may also contain an optional initialization specification (initialization_specification). The semantics 

of this statement are captured in BNF by nesting the square brackets framing these constructs and in the 

corresponding UML diagram using an OCL constraint (see figure 4.30). 

" own_variable_clause 
An own_variable_clause includes the `--# own' (own-token) reserved word annotation, together with a 

171 



Towards a SPARKAda Programming Language Structure 

acka e annotation 

«Structure Element» , Structure Element» 
package-annotation initialization specification 

«Structure Element>> 
' 

variable clause e 

F. 

BNF S ntax OCL O-Telos (base classes) 

+ package-annotation package annotation invariant package_annotation in 

[own variable clause self. alllnstances->forall(p I StructureElement, 
_ _ [initialization_specification]] p. own_variable_clause->size <=1 and 

p. initialization_specificatlon->size <01 

SimpleClass isA 
AerospaceEngineeringobj ect 

and with has-part 

not (p. initialization_specification->size =1 
own_variable_clause 

own-variable-clause; 
and p. own_variable_clause->isEmpty)) initialization_specific 

ation : 
Constraint preserving the BNF 

initialization_specification 

nested square brackets syntax end 

Figure 4.30 - `package_annotation schema' 

own_variable_clause 

<<Structure Element» 
own variable clause 

iown_variable_token : own variable token 
lsemi_colon_token: semi_colon_token 

1 

«Structure Element» 
own lwrLvariabl 

-list 

BNF S ntax O-Telos 

+ own variable clause own_variable_clause in StructureElement. 
_ 

--# own own_variable_list; 
SimpleClass isA AerospaceEngineeringObject 
with 
has-property 

own_variable_token 
own_variable_token; 

semi_colon_token : semi-colon-token 
has-part 

own_variable_list : own_variable_list 
end 

own_variable_token in ArtifactProperty, 
SimpleClass isA String with constraint 
own_Is_Own: 

$ forall v/own_variable 
v= --# own, $ 

end 

Figure 4.31 - `own_variable_clause schema' 

172 



Structuring Development Artifacts 

single own variable list (own_variable_list) element; the construct terminates with a semi colon. This 

schema is shown in figure 4.31. 

" own_variable_list 
As its name suggests, own variable_list (figure 4.32) contains one or more own variable (own_variable) 

elements as a comma-delimited list. 

Again (in accordance with rule 9), the UML and O-Telos representations introduce an additional class - 
own_variable_listitem - to represent optional own variable elements that may follow the single mandatory 
instance; own_variable itself is treated as atomic (as per rule 3). 

own-variable-fist 

«Structure Element» 
own variable_Gst 

«Structure Elemenb> > «Structure Element> 
ownyariable own variable list item 

Ocommejoken: comma_token 

BNF Syntax O-Telos 

+own variable 
own variable 1 own variable) 

SimpleClass isA AerospaceEngineeringobject 

_ , _ with has-part 
own_variable : own-variable; 

+ own variable :: = identifier own_variable_list_item 
own_variable_list_item 
end 

own_variable_list_item in StructureElement, 
SimpleClass isA AerospaceEngineeringobject 
with has_property 

comma_token comma-token 
has-part 

own_variable : own variable 
end 

own-variable in StructureElement, 
SimpleClass isA String, 
AerospaceEngineeringObject end 

Figure 4.32 - `own_variable_list schema' 

" initialization-specification 
An initialization-specification (figure 4.33) includes the '-# initializes' (initializes token) reserved word 

annotation, together with a single own variable_list element; this construct also terminates with a 

semi. _colon. 

" package_declarative_item 
A package_declarative_item contains either a basic declarative item (basi(; declarative_item), subprogram 
declaration (subprogram declaration) or external subprogram declaration (extemal subprogram_declaration); 

therefore rule 8a applies. The corresponding schema is shown in figure 4.34. 

173 



Towards a SPARKAda Programming Language Structure 

initialization-specification 

<<Structure Element» 
initialization specification 

initialization token: initialization_token 
#semi_colon_token: semi_coton_token 

1 

«Structure Element» 
own_variable-list 

BNF Syntax O-Telos 

+ initial ization_specification initialization_specification in 

--# initializes own variable ist; StructureElement, SimpleClass isA 

_ _ AerospaceEngineeringObject with 
has-property 

initialization_token 
initialization_token; 

semi_colon_token semi_colon_token 
has-part 

own_variable_list own_variable_list 
end 

initialization_token in ArtifactProperty, 
SimpleClass isA String with constraint 
init_Is_Init: 

$ forall i/initialization_token i=- 

-# initializes' $ 
end 

Figure 4.33 - 'initialization-specification schema' 

package_declarative_item 

«structure Element» 
package-declarative-Item 

<<Structure Element» 
basic_declarative_item 

(exclusive-or) 

<<Structure Element>> 
subprogram_declaration 

<<Structure Element>> 
external subprogram declaration 

BNF Syntax O-Telos 

+ package declarative-item package_declarative_item in 

- basic declarativeitem I subprogram declaration I 
StructureElement, SimpleClass isA 
AerospaceEngineeringobject with 

external_subprogram_declaration has-part 
basic-declarative-item 

bas ic_declarative_item; 
subprogram_declaration 

subprogram-declaration; 
external_subprogram_declaration 

external_subprogramdeclaration 
end 

Figure 4.34 - `package_declarative_item schema' 

174 



Structuring Development Artifacts 

"_ basic_declarative_item 
Each basic_declarative_item (figure 4.35) consists of either a representation clause (representation_clause) 

or basic declaration (basic_declaration); again rule 8a applies. 

basic declarative item 

«Structure Element>> <<Structure Element>> 
basic-declarative-item basic_dedaration 

(exclusive-or) 

«Structure Element» 
representation clause 

BNF Syntax O-Telos 

basic declarative item ""= basic_declarative_item in 
_ _ basic declarationlre resentation_clause -P 

, SimpleClass isA Structureslement 
AerospaceEngineeringobject 
with 
has-part 

basic_declaration : basic-declaration; 
representation-clause 

representation-clause 
end 

Figure 4.35 - `basic_declarative_item schema' 

" basic declaration 
Similarly, each basic_declaration comprises either an object declaration (object_declaration), a number 

declaration (number declaration), a type declaration (type-declaration) or a subtype declaration 

(subtype. 
-declaration). 

This is represented by the schema in figure 4.36 (again based on rule 8a). 

" type-declaration 

A type_declaration features either a full type declaration (full_type_declaration) or private type declaration 

(private_type_declaration); the corresponding schema (derived using rule 8a) is shown in figure 4.37. 

" full_type_declaration 
Each full_type_declaration contains the `type' (type_token) and `is' (is token) reserved words, together 

with a defining-identifier and type definition (type_definition) as shown in figure 4.38; full_type_declaration 

terminates with a semi-colon. 

" type-definition 
Each type_definition consists of an enumeration type definition (enumeration-type-definition), an integer 

type definition (integer type_definition), a real type definition (real_type_definition), an array type 

definition (array_type_definition) or a record type definition (record_type_definition); this schema is also 

based on rule 8a and is shown in figure 4.39. 

175 



Towards a SPARKAda Programming Language Structure 

basic declaration 

«Structure Element» 
basic-declaration 

«Structure Elemenb> 

object_declaraUon 

«Structure Element>> 

number_deGaraUon 
( 

l i ) exc us ve-or 

«Structure Element 
ype_deaarauon 

<. Structure Element» 
subtype_declaraton 

BNF Syntax O-Telos 

declaration': - * basic basic_declaration in StructureElement, 
_ SimpleClass isA AerospaceEngineeringobject 

object_declaration I number-declaration I with 
has_part 

type-declaration Isubtype-declaration object_declaration 
object_declaration; 

number_declaration 
number_declaration; 

type-declaration : type-declaration; 
subtype_declaration 

subtype-declaration 
end 

Figure 4.36 -'basic_declaration schema' 

type declaration 

«Structure Element» 1 <<Structure Element>> 
type_declaratlon private type_deciaration 

(exclusive-or] 

i 

F «Structure Element>> 
full_type_declaration 

BNF Syntax O-Telos 

type-declaration type_declaration in StructureElement, 
leClass isA AerospaceEngineeringObject S 

full-type-declaration I private-typq-declaration 
ith 

has_part 
full_type_declaration 

full_type_declaration; 
private-type-declaration 

private_type_declaration 
end 

Figure 4.37 - 'type-declaration schema' 

176 



Structuring Development Artifacts 

full e declaration 

"Structure Element» 
full declaration «Structure Element» 

*"-token : type token defining�JdentdIer 
#ie_token : is token 
fsemi_colon_token: semi_coton_token 

"Structure Element» 
type-definition 

BNF Syntax O-Telos 

* full_type_declaration fu11_type_declaration in StructureElement, 

type defining identifier is t e definition SimpleClass isA AerospaceEngineeringObject 

_ ; yp with 
has_property 

type_token : type-token; 
is-token : is-token; 
semi_colon_token : semi_colon_token 

has-part 
defining-identifier 

defining-identifier; 
type--definition : type-definition 

end 

type_token in ArtifactProperty, 
SimpleClass isA String 
with constraint 
type_is_Type: 

$ forall t/ type-token 
t= `type" $ 

end 

Figure 4.38 - `full_type_declaration schema' 

" enumeration-type-definition 
An enumeration_type_definition consists of one or more defining-identifier elements represented as a 

comma-delimited list; the construct is enclosed between left (left-parenthesis-token) and right 
(right_parenthesistoken) parentheses. 

Again (as per rule 9), the UML and O-Telos representations introduce an additional class - 
defining identifier_list_item - to represent optional defining identifier elements following the single 

mandatory instance. Figure 4.40 depicts the corresponding enumeration_type_defnition schema. 

" subprogram-declaration 
A subprogram_declaration consists of either a procedure specification (procedure_specification) and 

procedure annotation (procedure_annotation) or a function specification (function_specification) and 

function annotation (function_annotation), separated by a semi-colon. 

The common semi-Colon-token element is included once as an attribute of the Subprogram declaration 

class (in accordance with rule 8b); an OCL constraint describes the alternative combinations (see figure 

4.41). 

177 



Towards a SPARKAda Programming Language Structure 

t e_definition 
<<Structur e Element» 

rype_d efinition 

<<Structure Element» 
enumeretlon_rype_definltion 

«Structure Element» 
Integer type_deflnltlon 

(exclusive-or) 

«Structure Element> 
real_ ype_definkion 

«Structure Element» 
erray_rype_defutitlon 

<<Structure Element» 
recoro_type_definltion 

BNF Syntax O-Telos 

*type_definition type_definition in StructureElement, 

enumeration type definitionI SimpleClass isA AerospaceEngineeringObject 
_ _ with has_part 

integer_type_definition I real_type_definition I enumeration_type_definition 
array_type_definitionIrecord_type_definition enumeration_type_definition; 

integer_type_definition 
integer_type_definition; 

real_type_definition 
real-type-definition; 

array_type_definition 
array-type-definition; 

record_type_definition 
record_type_definition 
end 

Figure 4.39 - `type-definition schema' 

" procedure_specification 
Each procedure_specification (figure 4.42) consists of the 'procedure' (procedure_token) reserved word, 
followed by defining identifier and parameter profile (parameter-profile) elements. 

" parameter profile 
A parameter-profile simply comprises an optional formal part (formal-part) element (see figure 4.43). 

" formal-part 
The formal-part element (figure 4.44) consists of one or more parameter specifications 
(parameter specification) represented as a semi-colon-delimited list between left (Ieftý-parenthesis_token) 

and right (right_parenthesistoken) parentheses. 

As with all featured list based constructs, the UML and O-Telos representations introduce an additional 

class (in accordance with rule 9) - in this case parameter_specification_listitem - to represent optional 

parameter_speeifieation elements following the single mandatory instance. 

178 



Structuring Development Artifacts 

enumeration-type-definition 

<<Structure Element» 
enumeration _type 

definition 
OIeft. parenthesistoken : left-parenthesis_token 
fright_parenthesis_token : right_parenthesis_token 

f 

70... 

Element > <<Structure Elemen ' ' u 

_identHier 
definin Identifier Ii Item 

Ed. 

fin . n g 
#comma_token : comma_token 

BNF Syntax O-Telos 

* enumeration_type_defnition 
enumeration-type-definition in 
StructureElement, SimpleClass isA 

(defining identifier defining-identifier}) AerospaceEngineeringobject 
with 
has_property 

left-parenthesis-token 
left-parenthesis-token; 

right_parenthesis_token 
right_parenthesis_token 
has_part 

defining-identifier 
defining_identifier; 

defining_identifier_list_item 
defining_identifier_list_item 
end 

left_parenthesis_token in 
ArtifactProperty, SimpleClass isA String 
with 
constraint left_Is_Left: 

$ forall 1/left_parenthesis_token 
1= "(' $ 

end 

right_parenthesis_token in 
ArtifactProperty, SimpleClass isA String 
with 
constraint right_Is_tight: 

$ forall r/right_parenthesis_token 
r= ">' $ 

end 

defining_identifier_list_item in 
StructureElement, SimpleClass isA 
AerospaceEngineeringObject 
with 
has_property 

comma_token : comma-token 
has-part 

defining-identifier 
defining-identifier 
end 

Figure 4.40 - `enumeration_type_detinition schema' 

" parameter-specification 
A parameter specification contains a defining identifier list (defining-identifier Iist), the colon punctuation 
(colon_token), mode and subtype mark (subtype-mark) elements. 

In the UML model, mode and subtype_mark are both treated as specialisations of the String class as per 

rule 3; the former bears an OCL constraint restricting instantiations to the BNF alternatives shown in 

figure 4.45. 

179 



Towards a SPARKAda Programming Language Structure 

subprogram-declaration 

Structure 
subprogram declaration 

semi colon token: seml colon_token 

Structure Element. > 
functlospecifi cation 

c<Structure Elemenb> 
function_annotauon 

«Structure Elemenb> 
pmcedureennotation 

<Structure Elemenb> 
procedure_specificatlon 

BNF S ntax OCL O-Telos (base classes) 
* subprogram_declaration subprogram declaration Invariant subprogram_declaration in 

procedure specification ; self. alllnstances->forall sI StructureElement, 
- 

procedure_annotationl 
(s. procedure_specifiication->size =1 and 
s. procedure annotation >size =1 and 

SimpleClass isA 
AerospaceEngineeringObject 

function_specifcation ; s. function_specification->isEmptyand with 
function_ annotation s. function_annotation->isEmpty) xor 

has_property 
colon semi token (s. procedure_specificaton->isEmpty and - - semi_colon_token 

s. procedure_annotation->isEmpty and has-part 
s. function specificatlon->size=1 and procedure_specification: 
s. function_annotation->size=1)) procedure-specification; 

procedure_annotation 
procedure_annotation; 

Constraint preserving the BNF function-specification 

alternatives syntax 
function-specification; 

function_annotation 
function-annotation 
end 

Figure 4.41 - `subprogram_declaration schema' 

rocedure s ecification 

<<Structure Element>> 
Procedure specification «Structure ElemeElement » 

Oprocedure_token: procedure_token 
parameter-profile 

1 

1 
Structure Element>> 

F 

defining Identifier 

BNF S ntax O-Telos 

+ Procedure specification procedure_specification in 

procedure defining identifier arameter profile PP 
StructureElement, SimpleClass isA 

- __ AerospaceEngineeringobject with 
has-property 

procedure_token : procedure-token 
has-part 

defining-identifier 
defining-identifier; 

parameter-profile : parameter-profile 
end 

procedure_token in ArtifactProperty, 
SimpleClass isA String with constraint 
proc_Is_Proc: $ forall p/ 
procedure_token p= 'procedure' $ end 

Figure 4.42 -'procedure_specification schema' 

180 



Structuring Development Artifacts 

arameter_ rofile 

«Structure Element» 
parameter-profile 

1o.. 
1 

«Structure Element» 
formal-part 

BNF Syntax O-Telos 

parameter_profile ": _ [formal-part] parameter-profile in StructureElement, 
SimpleClass isA AerospaceEngineeringobject 
with 
has-part 

formal_part : formal_part 

end 

Figure 4.43 - `parameter profile schema' 

formal art 

«Structure Element» 
formal-pa rt 

heft parenthesis_token: left_parenthesis_token 
fight_parenthesis_token : right_parenthesis_token 

«Structure Element» 1 «Structure Element» 
atemstet s eclfication list hem 

parameter_speciication 
lseml_eolon_token : semi_oolon_token 

BNF Syntax O-Telos 

formal-pan:: = formal-part in StructureElement, 

(parameter specification {; parameter specification)) 
SimpleClass isA AerospaceEngineeringObject 

- with 
has_property 

left-parenthesis-token 
left-parenthesis-token; 

right-parenthesis-token 
right_parenthesis_token 
has-part 

parameter_specification 
parameter-specification; 

parameter-specification-list-item 
parameter_specification_list_item 
end 

parameter_specification_list_item in 
StructureElement, SimpleClass isA 
AerospaceEngineeringobject 
with 
has_property 

semicolon _token : semi_colon_token 
has_part 

parameter-specification 
parameter-specification 
end 

Figure 4.44 -'formal_part schema' 

181 



Towards a SPARK Ada Programming Language Structure 

arameter s ecifcation 

<<Structure Element» 
arameter s ecification 

Ocolon_tokencolon_token 

c<Structure Element» 
defining Identifier list 

self. alllnstances->forall(m I 
« m- *in' or 

mode m- In out, or 
m- out') 

«Structure Element» 
subtype mark 

BNF Syntax O-Telos 

* parameter specification parameter-specification in 
deilnin identlfei list : mode subt e mark g yp 

StructureElement, SimpleClass isA 
_ - AerospaceEngineeringObject with 

has-property 

mode :: = in I in out I out colon_token : colon_token 
has-part 

defining_identifier_list 
subtype-mark:: = name defining_identifier_list; 

mode : mode; 
subtype-mark : subtype nark 

end 

colon-token in ArtifactProperty, 
SimpleClass isA String with constraint 
colon_Is_Colon: 

$ forall c/colon-token 
c=$ 

end 

mode in StructureElement, SimpleClass isA 
String, AerospaceEngineeringobject with 
constraint 
enum_Mode: 

$forall m/mode 
(m = "in') or 
(m = in out') or 
(m = "out")$ 

end 

subtype_mark in StructureElement, 
SimpleClass isA String, 
AerospaceEngineeringobject 

end 

Figure 4.45 - `parameter specification schema' 

" defining identifier_list 
The defining identifier list (figure 4.46) consists of one or more comma-delimited defining identifiers 

(defining identifier). 

As per rule 9, the UML and O-Telos representations again employ an additional class - 
defining identifier_list_item - to represent optional defining identifier elements following the single 

mandatory instance. 

" procedure_annotation 
A procedure_annotation features an optional global definition (global-definition) or moded global 

182 



Structuring Development Artifacts 

detinin identifier list 

Stnicture Element>> 
def'iningidentifier_list 

-Structure Element>> I 
detining_klentifier 

<cStruoture Element» 
definin Identifier Iist_Rem 

*-comma token : commatoken 

BNF Syntax O-Telos 

definingidentifier list defining_identifier_list in 
_ 

definingidentifer {, defining-identifier) StructureElement, SimpleClass isA 
AerospaceEngineeringobject with 
has-part 

defining-identifier 
defining-identifier; 

defining_identifier_list_item 
defining_identifier_list_item 
end 

Figure 4.46 - `defningidentifier_list schema' 

procedure _annotation 

«Stnxiure Element>> 
procedure_annotation 

<<Structure Element» 
global definition 

0.. 1 

/(exdusiveor) 

«Structure Element>> 

OH moesnhtin 

«Structure Element» 
dependence relation 

0.. 1 

BNF Syntax O-Telos 

+ procedure annotation:: = [global definitioni procedure_annotation in StructureElement, 

_ _ SimpleClass isA AerospaceEngineeringobject 
moded_global_definition][dependency_relation] with 

has-part 
global-definition : global_definition; 
moded_global_definition 

moded_global_definition; 
dependency-relation 

dependency-relation 
end 

Figure 4.47 - `procedure_annotation schema' 

183 



Towards a SPARKAda Programming Language Structure 

definition (moded_global definition), and an optional dependency relation (dependency-relation). 

As per rule 8a, an exclusive-or annotation and dashed line connecting global definition and 
moded_global_definition expresses the alternatives semantics for this element (figure 4.47). 

" moded_global_definition 
A moded_global_definition contains the '--# global' (global_token) reserved word annotation, together with 
global mode (global-mode) and entire variable list (entire_variable_list) elements, followed by a semi- 
colon. This sequence exists once, but can be repeated (--# global annotation apart). 

Modelling this repetition in UML (and hence O-Telos) requires introduction of a 
moded_global_definition_listitem class (as per rule 9) comprising the elements described above. 

The global mode element is defined as a specialisation of the String class (as per rule 3), with an OCL 

constraint restricting its instantiation to the BNF alternatives shown in figure 4.48. 

" entire_variable_list 
An entire_variable_list (figure 4.49) consists of one or more comma-delimited entire variables 
(entire variable). 

Again, in accordance with rule 9, the UML and O-Telos representations introduce an additional class - 
entire_variable_Iist_item - to represent optional entire_variable elements following the single mandatory 
instance. 

" entire_variable 
The entire_variable element (figure 4.50) consists of direct name (direct_name) and package_name 

elements, together with the period_token punctuation. 

In accordance with rule 6b, period_token is promoted to a class allowing specification of optionality; 

again, the zero-or-one multiplicity imposed on this class and on package-name is supplemented by an 
OCL constraint to preserve the BNF optionality syntax such that both or neither of these elements exist. 
Note also that direct_name is treated as atomic (as per rule 3). 

" dependency-relation 
A dependency-relation comprises the '--# derives' (derives token) reserved word annotation, together 

with zero or more ampersand-delimited dependency clause (dependency-clause) elements; the construct 

terminates with a semi-colon. 

Once again, following rule 9, the UML and O-Telos representations introduce an additional class - 
dependency_clause_list_item - to represent dependency-clause elements following the initial instance. 

However, unlike similar list-base constructs making up the SPARK model (cf. own_variable_list, 

184 



Structuring Development Artifacts 

moded_ lobal_defnition 

<<Structure Element» 
moded_global definition_IlsUtem 

0. ' 

1 

«Artifact Property>> <<Structure Element» 
semi_colon_token moded_ global definition 

®globa_token: global token 

<<Structure Element» 

' 
global_mode 

, 
self. alllnstances->forall(g I 
g ='in' or 
g= 'in our or ----- 
g -"out") <<Structure Element>> 

entire_vadable_list 

BNF Syntax O-Telos 

+ moded_global_definition :: = moded_global_definition in 

--# global global mode entire variable list; 
StructureElement, SimpleClass isA 

i _ _ _ neeringobject AerospaceEng 
{global_mode entire-variable-list; ) with 

has_property 

+ global-mode:: = in I in out I out 
global_token : global_token; 
semi_colon_token : semi_colon_token 

has-part 
global node : global_mode; 
entire_variable_list 

entire_variable_list; 
moded_global_definition_list_item 

model_global_definition_list_item 
end 

global-token in ArtifactProperty, 
SimpleClass isA String 
with constraint global_Is_Global: 

$ forall g/global_token 
g= "--# global" $ 

end 

global node in StructureElement, 
SimpleClass isA String, 
AerospaceEngineeringobject 
with constraint enuat_Global Mode: 

forall g/global_xaode 
(g = "in') or 
(g = in out') or 
(g = *out')$ 

end 

moded_global_definition_list_item in 
StructureElement, SimpleClass isA 
AerospaceEngineeringObject 
with 
has_property 

semi-colon-token : semi-colon-token 
has-part 

global-lnode : global node; 
entire_variable_list 

entire_variable_list 
end 

Figure 4.48 - `moded_global_definition schema' 

185 



Towards a SPARKAda Programming Language Structure 

entire-variable-list 

<<Structure Element» 
entue_variable_list 

<<Structure Element> 1 <cStructure Element» 

entire variable entire variable list hem 
*comma_token : comma-token 

BNF Syntax O-Telos 

+ entire variable list:: = entire_variable_list in StructureElement, 
_ _ 

variable} variable { entire entire 
SimpleClass isA AerospaceEngineeringObject 

, - - with 
has-part 

entire_variable : entire_variable; 
entire_variable_list_item 

entire_variable_list_item 
end 

entire_variable_list_item in 
StructureElement, SimpleClass isA 
AerospaceEngineeringobject with 
has-property 

comma_token : comma_token 
has-part 

entire_variable : entire_variable 
end 

Figure 4.49 - `entire_variable_list schema' 

entire variable 

«Structure Element- «Structure Elemenb. > <<Stmdure Element-> 
package-name enbre_varlable 

1 
direcLname 

0.. 1 
t0001 

«Artifact Property a 
perlod_token 

BNF Syntax OCL O-Telos (base classes) 

variable + entire entire variable Invariant entire_variable in 
_ 

acka e direct_name [p 
-name. 

self. alllnstances->forall(i I StructureElement, 
simpleclass isA (e. period token->isEmptyand 
AerospaceEngineeringObject e. package name->isEmpty)xor with direct name :: = identifier (e. period token->notEmpty and has_property 

e. acka e name->notErn P9 Pty)) period_token 
Constraint preserving the BNF has-part 

optionality syntax such that package-name 
both period token and package-name; 

package_name exist or neither 
direct_name 

direct-name 
exists end 

direct-name in 
StructureElement, 
SimpleClass isA String, 
AerospaceEngineeringObject 
end 

Figure 4.50 - `entire_variable schema' 

186 



Structuring Development Artifacts 

enumeration_type_definition), a dependency-relation list can be empty; we therefore specify an OCL 

constraint ensuring that if dependency-clause is empty, then dependency_clause_listitem is also empty. 
The dependency_relation schema appears in figure 4.51. 

dependency-relation 

«Structure Element» 
de enden relation 

iderives_token : derives_token 
#seml_colon_token : semi_colon_token 

' 0. 
0.. 1 

«Structure Element» «S rudure Element» 
de enden clause Its Item dependency_clause 

0 impersand_token ampersand_token 

BNF Syntax OCL O-Telos (base classes) 

+ dependency relation dependency relation Invariant dependency-relation in 
_ 

--# derives [dependency clause self. alllnstances->forall(d I StructureElement, 
SimpleClass isA 

(& dependency clause) ]; not(d. dependency_clause->isEmptyand AerospaceEngineeringobject 
- d. dependency_clause_list_item->notEmpty)) with 

has-property 

Constraint preserving the BNF derives-token 
derives_token; 

optionality syntax semi_colon_token 
semi_colon_token 
has_part 

dependency-clause 
dependency-clause; 

dependency_clause_list_ 
item : 
dependency_clause_list_item 
end 

derives-token in 
ArtifactProperty, 
SimpleClass isA String 
with 
constraint 
derives_Is_Derives: 

$ forall 
d/derives_token d- `--# 
derives' $ 

end 

dependency_clause_list_item 
in StructureElement, 
SimpleClass isA 
AerospaceEngineeringObject 
with 
has_property 

ampersand_token 
ampersand_token 
has-part 

dependengy_clause : dependency_c ause 
d en 

ampersand_token in 
ArtifactProperty, 
SimpleClass isA String 
with 
constraint 
ampers and_I s_Ampersand : 

$ forall 
a/ampersand token a= "&" $ 
end 

Figure 4.51-'dependency_relation schema' 

187 



Towards a SPARK Ada Programming Language Structure 

" dependency_clause 
A dependency-clause is defined in terms of the 'from' (from_token) reserved word which separates 
entire_variablelist and imported variable list (imported_variable_list) elements. The schema for this 

construct is as follows (figure 4.52): - 

de endenc _clause 

«Structure Element» 
de enden clause 

®from token from token 

<<Structure Element» 

I 
entire varlable_kst 

«Structure Element» 
Imported variable list 

BNF Syntax O-Telos 

+ dependency-clause :: = entire variable list from dependency_clause in StructureElement, 

im orted variable list SimpleClass isA 
_ 

P AerospaceEngineeringobject 
with 
has-property 

from_token : from_token 
has-part 

entire_variable_list 
entire_variable_list; 

imported-variable-list 
imported-variable-list 
end 

from_token token in ArtifactProperty, 
SimpleClass isA String 
with 
constraint 
from_Is_From: 

$ forall f/from_token 
f= "from' $ 

end 

Figure 4.52 -'dependency_clause schema' 

" imported_variable_list 

Finally, imported_variable_list contains either an optional asterisk '*' (asterisk_token), or an optional 

asterisk-comma '*, ' (asterisk_commatoken) and an entire_variable_list element. 

As per rule 6b, asterisk_token and asterisk_comma_token are promoted to classes allowing their 

optionality and exclusivity to be described. This is done using an OCL constraint (according to rule 8b), 

as the schema in figure 4.53 illustrates. 

188 



Structuring Development Artifacts 

imported-variable list 

«Structure Element>> <<Structure Bement>> 
imported_variable_list entire_variablelist 

<<Artifact Propert > 
asterisk comma token 

«AAifact Proped > 
asterisktoken 

BNF Syntax OCL O-Telos (base classes) 

+ imported_variable list imoorted variable list Invariant imported_variable_list in 
_ ** []I[ 

,] entire variable list self. alllnstances->forallII m StructureElement, 
- - ((i. asterisk token->isE ptyxor SimpleClass isA 

(. asterisk token->size=1)and AerospaceEngineeringobject 

i. astensk_comma_token-> isEmpty and with 
has property (. entire variable_list-> isEmpty) - asterisk-token 

xa asterisk_token; 
(1. asterisk_token->isEmptyand asterisk_comma_token 
(i. asterisk_commatoken->isEmptyxor asterisk_comma_token 
i. asterisk_comma_token->size =1) and has-part 
Lentire_variable_Iist->size =1)) entire-variable-list 

entire_variable_list 
end 

asterisk-token in 
Constraint preserving the BNF ArtifactProperty, 

optionality/alternatives syntax SimpleClass isA String with 
constraint 
asterisk_Is_, sterisk: 

$ forall 
a/asterisk_token a= "*" $ 
end 

asterisk_comma_token in 
ArtifactProperty, 
SimpleClass isA String with 
constraint 
asterisk_comma_Is_Asterisk_ 
Comma : 

$ forall 
a/asterislc_comma_token a 

end 

Figure 4.53 - `imported_variable_Iist schema' 

189 



Towards a SPARK Ada Programming Language Structure 

4.5.3.3 SPARK Ada Meta-model: Worked Examples 
This subsection applies the SPARK Ada structure developed above to two program fragments (taken 

from the appendix to Barnes - 1997) from an autopilot system controlling altitude and heading for a 
hypothetical aircraft. The autopilot includes a control panel containing three binary-state switches with 

positions on and off. A package declaring access to the switches as a private child of the main autopilot 

package AP is specified as follows: - 

private package AP. Controls 

--# own Master_Switch, Altitude_Switch, Heading_Switch; 

--# initializes Master_Switch, Altitude_Switch, Heading_Switch; 

is 

type Switch is (On, Off); 

procedure Read_Master_Switch(Position: out Switch); 

--# global in out Master_Switch; 

--# derives Position, Master_Switch from Master_Switch; 

procedure Readlltitude_Switch(Position: out Switch); 

--# global in out Altitude_Switch; 

--# derives Position, Altitude_Switch from Altitude_Switch; 

procedure Read_Heading_Switch(Position: out Switch); 

--# global in out Heading_Switch; 

--# derives Position, Heading_Switch from Heading_Switch; 

end AP. Controls; 

We now present the O-Telos representation for this code fragment'9: - 

Representation of the `private' 
library-item clause 

ap_controls_library_item in 
library-item, Token with 
private_token 

privateToken : "private' 
package_declaration 

packageDeclaration 
ap_controls_package_declaration 
end 

Representation of the AP. Controls 
package 

ap_controls_package_declaration in 

package_declaration, Token with 
package-specification 

packagespecification 
ap_controls_package_specification 
end 

ap_controls_package_specification in 

package-specification, Token with 
package-token 

packageToken : "package" 
defining-program-unit-name 

de finingProgramUnitName 

ap_controls_defining_program_unit_name 
package-annotation 

packageAnnotation 

39 We make the observation that while fifteen lines of SPARK has yielded five and a half pages of O-Telos code, there is a 1: 1 

mapping between the underlying BNF syntactic language elements and schemas for these syntactic elements. 

190 



Structuring Development Artifacts 

ap_controls_package_annotation 
is-token 

isToken : "is' 
package_declarative_item 

packageDeclarativeIteml 
type-package-declarative-item; 

packageDeclarativeItem2 
procl_package_declarative_item; 

packageDeclarativeltem3 
proc2_package_declarative_item; 

packageDeclarativeItem4 
proc3_package_declarative_item 
end token 

endToken : "end' 
parent_unit_name 

parentUnitName : "AP' 
period_token 

periodToken 
identifier : 

packageIdentifier "Controls' 
semi-colon-token 

semiColonToken 
end 

Representation of the AP. Controls 
package name 

ap_controls_defining_prograt__unit_name 
in defining program_unit_name, Token 
with 
parent_unit_name 

parentUnitName : `AP' 
period_token 

periodToken :. 
defining_identifier 

definingIdentifier: 'Controls' 
end 

Representation of package annotations 

ap_controls package_annotation in 
package_annotation, Token with 
own_variable_clause 

ownVariableClause 
ap_controls_own_variable_clause 
initialization_specification 

initializationSpecification 
ap_controls_initialization_specificatio 
n 
end 

Representation of the `--# own' package 
annotation 

ap_controls_own variable_clause in 
own variable_clause, Token with 
own_variable_token 

ownVariableToken --# own' 
own-variable-list 

ownVariableList 
own_annotation_ap_controls_own variable 

_list semi_colon_token 
semiColonToken 

end 

own-annotation ap_controls_own_variable 

_list 
in own_variable_list, Token with 

own_variable 
ownVariable : `Master_Switch" 

ownnvariable_list_item 
own_variable_list_iteml 

own_altitude_switch_own variable_list_i 
tem; 

own_variable_list_item2 
own-heading-switch own_variable_list_it 
em 
end 

own_altitude_switch_own_variable_list_i 
tem in owc_variable_list_item, Token 
with 
comma_token 

commaToken 
own_variable 

ownVariable "Altitude-Switch" 
end 

own_heading_switch_own_variable_list_it 
em in own_variable_list_item, Token 
with 
comma_token 

commaToken 
own_variable 

ownVariable "Heading_Switch" 
end 

Representation of the `--# initializes' 

package annotation 

ap_controls_initialization_specificatio 
n in initialization-specification, 
Token with 
initialization-token 

initializationToken --# 
initializes' 
own_variable_list 

ownVariableList 
initializes_annotation_ap_controls_own_ 
variable_list 
semi_colon_token 

semiColonToken 
end 

initializes_annotation_ap_controls_own_ 
variable-list in own-variable-list, 
Token with 
own_variable 

ownVariable : "Master_Switch" 
own_variable_list_item 

own_variable_list_iteml 
initializes_altitude_switch_own_variabl 
e_list item; 

own_variable_list_item2 
initializes_heading_switch_own_variable 

_list_item end 

initializes_altitude_switch_own_variabl 
e_list_item in own_variable_list_item, 
Token with 
comma-token 

commaToken 
own,,, variable 

ownVariable : `Altitude_Switch" 
end 

initializes heading_switch own,. variable 

_Jist_item 
in own-variable-list-item, 

Token with 
comma_token 

commaToken 
own_variable 

ownVariable 'Heading-Switch, 
end 

Representation of the Switch type 
declaration 

type-package-declarative-item in 
package_declarative_item, Token with 
basic_declarative_item 

basicDeclarativeItem 
switch_basic_declarative_item 
end 

switcibasic_declarative_item in 

191 



Towards a SPARKAda Programming Language Structure 

basic_declarative_item, Token with 
basic_declaration 

basicDeclaration 
switch-basic-declaration 
end 

switch_basic_declaration in 
basic_declaration, Token with 
type_declaration 

typeDeclaration 
switch_type_declaration 
end 

switch_type_declaration in 
type_declaration, Token with 
full_type_declaration 

fullTypeDeclaration 
switch_full_type_declaration 
end 

switch_full_type_declaration in 
full_type_declaration, Token with 
type_token 

typeToken : "type' 
defining_identifier 

definingidentifier : "Switch' 
is-token 

isToken : "is' 
type_definition 

typeDefinition : switch_positions 
semi_colon_token 

semiColonToken 
end 

switch-positions in type_definition, 
Token with 
enumeration_type_definition 

enumerationTypeDefinition 
enum_switch_positions 
end 

enum_switch_positions in 
enumeration_type_definition, Token with 
left-parenthesis 

leftParenthesis 
defining-identifier 

definingIdentifier : "On' 
defining_identifier_list_item 

definingIdentifierListltem 
switch_defining_identifier_list_item 
right-parenthesis 

rightParenthesis 
end 

ion 
semi_colon_token 

semiColonToken 
procedure_annotation 

procedureAnnotation 
read master_switch_procedure_annotation 
end 

reactmaster_switch procedure_specificat 
ion in procedure-specification, Token 
with 
procedure-token 

procedureToken : `procedure' 
defining-identifier 

definingldentifier 
'Read_Master_Switch' 
parameter-profile 

parameterProfile 
read_master_switch_parameter_profile 
end 

read_master_switch parameter-profile in 
parameter_profile, Token with 
formal-part 

formalPart 
read_master_switch_formal_part 
end 

read_naster_switch_formal_part in 
formal_part, Token with 
left-parenthesis-token 

leftParenthesisToken 
parameter_specification 

parameterSpecification 
read_master_switch_parameter_specificat 
ion 
right-parenthesis-token 

rightParenthesisToken 
end 

read master_switch_parameter_specificat 
ion in parameter-specification, Token 
with 
defining-identifier-list 

definingIdentifierList 
read- 
master-switch-defining-identifier-list 
colon_token 

colonToken 
mode 

parameterMode : "out' 
subtype_mark 

subtypeMark : Switch' 
end 

switch_defining_identifier_list_item in 
defining_identifier_list_item, Token 
with 
comma_token 

commaToken 
defining-identifier 

definingIdentifier : "off" 
end 

Representation of the 
Read_Master_Switch procedure 

procl_package_declarative_item in 
package-declarative-item, Token with 
subprogram_declaration 

subprogramDeclaration: 
read_master_switch_subprogram_declarati 
on 
end 

read_naster_switch_subprogram_declarati 
on in subprogram-declaration, Token 
with 
procedure-specification 

procedureSpecification 
read_master_switch_procedure_specificat 

read_master_switch_defining_identifier_ 
list in defining_identifier_list, Token 
with 
defining-identifier 

definingIdentifier : `Position" 
end 

read_master_switch_procedure_annotation 
in procedure-annotation, Token with 
model global_definition 

modedGlobalDefinition 
read_xraster_switch_moded_global_definit 
ion 
dependency-relation 

dependencyRelation 
read_master_switch_dependency_relation 
end 

Representation of Read_Master_Switch `- 

-# global' procedure annotation 

read_master_switchýnoded_global_definit 
ion in moded_global_definition, Token 
with 

192 



Structuring Development Artifacts 

global_token 
globalToken : `--# global' 

global node 
globalMode : in out, 

entire_variable_list 
entireVariableList 

read_Waster_switch_entire_variable_list 
semi-colon token 

semiColonToken 
end 

read_raster_switch_entire_variable_list 
in entire variable_list, Token with 
entire_variable 

entireVariable 
master_switch_entire_variable 
end 

master_switch_entire_variable in 
entire variable, Token with 
direct_name 

directName : 'Master-Switch, 
end 

Representation of Read_Master_Switch `- 

-# derives, procedure annotation 

read_master_switch_dependency_relation 
in dependency_relation, Token with 
derives-token 

derivesToken : --# derives' 
dependency-clause 

dependencyClause 
read_Feaster_switch_dependency_clause 
semi_colon_token 

semiColonToken 
end 

read_master_switch_dependency_clause in 
dependency_clause, Token with 
entire variable_list 

entireVariableList 
read_master_switch_dependency_entire_va 
riable_list 
from_token 

fromToken : `from' 
imported_variable_list 

importedvariableList 
read_master_switch_dependency_imported_ 
variable-list 
end 

read master_switch_dependency_entire_va 
riable_list in entire_variable_list, 
Token with 
entire_variable 

entireVariable 
read_master_switch_dependency-position 
entire_variable_list_item 

entireVariableListltem 
read_master_switch_dependency_master_sw 
itch-list-item 
end 

readjnaster_switch_dependency_position 
in entire_variable, Token with 
direct_name 

directName : `Postion' 
end 

readjnaster_switch_dependencyjnaster_sw 
itch_list_item in 
entire-variable-list-item, Token with 
comma_token 

commaToken 
entire_variable 

entireVariable 
read_master_switch_dependency_master_sw 
itch 
end 

read_master_switch_dependency_master_sw 
itch in entire_variable, Token with 
direct_name 

directName : "Master_Switch' 
end 

read master_switch_dependency_imported` 
variable_list in 
imported_variable_list, Token with 
entire_variable_list 

entireVariableList 
read. master_switch_dependency_entire_va 
riable_list_imported 
end 

read, master_switch_dependency_entire_va 
riable_list_imported in 
entire_variable_list, Token with 
entire_variable 

entireVariable 
read�master_switch_dependency_master_sw 
itch_imported 
end 

read_master_switch_dependency_master_sw 
itch_imported in entire_variable, Token 
with 
direct_name 

directName : "Master_Switch' 
end 

Representation of the 
Read_Altitude_Switch procedure 

proc2_package_declarative_item in 
package-declarative-item, Token with 
subprogram_declaration 

subprogramDeclaration: 
read_altitude_switch_subprogram_declara 
tion 
end 

readaltitude_switch. subprograxdeclara 
tion in subprogram-declaration, Token 
with 
procedure-specification 

procedureSpecification 
readaltitude_switch procedure_specific 
ation 
semi-colon-token 

semiColonToken 
procedure_annotation 

procedureAnnotation 
read_altitude_switch. procedure_annotati 
on 
end 

read_altitude_switch_procedure_specific 
ation in procedure-specification, Token 
with 
procedure-token 

procedureToken : "procedure" 
defining-identifier 

definingIdentifier 
"Read-Altitude-Switch, 
parameter-profile 

parameterProfile 
read altitude_switchj arameter-profile 
end 

read_altitude_switch-parameter-profile 
in parameter-profile, Token with 
formal-part 

formalPart 
read_altitude_switch_formal_part 
end 

read_altitude_switch-formal art in 
formal-part, Token with 

193 



Towards a SPARK Ada Programming Language Structure 

left-parenthesis_token 
leftParenthesisToken 

parameter_specification 
parameterSpecification 

read_altitude_switch_parameter_specific 
ation 
right-parenthesis-token 

rightParenthesisToken 
end 

n in dependency-relation, Token with 
derives-token 

derivesToken --# derives' 
dependency-clause 

dependencyClause 
read_altitude_switch_dependency_clause 
semi_colon_token 

semiColonToken 
end 

read_altitude_switch_parameter_specific 
ation in parameter_specification, Token 
with 
defining-identifier-list 

definingIdentifierList 
read_altitude_switck_defining_identifie 
r_list 
colon_token 

colonToken 
mode 

parameterMode : out, 
subtype_mark 

subtypeMark : "Switch" 
end 

read. altitude_switch_defining_identifie 
r_list in defining_identifier_list, 
Token with 
defining-identifier 

definingIdentifier : "Position' 
end 

read altitude_switchirocedure_annotati 
on in procedure-annotation, Token with 
moded_global_definition 

modedGlobalDefinition 
read_altitude_switch moded_global_defin 
ition 
dependency_relation 

dependencyRelation 
read_altitude_switch_dependency_relatio 
n 
end 

Representation of Read_Altitude_Switch 
`--# global' procedure annotation 

read_altitude_switch_noded_global_defin 
ition in moded. global_definition, Token 
with 
global_token 

globalToken --# global" 
global-mode 

globalMode "in out" 
entire_variable_list 

entireVariableList 
read_altitude_switch_entire_variable_li 
st 
semi_colon_token 

semiColonToken 
end 

read_altitude_switch_entire_variable_li 
st in entire_variable_list, Token with 
entire variable 

entireVariable 
altitude_switch_entire_variable 
end 

altitude_switch_entire_variable in 
entire variable, Token with 
direct_name 

directName : "Altitude_Switch" 
end 

Representation of Read_Altitude_Switch 
`--* derives, procedure annotation 

read_altitude_switch dependency_relatio 

read_altitude_switch_dependency_clause 
in dependency_clause, Token with 
entire_variable_list 

entireVariableList 
read altitude_switch_dependency_entire_ 
variable_list 
from token 

fromToken : `from" 
imported_variable_list 

importedVariableList 
read_altitude_switch_dependency_importe 
d_variable_list 
end 

read_altitude_switch_dependency_entire_ 
variable_list in entire-variable-list, 
Token with 
entire_variable 

entireVariable 
read_altitude_switch_dependencypositio 

entire_variable_list_item 
entireVariableListltem 

read_altitude_switch_dependency_altitud 
e_switch_list_item 
end 

readaltitude_switch_dependency. positio 
n in entire_variable, Token with 
direct_name 

directName : "Postion" 
end 

read_altitude_switch_dependency_altitud 
e_switch_list_item in 
entire-variable-list-item, Token with 
comma_token 

commaToken 
entire_variable 

entireVariable 
read_altitude_switch_dependency_altitud 
e_switch 
end 

read_altitude_switch_dependency_altitud 
e_switch in entire_variable, Token with 
direct_name 

directName : "Altitude_Switch" 
end 

read_altitude_switch_dependency_importe 
d_variable_list in 
imported_variable_list, Token with 
entire_variable_list 

entireVariableList 
read_altitude_switch_dependency_entire_ 
variable_list_imported 
end 

read_altitude_switch_dependency_entire_ 
variable_list_imported in 
entire_variable_list, Token with 
entire_variable 

entireVariable 
read_altitude_switch_dependency_altitud 
e_switch_imported 
end 

read_altitude_switck-dependency_altitud 
e_switch_imported in entire_variable, 
Token with 

194 



Structuring Development Artifacts 

direct_name 
directName : `Altitude_Switch' 

end 

Representation of the 
Read_Heading_Switch procedure 

proc3 package_declaratlve_item in 
package_declarative_item, Token with 
subprogram declaration 

subprogramDeclaration: 
read_heading_switch_subprogramdeclarat 
ion 
end 

read heading_switch_subprogram_declarat 
ion in subprogram_declaration, Token 
with 
procedure-specification 

procedureSpecification 
read_heading_switch.. procedure_specifica 
tion 
semi_colon_token 

semiColonToken 
procedure_annotation 

procedureAnnotation 
read_heading_switch_procedure_annotatio 
n 
end 

read-heading-switch procedure_specifica 
tion in procedure_specification, Token 
with 
procedure-token 

procedureToken : "procedure, 
defining-identifier 

definingIdentifier 
"Read Heading_Switch' 
parameter-profile 

parameterProfile 
read_heading_switch_parameterprofile 
end 

read heading_switch parameterprofile 
in parameter-profile, Token with 
formal-part 

formalPart 
read eading_switch_forma1part 
end 

read_heading_switch_formalpart in 
formal_part, Token with 
left. parenthesis_token 

leftParenthesisToken : "ý" 
parameter-specification 

parameterSpecification 
read-heading-switch parameter_specifica 
tion 
right_parenthesis_token 

rightParenthesisToken : `)" 
end 

read_heading_switch_parameter_specifica 
tion in parameter_specification, Token 
with 
defining_identifier_list 

definingIdentifierList 
read_heading_switch_defining_identifier 

_list colon-token 
colonToken : 

mode 
parameterMode : "out' 

subtype_mark 
subtypeMark : "Switch' 

end 

read heading_switch_defining_identifier 

_list 
in defining_identifier_1ist, 

Token with 

defining-identifier 
definingIdentifier : "Position' 

end 

read eading_switch_procedure_annotatio 
n in procedure_annotation, Token with 
moded_global_definition 

modedGlobalDefinition 
read_heading_switch moded_global_defini 
tion 
dependency_relation 

dependencyRelation 
read_heading_switch_dependency_relation 
end 

Representation of Read_Heading_Switch 
`--# global' procedure annotation 

read_heading_switch xnoded_global_defini 
tion in moded_global_definition, Token 
with 
global_token 

globalToken --# global' 
global_jnode 

globalMode in out' 
entire-variable-list 

entireVariableList 
read. heading_switch_entire_variable_lis 
t 
semi_colon_. token 

semiColonToken 
end 

read_heading_switch_entire_variable_lis 
t in entire_variable_list, Token with 
entire_variable 

entireVariable 
heading_switch_entire_variable 
end 

heading_switch_entire_variable in 
entire_variable, Token with 
direct_name 

directName : "Heading-Switch' 
end 

Representation of Read_Heading_Switch 
`--# derives' procedure annotation 

read-heading-switch-dependency-relation 
in dependency-relation, Token with 
derives_token 

derivesToken : --# derives' 
dependency_clause 

dependencyClause 
read_heading_switch_dependency_clause 
semi_colon-token 

semiColonToken 
end 

read_heading_switch_dependency_clause 
in dependency-clause, Token with 
entire_variable_list 

entireVariableList 
read_heading_switch_dependency_entire_v 
ariable_list 
from-token 

fromToken : `from" 
imported-variable-list 

importedVariableList 
read-heading-switch-dependency-imported 

_variable_list end 

read_heading_switch_dependency_entire_v 
ariable_list in entire_variable_list, 
Token with 
entire_variable 

entireVariable 

195 



Towards a SPARK Ada Programming Language Structure 

read-heading_switch_dependency_position directName : `Heading_Switch' 
entire_variable_list_item end 

entireVariableListItem : 
read_heading_switch_dependency_heading_ read_heading_switch_dependency_imported 
switch_list_item 

_variable_list 
in 

end imported_variable_list, Token with 
entire_variable_list 

reactheading_switch_dependency_position entireVariableLiSt 
in entire_variable, Token with reactheading_switch_dependency_entire_v 
direct_name ariable_list_imported 

directName : `Position' end 
end 

read_heading_switch_dependency_heading_ 
switch_list_item in 
entire_variable_list_item, Token with 
comma_token 

commaToken 
entire_variable 

entireVariable 
read_heading_switch_dependency_heading_ 
switch 
end 

read_heading_switck dependencyjeading_ 
switch in entire_variable, Token with 
direct_name 

read_heading_switch_dependency_entire_v 
ariable_list_imported in 
entire_variable_list, Token with 
entire_variable 

entireVariable 
read_heading_switch_dependency_heading_ 
switch_imported 
end 

readeading_switch_dependency_heading_ 
switch_imported in entire_variable, 
Token with 
direct_name 

directName : "Heading-Switch' 
end 

Our second code fragment (taken from the same example) represents the autopilot package itself which 
features a procedure called Control. This is specified as follows (note abbreviation of the global 

annotation): - 

--# inherit Surfaces, Instruments; 

package AP 

--# own State; 

--# initializes State; 

is 

procedure Control; 

--# global in out State, Surfaces. Elevators, Surfaces. Ailerons ... 

end AP; 

We now consider the O-Telos representation for this code: - 

Representation of the AY package 

ap package_declaration in 
package_declaration, Token with 
package-specification 

packageSpecification 
ap_package_specification 
end 

ap_package_specification in 
package-specification, Token with 
inherit-clause 

inheritClause: ap_inherit_clause 
package-token 

packageToken : "package" 
defining-program-unit-name 

definingProgramUnitName 
ap_defining_progranLunitaame 
package annotation 

packageAnnotation 
ap_package_annotation 
is-token 

isToken : "is' 
package-declarative-item 

packageDeclarativeIteml 
ap_procl_package_declarative_item 
end_token 

endToken : "end' 
identifier : 

packageIdentifier 'AP' 
semi_colon_token 

semiColonToken 
end 

Representation of the "--s inherit' AP 

package annotation 

ap_inherit_clause in inherit_clause, 
Token with 
inherit-token 

inheritToken : --# inherit' 
package_name 

196 



Structuring Development Artifacts 

packageName : 'Surfaces' 
package_name_list_item 

packageNameListItem 
instruments_package_name_list_item 
semi_colon_token 

semiColonToken 
end 

instruments package_name_list_item in 
package_name_list_item, Token with 
comma_token 

commaToken 
package_name 

packageName : "Instruments' 
end 

Representation of the AP package name 

ap_defining_program unit_name in 
defining_program_unit_name, Token with 
defining-identifier 

definingIdentifier : "API 
end 

Representation of package annotations 

ap_package_annotation in 
package_annotation, Token with 
own_variable_clause 

ownVariableClause 
ap_own_variable_clause 
initialization_specification 

initializationSpecification 
ap_initialization_specification 
end 

Representation of the `--# own' package 
annotation 

ap_own_variable_clause in 
owrvariable_clause, Token with 
own variable_token 

ownVariableToken : --# own' 
own_variable_list 

ownVariableList 
own_annotation_ap_own variable_list 
semi_colon_token 

semiColonToken 
end 

own_annotation_ap_own variable_list in 
own_variable_list, Token with 
own_variable 

ownVariable : "State' 
end 

Representation of the `--1 initializes' 
package annotation 

ap_initialization_specification in 
initialization_specification, Token 
with 
initialization_token 

initializationToken : --# 
initializes' 
own_variable_list 

ownVariableList 
initializes_annotation_ap_own_variable_ 
list 
semi_colon_token 

semiColonToken 
end 

initializes_annotation_ap_own variable_ 
list in own_variable_list, Token with 
own_variable 

ownVariable : `State' 

end 

Representation of the Control procedure 

ap_procl-package_declarative_item in 
package_declarative_item, Token with 
subprogram_declaration 

subprogramDeclaration: 
control-subprogram-declaration 
end 

control_subprogram_declaration in 
subprogram_declaration, Token with 
procedure-specification 

procedureSpecification 
control procedure_specification 
semi-colon-token 

semiColonToken 
procedure-annotation 

procedureAnnotation 
control_procedure_annotation 
end 

control-procedure-specification in 
procedure-specification, Token with 
procedure_token 

procedureToken : "procedure' 
defining_identifier 

definingldentifier : "Control' 
end 

Representation of Control `--# global' 
procedure annotation 

control-procedure-annotation in 
procedure_annotation, Token with 
moded_global_definition 

modedGlobalDefinition 
control_noded_global_definition 
end 

control_moded_global_definition in 
moded_global_definition, Token with 
global-token 

globalToken : --# global' 
global_mode 

globalMode : in out' 
entire_variable_list 

entireVariableList 
control_entire_variable_list 
semi_colon_token 

semiColonToken 
end 

control_entire_variable_list in 
entire-variable-list, Token with 
entire-variable 

entireVariable 
state-entire-variable 
entire_variable_list_item 

entireVariableListlteml: 
surfaces_elevators_entire_variable_list 

_item; entireVariableListItem2: 
surfaces_ailerons_entire_variable_list_ 
item 
end 

state_entire_variable in 
entire_variable, Token with 
direct name 

directName : "State' 
end 

surfaces_elevators_entire_variable_list 

_item 
in entire variable_list_item, 

Token with 
comma_token 

commaToken :, 

197 



Towards a SPARKAda Programming Language Structure 

entire_variable 
entireVariable 

surfaces_elevators_entire_variable 
end 

surfaces_elevators_entire_variable in 
entire_variable, Token with 
package_name 

packageName "Surfaces' 
period_token 

periodToken 
direct-name 

directName "Elevators' 
end 

surfaces_ailerons_entire_variable_list_ 
item in entire_variable_list_item, 

Token with 
comma_token 

commaToken 
entire_variable 

entireVariable 
surfaces_ailerons_entire_variable 
end 

surfaces_ailerons_entire_variable in 
entire_variable, Token with 
package_name 

packageName : `Surfaces' 
periodtoken 

periodToken : 
direct_name 

directName : `Ailerons' 
end 

4.5.4 Application to RTN-SL Textual Specifications 
To demonstrate versatility of the modelling philosophy introduced in subsection 4.5.3.1.1 (and used to 

develop the SPARK structure in 4.5.3.2), we now employ it to follow option two for constructing 

meta-models in MATrA (subsection 4.4.3) for a subset of RTN-SL (Paynter, 2000). A comparison of 

models yielded by both approaches appears in 4.5.4.4. 

4.5.4.1 Towards An RTN-SL (Textual) Structure 
RTN-SL is a textual notation for the specification of flat Real-Time Networks; the graphical RTN-SLg 

notation described in section 4.4 provides a subset of features contained in this language and is 

therefore mainly an aid to comprehension. We note that RTN-SL is the subject of ongoing research 

within MBDA (UK) and hence the syntax is subject to revision (although RTN-SLg is altogether more 

stable). We also reiterate that our purpose here is purely to provide a `flavour' of how another textual 

language with a formal foundation may be represented using the approach set out above and not to 

discuss features of RTN-SL in depth. Interested readers are instead referred to Paynter (2000). 

The RTN-SL subset of interest in this thesis is the set of constructs that enable specification of ports; 

recall from section 4.4 that ports provide the interface between activities (single-threaded processes) 

within a Real-Time Network. The syntax is as follows: - 

ports 

port_id`list : (protocol, data_type, direction); 

end ports 

For each list of port names or identifiers, a three tuple describing the interface to these ports is defined. 

Specifically, the protocol on paths connected to these ports, a type of data communicable through that 

protocol and the direction of data-flow (in or out) along its path. 

4.5.4.2 Meta-model Definitions 
This section introduces schemas towards a partial RTN-SL meta-model. Again the BNF syntax, UML 

meta-model and O-Telos implementation of base classes are all considered, together with any OCL 

198 



Structuring Development Artifacts 

structural constraints arising from modelling decisions. We begin by describing the activity element in 

order to place our schemas for ports in context. 

" activity 
An activity (figure 4.54) is described in terms of its name (followed by the reserved word is) and a list of 
imported ADTs (with_list), together with declarations of the ports, auxiliary definitions 

(auxiliary_definitions), local state (local state), operations and state machine (state_machine) elements; 
with_list, auxilliary_definitions and local-state are optional. All elements are framed between activity and end 

activity reserved words; the construct terminates with a semi-colon. 

" ports 
The ports statement (figure 4.55) contains a port definitions (port_defs) element, framed between ports 

and end ports reserved words; again this contruct terminates with a semi-colon. 

0 port_defs 
I Port definitions (porLdefs) is defined in terms of one or more port definition (port_def) statements. This 

is shown in figure 4.56. 

" port_def 
Each port_def (figure 4.57) is made up of a port id-fist and a description of the port type (port_type) 

applicable to these ports (the two are spearated by a colon character); this construct also terminates 

with a semi-colon. 

" id list 
As its name suggests, the id_list (figure 4.58) contains one or more port identifiers (names) as a comma- 
delimitted list. 

" port_type 
This element defines the interface to ports named in the id list which, as previously described, contains 

their communication protocol (signal, pool, channel, dataless-channel or stimulus), data type (a_type_ref) 

and a reserved word - in or out -indicating direction of data flow along the path connected; port_type is 

enclosed in parentheses and shown in figure 4.59. 

0 a_type_ref 
From figure 4.60 it can be seen that a data type (a_type_ref) is defined either as a built-in or basic type 

(basie_type) type such as boot, integer, character, etc., or else using the name of an Abstract Data Type 

(ADT). As indicated in section 4.4, ADTs may be used in a hierarchical manner, in which case it is 

necessary to prefix imported ADTs with the name of the ADT in which they are defined; the two are 

separated by a period token. This is modelled by introducing rolenames for ADT and parent (adt_name 

and parent_name respectively) to differentiate references to the name class (cf. the BNF representation). 

199 



Towards a SPARKAda Programming Language Structure 

activity 

<<Structure Element» 
activity 

#begm-activity: activity-token 
®Is_token: fs token 
. end token : end-token 
vend activity : activity-token 
#seml_colon token : semi-colon-token 

<<Structure Element» 
name tI 

<<Structure Element» 

01 with list 

«Structure Element» 

1 ports 

«Structure Elemenb> 
auxilliary_definitions 

0.. 1 

<<Structure Elemenb> 
local state 

0.. 1 

«Structure Elemenb> 
operations 

<<Structure Element» 
state_machine 

1 

BNF Syntax 0-Telos 

activity:: = activity in StructureElement, SimpleClass 

activity name is isA AerospaceEngineeringObject with 
has_property 

[with-list] ports [auxillary_definitions] begin_activity : activity_token; 
[local_state] operations state machine end is_token : is_token; 

_ 
activit 

end_token : end _token; y; end_activity : activity_token; 
semi_colon_token : semi_colon_token 

has-part 
name : name; 
with_list : with-list; 
ports : ports; 
auxilliary_definitions 

auxilliary_definitions; 
local-state local-state; 
operations operations; 
state_machine : state_nachine 

end 

name in StuctureElement, SimpleClass isA 
String, AerospaceEngineeringObject end 

activity_token in ArtifactProperty, 
SimpleClass isA String with constraint 
activity_Is_Activity: 

$ forall a/activity_token a= 
"activity' $ 
end 

Figure 4.54 - `activity schema' 

200 



Structuring Development Artifacts 

ports 

c<Stnrcture Element>> 
ports 

Obeglncorts : ports-token 
oend token : end_token 
dendcorts : ports_token 
#semi colon token : send_colon_token 

«Structure Elemenb> 

port_dets 

BNF Syntax O-Telos 

ports :: = ports port_defs end ports ; ports in StructureElement, SimpleClass isA 
AerospaceEngineeringObject with 
has-property 

begin-ports ports_token; 
end_token : end _token; end-ports ports-token; 
semi_colon_token : semi-colon-token 

has-part 
port_defs : port_defs 

end 

ports-token in ArtifactProperty, 
SimpleClass isA String with constraint 
ports_Is_Ports: 

$ forall p/ports_token p= "ports' $ 
end 

Figure 4.55 - `ports schema' 

ort defs 

Structure Element>> 

port_tlefs 

T1... «Structure elemenb> 

pordef 

BNF Syntax O-Telos 

port_defs :: = port_def Iport_def) port_defs in StructureElement, SimpleClass 
isA AerospaceEngineeringObject with 
has-part 

port_def : port_def 
end 

Figure 4.56 - `port defs schema' 

201 



Towards a SPARKAda Programming Language Structure 

port_def 

<<Structure Element» 
ort_def 

colon token : colon token 
*semi_colon token : seml colon token 

<<Structure Element>> 
id_list 

<<Structure Element» 
port_type 

BNF Syntax O-Telos 

port def :: = ld_list: port type ; port_def in StructureElement, SimpleClass 
isA AerospaceEngineeringObject with 
has-property 

colon_token : colon_token; 
semi_colon_token : semi_colon_token 

has-part 
id-list : id-list; 
port_type : port_type 

end 

Figure 4.57 - `port_def schema' 

id list 

«Structure Element» 
Idjist 

11 

0. ' 

<Structure Element» ý «Structure Element» 

name Idli2Litem 

pccornm4token : comma token 

BNF Syntax O-Telos 

id_list :: = name (, name) idlist in StructureElement, SimpleClass 
isA AerospaceEngineeringObject with 
has-part 

name : name; 
id_list_item : id_list_item 

end 

id_list_item in StructureElement, 
SimpleClass isA AerospaceEngineeringobject 
with 
has_property 

comma_token : comma_token 
has-part 

name : name 
end 

Figure 4.58 - 'id-list schema' 

202 



Structuring Development Artifacts 

ort te 

<Artifact Property» 
out_token 

(exclusive-or/ 

«Stnicture Elemenb> 
port 

«Artifact Properly» _type 
token #left parenthesis-token : left parenthesis_token In 

_ pprotocd_comma: comma-token 
®a_type_ref_comma : comma-token 
"right_parenthesis_token : nghtparenthesis_token 

it 

«Structure Elemanb> «Strudure Elemenb> 
protocol q type_mf 

BNF Syntax O-Telos 

port_type:: = (protocol 
, a_type_ref, in) I port_type in StructureElement, SimpleClass 

( rotocol a t e ref out) 
isA AerospaceEngineeringObject 

p _ yp , _ , with 
has-property 

protocol :: = pool I channel I signal I stimulus I 
left-parenthesis-token 

left_parenthesis_token; 
dataless_channel protocol_comma : comma_token; 

a_type_ref_comma : comma_token; 
in_token : in_token; 
out_token : out-token; 
right_parenthesis_token 

right-parenthesis-token 
has-part 

protocol : protocol; 
a_type_ref : a_type_ref 

end 

in_token in ArtifactProperty, SimpleClass 
isA String 
with constraint in_Is_In: 

$ forall i/in_token i= in' $ 
end 

out_token in ArtifactProperty, SimpleClass 
isA String 
with constraint out_Is_Out: 

$ forall o/out_token 0= "out' $ 
end 

protocol in StructureElement, SimpleClass 
isA String, AerospaceEngineeringObject 
with constraint 
enum_Basic_Type: 

$forall p/protocol 
(p = "pool') or 
(p = "channel') or 
(p = "signal') or 
(p = "stimulus') or 
(p = "dataless_channel") $ 

end 

Figure 4.59 - `port-type schema' 

203 



Towards a SPARK Ada Programming Language Structure 

a_t e ref 

parent_name 
0.. 1 

«Structure Elemenb> adl_name «Structure Elemenb> «Artifact Property» 
name 

07 
a_type_ref 

01 
period_token 

0.. 1 

«Structure Element>> 
basic_type 

BNF S ntax OCL O-Telos (base classes) 

a_type_ref :: = basic_type I name e ref Invariant a_type_ref in 

name I name self. alllnstances->forall(aI StructureElement, 
simpleclass isA (a. adt_name->size=1 and AerospaceEngineeringObject a. parent_name->isEmptyand 
with a. period_token->isEmpty and property has 

basic_t e :: = bool I nat I nail I yp a. basic_type->isEmpty) - period_token 
integer I real I char I null xor period_token (a. parent_name->size =1 and has-part 

a. period_token->size =1 and basic_type 
a. adt_name->size=l and basic_type; 
a. basictype->isEmpty) parent_name : name; 
xor adt_name : name 
(a. basic_type->size =1 and end 
a. parent_name->isEmptyand basic type in 
a. period token->isEmptyand _ StructureElement, 
a. adt_name->isEmpty)) SimpleClass isA String, 

AerospaceEngineeringObject 

Constraint preserving the BNF with constraint 
alternatives syntax 

enum_Basic_Type: 
$forall b/basic_type 
(b = "bool') or 
(b = "nat') or 
(b = "natl") or 
(b = "integer') or 
(b = "real') or 
(b = `char') or 
(b ='null') $ 

end 

Figure 4.60 - `a_type_ref schema' 

204 



Structuring Development Artifacts 

4.5.4.3 Specifying Activities and Ports using the RTN-SL Structure: A Worked 
Example 

We now demonstrate how an O-Telos implementation of the structure elements introduced in 

subsection 4.5.4.2 may be used to represent ports for a simple Real-Time Network activity specified 
using the RTN-SL textual notation. The activity is stated as follows: - 

activity al is 

ports 
pl : (signal, image. ravo image, in); 
p2 : (channel, image. processed_image, out); 
p3, p4 : (pool, integer, in); 
p5 : (channel, bool, out); 

end ports 

end activity; 

Activity al has five ports. Each has a name (identifier) - p1, p2, p3, p4 and p5 - and an interface 

defining the protocol, data type and direction as previously described. Observe that data types 

communicated are user-defined in the case of p1 and p2, and built-in for p3, p4 and p5. Also note that 

ports p3 and p4 share the same interface characteristics. We now present the O-Telos representation of 
this RTN-SL code fragment: - 

Sample population of port constructs 
for activity al 

Definition of al 

al-activity in activity, Token with 
begin_activity 

beginActivity : "activity' 
name 

_name : "al' 
is-token 

isToken : 'is' 
ports 

ports : al_ports 
auxilliary_definitions 

auxilliaryDefinitions : -not shown 
local-state 

localState : -not shown 
operations 

_operations : -not shown 
state_machine 

stateMachine -not shown 
end-token 

endToken : "end' 
end_activity 

endActivity : "activity' 
semi_colon_token 

semiColonToken 
end 

end 

alport_defs 
port_def 

port defl 
port_def2 
port_def3 
port_def4 

end 

in port_defs, Token with 

plport_def; 
p2 port_def; 
p3-and-p4 port_def; 
p5 port_def 

pl_port_def in port_def, Token with 
id-list 

idList : pl_port_def_id_list 
colon _token colonToken 
port-type 

portType : p1_port_type 
semi_colon_token 

semiColonToken 
end 

p2_port_def in port_def, Token with 
id-list 

idList : p2_port def_id__list 
colon _token colonToken : ": " 
port-type 

portType : p2-port-type 
semi-colon-token 

semiColonToken 
end 

Definition of ports for al 

al-ports in ports, Token with 
begin-ports 

beginPorts : `ports' 
port_defs 

portDefs : al_port_defs 
end_token 

endToken : lend' 
end-ports 

endPorts : `ports' 
semi_colon_token 

semiColonToken :, 

p3_an& p4 port_def in port_def, Token 
with 
id-list 

idList : p3_and_p4_port_def_id_list 
colon-token 

colonToken : ": ' 
port-type 

portType : p3-and-p4-port-type 
semi_colon_token 

semiColonToken "; ' 
end 

p5 port_def in port_def, Token with 

205 



Towards a SPARKAda Programming Language Structure 

id-list 
idList : p5_port_def_id_list 

colon_token 
colonToken : 

port-type 
portType : p5_port_type 

semi_colon_token 
semiColonToken 

end 

pl-port_def_id_list in id_list, Token 
with 
name 

_name : "pi' 
end 

p2-port_def_id_list in id_list, Token 
with 
name 

_name : "p2' 
end 

p3_and_, p4-port_def_i&list in id_list, 
Token with 
name 

_name : "p3" 
id_list_item 

idListltem : p4_list_item 
end 

p4-list-item in id_list_item, Token 
with 
comma_token 

commaToken ", " 
name 

_name : "p4" 
end 

p5 port_def_id_list in id_list, Token 
with 
name 

_name : "p5' 
end 

pl-port_type in port-type, Token with 
left-parenthesis-token 

leftParenthesisToken "(ý 
protocol 

_protocol : `signal' 
protocol-comma 

protocolComma 
a_type_ref 

aTypeRef : p1_a_type_ref 
a_type_ref_comma 

aTypeRefComma 
in_token 

inToken : "in' 
right-parenthesis-token 

rightParenthesisToken ")" 
end 

p2-port-type in port-type, Token with 
left-parenthesis-token 

leftParenthesisToken "(" 
protocol 

_protocol : `channel' 
protocol-comma 

protocolComma 
a_type_ref 

aTypeRef : p2_a_type_ref 
a_type_ref_comma 

aTypeRefComma 
out_token 

outToken : "out, 
right_parenthesis_token 

rightParenthesisToken : `)" 
end 

p3_and_p4_port_type in port_type, Token 
with 
left-parenthesis-token 

leftParenthesisToken 
protocol 

_protocol : 'pool' 
protocol_comma 

protocolComma 
a_type_ref 

aTypeRef : p3_and_p4_a_type_ref 
a_type_ref_comma 

aTypeRefComma 
in_token 

inToken : "in' 
right-parenthesis-token 

rightParenthesisToken : ")' 
end 

p5_port_type in port-type, Token with 
left-parenthesis-token 

leftParenthesisToken 
protocol 

_protocol : "channel' 
protocol_comma 

protocolComma 
a_type_ref 

aTypeRef : p5_a_type_ref 
a_type_ref_comma 

aTypeRefComma ", ' 
out_token 

outToken : `out' 
right-parenthesis-token 

rightParenthesisToken 
end 

p1_a_type_ref in a_type_ref, Token with 
parent_name 

parentName "image' 
period-token 

periodToken : 
adt_name 

adtName : "raw_image' 
end 

p2_a_type_ref in a_type_ref, Token with 
parent_name 

parentName : 'image' 
period_token 

periodToken 
adt_name 

adtName : `processed_image' 
end 

p3_and_p4_a_type_ref in a_type_ref, 
Token with 
basic_type 

basicType : "integer' 
end 

p5_a_type_ref in a_type_ref, Token with 
basic-type 

basicType : "booll 
end 

4.5.4.4 Relationship Between RTN Meta-Models 
Having now proposed RTN-SL meta-models developed using both modelling options enumerated in 

subsection 4.4.3, it is worth briefly reflecting on the results yielded by these differing approaches. 

206 



Structuring Development Artifacts 

RTN-SL Textual Meta-model RTN-SI, Meta-model 

... Structure Element, 
>. 

__ 

nctrvsy 
pbe9. n 

actnity acti, ky_ oken 
ois_token. is token 
oend_token end token 
#end aotvity activity token 

. osemi colon tokon emi . 1--token 

Structure Elenlxnt> 
name «Slructuro Elomonl» 

Activity 

Oname : String 

«Sttucture Element> -. 
wdh_ list 

-Structur El,, - 

ins 

ObgYnyons pons token -Sit tun, Element .. 

«Slrmfure Element 

Adt 

oerM token end token IýýýII `I`CI' 

Vend-ports pods token 
*semi colon token samt colon token 

SlrucWre Element- 

«Strudure Element» -ýý 
aux lfary detnitrons 

-Structure Element,. 
--{ 

boors 
late 

-- -- --- - I 
-Strec ucture Elemont " 

Il SlateMachine 

-Structure Ele en mt> " < 
f -ý 

- 

operations 

Structure Element,, 

stale machine 

composed from Figures 4.54 and 4.55 Extract of Figure 4.22 subsection 4.4.3.2.1 

Figure 4.61 - 'RTN-SL Textual and RTN-SLg Meta-model Fragments' 

Figure 4.61 juxtaposes the featured textual RTN-SL model fragment (from figures 4.54 and 4.55, 

subsection 4.5.4.2), with the corresponding RTN-SLg fragment from figure 4.22 (subsection 4.4.3.2.1 

table 4.3 demonstrates the mapping between elements of these two representations: i. e., activity to 

Activity, with-list to Adt, ports to Port and state-machine to StateMachine (note local-state, auxilliary_definitions 

and operations are not represented in R'I'N-SLg and have therefore been removed). 

RTN-SL Class RTN-SLg Class 
" activity 0 Activity 

" with list " Act 

" ports " Port 

" state machine " StateMachine 

Table 4.3 - `Mapping Table : RTN-SL (Textual) to RTN-SLg Graphical NIvta-model Elements' 

The two UML fragments can be considered isomorphic under the mapping of table 4.3. We make the 

observation that in RTN-SL,, the name attribute of Activity (inheri(ed from the abstract Component class - 

not shown) is represented as a class in the RTN-SL model, but that (as indicated in subsection 2.2.2 
.1.1 

relationships between a class (or entity) and its attributes essentially present the same Conceptual 

Modelling abstraction as aggregation (Peckham & Maryanski, I988); alternatively, in the R'I'N-SLg 

model, name could be promoted to a class. With this minor cosmetic change, the two models are 

isomorphic. 

207 



Towards a SPARK Ada Programming Language Structure 

4.5.5 Relationship to the Traceability Dimensions 
Ada and SPARK are the languages most commonly used with Real-Time Network notations such as 
MASCOT, DORIS and (it is anticpated) RTN-SL. Indeed, the relationship between MASCOT 3 and 
Ada constructs was investigated in Jackson (1986). From a traceability stand-point, engineers may wish 

to establish intra-micro vertical trace relations (again using the approach outlined in 3.3.6.3.2) between 

network Activities or IDAs and their corresponding Ada package specifications. 

Note however that this is but one possible source and target pairing for one possible (and uspecified) 

association. Having provided means to establish links at a user determined granularity (including 

potentially very fine-grained associations for critical code fragments), we have, as previously indicated, 

earmarked as a future work item the need for a through investigation to establish a comprehensive set of 

systems engineering trace relation types (see subsection 7.4.3). 

4.5.6 Summary 
An alternative to developing new languages specifically for use in critical software is to remove features 

from an existing language that prevent verification, and to add mechanisms supporting analysis and 

proof. One such language is SPARK, a safe subset of Ada which is used extensively through the 

aerospace industry. For that reason, it was chosen as our representative (software) implementation 

notation for the MATrA traceability framework. 

Accordingly we proposed a novel meta-model capturing a small number of SPARK constructs based on 

the BNF string grammar. Its granularity of expression supports verification of primitives against the 

PDS, as well as allowing flexibility in the setting up of trace-relations, both among SPARK elements 

and also between SPARK elements and those from other structures; for critical code fragments, these 

relations can if necessary be extremely fine-grained (e. g., between individual data elements in the 

specification and implementation). This, together with a desire to provide full compatibility with the 

source language were the main motivation in our decision to 'pitch' the model at such a detailed level. 

A 'modelling philosophy' was also introduced detailing a series of mechanical steps that may be used to 

extend the SPARK model to include the remaining language features, or as subsequently demonstrated, 

to produce models for other languages expressed as a string grammar - in this case RTN-SL. To provide 

proof of concept, partial O-Telos implementations of both models were populated using sample code 

fragments. 

Again, the SPARK Ada structure is fully evaluated in Chapter Seven. 

208 



Structuring Development Artifacts : Summary 

4.6 Chapter Summary 
This chapter has presented a number of novel meta-models (traceability structures) for well-defined and 
flexible development notations used by the aerospace industry. These included a Natural Language 

structure, a User Centred Requirements Structure (featuring Use Case Models, Scenarios and Message 

Sequence Charts), a structure for the representation of Real-Time Networks and a structure for the 

representation of SPARK Ada program code. 

Each notation is potentially supported by disparate tools, with all the attendant difficulties for 

traceability discussed in Chapters One and Three. Our aim was therefore to provide a common 

representation to enable traceability across notations and hence data originating from these tools. Thus, 

for each notation we expressed key syntactic elements as a UML Class Diagram, with well-formedness, 

consistency and other constraints (for all except the Ada structure) stated in OCL. Base classes were 

then implemented in O-Telos (using ConceptBase) to show one possible means of automation, with 

worked examples also included for the Real-Time Network and Ada structures. 

As indicated in Chapter Three, each structure has a common basis assured by the System Engineering 

Notation Meta-model, and is intended to be populated via the tool2matra transfer mechanism and 

verified for overall consistency against the Product Data Synthesis. Collectively the featured structures 

provide representative coverage of one Workspace viewpoint, i. e. development; the assessment and 

product management perspectives are considered in Chapter Five. 

209 



Fault Tree Analysis Structure 

Chapter 5 Structuring Safety Assessment and 
Product Management Artifacts 

5.1 Introduction 
Chapter Five introduces further meta-models (traceability structures) which again provide input to the 

MATrA Workspace, this time representing well-defined and flexible notations for safety assessment 

and product management. The product management theme is further investigated through a structure to 

support traceability of revisions and variants. As in the previous chapter, we state factors motivating the 

inclusion of a structure, summarise the main concepts and relate it to the dimensions (from Chapter 

One). We also present an appropriate UML Class Diagram, OCL constraints and partial O-Telos 

implementation. Again, worked examples are provided to demonstrate key aspects for meta-models not 
featured in our main case studies in Chapter Six. 

5.2 Fault Tree Analysis Structure 

5.2.1 Introduction 
In this section we propose a structure capturing the graphical syntax (again with a 'light-weight' formal 

semantics amenable to traceability) for Fault Tree Analysis, a technique used extensively in the 

aerospace industry for identifying and relating all events which alone or in combination may lead to an 

undesirable (safety significant) failure condition. 

5.2.2 Motivation 

Safety engineers use a range of analytical techniques, each one providing different coverage of the 

target system. One such technique is Fault Tree Analysis (FTA) which is widely used in the defence, 

aerospace and electronics industries. It is also recommended by several product assurance standards, 

including those by the International Electrotechnical Commission (IEC 61508,1998), UK MoD (MoD, 

1996) and Society of Automotive Engineers EUROCAE (1996b); indeed, we use case study material 

from the latter in Chapter Six as a platform for demonstrating work in this thesis. FTA was originally 

conceived in the 1960s as a means of analysing hardware failures, having been jointly developed by 

Bell Laboratories and the United States Airforce to help investigate inadvertent launch conditions for 

the Minuteman missile system. However, Leveson & Harvey have since extended the principles of PTA 

to software systems (1983). 

Two complementary strategies underpin safety analysis techniques; these have been termed deductive 

and inductive approaches (Vesely et al., 1981). Deductive techniques such as Fault Tree Analysis start 

from a system failure and then reason about system or component states contributing to that failure. 

Conversely, inductive techniques such as Failure Modes and Effects Analysis (see subsection 5.3) 

consider a particular fault in a system component and then attempt to ascertain its consequences. We 

therefore consider it appropriate to incorporate both approaches within the MATrA framework; thus 

Fault Tree Analysis provides our deductive example. 

210 



Structuring Safety Assessment and Product Management Artifacts 

Results of the various analytical techniques are typically represented either graphically (as per Fault 
Tree Analysis), or else in tabular form (as per Failure Modes and Effects and Analysis). Again, it is 

appropriate to include both formats within the MATrA framework; thus Fault Tree Analysis also 

provides our graphical example. 

5.2.2.1 Fault Tree Analysis Overview 
As indicated above, Fault Tree Analysis is a deductive technique in that it starts from one particular 

undesirable event - termed the top event - and provides an approach to investigating potential causes. 
The choice of undesirable event is particularly important; too general and the fault tree becomes 

unmanageable; too specific and the analysis may fail to provide a sufficiently broad view'. Analysts 

then examine the system (or a model of the system) to determine ways in which a top event may occur. 
In doing so a range of factors are considered, from component and human failures, to random events 

occurring in the system environment. 

The fault tree itself provides a graphical representation of event combinations that can lead to the 

undesirable event. A number of different event types commonly occur in fault trees, including 

intermediate, basic, undeveloped, external and conditional. These are explained in table 5.1. The different 

event types are represented by rectangle, circle, diamond, house and ellipse symbols respectively. 

EVENT TYPES 

Name Description Symbol 

" Intermediate A fault arising from one or more 
preceding causes acting through a logic 
gate 

" Basic An event that is internal to the system 
under analysis and which requires no 

O 

further decomposition 

" Undeveloped An event that is not developed further, 
either because it has little impact on the 
top level event, or because information for 
its development is not readily available 

" External An event that is normally expected to 
occur 

" Conditional Restriction expressed over a logical O 
connective (normally a PRIORITY-AND 
or INHIBIT gate - see table 5.2) 

Table 5.1- `Fault Tree Event Types' 

Events are connected together by logical operators known as gates that either enable or prevent the flow 

of a fault up a tree. Common types of connective include the AND-gate, OR-gate, PRIORITY- 

AND-gate, EXCLUSIVE-OR-gate and INHIBIT-gate; these are described in table 5.2, which 

'Readers are referred to (EUROCAE1996b) for a discussion on factors influencing the choice of top event and other procedural 
issues pertaining to Fault Tree Analysis. 

211 



Fault Tree Analysis Structure 

also includes corresponding graphical symbols. 

Note: given their diverse application, it is perhaps surprising that the symbols for events and gates used 
in constructing fault trees have remained largely `standard'. Practitioners generally regard the Nuclear 
Regulatory Commission Fault Tree Handbook (Vesely eta[., ibid. ) - from which the descriptions here 

are taken - as providing the definitive definition. 

GATE TYPES 

Name Description Symbol 

" AND Output fault occurs when all input faults 
occur 

" OR Output fault occurs when one or more 
input faults occur 

" PRIORITY-AND Output fault occurs when all input faults 
occur in a particular sequence (which is 
usually represented by a Conditional 
Event attached to the gate) 

" EXCLUSIVE-OR Output fault occurs when exactly one of 
the input faults occur 

A 

" INHIBIT Output fault occurs if the single input fault 
occurs in the presence of an enabling 
condition (represented by a Conditional 

0 

Event attached to the gate) 

Table 5.2 - `Fault Tree Gate Types' 

Once the fault tree logic is complete, it can be used to compute event probabilities. In order to do so, 

the tree must first be reduced to what is termed minimal-cut-set-form. That is, the smallest set of events 

capable of causing the top event. 

Basic events are then annotated with their probability of occurrence. Calculation of intermediate 

probabilities then progresses up through the tree until probability of the top event can be calculated. 

Probabilities for output events of the two most common event connectives - and gates and or gates - are 

determined by the product and sum of their respective input events. Where applicable, it is also 

common to state failure rate (typically per flight hour for civil aircraft) and exposure time of basic 

events; event probabilities are then calculated from the product of these two values. 

Figure 5.1 presents an example Fault Tree Analysis demonstrating the above concepts for the 'Loss of 

All Wheel Braking' hazard for an aircraft braking system. 

Loss of All Wheel Braking occurs due to simultaneous loss of the three braking sub-systems; i. e., Loss of 
Normal Braking (NBS) AND Loss of Alternative Braking (ABS) AND Loss of Emergency Braking (EBS). Note that 

212 



Structuring Safety Assessment and Product Management Artifacts 

prohahility of failure of the Emergency Brake System is set to 1.0 indicating a design intent to discount 

its contribution in meeting the requirement for the top event. 

Downward development cal' Loss of Normal Braking shows that this event can occur due to Loss of Hydraulic 

Supply for the Green Hydraulic System OR Loss of All Hydraulic Components for the Normal Brake System OR 

Loss of Command Braking Ability for the BSCU (Braking System Control Unit). 

The BSCU Loss of Command Braking Ability event is further decomposed into the causes BSCU Loss of 

Braking Commands OR BSCU1 Loss of Electrical Power WHEN BSCU2 Loss of Electrical Power. The latter 

differs Irons all other events in the tree which are expressed over a single (build) element and a 

condition from that element's state space. In contrast, LOSSELECPWR captures coincidental failure of 

two elements (BSCU1 and BSCU2), suggesting a distinction can be made between different types of 

event. We return to this issue in subsection 5.2.3.1. 

WBS - Loss of All Wheel 
Braking 

I WBS Loss of Normal ABS Loss of Alternate I EBS Loss of 
Braking Braking Emergency Braking 

0,005 

Green Hydraulic Supply NBS Loss of All BSCU Loss of 
Loss of Hydrualic Supply Hydraulic Components Command Braking Ability 

LO GRNHYD LOSSNRMHYD LOSSOFBSCU 

3.3c-005__ 33e-005_j [331625e-005 

BSCU Loss of Brakin 
BSCU7 Loss of 

9 Electrical Power WHE 
Commands BSCU2 - Loss of ... 

BSCUI Fails to Operate II BSCU2 " Fails to Operate 

0.00575 

Rate . 1.15e-03 Rate : 1.15e-03 

Exposure 
.5 

Fliahl Hours Exoosure :5 Fliaht Hours 

Figure 5.1 - `Example Fault Tree for Aircraft Wheel Braking System - 
investigating causes of Loss of All Whcel Braking (source APR 4761)' 

213 



Fault Tree Analysis Structure 

Finally, BSCU Loss of Braking Commands is defined by the basic events BSCU1 Fails to Operate AM 
BSCU2 Fails to Operate. As indicated previously, probabilities for both are derived from their respective 

values for rate and exposure. 

5.2.3 Tracing Safety Properties in MATrA: An FTA Model 
This subsection introduces a meta-model allowing integration of Fault Tree Analysis into the MATrA 

traceability framework. As with UCRS, bespoke tool support is assumed. 

5.2.3.1 Concepts 
Fault trees in MATrA support most of the standard concepts set out in subsection 5.2.2.1, including a 

subset of event types (Intermediate, Basic, External and Undeveloped) and gate types (And and or), as 

well as means to create the minimal cut set expression. Our research indicates that these are sufficient 
for the majority of analyses2. 

In addition, MATrA fault trees reflect usage within the aerospace domain, notably as part of the ARP 

4754/4761 assessment process outlined in subsection 1.4.6.2.1. Within this process, fault trees are used 

to determine budget probabilities - i. e. safety objectives (established prior to design) for the target 

aircraft, its systems and their items - as part of the Functional Hazard and Preliminary System Safety 

Assessments. Updated versions of these trees are subsequently produced by the System Safety 

Assessment to affirm whether the original safety objectives have been met; both the preliminary and 

updated trees form submissions to the appropriate regulatory body as evidence towards certification. 

Accordingly, a MATrA Fault Tree Analysis is composed of an optional preliminary tree and a 

mandatory updated tree. As may be expected, there is a high degree of event commonality between the 

two. Therefore, to minimise redundancy (and increase traceability), MATrA fault trees support the 

sharing of events (or more specifically, elements of their descriptions) through the notion of 'event 

profiles'. Hence, an event has two profiles, the preliminary event profile and updated event profile. 

Preliminary profiles comprise an event type and label, together with budget probability, failure rate and 

exposure properties; failure rate and exposure time are applicable to basic event types only. An updated 

profile also has a type which may differ from that for the preliminary profile - as demonstrated by the 

case study in subsection 6.3 - although this is atypical. In addition, the budget probability is retained by 

the updated profile, while the actual probability is added. New exposure and failure rates (where 

applicable) may also be expressed, or alternatively, the originals reused. The same is true of event 

labels which, like event types are normally the same but (as the case study also demonstrates) exhibit 

the potential for change. 

Following our observation on event types in 5.2.2.1, the labels themselves differentiate between 

'Simple', 'Composed' and 'Synchronisation' categories as derived from a taxonomy proposed by 

G6rski & Wardzinski (1995). Simple events are described in terms of a subject entity and a condition; 

2 Note the MATrA Fault Tree Structure can be easily extended to accommodate the complete range of event and gate types 
featured in 5.2.2.1. 

214 



Structuring Safety Assessment and Product Management Artifacts 

e. g., Valve " Stuck Open. Composed events meanwhile refer to the coincidence of two or more simple 
events; this is often expressed as two events joined using the "when" conjunction. For example, Valve " 
Stuck Closed when Pump " Stuck On3. Finally, Synchronisation describes the temporal relationship 
between two simple events El, E2 (normally separated by the preposition "upon") such that in boolean 
logic, El already holds when E2 becomes True; e. g. Tank " Full upon Engine " StartUp4. 

Event profiles are connected by gates. In contrast to the events themselves, these are not shared between 
the preliminary and updated trees as described above, but instead belong exclusively to either one or the 
other. This is to allow for changes in structure of the tree, for example the addition or removal of 
events. And because there are no further properties to be shared between the respective trees, nothing 
would be gained from using common gates. 

Finally, a number of constraints are imposed over MATrA fault trees. These range from well 
formedness rules, to restrictions arising from modelling decisions. We further specify `safety-criteria' 
identifying common cause and single failures. Checks against the Product Data Synthesis are also 
stated, though this time informally. 

5.2.3.2 FTA Meta-model Definitions 
We now introduce the UML class diagram for our Fault Tree Analysis structure (5.2.3.2.1), together 

with OCL constraints over elements of the model (5.2.3.2.2) and O-Telos implementation of its base 

classes (5.2.3.2.3). 

5.2.3.2.1 FTA Meta-model 
UML specification of the Fault Tree Analysis meta-model is shown in figures 5.2 (elements) and 5.3 

(associations). Its core class (FaultTreeAnalysis) includes subject module (subjecLmodule) and 
description (fta description) attributes and is an instantiation of the AssessmentStructure meta-class. In 

turn, FaultTreeAnalysis is further defined as an aggregation of preliminary fault tree (PreliminaryFaultTree) 

and updated fault tree (UpdatedFaultTree) - also instantiations of AssessmentStructure - as well as the 

event (Event) class (with identifier attribute) which instantiates StructureElement. 

It is worth noting from figure 5.2, the multiplicity of three-to-many that exists between FaultTreeAnalysis 

and Event. This arises from our view on what constitutes a minimal fault tree, namely two event inputs 

to an And-gate or Or-gate, yielding a single event output. We also note (from its zero-or-one 

multiplicity) that PreliminaryFaultTree is optional, reflecting our intent to increase utility of the structure 

such that it may be used without developing the preliminary tree (and hence is not hard-wired for a 

particular assessment process). 

3cf. LOSSELECPWR event in figure 5.1. 
4 G6rski & Wardzifiski's classification is not universally accepted, but for the purpose of this representation is assumed to be 
both coherent and well defined. Alternatively, we could have undertaken a study of the usage of time in fault trees within the 
aerospace industry and defined our own set of semantics and consistency rules; this was deemed beyond the scope of our work. 

215 



Fault Tree Analysis Structure 

<<Assessment Structure» 

«Assessment Stmcture» Fau@TreeAneysia 
PreliminaryFaultTree osubje&Lmodule : String 

Ra_preliminary_tree . riaLtlescription : String 
#tte_date : Date 

1 

1 Assessment Structure, 

fltlupdeted tree 
UpdetedFaultTroa 

3.. * 1 Itaevent 

-Structure Element 
Event 

#idenbfer: Stnng 

-Assessment Stnrcture>> 
PreliminaryFautTree 

c<Struclure Element>> 
PrelimineryEventProfile 

tLevent_profile 

<<Assessment Stnkture,. 
UpdatedFauttTres 

U-Structure 
pdatedE 

Element» 
UpdaledEventPro0le 

1LeveMýrofile 

<<Structure Element > ýft_amtuall 
ActualProbability 

robabihty : Real 

«Assessment Struature» 
FaultTTree (abstract) 

0. " <<Structure Elemenb> 
MdGete 

It_and_gale 

0... Structure Elemenb> 
OrGats 

It-or-gate 

I <Structure Element>> [lnImalCutSetExpresalon 

ft-we" 

0... 
1 

<<Structure Elemenb> 
EventSet 

(LevertLsat 

ý 2 0, <<Stnwture Elemenb> 
"" 6udgelProbablllty 

ft_ budget #probabllity: Real 

1""2 
0... c<Seructure Element» 

Rate 
II_rete . failure-rate : Real 

0 , "Structure Elemenb> 
1-2 " Exposure ; Z; 

rOsum *period: Real 

j,. 2 0, c<Structure Elemenb> 
SlmpleLabet 

1Lample 

1.2 0. ' aaStruclure Element-> 
ComposedLabel 

IL_wmposed 

1""2 0, " "Structure Element» 

._ . __. _. _. _..,.... 
SYnciNronisatbnLaba 

<<Structure Element>> 
1.2 3.. ' SlmpleEventDeecriptlon 

"Imple_desc #°nfiy: String 
#conditlon : String 

1.2 g.. «rraceability Stricture" 
MatraNL8 

It_annotedon 

Figure 5.2 - `Fault Tree Analysis Structure : Elements' 

216 



Structuring Safety Assessment and Product Management Artifacts 

-Structwo Element 
MtnmaCu1Se4E>pression 

went_ent ý""' 
I ceStructun Elemený> 

EventEnUy (abnect) 

uuee 
trane_neune 

r11ie «Slruclun Element. 

07 
Pmin*mryEvenlProfik 

«SUUOWn EI. msnb> 1 
Evert 

pkfentIer: Siring 1 

Stncturo Elamenb> 
AndGal. 

7 

"+ Stncture Ekmenb> «SIn ave Elemenb> 
EventSet Gate (abstract) 

01 

0, 

«Stnctwe Ebmenb 
aGate 

2. " SV. &Prof. 

«Stnjctm Ebnwnb> 0". 
2. " 

EventProflle (abstract) 
kipL9 type : EvemType 

1 

. ve &conracUm 

I Stnclu a Elemenb> 
UpdatedEventPiofHe 

1 

-k L, PmbebiIdy 1 

«Smmcture Elemenb 
AciuaIPmbebildy 

. Pmbebihly : Real l 

0.. 1 PreNminery_budget 

11< Slnxl n Element» 
BW"Pmbedhly o-_ wýry_get 

oprabeblltly: Real 1 

0.. 1 acWal_rete 

1 0.. 1 -Stn tw Elemenb. 
Rate 0 

Prellm1mry mle e, m . A-1 . 

wwomion 

I 

I 

1 0.. 1 «StntawtZEW°ýr^ý^uY-s 

w+ . eflod : Real 1 

1 ectW label 

11 «Struchn Elan. nt 
EwMLabel (ebgracl) 

preliminw label 

Ian «TraceabOy Stnctua» amdaOon 
MatrNLS 

0.. 1 0.. 1 

watation 0.. 1 

IntiaLevenldeecdplbn iI yne_averA_descrlptbe 

«Stnuctvi 
EvE t Simplee0b a-d°Pýn 

0.. 1 dmPN dwcritAWn 410am": ring 
I#concidlDn String 2. ' 

1 

i 

Structure Element» 
SMrpleL" 

«Structun Elaironb> 
Conpoeedlabet 

0.. 1 

«Slnctm ElemenA> 
SynchroNeetionLabel 

0.. 
o. 1 quelflyln0. fMity 

MMacl Property» 
QuaIMyI Brody 

Figure 5.3 - `Fault Tree Analysis Structure : Associations' 

217 



Fault Tree Analysis Structure 

Figure 5.2 shows both PreliminaryFaultTree and UpdatedFaultTree to be specialisations of the abstract 
FaultTree class, an aggregation of Structure Element meta-classes representing (or capturing the principles 
behind) concepts from 5.2.3.1 that are common to both tree types. These include And-gate (AndGate) 

and Or-gate (OrGate) connectives, the minimal cut set expression (MinimalCutSetExpression) and event 
properties such as exposure (Exposure), rate (Rate) and budget probability (BudgetProbability). The latter 

are initiated as elements of preliminary trees, but are included in the updated tree (along with the 
ActualProbability - introduced below) for reasons of claritys; note that multiplicity of BudgetProbability is 

set as zero-to-many to accommodate updated fault trees for which no preliminary tree exists6. Note too 
the inclusion of a MATrA Natural Language Structure (MatraNLS) enabling annotation of probabilities, 
rates and exposures. We also employ the notion of an event set (EventSet) which represents the 

collective input to And-gates and which simplifies expression of rules and constraints requiring 

examination of paths through a tree. 

In addition, FaultTree includes means to represent the various different types of event label (also 

discussed in subsection 5.2.3.1) - namely Simple (SimpleLabel), Composed (ComposedLabel) and 
Synchronisation (Synch ronisationLabel). Content of these labels is specified using the simple event 
description (SimpleEventDescription) class, with properties entity and condition. 

Besides inheriting the common elements outlined above, PreliminaryFaultTree and UpdatedFaultTree also 
feature type specific preliminary event profile (PreliminaryEventProfile) and updated event profile 
(UpdatedEventProfile) elements respectively. UpdatedFaultTree further includes means to state the actual 

probability (ActualProbability). 

Figure 5.3 indicates that a fault tree Event is made up of a single UpdatedEventProfile and an optional 
PreliminaryEventProfile. It also shows both forms of profile to be specialisations of the (abstract) 

EventProfile supertype, with attribute type -a specialisation of String (not shown) - restricted to 
int(ermediate), top, bas(ic), ext(ernal) or und(eveloped). 

It can be seen from figure 5.3 that PreliminaryEventProfile comprises mandatory BudgetProbability and 
EventLabel elements and optional Rate and Exposure elements (which are further restricted to use with 
basic events by a constraint in subsection 5.2.3.2.2-i). EventLabel is an abstract supertype with the 
SimpleLabel, ComposedLabel and SynchronisationLabel specialisations introduced previously. Each 

EventLabel subtype is described either by a single SimpleEventDeseription instance for Simple events, two 

or more instances for Composed events, or two instances (differentiated using the initial event 
description (initial_event_description) and synchronisation event description (sync event_description) 

rolenames) for Synchronisation events7. A SimpleEventDescription can be given scope by nominating an 

optional qualifying entity (Qualifying Entity). This specialisation of the String class is strictly an attribute 

s Clearly it is beneficial to be able to view both budget and updated probabilities for events from within the updated tree in order 
to determine 'at-a-glance' whether original safety requirements have been met and whether further analysis is required. 
6A constraint can be defined to ensure instances of PreliminaryFaultTree include at least three budget probabilities. 
7 The 'when' conjunction of composed events and the 'upon' preposition of synchronisation events are deemed to be implicit in 
their respective class types. 

218 



Structuring Safety Assessment and Product Management Artifacts 

(indicated by it being an instance of ArtifactProperty), which is promoted to a class using composition in 

order to express optionali. ty. 

Like PreliminaryEventProfile, UpdatedEventProfile also includes a mandatory EventLabel, as well as optional 
Rate and Exposure elements. As per 5.2.3.1, EventLabel and Exposure objects created for a preliminary 

tree can normally be reused by the updated version, although the capability exists for new instances to 

be introduced if necessary; this facility is also available to Rate which is expected to change. 
UpdatedEventProfile is completed by the (mandatory) Actual Probability class and its corresponding 
BudgetProbability created for the preliminary tree; i. e., (as previously indicated), while Rate and Exposure 

are either retained or replaced, updated trees exhibit both forms of probability (budget and actual). 

EventProfile (and hence PreliminaryEventProfile and UpdatedEventProfile) connects to the abstract gate 
(Gate) class, with subtypes OrGate and AndGate. In turn, OrGate takes as input two or more EventProfile 

elements, while AndGate takes a single EventSet (itself an aggregation of two or more event profiles). 

Both EventProfile and EventSet are further defined as subtypes of the abstract EventEntity class. This 

exists partly to allow propagation of the cause and trans_cause associations from EventProfile to both 

EventProfile itself and to EventSet. The cause and trans_cause associations are used in identifying paths 

through a fault tree and hence in the expression of constraints and deductive rules that are dependent on 

this ability (see subsection 5.2.3.2.2). 

One such rule populates the minimal cut set expression (MinimalCutSetExpression). This class is defined 

as an aggregation of one or more EventEntity - i. e., EventProfile or EventSet elements. Presence of the 

former would indicate that a single failure can lead to the fault tree top event, something normally 

regarded as an undesirable system property. However, it was decided that to prevent such occurrences 

(by for example, making MinimalCutSetExpression an aggregation of EventSet elements) would be overly 

restrictive. We therefore express a 'safety-criterion' indicating the presence of, rather than preventing 

specification of fault trees that include single failures (see subsection 5.2.3.2.2-ii). 

5.2.3.2.2 OCL Constraints 

In this subsection, we express the following types of constraint over the Fault Tree Analysis meta- 

model: - 

0 Well-formedness of fault tree elements; 

" Fault tree 'safety-criteria'; 

" Constraints reflecting usage; 

" Other structural and consistency restrictions attributable to modelling decisions; 

" Verification of fault tree elements against the Product Data Synthesis (informal). 

Note that a subset of these constraints (expressed in set theory and predicate logic rather than OCL) 

appeared in Mason & Saeed (1998). 

219 



Fault Tree Analysis Structure 

We begin by establishing a rule capturing causality which populates the aggregation association cause 
for the EventProfile class (see figure 5.3); cause can then be used to populate the trans_cause association. 
The latter is not shown, but like cause can be expressed by restating the corresponding rule from Mason 

& Saeed (ibid. ) in OCL. 

" Rule to populate the cause association. 

EventProfile 
self. alllnstances->forall(e I 
self. event_connective->exists(g I 
e. event_connective->includes(g))) 
implies 
e. cause->includesAll(g. input) 

i. Well-formed Fault Trees 
In defining the following well-formedness constraints and rules for fault trees, we note that a range of 

other structural constraints identified from the literature - e. g., that leaves are not gates and that children 

of events must be gates - are enforced by associations and multiplicities expressed in the UML model 
itself (figure 5.3). 

1. Rule to populate MinimalCutSetExpression. 

FaultTree 
self. alllnstances->forall(f I 
self. ftevent_profile->exists(e I 
f. fi event profile->includes(e) and e. type ="top")) 
implies 
f. ft_mcse. event entity->includesAll(e. trans_cause->select ((e. trans_cause. ocllsKindOf(EventProfile) and 
e. trans_cause. type "bas") or (e. trans_cause. oclType = EventSet and e. trans_cause. event-profile. type=bas"))) 

2. Constraint to ensure unique identifiers. 

FaultTreeAnalvsis invariant 
self. alllnstances->forall(f I 
self. fta_event->forall(el, e2 I 
not(f. fta_event->includes(el) and f. fta_event->includes(e2) and el <> e2 and el. identifer = e2. identifier))) 

3. Constraint to ensure non-primary events types have a child gate, while primary event types do not. 

EventProfile invariant 
self. alllnstances->forall(e I not( ((e. type = "bas" or e. type = "ext" or e. type = "und") and 
e. evenLconnective->size > 0) or ((e. type = "top" or e. type = "int") and e. evenLconnective->size = 0))) 

4. Constraint to ensure a fault tree contains only one top event. 

FaultTreeAnalvsis invariant 
self. alllnstances->forall(f I 
self. fta_event->forall(et, e2 I 

not (f. fta_event->includes(el) and f. fta_event->includes(e2) and 
((el. preliminary. profile. type = "top" and e2. preliminary-profile. type = "top") or 

220 



Structuring Safety Assessment and Product Management Artifacts 

(el. updated-profile. type = "top" and e2. updated-profile. type = "top")) and e1 <> e2))) 

5. Constraint to ensure that probabilities of output events are correct: i. e. a) outputs for Or-gates equate 

to the sum of input probabilities; and b) outputs for And-gates equate to the product of input 

probabilities. 

a) Constraint for Or-gates 

EventProfile invariant 
self. alllnstances->reject(self. alllnstances. type = "bas" or self. alllnstances. type = "ext" or self. alllnstances. type = 
"und")->forall(e 
self. event_connective->exists(g I 
self. preliminary_budget->union(self. actualprobability)->not exists(p I 
(e. event_connective->includes(g) and g. oclType = OrGate and 
((e. oclType = PreliminaryEventProfile and e. preliminary_budget->includes(p) and p. probability <> 
g. input. preliminary_budget. probability->sum) or 
(e. oclType = UpdatedEventProfile and e. actualprobability->includes(p) and p. probability <> 
g. input. actuaLprobability. probability->sum))) ))) 

b) Constraint for And-gates 

EventProfile invariant 
self. alllnstances->reject(self. alllnstances. type = "bas" or self. alllnstances. type = "ext" or self. alllnstances. type = 
"und")->forall(e I 
self. event_connective->exists(g I 
self. preliminary_budget->union(self. actualprobability)->not exists(p I 
(e. evenLconnective->includes(g) and g. oclType = AndGate and 
((e. oclType = PreliminaryEventProfile and e. preliminary_budget->includes(p) and 
(g. input. event-profile->iterate(i : PreliminaryEventProfile; acc: real =0 
acc * i. preliminary_budget. probability) <> p. probability)) or 
(e. oclType = UpdatedEventProfile and e. actualprobability->includes(p) and 
(g. input. eventprofile->iterate(i : UpdatedEventProfile; acc: real =0 
acc * i. actualprobability. probability) <> p. probability)) )) ))) 

6. Constraint(s) to ensure correct population of the (budget or actual) probability for basic events as 

the product of Rate and Exposure. 

Prelim inaryEventProflie invariant 
self. alllnstances->forall(e I 
not(e. preliminary_rate->size =1 and e. preliminary_exposure->size =1 and 
e. preliminary_budget. probability <> e. preliminary_rate. failure_rate * e. preliminary_exposure. period)) 

Updated EventP rof i le invariant 
self. allinstances->forall(e I 
not(e. actual_rate->size =1 and e. actual_exposure->size =1 and 
e. actual_probability. probability <> e. actual_rate. failure_rate * e. actual_exposure. period)) 

7. Constraint ensuring that Rate and Exposure are stated for basic events only. 

EventProfile invariant 
self. alllnstances->forall(e 
not(e. type <> "bas" and ((e. actual_rate->union(e. preliminary_rate)->size >= 1) or 
(e. actual_exposure->union(e. preliminary_expOSure)->SiZe >= 1)))) 

221 



Fault Tree Analysis Structure 

Strictly, this constraint is motivated by our modelling decision to define event type as an enumerated 

property of EventProfile, rather than by using subtypes as we have with gates. This is because EventProfile 

has already been specialised through the preliminary and updated profile subtypes. Therefore, further 

specialisation along a different 'dimension' would lead to an exponential growth in classes in order to 

capture orthogonality - e. g., basic-preliminary, basic-updated, etc. 

We note that Mason & Saeed (ibid. ) contains further constraints and rules pertaining to well-formed 

fault trees (including an invariant to prevent cycles within the logical tree structure); again these could 

be restated in OCL. 

ii. Fault Tree Safety-Criteria 
The following define what we term `safety-criteria' in the sense that they represent desirable properties 

of a fault tree, rather than invariants. 

1. Restriction identifying single failure causes of a top event. 

MinimalCutSetExpression 
self. alllnstances->forall(m I self. event_entity->forall(e I not (m. event entity->includes(e) and 
e. ocllsKindOf(EventProfile))) 

2. Restriction identifying common cause failures through And-gates. 

AndGate 
self. alllnstances->forall(gl, g2 I not((gl. input. event-profile-> 
intersection(g2. input. event-profile)->not Empty) and gi <> g2)) 

iii. Constraints Reflecting Usage 
The following constraints arise from issues relating to usage, notably in terms of support for the ARP 

4761 assessment process. In particular, the notion of preliminary and updated fault trees sharing events 

as constituents of a single Fault Tree Analysis, and the use of event profiles to reduce redundancy and 

promote traceability in realising this concept. 

1. Constraint ensuring that preliminary and updated fault trees have the same top event. 

FauitTreeAnalysis invariant 
self. alllnstances->forall(f I self. fta_event->forall(el, e2 I 
not (f. fta_event->includes(el) and f. fta_event->includes(e2) and 
ei. preliminaryprofile. type = "top" and e2. updated-profile. type = "top" and ei <> e2))) 

2. Restriction stating that ActualProbability of failure for the top event of the UpdatedFaultTree is less than 

or equal to the BudgetProbability of the PreliminaryFaultTree top event. 

FaultTreeAnalysis 
self. alllnstances->forall(f I 
(f. fta_event. updated_profile->select(f. fta_event. updated_profile. type = "top")). actualprobability. probability 
(f. fta_event. preliminary-profile->select(f. fta_event. preliminary_profile. type = "top")). 

preliminary_budget. probability) 

222 



Structuring Safety Assessment and Product Management Artifacts 

3. Constraint ensuring that updated event profiles employ the same BudgetProbability as the preliminary 

profile. 

Event invariant 
self. alllnstances->forall(e I 
not (e. preliminary-profile->size =1 and 
e. preliminary_profile. preliminary_budget <> 
e. updated-profile. preliminary_budget)) 

iv. Other Consistency Constraints 
As a sample of constraints arising from modelling decisions, we capture an exclusive-or restriction that 

a Simple EventDescription must belong to either a SimpleLabel, a ComposedLabel or a SynchronisationLabel. 

Simple EventDescription invariant 
self. alllnstances->forall(s I 
s. simpleLabel->size =1 xor s. composedLabel->size =1 xor s. synchronisationLabel->size =1) 

Also, and in keeping with our view on what constitutes a minimal fault tree (outlined in subsection 
5.2.3.2.1) - specifically the proviso that a well-formed tree contains at least one gate - we state the 

following: - 

FaultTree invariant 
self. alllnstances->forall(f I not(f. ft_and-gate->isEmpty and f. ft orate->isEmpty)) 

v. Verification of Fault Tree Elements against the Product Data Synthesis 
Given that we expressed PDS consistency checks for previous notations (and do so again for the Failure 

Modes and Effects Analysis structure in section 5.3), similar restrictions are not formally stated over the 

Fault Tree Analysis meta-model. However, the following (informal) constraints should hold for event 

labels: - 

" The entity attribute maps to a corresponding PDS Module or Function; 

" The condition attribute maps to a PDS Condition for the corresponding Module or Function; 

" For two events, where one is caused by the other, there exists in the PDS an Occurringln association 

between corresponding conditions; 

0 Qualifying Entity maps to a corresponding PDS Module or Function and includes the qualified Entity 

within its decomposition. 

5.2.3.2.3 O-Telos Implementation of FTA Base Classes 
The following O-Telos code implements base class elements for the Fault Tree Analysis meta-model. 

EventEntity in StructureElement, 
SimpleClass isA 
AerospaceEngineeringObject with 
constraint 

abstract_event_entity: $ forall 
t/Token s/SimpleClass (t in s) =_> not (t 
in EventEntity)$ 
end 

EventSet in StructureElement, SimpleClass 

isA EventEntity with 
haspart 

event-profile : EventProfile 
end 

EventProfile in StructureElement, 
SimpleClass isA EventEntity with 
has_property 

type : EventType 
has part 

223 



Fault Tree Analysis Structure 

event_connective : Gate; 
cause : EventEntity 

has_transitive_part 
trans_cause : EventEntity 

constraint 
abstract-event-profile: $ forall 

t/Token s/SimpleClass 
(t in s) ==> not (t in EventProfile)$ 

end 

EventType in ArtifactProperty, 
SimpleClass isA String with 
constraint 

enum event_type: $ forall 
e/EventType(e = "int') or (e = "top') or 
(e = "bas') or (e = "ext') or (e = "und') 

end 

Gate in StructureElement, SimpleClass isA 
AerospaceEngineeringObject with 
constraint 

abstract_gate: $ forall t/Token 
s/SimpleClass (t in s) ==> not (t in 
Gate)$ 
end 

PreliminaryEventProfile in 
StructureElement, SimpleClass isA 
EventProfile with 
has-part 

preliminary-budget 
BudgetProbability; 

preliminary_rate : Rate; 
preliminary-exposure : Exposure; 
preliminary-label : EventLabel 

end 

UpdatedEventProfile in StructureElement, 
SimpleClass isA EventProfile with 
has-part 

actual-probability 
ActualProbability; 

preliminary-budget 
BudgetProbability; 

actual_rate : Rate; 
actual-exposure : Exposure; 
actual_label : EventLabel 

end 

ActualProbability in StructureElement, 
SimpleClass isA 
AerospaceEngineeringobject with 
has-property 

probability : Real 
has-structure 

annotation 
MatraNaturalLanguageStructure 
end 

BudgetProbability in StructureElement, 
SimpleClass isA 
AerospaceEngineeringobject with 
has-property 

probability Real 
has-structure 

annotation 
MatraNaturalLanguageStructure 
end 

Rate in StructureElement, SimpleClass isA 
AerospaceEngineeringObject with 
has_property 

failure_rate : Real 
has-structure 

annotation 
MatraNaturalLanguageStructure 
end 

Exposure in StructureElement, SimpleClass 
isA AerospaceEngineeringObject with 

has, property 
period : Real 

has_structure 
annotation 

MatraNaturalLanguageStructure 
end 

EventLabel in StructureElement, 
SimpleClass isA 
AerospaceEngineeringObject with 
constraint 

abstract_event_label: $ forall 
t/Token s/SimpleClass (t in s) ==> not (t 
in EventLabel)$ 
end 

SimpleLabel in StructureElement, 
SimpleClass isA EventLabel with 
has-part 

simple-description 
SimpleEventDescription 
end 

ComposedLabel in StructureElement, 
SimpleClass isA EventLabel with 
has-part 

simple-description 
SimpleEventDescription 
end 

SynchronisationLabel in StructureElement, 
SimpleClass isA EventLabel with 
has. part 

initial_event_description 
SimpleEventDescription; 

sync_event_description 
SimpleEventDescription 
end 

SimpleEventDescription in 
StructureElement, SimpleClass isA 
AerospaceEngineeringObject with 
has-property 

entity : String; 
condition : String; 
qualifying-entity : QualifyingEntity 

end 

QualifyingEntity in ArtifactProperty, 
SimpleClass isA String end 

AndGate in StructureElement, SimpleClass 
isA Gate with 
has-part 

input : EventSet 
end 

OrGate in StructureElement, SimpleClass 
isA Gate with 
has-part 

input : EventProfile 
end 

Event in StructureElement, SimpleClass 
isA AerospaceEngineeringObject with 
has_property 

identifer : String 
has-part 

preliminary-profile 
PreliminaryEventProfile; 

updated-profile : UpdatedEventProfile 
end 

MinimalCutSetExpression in 
StructureElement, SimpleClass isA 
AerospaceEngineeringObject with 
has-part 

event_entity : EventEntity 
end 

FaultTree in AssessmentStructure, 

224 



Structuring Safety Assessment and Product Management Artifacts 

SimpleClass isA 
AerospaceEngineeringObject with 
has_structure 

ft-annotation 
MatraNaturalLanguageStructure 
has_element 

ft-and-gate AndGate; 
ft-or-gate OrGate; 
ft_mcse : MinimalCutSetExpression; 
ft-event-set : EventSet; 
ft-budget : BudgetProbability; 
ft_rate : Rate; 
ft-exposure : Exposure; 
ft-simple : SimpleLabel; 
ft-composed : ComposedLabel; 
ft_synchronisation 

SynchronisationLabel; 
ft_simple_desc : 

SimpleEventDescription 
constraint 

abstract_ft: $ forall t/Token 
s/SimpleClass (t in s) =_> not (t in 
FaultTree)$ 
end 

PreliminaryFaultTree in 
AssessmentStructure, SimpleClass isA 
FaultTree with 

has_element 
ft-event-profile 

PreliminaryEventProfile 
end 

UpdatedFaultTree in AssessmentStructure, 
SimpleClass isA FaultTree with 
has-element 

ft_event_profile 
UpdatedEventProfile; 

ft_actual : ActualProbability 
end 

FaultTreeAnalysis in AssessmentStructure, 
SimpleClass isA 
AerospaceEngineeringObject with 
has-property 

subject module : String; 
fta_description : String; 
fta_date : Date 

has-structure 
fta_preliminary_tree 

PreliminaryFaultTree; 
fta_updated_tree : UpdatedFaultTree 

has_element 
fta_event : Event 

end 

5.2.4 Relationship to the Traceability Dimensions 
Trace relations involving fault trees can occur in the horizontal and vertical dimensions at inter/intra 

and macro/micro levels. For example, relating a PSSA fault tree for an aircraft braking system, to a 
PSSA fault tree for one of its components, can be said to capture an intra-macro-horizontal association; 
intra in the sense that our interest lies within a single system, macro in that it spans two levels of 
decomposition and horizontal as the artifacts concerned stem from the same phase of assessment. 
Similarly, if we related the braking system fault tree to braking system requirements derived from 

analysis of failure conditions, this would constitute intra-micro-vertical traceability; again intra because 

our interest is a single system, micro as the scope is confined to a single decomposition level and 

vertical since traceability is between artifacts of different types (i. e., requirements and assessment). 

However we make the observation that relationships between fault trees generated by PSSA and SSA 

are more difficult to position along the dimension axes since they depend in part on interpretation of the 

dependency between the preliminary and updated trees. Recall from Chapter One that revision 

traceability is defined as (the ability to navigate) relationships between instances of the same artifact at 

different stages of maturity. Therefore one view holds that preliminary trees and profiles mature into 

updated trees and profiles in response to findings from analysis (e. g., FMEA or Common Mode) and so 

relationships between them exist in the revision dimensions. Yet since the stated aims of the two trees 

are quite different - PSSA is used to derive requirements and evaluate proposed architectures, whereas 

SSA provides verification that an implemented system satisfies these objectives (and so clearly one is 

not replacing the other in the true sense of a revision) - then it might also be argued such relationships 

are actually intra-micro-vertical; intra-micro as they concern descriptions within both a single system 

and single decomposition level and vertical as the artifacts concerned stem from different phases of 

assessment. 

8 We consider the issue of revision (and more generally, version) traceability in greater detail in subsection 5.5. 

225 



Fault Tree Analysis Structure 

5.2.5 Summary 
Fault Tree Analysis is a top down method of failure analysis that is widely used throughout the 

aerospace sector. Accordingly, this subsection has proposed a novel meta-model supporting the main 

concepts underpinning Fault Tree Analysis, including common gate and event types and minimal cut set 

expressions. The model also reflects use within the aerospace industry, notably the assessment process 

prescribed by ARP 4754/4761. It therefore enables events to be shared between a preliminary fault tree 

(developed during PSSA) - expressing budget safety requirements - and its updated counterpart 

intended to show realisation of these requirements (developed during SSA). Event sharing is 

accomplished by means of 'event profiles' which eradicate much of the redundancy between 

preliminary and updated trees, whilst helping maintain consistency and increase traceability. 

A number of well-formedness constraints were expressed over the logical fault tree structure, together 

with safety-criteria for identifying common cause and single failures. We also introduced a 'light- 

weight' approach to the formalisation of event labels by typing events according to a taxonomy from 

the literature and by specifying their content at a level of granularity that allows for their verification 

against the Product Data Synthesis. 

We demonstrate application of the Fault Tree Analysis meta-model to a case study derived from ARP 

4761 in subsection 6.3. This case study will also feature a meta-model for the complementary Failure 

Modes and Effects Analysis technique to be introduced in the next section. A full evaluation of the 

Fault Tree meta-model is discussed in Chapter Seven. 

226 



Failure Modes and Effects Analysis Structure 

5.3 Failure Modes and Effects Analysis Structure 

5.3.1 Introduction 
In this section we propose a structure capturing elements of Failure Modes and Effects Analysis, a 
technique that tracks the effects of component or functional failures within a system to determine their 

ultimate consequences and which like FTA, is also widely used in the aerospace industry. 

5.3.2 Motivation 
Failure Modes and Effects Analysis (FMEA) was first applied to aeronautics in the 1960s and has since 
been used, among others, on projects ranging from Concorde to the lunar module (Bussolini, 1971); it 

continues to be a mainstay of safety assessment for contemporary aircraft (FAA, 2001). Accordingly, a 
number of aerospace related standards (or guidelines) prescribe procedures for conducting FMEA and 
FMECA (Failure Modes, Effects and Criticality Analysis - an extension to FMEA which also takes into 

account the importance of each failure), either specifically as in the case of IEC (1985), or as part of the 

overall safety process (EUROCAE, 1996b). Like Fault Tree Analysis, application of FMEA in the 

assessment of software has also been well documented (cf. Fragola & Spahn, 1973; Reifer, 1979). 

Recall from subsection 5.2.2 that Failure Modes and Effects Analysis is an inductive technique in the 

sense that users are attempting to anticipate potential failures, so their source(s) can be eliminated. It is 

seen as a complimentary approach to Fault Tree Analysis such that a fault tree used to determine the 

causes of a particular hazard may utilise failure rates from relevant FMEAs9. Since we regard it 

appropriate to include both deductive and inductive approaches within the MATrA framework, Failure 

Modes and Effects Analysis serves as our inductive example. 

We also stated in 5.2.2 that the results of several safety analysis technique are represented in tabular 
form. Again, as our aim is to incorporate examples of both graphical (as demonstrated by the previous 
PTA structure) and table-based formats, FMEA provides our example of the latter. 

5.3.2.1 Failure Modes and Effects Analysis Overview 
As previously indicated, Failure Modes and Effects Analysis allows analysts to investigate potential 

ways in which individual components or functions within a target system might fail. However, unlike 
Fault Tree Analysis (whose symbols and element types remain largely standard), a raft of different 

FMEA analyses with varying procedures, intent and reporting formats have emerged; the corollary 
being that little commonality exists between the various industries in which they are used. We therefore 

adhere to the format presented in ARP 4761 for aerospace engineering. 

It is common to distinguish two types of FMEA, functional (where investigation is of the lowest level 

assemblies in a system - typically functional or block-diagram level) and piece-part (where 

investigation is at the level of individual components within an assembly). As shown by the case study 

9 Wilson & McDermid (1995) identify a number of interdependencies among safety assessment techniques; for FTA and FMEA 
these are: - i) basic events exists as effects; ii) probabilities are consistent with rates. 

227 



Structuring Safety Assessment and Product Management Artifacts 

example in ARP 4761 (Appendix L), piece-part analyses are normally performed to refine failure rates 

produced from functional FMEA that do not allow a system or component to meet FTA budget failure 

probabilities. 

Again procedural issues on conducting both forms ofFMEA are outside the scope of this thesis; 

interested readers are instead referred to (EUROCAE, 1996b) and also to (NASA, 1994). However, a 

typical process framework will involve the definition of components and operating states, identification 

of their failure modes, determination of effects and investigation of factors for detection and protection, 

as well as some basis for making recommendations. 

While the content of Failure Modes and Effects Analysis tables differs between industries, certain 

concepts are standard among all safety 10 related variants; these reflect the template procedure outlined 

above and include columns recording component or fin ction, known failure modes and the et/ects of 

each failure. Other columns that may be added include cause of failure, frequenc. v of occurrence (based 

on historical data and service experience), severity (indicating how serious the failure would he), means 

for detection or mitigating against the failure and finally comments and recommendations. 

ARP 4761, the FMEA reporting format considered in this thesis, suggests the following as possible 

`worksheet' columns for functional and piece-part analyscs: - 

Functional FMEA Piece-Part FMEA 

" funct1011 n: m, c " LOinhunrnt mime 
" Failure mode " CO 11puncnt type 

" failure rate " failure mode 
" Hight phase " failure mode rate 
" failure effect " failure effect 
" detection method " detection method 

" comments " Comments 

Table 5.3 - 'ARP 4761 Functional and Piece-Part FMEA Contents' 

Note: Failure effect codes may he assigned and used in place ol effect descriptions tt) simplify [Ile table 

presentation. A detailed description of each effect code is then included in the accompanying report. 

Table 5.4 contains a Functional FMEA fragment for an aircraft Brake System Control Unit power 

supply (P/S) which is again taken from ARP 4761. 

Function Name Failure Mode Flight Phase Failure Rate (E-6) Failure Effect Detection Method Comments 

+5 Volt Power 
Supply 

+5 volt out of 
Spec 

All 02143 P/S 
Shutdown 

The Power Supply 
Muniwr IN (ripped. 

The channel 
I; il. 

Table 5.4 - `(Functional) FMEA Fragment for Break System Control Unit Power Supply' 

10 FMEA also has strong associations with reliability engineering: indeed Leveson ( 1995) argues it is strictly a reliability 

analysis that is inappropriate for use in a safety process. 

228 



Failure Modes and Effects Analysis Structure 

5.3.3 Tracing Safety Properties in MATrA: An FMEA Model 
This subsection proposes a meta-model for the representation of tables reporting FMEA results, 
allowing their integration into the MATrA traceability framework. 

5.3.3.1 Concepts 
As stated previously, industry variations prevent our developing a definitive FMEA meta-model. 
Instead we concentrate on supporting the suggested functional and piece-part worksheet formats 

summarised in table 5.3. 

Given that results are table-based, we are able to capture well-formedness of FMEAs using multiplicity 
constraints expressed over meta-model elements. However, checks verifying consistency of table entries 
against the Product Data Synthesis are necessary and are therefore featured below. 

5.3.3.2 FMEA Meta-model Definitions 
We now introduce the UML meta-model representing elements of piece-part and functional FMEA 

tables (5.3.3.2.1), together with OCL constraints to verify table entries against the Product Data 

Synthesis (5.3.3.2.2) and O-Telos implementation of base classes (5.3.3.2.3). 

5.3.3.2.1 FMEA Meta-model 
Figures 5.4 (elements) and 5.5a/b (associations) depict the FMEA UML meta-model. Its abstract core 

class (FailureMode&EffectsAnalysis), with subject module (subject module) and other configuration 

attributes instantiates the AssessmentStructure meta-class, as do the functional (FunetionalFMEA) and 

piece-part (PiecePartFMEA) specialisations. Each is defined as an aggregation of Structure Element meta- 

classes representing FMEA primitives. 

The FailureMode&EffectsAnalysis class is an aggregation of elements common to both functional and 

piece-part analyses, namely failure modes (FailureMode) and effects (Failure Effect), both of which are 
defined as specialisations of the built-in String class (not shown). Means to record failure detection and 

comments are also provided through the MATrA Natural Language Structure (MatraNLS). 

Besides the inherited elements described above, a FunctionalFMEA is defined as an aggregation of 
function identifier (FunctionlD), failure rate (FailureRate) and flight phase (FlightPhase) elements. 
FunctionlD and FailureRate specialise String and Real (domain <=1) respectively (again not shown), while 
FlightPhase is an enumerated type -a specialisation of String, whose instantiations are restricted to 

'Taxi', 'Take off to Rotation', 'Landing Roll', 'Rejected Take Off' nd 'Climb', etc.; or alternatively, 

the universal 'All' (i. e., all ground and airborne phases). 

FunctionalFMEA also includes a number of classes expressly to preserve grouping of repeated elements 

within the table format". That is, to relate failure behaviours to functions, and to relate failure modes 

11 This arises from the fact that each function may have many failure modes such that the effects and rates of each failure differ 
for, and must therefore be grouped by, flight phase; detection is grouped on the basis of mode rather than flight phase. 

229 



Structuring Safety Assessment and Product Management Artifacts 

«Stnc[dra EI m. ib> 
FolumMods 

I.. * I ftnekinocis 

61 
< SNCtva Eleawnb> ý.. FakreMode3E11ecisAmlyms (abstract) «TracatbWy Stntelun» 

FaiUreEfed #xged_nodu4: Strrtg S ei MatraNLS 
tja-Mteý1 1tRtsadascrptm: Sting I Imea_ýomtwM 

*4mal -date: 
Data 0.. 

«Aaseseln. SWCfve» II «Aaeuns. BVU<tw, 
P3ecePanFMEA FuactonalFMEA 

«StrucWn Elwnenb> 
«Stnxiw Elenanb> 

11,, 
1 1.. ' 

FvK. 1bnID 
In 

C-POrAWO hnsiLhndbn 

1/ «Stnettt. EI. nent. > 
1 1_' «Strucf n Elenrrb> FalluroRaN 

ror�porýargTyps hnr_mý 
tmes_comP_M» 

«Sinrclua Elemen> -St 
FNpMructurePhap 

i .. 
I Elemenb> 

1 1, " 
FaiureModoRN. h MLPha " 

hneeýnaM_reu 

I 
.... __ .... - . n. �W.. 

e. SVUGUn 
k Con onwrtFa UoDm Oesc44Ion 

,". 
StrucUn Elenwnb> 

hnes_eatiýaýngda_deýe+Falk"ModeDomak 

ý, " «Stncturs Elansnb> 
FunabnFakrsD". aiptbn 

h .. jncJaLdssc 

1 1. " «SInctw. EWnwvb., 

tm. ajno faLLnKKM_deec 
I FunctbnFaHunModsDaeatptbn 

1 1, " .. Stnwl n Ebnwnb> 

hnea, JYpM-phsr_deac 
FYgMPhueFaMurDnalptlon 

Figure 5.4 - `FMEA Structure : Elements' 

to effects and rates of occurrence for each flight phase. Thus, a FunctionalFMEA is described as an 

aggregation of function failure descriptions (FunctionFailureDesc(ption) which in turn comprise a single 
FunctioniD and one or more function failure mode descriptions (FunctionFailureModeDescription). 

Accordingly, instances of the latter include a single FailureMode and one or more flight phase failure 

descriptions (FlightPhaseFailureDescription) allowing the effects (FailureEffect) and rate (FailureRate) of 
failures to be described by flight phase. 

Likewise, in addition to common FMEA elements, a PiecePartFMEA includes String class specialisations 

(again not shown) for component (Component), and component type (ComponentType), together with the 

failure mode rate (FailureModeRate) element -a subtype of Real also in range < =1 (not shown). 

As with its functional counterpart, the PiecePartFMEA further includes classes to preserve grouping 

within tables; each component can have many failure modes, which in turn can have many effects. 

Therefore, a PiecePartFMEA is as an aggregation of component failure descriptions 

(ComponentFailureDescription) with (single) Component and ComponentType elements and one or more 

component failure mode descriptions (ComponentFailureModeDescription); the latter includes single 

FailureMode and FailureModeRate and, one or more FailureEffect elements. 

230 



Failure Modes and Effects Analysis Structure 

<<Assessment Structure» 
FunctlonalFMEA 

1 

1. ' tmea fnc fail_desc 

«Structure Element» 1 
FunctionFailureDescription 

1. ' fnc fall_mode_description 

«Structure Element>> f, "f «Structure Element» 
FllghtPhaseFellureDescrlptbn FunctionFailureModeDescription 

fnc_fllght, 
_phase_desc t 

0. ' fnc_detectio 

0.. 1 c' Traceability Structure>> 
c<Structure Elemenb> 

f comment 
I FailureRate 

MatraNLS 

1nc_fai_rete 

iucture 
Element>> 1 «StrFe 

lureMode 
1 1. " «Structure Element>> inc_fail_mode 

fno_phase_falLeffect 
FailureEffect 

1 «Structure Element» 

inc_Ilightyhase 
FllghlPhase 

Figure 5.5 -a -`Functional FMEA Structure : Associations' 

I <<Structure Element» 
FundionlD 

tnc_Id 

Assessment Structure>> 
PfecePartFMEA 

I 

«StrCure Element» 
Component 

com_name 

I.. ' finea_com tell desc 

1 «Structure Element» 
ComponentFailure Descdptlon 

1 

c<Structure Element>> 
ComponentType 

--type 

«Slructuro Element» 
FellureMode 

com_lelt mode 

«Structure Element» 11 
FallureModeRate 

com faiLrate 

I.. - com_fail_node_descdption 

«Structure Element>> 
ComponenlFeilureModeDeacription 

1 

0.. * com_detection 

0.. j ccTraceability Structure 
MatraNLS 

com_comme 

«Stnicture Element» ý. . 
FallureElled 

com feil_eFlect 

Figure 5.5 -b -'Piece-Part FMEA Structure Associations' 

231 



Structuring Safety Assessment and Product Management Artifacts 

5.3.3.2.2 OCL Constraints 
The tabular format in which results of Failure Modes and Effects Analyses are presented and our ability 
to preserve this structure through the models presented in subsection 5.3.3.2.1 means that no well- 
formedness constraints are necessary. However, a number of checks verifying FMEA elements against 
the Product Data Synthesis may be defined as follows: - 

1. The FMEA subject_module exists in the PDS. 

FailureMode&EffectsAnalvsis invariant 
self. alllnstances->forall(f I self. bEmodelAEO. build_element->exists (be I f. subjecLmodule = be. module_name)) 

2. a) PiecePartFMEA table components exist in the PDS as sub-modules of the subject_module (a) and 
FunctionalFMEA identifiers exist in the PDS as functions encapsulated by the Subject module (b). 

a) , Component invariant 
self. alllnstances->forall(c I 
self. bEelementAEO. build_element->exists(m I 
self. piecePartFMEA. bEmodelAEO. build_element->exists(be I 
be. module_name = c. piecePartFMEA. subject_module and 
c=m. module name and 
be. hasSubmodule. target->includes(m)))) 

b) 
FunctioniD invariant 
self. alllnstances->forall(f 
self. bEelementAEO. build_element->exists(e I 
self. functionalFMEA. bEmodelAEO. build_element->exists(be I 
be. module_name = f. functionalFMEA. subject_module and 
f=e. function name and 
be. encapsulates. target->includes(e)))) 

3. For components (a) and functions (b), failure modes map to Conditions of the corresponding PDS 

Module or Function. 

(a) 
FailureMode invariant 
self. alllnstances->select(self. piecePartFMEA->size =1)->forall(f I 
self. bEelementAEO. build_element->exists(c I 
self. piecePartFMEA. bEmodelAEO. build_element->exists(be I 
self. piecePartFMEA. bEmodelAEO. build_element. hasSubmodule. target->exists(m I 
f. piecePartFMEA. subject_module = be. module_name and 
be. hasSubmodule. target->includes(m) and 
m. module_name = f. componentFailureModeDesc(ption. componentFailureDescription. com_name and 
m. hasCondition. target->includes(c) and f=c. condition. label )))) 

(b) 
FailureMode invariant 
self. alllnstances->select(self. functionalFMEA->size =1)->forall(f I 

self. bEelementAEO. build_element->exists(c I 
self. functionalFMEA. bEmodelAEO. build_element->exists(be I 

self. functionalFMEA. bEmodelAEO. build_element. encapsulates. target->exists(p I 
f. functionalFMEA. subject_module = be. module_name and 

232 



Failure Modes and Effects Analysis Structure 

be. encapsulates. target->includes(p) and 
p. function_name = f. function Failure ModeDescription. functionFailureDescription. fnc id and 
p. hasCondition. target->includes(c) and f=c. condition. Iabel )))) 

4. The PDS contains conditions corresponding to (a) component or (b) function failure effects; these 

may be effects on the same Module or Function over which the causal FailureMode is expressed, or 

else on another Module or Function within the same host (i. e., subject_module), or else effects 

impacting on the subject_module itself (note this is not an invariant). 

a) 

FailureEffect 
self. alllnstances->select(self. piecePartFMEA->size =1)->forall(e I 
self. bEelementAEO. build_element->exists(c I 
self. piecePartFMEA. bEmodelAEO. build_element->exists(be I 
self. piecePartFMEA. bEmodelAEO. build_element. hasSubmodule. target->exists(m I 
self. piecePartFMEA. bEmodelAEO. build_element. hasSubmodule. target. hasCondition. target->exists(c' I 
self. piecePartFMEA. bEmodelAEO. build_element. hasSubmodule. target->exists(m' I 
e. piecePartFMEA. subject_module = be. module_name and 
be. hasSubmodule. target->includes(m) and 
m. module_name = e. componentFailureModeDescription. componentFailureDescription. com_name and 
m. hasCondition. target->includes(c') and 
c'. condition_label = e. componentFailureModeDescription. com fail mode and 
(be. hasCondition. target->includes(c) or m. hasCondition. target->includes(c) or 
be. hasSubmodule. target->includes(m') and m'. hasCondition. target->includes(c)) and 
e=c. condition_label and c'. IeadsTo. target->includes(c) )))))) 

b) 
FailureEffect 
self. alllnstances->select(self. functionalFMEA->size =1)->forall(e I 
self. bEelementAEO. buildelement->exists(c I 
self. functionalFMEA. bEmodelAEO. buildelement->exists(be I 
self. functionalFMEA. bEmodeIAEO. build_element. encapsulates. target->exists(p I 
self. functionalFMEA. bEmodeIAEO. build_element. encapsulates. target. hasCondition. target->exists(c' I 
self. functionalFMEA. bEmodelAEO. build_element. encapsulates. target->exists(p' I 
e. functionalFMEA. subject_module = be. module_name and 
be. encapsulates. target->includes(p) and 
p. function_name = 
e. flightPhaseFailureDescription. functionFailureModeDescription. functionFailureDescription. fnc_id and 
p. hasCondition. target->includes(c') and 
c'. condition_Iabel = e. flightPhaseFailureDescription. functionFailureModeDescription. fncfail mode and 
(be. hasCondition. target->includes(c) or p. hasCondition. target->includes(c) or 
be. encapsulates. target->includes(p') and p'. hasCondition. target->includes(c)) and 
e=c. condition_Iabel and c'. IeadsTo. target->includes(c) )))))) 

5.3.3.2.3 O-Telos Implementation of FMEA Base Classes 

The following O-Telos code implements FMEA meta-model base class elements. 

Definition of Structure Elements SimpleClass isA Real, 
Component in StructureElement, AerospaceEngineeringObject with 
SimpleClass isA String, constraint 
AerospaceEngineeringObject end fmr_in_range: $ forall f/ 

FailureMOdeRate (f <= 1)$ 

ComponentType in StructureElement, end 
SimpleClass isA String, 
AerospaceEngineeringObject end FailureMode in StructureElement, 

SimpleClass isA String, 

FailureModeRate in StructureElement, AerospaceEngineeringobject end 

233 



Structuring Safety Assessment and Product Management Artifacts 

FailureEffect in StructureElement, 
SimpleClass isA String, 
AerospaceEngineeringobject end 

FunctionID in StructureElement, 
SimpleClass isA String, 
AerospaceEngineeringobject end 

FailureRate in StructureElement, 
SimpleClass isA Real, 
AerospaceEngineeringobject with 
constraint 
fr_in range: $ forall f/ FailureRate 
(f <= 1) $ 
end 

ComponentFailureModeDescription in 
StructureElement, SimpleClass isA 
AerospaceEngineeringObject with 
has-part 

com_fail_mode : FailureMode; 
com_fail_rate FailureModeRate; 
cofail_effect : FailureEffect 

has-structure 
com_detection 

MatraNaturalLanguageStructure; 
com_comment : 

MatraNaturalLanguageStructure 
end 

oa of 
FlightPhase in StructureElement, Fai1ureM ailureMOde&EffeatsAaalysis Structure 
SimpleClass isA String, 
AerospaceEngineeringObject with FailureMode&EffectsAnalysis in 
constraint AssessmentStructure, SimpleClass isA 
enunt-Phase: $ forall f/FlightPhase AerospaceEngineeringObject with (f = "Taxi') or (f = "Takeoff To property has 
Rotation') or (f = "Landing Roll') or _ subject-nodule : String; 
(f = 'Rejected Takeoff') or (f = description: String; fmea 
Climb') or (f = 'All')$ _ fmea_date : Date 

end has-structure 
detection fmea detection 

in _ _ MatraNaturalLanguageStructure; 
StructureElement, SimpleClass isA fmeaLcomment 
AerospaceEngineeringobject with MatraNatu MaturalL lLanguageStructure 
has-part has element fnc_id : FunctionlD; - finea e FailureMode; f 

: effect FailureEffect finea 
FunctionFailureModeDescription _ 

constraint 
end' abstract_FMEA: $ forall t/Token, 

eClass s/Si FunctionFailureModeDescription in ( t in s) ) ==> not (t in (tin 
StructureElement, SimpleClass isA enilureMode&EffectsAnalysis)$ 
AerospaceEngineeringObject with end has-part 

fnc_fail_mode : FailureMode; FunctionalFMEA in AssessmentStructure, 
fnc_flight_phase_desc : SimpleClass isA 

FlightPhaseFailureDescription FailureMode&EffectsAnalysis with 
has-structure has_element 

fnc_detection : fmea_fnc_fail_desc 
MatraNaturalLanguageStructure; FunctionFailureDescription; 

fnc_comment : finea_fnc_fail_node_desc 
MatraNaturalLanguageStructure FunctionFailureModeDescription; 
end finea_flight_phase_desc : 

; FlightPhaseFailureDescription 
FlightPhaseFailureDescription in on finea_ 
StructureElement, SimpleClass isA ureRate; rate F finea 
AerospaceEngineeringobject with lighte fmea_phase FlightPhase 
has-part end fnc_flight_phase : FlightPhase; 

fnc_fail_rate : FailureRate; PiecePartFMEA in in 
fnc_phase_fail_effeet : AssessmentStructure, SimpleClass isA 

FailureEffect FailureMode&EffectsAnalysis with 
end has-element 

_com_ 
finea 

ComponentFailureDescription in ureDesCr ComponentFa 
StructureElement, SimpleClass isA com_fail failnode Xnode_desc sc finea_ 
AerospaceEngineeringObject with ComponentFailureModeDescription; 
has-part fmea_component : Component; 

com_name : Component; finea_comp_type : ComponentType; 
com type : ComponentType; finea-moderate : FailureModeRate 
com_fail_mode_description : end 

ComponentFailureModeDescription 
end 

5.3.4 Relationship to the Traceability Dimensions 

The case study in subsection 6.3 demonstrates traceability between development and assessment 

artifacts; in particular it shows how components from a Circuit Diagram trace to corresponding entries 

in FMEA tables. Such relationships constitute infra-micro vertical traceability; intra-micro in the sense 

234 



Failure Modes and Effects Analysis Structure 

that the Circuit Diagram and FMEA table both concern the same system and level of decomposition and 

vertical since traceability is between artifacts of different types (development and assessment). 
Moreover, effects of each failure from the FMEA table may trace to basic events of fault trees; where 
for instance both artifacts form part of System Safety Assessment, such relationships are located on the 
(intra-micro) horizontal axis, as are relationships between piece-part and functional FMEAs. 

5.3.5 Summary 
Failure Modes and Effects Analysis has been widely used throughout the aerospace sector for nigh on 
forty years. Accordingly, its inclusion within the MATrA traceability framework allows us to 

demonstrate support for an inductive safety technique whose results are recorded in tabular form (as 

opposed to the hitherto featured graphical, prose or program code structures). 

A novel meta-model was proposed capturing elements for both functional and piece-part FMEA 

formats as prescribed in the ARP 4761 guidelines for safety assessment of civil airborne systems and 

equipment. A set of mapping rules over the model for verifying table entries against the Product Data 

Synthesis was also introduced. 

Section 6.3 features a contiguous case study demonstrating use of the FMEA structure (in conjunction 

with Fault Tree Analysis and Circuit Diagram structures), whilst a full evaluation is again provided in 

Chapter Seven. 

235 



Programme Evaluation & Review Technique Structure 

5.4 Programme Evaluation & Review Technique Structure 

5.4.1 Introduction 
In this section we introduce our final notation meta-model. The proposed structure captures the 

graphical syntax of the Programme Evaluation & Review Technique which represents inter- 

relationships between the timing of events and project activities in the form of a network. 

5.4.2 Motivation 

The Programme Evaluation & Review Technique (PERT) aids in the management, planning and control 

of projects. It was devised by the United States Navy during the 1950s in an attempt to cut project lead 

times and is credited with subsequently saving two years in development of the Polaris missile system. 
PERT graphically demonstrates inter-relationship between the various tasks making up a project, 

clearly identifying its `critical' parts. According to Lucey (1992), the technique is most beneficial and 

so normally applied to projects that are large, complex and subject to various time and cost constraints - 
characteristics common to projects in the aerospace industry. Moreover, potential usage within that 

particular sector is life-cycle wide, ranging from the management of requirements and design activities, 

to scheduling of aircraft maintenance tasks. 

Aside from its relevance to our domain of interest, we are also motivated in featuring PERT by a desire 

to cover all categories of notation and technique used by aerospace practitioners (development and 

assessment having being covered in Chapter Four and previous sections of Chapter Five respectively). 

5.4.2.1 Programme Evaluation & Review Technique Overview 

Two types of element are fundamental to all PERT networks; activities (or 'basic activities') - denoted 

as arcs (and labeled with a shortened description, or alpha-numeric code) - are tasks which take time 

and resources to perform. The head of an arc indicates the point at which a task ends and the tail, where 
it begins. We note that arcs are normally drawn from left to right and that they imply precedence only; 
i. e., length is not proportional to duration. 

The other main constituent of PERT networks are events - denoted as circles or nodes (and 

progressively labeled with integer sequence numbers, together with an optional descriptor) - which 

mark the point in time an activity or activities start or finish (i. e., they represent the achievement of a 

specific stage of a project). 

In addition to basic activities and events, networks can also include the notion of `dummy activities' - 
denoted as broken or dotted arcs. These consume neither time nor resources, but rather show logical 

dependencies between activities, either to preserve precedence (as is the case with examples featured in 

this thesis), or to prevent the breach of rules for drawing networks (Lucey, ibid. ). Of these rules, the 

principal structural constraints are as follows: - 

"A network should have a single point of entry or start event and single point of exit or finish event. 

236 



Structuring Safety Assessment and Product Management Artifacts 

" Every activity lutist have One preceding or 'tail' event and one succeeding or 'head' event; many 

activities may share the same head event or thr same tail event, although no activity can share holt) 

the same tail and head even[. I)ununy activities ale used to preserve this constraint. 

" ('Files or series Of activities leading hack Io the same event are not Permissible since a founding 

tenet <oI' networks is that they indicate the progression of activities onwards in time. 

As sIwwn in figure i. O, a I'IR'I' network is Ihr eumbinalion of activities, slummy activities and events 

in logical scyurnrc accoudinm to time Constraints outlined nhuvc: - 

3 

4 

1 
K 

li 

Figure 5.6 - Example of a Basic I E'I''I' Network' 

. Jx 
N 

llir I(fi. iral sryUCUt e for Ilie hei Work in Iiourc 5.0 is suniniariscd in table 5.5. Note, a dummy activity 

0 6) is used hrcausr 01 the Ixcce(Itng activity requirements oI activity 1,; if activities 1 and H were not 

specified to pick-eile this activity, then the duinnry would not he necessary. 

Activity Preceding 
Activity 

Activity Preceding 
Activity 

Activity Preceding 
Activity 

1 I' (' I. I. I-1, G, K 

13 (. C M I :. H 

C A fI C N I., M 

u A .1 
13, u - - 

A K I1, .I - - 

Table 5.5 - 'Activities & Relationships for Basic PERT Network' 

( )irr the nctwo lk logic IIas hcrn esIahIISIICtl, activity durations can ihcn he added enabling the overall 

COMI)lrtiun liter or a I)rujrrl Iu he c. tilahlishrtl and its critical l)(1111 calculated; i. e., the shortest lithe in 

which ;t plojrcl call he completed based Oil Ilic chain of activities with longest duration liters. This may 

(if niav not run IillOII h LluninLics. 

237 



Programme Evaluation & Review Technique Structure 

In order to assess total project time, it is necessary to specify the Earliest and Latest Start Times 

(EST/LST) for each activity. The EST is the earliest point at which a succeeding activity can start; for a 
head event this is calculated by adding onto the EST of the tail event, its linking activity duration. 

Where two or more routes feed into an event, the longest route time is taken. This practice is repeated 
from event zero at time point zero, onwards to the end of the network (termed a forward pass). 

The critical path is established by calculating LSTs for each activity. In other words, the latest time a 

preceding activity can finish without increasing the duration. Calculating Latest Start Times involves 

starting at the finish event and working backwards through the network, deducting each activity 

duration from the previously calculated LST (termed a backward pass). Where two or more activities 

lead from an event, then the lowest number is taken. Activities on the critical path are normally 

indicated by two small traverse lines placed across their arcs (note also that ESTs and LSTs for each 

head and tail event on the critical path are identical). These refinements are illustrated in figure 5.7. 

In addition to enforcing structural constraints and determining the critical path, tools supporting the 

drawing of PERT networks often allow annotation of activities with the type and quantity of each 

resource they consume. Alternatively, this information may be shown separately as a table. 

5.4.3 Tracing Programme Evaluation & Review Technique Networks in MATrA: 

A PERT Model 

In this subsection we propose a meta-model for the representation of PERT networks, allowing their 

integration into the MATrA traceability framework. 

5.4.3.1 Concepts 

Our meta-model for the Programme Evaluation & Review Technique captures the graphical syntax 

described in 5.4.2.1. Hence it contains elements representing activities (both dummy and basic) and 

events (including earliest and latest start times); activities may also be annotated with the resources they 

consume. 

A selection of OCL constraints expressing the semantics of the rules stated (informally) in 5.4.2.1 are 

also specified. These govern both the drawing of networks, verification of earliest and latest start-times 

and derivation of the critical path. 

238 

Figure 5.7 - `Example of a PERT Network - Time Analysis' 



Structuring Safety Assessment and Product Management Artifacts 

5.4.3.2 PERT Meta-model Definitions 
This subsection introduces the UML class diagram representing our PERT meta-model (5.4.3.2.1), 

together with OCL constraints (5.4.3.2.2) and O-Telos implementation of base classes (5.4.3.2.3). 

5.4.3.2.1 PERT Meta-model 
Figures 5.8 depicts elements and associations of the Programme Evaluation & Review Technique meta- 
model. Its core class, ProgrammeEvaluationReviewTechnique with subject module (subject-module), model 
name (model_name) and other configuration attributes instantiates the ProductManagementStructure meta- 
class. 

<<Product Management Structure> 

#model name: String 
#eubJect_module : String 
MWk_date : Date 

I 
nwk dumm -Structure Element» 

o. " 
DunvnyActNlty 

1_ I «Structure Element» 
Activity (abstract) 

«Structure Element> 
BeslcActivl 

I.. - I #duration : Real 
. critical-path: Boot 

o.. - I activity-resource 

"Structure Element>> 
nwk resource Resource 

0. ' . resource_type : String 
#amount : Real 

head_event 0. " 

tall_event 0. " 

<<Structure Element>> 
Event 

nwlLevent #sequence_no: Integer 
"description : String 

Z""' #EST: Real 
#LST: Real 

trensitlve_event 

Figure 5.8 - 'Programme Evaluation & Review Technique Structure : Elements and Associations' 

A Programme Evaluation ReviewTechnique structure is defined as an aggregation of zero-or-more dummy 

activities (DummyActivity), one-or-more basic activities (BasicActivity) and two-or-more events (Event). 

Both DummyActivity and BasicActivity are specialisations of the abstract activity (Activity) class which for 

ease of manipulation, factors the common head event (head_event) and tail event (tail_event) aggregation 

associations into a general supcrtype. Basic activities have attributes for description and duration, as well 

as a boolean critical path (critical-path) indicator; they may also be described in terms of resources 
(Resource), with resource_type (resource-type) and amount attributes. 

The Event class contains sequence number (sequence-no) and description, together with earliest start time 

(EST) and latest start time (LST) attributes; a reflexive association (transitive_event) allows for recording 

239 



Programme Evaluation & Review Technique Structure 

of transitive closure events and exists to prevent cycles in networks using an appropriate constraint (as 

shown in the following subsection). 

5.4.3.2.2 OCL Constraints 
The following constraints are expressed over the UML meta-model described above and based on the 

informal restrictions stated in 5.4.2.1: - 

1. A network must have only one entry point. 

Program me Evaluation R eviewTechniQue invariant 
self. alllnstances->forall(p I 
(p. nwk_dummy. tail_event->union(p. nwk_basic. tail_event)) - 
(p. nwk_dummy. head_event->union(p. nwk_basic. head_event))->size =1) 

2. A network must have only one exit point. 

ProgrammeEvaluationReviewTechnipue invariant 
self. alllnstances->forall(p I 
(p. nwk dummy. head_event->union(p. nwk_basic. head_event)) - 
(p. nwk_dummy. tail_event->union(p. nwk_basic. tail_event))->size =1) 

3. No two network activities share the same head and tail events. 

Activi invariant 
self. alllnstances->forall(al, a2 I 
not(al. tail_event = a2. tail_event and 
al. head_event = a2. head_event and al <> a2)) 

4. A network must not contain any 'cycles'. 

0 rule for determining transitive closure of events 

Event 
self. alllnstances->forall(e1, e2 I self. activity->exists(al I al. tail_event = e1 and ai. head_event = e2) or 
self. alllnstances->exists(e3 I self. activity->exists (a2 I a2. tail event = ei and a2. head_event = e3 and 
e3. transitive_event->includes(e2)))) implies el. transitive_event->includes(e2) 

" constraint to prevent cycles within networks 

Event invariant 

self. alllnstances->forall(e I not (e. transitive_event->includes(e))) 

5.1 Earliest Start Times (EST) are correct: - 

a) where two events are connected by an Activity, the head event EST is calculated by adding onto the 

EST of the tail event, the duration of the Activity. 

Event invariant 
self. alllnstances->forall(e->reject(self. activity. tail_event->not exists(e' I e. activity. tail_event->includes(e'))) I 

self. activity->select(self. activity. oclType = BasicActivity)->exists(a I 
a. head_event->includes(e) and e. EST = (a. tail_event. EST+ a. duration))) 

240 



Structuring Safety Assessment and Product Management Artifacts 

b) where two or more routes arrive at an Event, the longest route time is taken. 

Event invariant 
self. all Instances->forall(e I 
self. activity->select(self. activity. ociType = BasicActivity)->forall(a I 
not (a. head_event->includes(e) and e. EST < (a. tail event. EST+ a. duration)))) 

6. Latest Start Times (LST) are correct: - 

a) where two events are connected by an Activity, the tail event LST is calculated by subtracting from 

the LST of the head event, the duration of the Activity. 

Event Invariant 
self. alllnstances->forall(e->reject(self. activity. head_event->not exists(e' I e. activity. head_event->includes(e'))) I 
self. activity->select(self. activity. oclType = BasicActivity)->exists(a I 
a. tail event->includes(e) and e. LST = (a. head_event. LST - a. duration))) 

b) where the tails of two or more activities join an Event, the shortest route time is taken. 

Event invariant 
self. alllnstances->forall(e I 
self. activity->select(self. activity. ocdType = BasicActivity)->forall(a I 
not (a. tail event->includes(e) and e. LST > (a. head_event. LST - a. duration)))) 

7. Rule to identify critical path activities (based on ESTs and LSTs verified by rules 5 and 6). 

BasicActivity 
self. alllnstances->forall(a 
a. tail_event. EST = a. taiL event. LST and 
a. head event. EST = a. head_event. LST 
implies 
a. criticalpath = True) 

Note : we do not specify a constraint verifying the subject_module attribute of the 

Programme Evaluation ReviewTechnique class against the PDS as similar rules have been stated for 

previous models. 

5.4.3.2.3 O-Telos Implementation of PERT Base Classes 

The following O-Telos code implements the PERT meta-model base class elements. 

ProgrammeEvaluationReviewTechnique in 
ProductManagementStructure, SimpleClass 
isA AerospaceEngineeringObject with 
has_property 

model-name : String; 
subject_module : String; 
nwl_date : Date 

has element 
nwk_dummy : DummyActivity; 
nwk_basic : BasicActivity; 
nwk_resource : Resource; 
nwk_event : Event 

end 

Activity in StructureElement, 
SimpleClass isA 
AerospaceEngineeringObject with 

has-part 
tail-event Event; 
head_event Event 

abstract-Act: $forall t/Token 
s/SimpleClass 

(t in s) _=> not (t in Activity) 
end 

DummyActivity in StructureElement, 
SimpleClass isA Activity end 

BasicACtivity in StructureElement, 
SimpleClass isA Activity with 
has property 

description : String; 
duration : Reals 
critical-path : Bool 

241 



Programme Evaluation & Review Technique Structure 

has-part 
activity-resource : Resource 

end 

Resource in StructureElement, 
SimpleClass isA 
AerospaceEngineeringObject with 
has-property 

resource-type : String; 
amount : Real 

end 

Event in StructureElement, SimpleClass 
isA AerospaceEngineeringObject with 
has-property 

sequence_no : Integer; 
description String; 
est Real; 
1st : Real 

has-transitive-part 
transitive_event : Event 

end 

5.4.3.3 PERT Worked Example 
To illustrate the PERT meta-model, we revisit an example introduced in subsection 5.4.2.1 (figure 5.6). 
This network has been revised - as shown in figure 5.9 - with the addition of timing properties and the 

critical path (activities A, C, G, L, N with a duration of 29 days). 

O-Telos instantiation of the PERT meta-model capturing information contained in figure 5.9 (together 

with additional data on resource usage) is as follows: - 

Instantiation of Prograame Evaluation 
Review Technique Structure 

EventO in Event, Token with 
sequence. no 

sequenceNo :0 
est 

EST :0 
Ist 

LST 0 
end 

Eventl in Event, Token with 
sequence-no 

sequenceNo 1 
est 

EST :9 
1st 

LST :9 
end 

4 

Event2 in Event, Token with 
sequence-no 

sequenceNo :2 
est 

EST 11 
1st 

LST 18 
end 

Event3 in Event, Token with 
sequence-no 

sequenceNo :3 
est 

EST : 18 
Ist 

LST : 22 
end 

Event4 in Event, Token with 
sequence-no 

sequenceNo :4 

242 

Figure 5.9 - `PERT Network - Worked Example' 



Structuring Safety Assessment and Product Management Artifacts 

est 
EST : 17 

1st 
LST : 17 

end 

head_event 
headEvent : Event4 

activity-resource 
activityResource : ActivityCResource 

end 

Events in Event, Token with 
sequence_no 

sequenceNo :5 
est 

EST : 19 
Ist 

LST 22 
end 

Event6 in Event, Token with 
sequence_no 

sequenceNo :6 
est 

EST : 23 
1st 

LST : 23 
end 

Event7 in Event, Token with 
sequence-no 

sequenceNO :7 
est 

EST : 25 
Ist 

LST 25 
end 

Event8 in Event, Token with 
sequence-no 

sequenceNo :8 
est 

EST : 29 
1st 

LST : 29 
end 

ActivityA in BasicACtivity, Token with 
description 

Description "A' 
duration 

Duration :9 
critical-path 

criticalPath : True 
tail-event 

tailEvent EventO 
head_event 

headEvent Events 
activity-resource 

activityResource : ActivityAResource 
end 

ActivityB in BasicACtivity, Token with 
description 

Description "B" 
duration 

Duration :3 
critical-path 

criticalPath False 
tail-event 

tailEvent : EventO 
head_event 

headEvent Event2 
activity-resource 

activityResource : ActivityBResource 
end 

ActivityC in BasicActivity, Token with 
description 

Description "C" 
duration 

Duration :8 
critical_path 

criticalPath True 
tail-event 

tailEvent : Events 

ActivityD in BasicActivity, Token with 
description 

Description : "D" 
duration 

Duration :2 
critical-path 

criticalPath : False 
tail-event 

tailEvent : Eventl 
head_event 

headEvent Event2 
activity-resource 

activityResource : ActivityDResource 
end 

ActivityE in BasicActivity, Token with 
description 

Description : "E" 
duration 

Duration :3 
critical-path 

criticalPath : False 
tail-event 

tailEvent : Eventl 
head_event 

headEvent Event3 
activity-resource 

activityResource : ActivityEResource 
end 

ActivityF in BasicActivity, Token with 
description 

Description "F' 
duration 

Duration :2 
critical-path 

criticalPath : False 
tail-event 

tailEvent : Event4 
head_event 

headEvent : Event5 
activity-resource 

activityResource : ActivityFResource 
end 

ActivityG in BasicACtivity, Token with 
description 

Description "G" 
duration 

Duration 6 
critical-path 

criticalPath : True 
tail-event 

tailEvent : Event4 
head_event 

headEvent Event6 
activity-resource 

activityResource : ActivityGResource 
end 

ActivityH in BasicActivity, Token with 
description 

Description "H" 
duration 

Duration :1 
critical-path 

criticalPath : False 
tail-event 

tailEvent : Event4 
head_event 

headEvent : Event3 
activity-resource 

activityResource : ActivityHResource 
end 

243 



Programme Evaluation & Review Technique Structure 

ActivityJ in BasicActivity, Token with 
description 

Description : "J' 
duration 

Duration :4 
critical-path 

criticalPath : False 
tail-event 

tailEvent : Event2 
head_event 

headEvent Event5 
activity-resource 

activityResource : ActivityJResource 
end 

ActivityK in BasicACtivity, Token with 
description 

Description "K" 
duration 

Duration :1 
critical-path 

`criticalPath : False 
tail-event 

tailEvent : Event5 
head-event 

headEvent : Event6 
activity-resource 

activityResource : ActivityKResource 
end 

ActivityL in BasicActivity, Token with 
description 

Description : "L" 
duration 

Duration :2 
critical-path 

criticalPath : True 
tail_event 

tailEvent : Event6 
head_event 

headEvent Event7 
activity-resource 

activityResource : ActivityLResource 
end 

ActivityM in BasicActivity, Token with 
description 

Description : "M" 
duration 

Duration :3 
critical-path 

criticalPath : False 
tail-event 

tailEvent Event3 
head_event 

headEvent : Event7 
activity_resource 

activityResource : ActivityMResource 
end 

ActivityN in BasicActivity, Token with 
description 

Description : "N' 
duration 

Duration :4 
critical-path 

criticalPath : True 
tail-event 

tailEvent : Event7 
headevent 

headEvent Event8 
activity-resource 

activityResource : ActivityNResource 
end 

DummyActivity3to6 in DummyActivity, 
Token with 
tail-event 

tailEvent : Event3 
head_event 

headEvent Event6 

end 

ActivityAResource in Resource, Token 
with 
resource_type 

resourceType : `labour, 
amount 

Amount : 20 
end 

ActivityBResource in Resource, Token 
with 
resource_type 

resourceType : "labour' 
amount 

Amount : 10 
end 

ActivityCResource in Resource, Token 
with 
resource_type 

resourceType : "labour' 
amount 

Amount : 10 
end 

ActivityDResource in Resource, Token 
with 
resource_type 

resourceType : "labour' 
amount 

Amount : 10 
end 

ActivityEResource in Resource, Token 
with 
resource_type 

resourceType : "labour' 
amount 

Amount : 20 
end 

ActivityFResource in Resource, Token 
with 
resource_type 

resourceType : 'labour' 
amount 

Amount : 10 
end 

ActivityGResource in Resource, Token 
with 
resource_type 

resourceType : `labour' 
amount 

Amount : 20 
end 

ActivityHResource in Resource, Token 
with 
resource_type 

resourceType : "labour' 
amount 

Amount :5 
end 

ActivityJResource in Resource, Token 
with 
resource_type 

resourceType : `labour' 
amount 

Amount :5 
end 

ActivityKResource in Resource, Token 
with 
resource_type 

resourceType : `labour' 
amount 

Amount :5 
end 

244 



Structuring Safety Assessment and Product Management Artifacts 

ActivityLResource 
with 
resource-type 

resourceType 
amount 

Amount : 20 
end 

ActivityMResource 
with 
resource_type 

resourceType 
amount 

Amount : 10 
end 

ActivityNResource 
with 
resource-type 

resourceType 
amount 

Amount : 20 
end 

in Resource, Token 

"labour' 

in Resource, Token 

"labour' 

in Resource, Token 

"labour" 

PERTExample in 
ProgrammeEvaluationReviewTechnique, 
Token with 
model-name 

modelName : "Sample Network" 
subject nodule 

subjectModule : "Sample Module" 
nwk_dummy 

nwkDummyl DummyActivity3to6 
nwk_basic 

nwkBasicl ActivityA; 
nwkBasic2 ActivityB; 

nwkBasic3 : ActivityC; 
nwkBasic4 : ActivityD; 
nwkBasic5 : ActivityE; 
nwkBasic6 : ActivityF; 
nwkBasic7 : ActivityG; 
nwkBasic8 : ActivityH; 
nwkBasic9 : ActivityJ; 
nwkBasiclO : ActivityK; 
nwkBasicll : ActivityL; 
nwkBasicl2 ActivityM; 
nwkBasicl3 : ActivityN 

nwk_resource 
nwkResourcel 
nwkResource2 
nwkResource3 
nwkResource4 
nwkResource5 
nwkResource6 
nwkResource7 
nwkResource8 
nwkResource9 
nwkResourcel0 
nwkResourcell 
nwkResourcel2 
nwkResourcel3 

nwk_event 

ActivityAResource; 
ActivityBResource; 
ActivityCResource; 
ActivityDResource; 
ActivityEResource; 
Act ivityFResource; 
ActivityGResource; 
ACtivityHResource; 
ActivityJResource; 

ActivityKResource; 
ActivityLResource; 
ActivityMResource; 
ActivityNResource 

nwkEventl : Eventl; 
nwkEvent2 : Event2; 
nwkEvent3 Event3; 
nwkEvent4 Event4; 
nwkEvent5 : Events; 
nwkEvent6 Event6; 
nwkEvent7 Event7; 
nwkEvent8 : Event8 

end 

5.4.4 Summary 
The Programme Evaluation & Review Technique is widely used throughout the aerospace industry and 
indeed all sectors where means are required to manage large-scale projects. On that basis, we chose it as 

our representative product management technique for the MATrA traceability framework. 

A novel meta-model capturing the graphical syntax of PERT networks was proposed, together with a 

selection of well-formedness constraints; a partial O-Telos implementation of the model was then 

populated to demonstrate a worked example. 

Again, Chapter Seven includes an evaluation of the PERT structure. 

245 



The MATrA Configuration Model 

5.5 The MATrA Configuration Model 

5.5.1 Introduction 
So far, while considering a range of traceability structures (including meta-models of notations, plus the 
PDS to maintain consistency) we have disregarded means of managing their evolution. Therefore in this 

subsection we propose the MATrA Configuration Model (MCM), a structure supporting traceability 

across both version types discussed in Chapter One - i. e., revisions and variants. We also demonstrate 

integration of MCM with existing work on the representation and expression of argumentation. This is 

based on the wildly held belief that version management, together with maintenance of rationale are the 

main change management tools at an engineers disposal. Aspects of the model are illustrated using a 

worked example from the aerospace domain. 

5.5.2 Motivation 

Chapter One (subsection 1.2) identified the ability to trace across versions of artifacts as a major topic 

of interest among aerospace practitioners; recall our conceptualisation of traceability according to four 

axes - horizontal, vertical, revision and variant - such that the first three provide dimensions for a cube 

recording links between project artifacts, while the fourth relates artifacts across different projects (i. e., 

cubes) and across product families within the same project. The terms revision and variant merely 

capture different versioning intent; revisions replace one another whereas variants coexist. 

Reader understanding of the significance of version traceability to aerospace practitioners will profit 

from a brief insight into the industry itself. We couch this discussion (which considers revisions and 

variants, along with the related topic of alternatives) in the context of civil aviation as it provides the 

focus for our worked example in subsection 5.5.3.3. 

" Revisions 
Passenger aircraft are among the most complex engineering projects to be undertaken by private 

corporations. They must be both economical and dependable; safe and reliable of course, but also 

available and maintainable. Put simply, airlines do not earn money from grounded aircraft! The cost of 

developing systems with multiple redundancies and sophisticated in-built diagnostics that help realise 

these objectives mean manufactures continually strive to extend the life-time of an aircraft by keeping it 

competitive. This is accomplished by evolving the basic design to take account of technological 

advances in aerodynamics, materials, avionics, etc. For example, the 747 has undergone four major 

refinements since its maiden flight in 1969, the latest revision, the 747-400, being released in 1989 as a 

replacement for its predecessor the 747-300. 

. Variants 
The kinds of aircraft demanded by major carriers can be broadly defined in terms of two macro-level 

parameters - namely passenger load (approximately 100 to 500) and range (essentially targeting short, 

extended, long and ultra long routes). Accordingly, the dominant manufacturing philosophy has been to 

engineer 'families' of aircraft (based on common components) aligned to these demands, from which 

246 



Structuring Safety Assessment and Product Management Artifacts 

variants of models within a given family may be derived over time to fill a particular market niche. For 

instance, apart from military or 'one-off' modifications (e. g., to carry the space shuttle), various 747 

revisions have spawned longer range, increased take-off-weight, high density shuttle and swing nosed 
freighter variants of what is effectively the same basic design. Moreover, to maximise resources (and 

share artifacts between projects), manufacturers will often proceed simultaneously with development of 

two or more derivatives - as is the case with the Airbus A340-500 and A340-600. 

From these examples, we can discern two distinct forms of variant which differ according to the time 

dimension; serial development where artifacts from one or more existing projects are applied to a new 

project - the goal being to 'maximise artifact reuse' (be it whole or partial), and parallel development 

whereby projects proceed concurrently - the goal being to 'minimise artifact redundancy'. 

" Alternatives 
We regard support for tracing alternatives as part of the overall versions topic area. During 

development, different definitions of modules are often proposed in response to a decision problem 

(commonly referred to as option space exploration), while some justification or rationale must normally 

be given for the eventual choice. This continues to be an important research strand within DCSC, but is 

not considered further here. Instead, we consolidate MATrA with an existing technique for tracing 

alternatives using a global status property (incorporated into AerospaceTraceabilityEntity) - see Appendix 

B, Part 1. Riddle & Saeed (2000) have shown this to be a more effective way of structuring options than 

Klein's approach (subsection 3.2.3, figure 3.4) based on associations (has-option, is-best-option-for, 

etc. ) Readers are also referred to Appendix B, Part 2 which includes an Argumentation Structure (again 

influenced by Riddle & Saeed, ibid. ) allowing rationale to be appended to any MATrA element (as 

shown by the example in 5.5.3.3). 

5.5.2.1 Configuration Management Overview 
Configuration describes the control of change in evolving systems. In this subsection we briefly 

investigate some key concepts from configuration management literature that have shaped the MCM. 

Configuration management theory distinguishes between the notions of product space and version 

space. These represent descriptions of the target system (which in MATrA constitutes both the PDS and 

Workspace) and the organisation of versions of these descriptions respectively. A version space can be 

said to capture the state of an evolving product (and constituent artifacts of that product) at different 

stages of maturity (i. e., along the time dimension). 

The difference between two versions of a managed artifact is called a delta (also abbreviated to the A 

symbol). For instance, a delta between versions v, and v2 of an artifact can be defined in terms of 

properties specific to both v, and v2; i. e., A (v1, V2)2 (VI - v2) u (v2 - v1). This is termed a symmetric 

delta. In cases where an artifact undergoes major change with many successive versions created, then 

the common properties may become progressively smaller and smaller (Conradi & Westfechtel, 1998). 

247 



The MATrA Configuration Model 

The evolution history (audit trail) of versioned artifacts can be represented in terms of a graph (typically 

a sequence) comprising a set of versions connected by relationships of a single type. These are termed 

successor relationships such that `v2 succeeds v1' means that v2 has been derived from v1. 

Different product versions can be produced by combining different constituent artifacts and different 

versions of constituents into what is termed a configuration. The degree of flexibility permitted in 

producing such combinations depends on the version model underlying the configuration process. 
Conradi & Westfechtel (1998) distinguish three such models (figure 5.10) classified by their selection 

order, specifically: i) product first - the product structure is selected first, followed by the versions of 

each module (such that each configuration has the same structure); ii) version first - the product version 
is selected first which uniquely determines module versions (allowing different versions to be structured 
differently, though in the event of change, new versions must be created for all 'parents' of the affected 

module - this is known as version proliferation); and iii) the intertwined model - components and 

versions are selected in alternating order (so preventing version proliferation). 

a) Product First A320.100 

Fuel Lancing Flight Fuselage Flight 
System Gear Control Warning 

System System 

oil 
vt v2 at v2 v3 vt v2 vt v2 v1 v2 v3 

b) Version First A320 

A320-1 

vt 

fv2 

1Q v3 v1 Q vt v1vv 

Fuel Landa g Flight Fuselage flight 
System Gear Control Warning 

System System 

Sy 

Figure 5.10 - `Product First (a), Version First (b) and Intertwined Models (c)' 

248 

AND Nub 
ANUNJ. -º da. ýY.. I Ror 

OR Nab O 
OR BJn 

40 



Structuring Safety Assessment and Product Management Artifacts 

This section merely touches on a few core issues regarding configuration management and then only 
briefly to provide background for the MCM. The notion of baselines, releases and promotions, as well 

as alternative forms of delta and version model are beyond the scope of this thesis. Interested readers 
are instead referred to Conradi & Westfechtel (1998) or else, the IEEE guidelines on configuration 

management (IEEE STD 1042,1987). With the concepts outlined above in mind, we now introduce the 
MATrA Configuration Model. 

5.5.3 Across Revisions and Variants in MATrA: A Configuration Model for Tracing 
Evolutionary Development 

As previously indicated, the MATrA product space consists of two parts; a tool independent view 
(Product Data Synthesis) and the tool dependent view (Workspace). For configuration management it is 

necessary to introduce constructs to permit handling of revisions and variants for both views. 

5.5.3.1 Concepts 
MCM encapsulates the notion of product and version space (from 5.5.2.1) by integrating features 

necessary to represent the latter in the context of existing features (supporting the former) from the 

traceability framework introduced in subsection 3.3 - specifically, BuildElement and BuildAssociation 

(PDS), and AerospaceEngineeringObject and AerospaceEngineeringAssociation (Workspace). 

The 'version-oriented' features to be introduced in this subsection are drawn from general configuration 

management theory and are motivated by a number of requirements. For the PDS, these requirements 

are support for: - rl) identifying and structuring revisions and variants (for which we adopt an 
intertwined modelling approach); r2) impact change analysis; r3) revision audit trails; r4) definition of 

configurations; and r5) configuration deltas (i. e., differences between configurations). Similarly, for the 

Workspace our requirements are support for: - rl) revision audit trails; and r2) meta-model deltas (i. e., 
differences between meta-models). We make the observation in stating these requirements that the 

Workspace presents only partial models of the emerging system, whereas the PDS provides a complete 

model and hence specifies all constituent elements (and their relationships) at given points in time; 

impact analysis and hence change is therefore driven from the PDS. This explains why there are fewer 

requirements for the Workspace. 

5.5.3.2 MATrA Configuration Model Definitions 
We now introduce the class diagram for our MATrA Configuration Model (5.5.3.2.1), together with 

OCL constraints and rules over elements of the model (5.5.3.2.2) and O-Telos implementation of its 

base classes (5.5.3.2.3). 

5.5.3.2.1 MATrA Configuration Model 
Figure 5.11 shows elements and relationships of the MATrA Configuration Model. Essentially, it 

divides into two zones (denoted by 'swimlanes'): constructs (and their subtypes) for representation and 

version management of the Product Data Synthesis - namely build object (BuildObject), build 

249 



The MA TrA Configuration Model 

dependency (BuiIdDependency). Configuration and configuration delta (Configuration Delta) - and those for 

representation and version management of the traceability Workspace - namely aerospace engineering 

object (AerospaceEngineeringObject), aerospace engineering association (Aerospace EngineeringAssoeiation) 

and aerospace engineering delta (Aerospace EngineeringDelta). The zones are connected by subtypes of 

aerospace link entity (AerospaceLinkEntity), BEelementAEO and BEmodelAEO (not shown) which are as 
described in subsection 3.3.6.4.4. 

1. 10' conliauration 1 

Conliauration 
0 

ConliaurationDella 

0.. ' cadi0uralion2 
0_' 

I bnld obiecl b1 IJ abied 0. ' bd 
_. source Versur BuilaDwenderrv (abslracl) Build Obi cl (abs(ract) 

version rams bd d IarO. 1 

o_" ConfiqurationBuiWAssociahon i 

ContiqurationAs ociation (abstract) 

HasRwisian IrrWacts 
........................................ 

Succeeds 
HaaVariam 

variant : Varian 

from entity 1 
AerospaceEtgineenngAssocial mi (abstracq 

0 lo-entity 1 
Amos4 cf 

............................. 

t 
mocw 1 1_. 

_-- 

uu &l z dr, r 

SucceedsAEO 

AddedTo p.. ' AerospaceErgineerirqDella 

Ri emoves 
_ _. _- __ 

Figure 5.11 - 'MIATrA Configuration Model (MCM)' 

0 

)Link 

1 

rod rode 

dt1 

ýr-nets 
P')S /oiic' 

.... Aact) ...... 
'Workspace Zone' 

OITIIX)SOd of 

Note : ShMing Jenutcs cxisriug 
MATrA ccm-t- 

. cc -lion 3.3 

i. Version Management for the Product Data Synthesis 

From figure 5.11, it can he seen that the coic clement in the 'PDS zone' is BuildObject, an abstract class 

subsuming Version (with property version name of type String) and build element (BuildElement) subtypes. 

It was introduced as the result of' a modelling decision to represent all PDS relationships - build 

association (BuildAssociation). configuration association (ConfigurationAssociation), Impacts, Succeeds and 

configuration build association (ConfigurationBuildAssociation) - using the abstract BuildDependency class. 

BuildDependency greatly simplifies the MCM by generalising the behaviour of each of these subtypes 

through common associations for source (bd_source) and target (bd_target) elements. However, since 

bd_source and bd_target can either be of type Version or of type BuildElement depending on the 

BuildDependency type to which they apply - for instance, the source of a ConfigurationAssociation must he 

of type BuildElement and the target of type Version - so BuildObject generalises the behaviour of 

BuildElement and Version. Appropriate invariants (sec subsection 5.5.3.2.2(i. 1)) over BuildDependency 

subtypes ensure type restrictions on bd_source and bd_target are maintained. 

250 



Structuring Safety Assessment and Product Management Artifacts 

We now consider the support provided by specific elements of the MATrA Configuration Model in 

meeting version management requirements for the PDS introduced in subsection 5.5.3.1. 

R1 Elements supporting an intertwined approach to the identification and 
structuring of revisions and variants 

To support the identification of revisions and variants and to enable them to be structured using an 
intertwined approach, MCM uses the above-mentioned Version and BuildElement classes along with 

means for their association - specifically subtypes of BuildAssociation and ConfigurationAssociation. 

BuildAssociation differs from the original definition in subsection 3.3.5 inasmuch as subtype sources are 

now mostly of type Version, while targets are strictly of type BuildElement (as before). This is because 

BuildAssociation is being used in conjunction with HasRevision and HasVariant (with property variant) - 
both subtypes of the abstract ConfigurationAssociation class - to express the underlying intertwined model 

structure (essentially alternating version and product elements). The exception is HasSpecification whose 

source - the Property BuildElement - is considered a primitive and therefore not versioned12. Recall, 

source and target types of ConfigurationAssociation are confined to BuildElement and Version respectively. 

R2 Elements supporting impact change analysis 
Dependencies between build elements are expressed as Impacts build associations. This was influenced 

by the Dependency (Riddle & Saeed, 1998) and Impact (Saeed et al., 1995) Structures referred to in 

subsection 2.2.1.3, both of which capture interactions among system elements. While strictly beyond 

the scope of version management, inclusion of such a feature within MATrA is motivated by a need to 

support impact analysis as an integral part of the evolutionary process for revisions and variants 13. 

R3 Elements supporting revision audit trails 
Once a change has been initiated and the new element inserted, an instance of the Succeeds build 

association can be used to relate the revised instance to its predecessor, thereby capturing (for audit trail 

purposes) the temporal ordering (as described in 5.5.2.1). 

R4 Elements supporting definition of configurations 
Definition of configurations is supported by the Configuration class, a (manually selected) collection of 

build objects. A Configuration has at its root a single Version element (indicated by the root_node 

rolename in figure 5.11). From the root_node it is necessary to project the actual product structure 
implied by BuildObject selections. This is the motivation for the (abstract) ConfigurationBuildAssociation 

class whose subtypes (not shown), including has-configuration-submodule (HasConfigurationSubmodule) 

and consumes-configuration XIO (ConsumesConfigurationXIO), etc., correspond to conventional build 

associations. These are used to express transitive associations between versioned product elements; for 

example, if ModuleA (MA) version; (MAv; ) has-submodule ModuleB (MB) and MB has-version version; 

12 Note, we have not specified this as an OCL invariant since the revised HasSpecification class (as with all specialisations of 
BulldAssoclatlon) is not shown in figure 5.11. 
13 Note that Impacts associations are inherently pessimistic in that they simply indicate a degree of dependency among related 
elements; practitioners must still investigate tolerance to change based on engineering judgement. 

251 



The MATrA Configuration Model 

(MBv; ) such that a Configuration CI includes MAv; and MBv;, then a HasConfigurationSubmodule 

association between these two elements is derived for CI using the rule stated in 5.5.3.2.2(1.2). A 
Configuration may also incorporate conventional BuildElement and BuildAssociation subtypes (the latter 
derivable through the rule in 5.5.3.2.2(i. 3)), typically instances of Property and Specification (as 

primitives) and accordingly, HasProperty and HasSpecification. We note also that instances of the 
Condition build element (mainly 'simple', non-versioned states and events), along with build associations 
used in conjunction can also be included as part of a Configuration (a point illustrated by our worked 
example in 5.5.3.3). Again, invariants (not stated) may be used to enforce restrictions. 

R5 Elements for creating configuration deltas 
A configuration delta (ConfigurationDelta) represents the symmetric difference between build objects in 

two configurations (rolenames configuration-1 and configuration_2). Its content can also be derived using 
the appropriate rule from 5.5.3.2.2 (ii. 1). 

ii. Version Management for the Traceability Workspace 
As figure 5.11 indicates, the existing AerospaceEngineeringObject and Aerospace EngineeringAssociation'4 

classes are core elements of the MCM 'Workspace Zone'. Notice the addition of a reflexive 

composed_of association on the former'5. This is a mechanism to enable universal referencing of all 

constituent elements of all AEO subtypes throughout the Workspace via a single rolename and is used 
in deriving elements pertaining to (version-oriented) specialisations of AerospaceEngineeringAssociation 

to be introduced below; composed-of is populated via rule iii.! in subsection 5.5.3.2.2. 

As with the PDS, we now consider support of specific elements of the MATrA Configuration Model in 

meeting version management requirements for the Workspace introduced in subsection 5.5.3.1. 

R1 Elements supporting revision audit trails 
The version history of a TraceabilityStructure is recorded using the Succeeds-AEO (SucceedsAEO) 

association which again orders successive instances as per 5.5.2.1 (and hence serves the same purpose 

as Succeeds for PDS elements). We also introduce the Added To (AddedTo) and Removes associations; 

respectively, this pairing relate elements of a new model to a predecessor in which those elements were 

not present, and relate the new model to elements of its predecessor not present in the revision. Both 

AddedTo and Removes may be derived using rules in 5.5.3.2.2 (specifically, iii. 2 and iii. 3). 

R2 Elements supporting meta-model deltas 
The revision audit trail associations in rl (above), further enable derivation of elements of the 

AerospaceEngineeringDelta class (populated using the rule in 5.5.3.2.2(ii. 3)) which records the symmetric 

difference, in terms of structure elements (rolename delta_aeo), for two Workspace meta-models 

(rolenames modeLl and modeL2). 

14 To simplify figure 5.11, the AEE subtype has been omitted. The constraints expressed in subsection 5.5.3.2.2(iii. 4) restrict 
from_entity and to_entity ends of the AerospaceEngineenngAssociaton class. 
15 Note, a corresponding addition to the «Artifact» meta-class (not shown) from 3.3.3 is required. 

252 



Structuring Safety Assessment and Product Management Artifacts 

5.5.3.2.2 OCL Constraints 
As indicated above, we state a number of constraints and rules over the MCM. These are as follows: - 

Build Dependency 
1. The following constraints ensure correct instantiation of source and/or target elements for 

BuildDependency subtypes. 

" The target of a BuildAssociation is of type Build Element. 

BuildAssociation invariant 
self. alllnstances->forall(b I b. bd target. ocllsKindOf(BuildElement)) 

" The source of a ConfigurationAssociation is of type BuildElement and the target of type Version. 

ConfigurationAssociation Invariant 
self. alllnstances->forall(c I c. bd_source. ocllsKindOf(BuildElement) and c. bd_target. oclType = Version) 

9 The target of a Configuration Bu ildAssociation is of type Version. 

ConfipurationBuildAssociation invariant 
self. alllnstances->forall(b I b. bd_target. oclType = Version) 

2. This rule derives population of the ConfigurationBuildAssociation class. 

Configuration 
self. alllnstances->forall(c I self. build_object->forall(bl, b2 I 
self. build_object. buildDependency->select 
(self. buiIdobject. buildDependency. ocllsKindOf(BuildAssociation))->forall(b I 
self. config_build_association->exists(a I 
c. build_object->includes(bl) and c. build_object->includes(b2) and b. bd_source->includes(bl) and 
(b. bd_target. hasRevision. bd_target->includes(b2) or b. bd target. hasVariant. bd_target->includes(b2)) )))) implies 
c. config build_association->includes(a) and a. bd_source->includes(b1) and a. bd_target->includes(b2) 

Note : an additional rule (not shown) ensures instances of ConfigurationBuildAssociation (variable Vin the 

above) correspond to instances of BuildAssociation (variable 'b' in the above) from which they are 
derived; e. g., b. oclType = HasSubmodule implies a. octType = HasConfigurationSubmodule. 

3. This rule derives population of the BuildAssociation class. 

Configuration 
self. alllnstances->forall(c I self. build_object->forall(bi, b2 
self. build_object. buildDependency->select 
(self. build_object. buildDependency. ocllsKindOf(BuildAssociation))->forall(b I 
c. build_object->includes(bl) and c. build_object->includes(b2) and 
b. bd_source->includes(bl) and b. bd target->includes(b2) and 
b2. hasRevision->isEmpty and b2. hasVariant->isEmpty))) implies 
c. build_association->includes(b) 

If. Configuration Delta and Aerospace Engineering Delta 

1. The following rule derives population of ConfigurationDelta elements. 

253 



The MATrA Configuration Model 

Configuration Delta invariant 
self. alllnstances->forall(d I 
self. configuration_1->forall(cl I self. configuration_2->forall(c2 
d. configuration_1->includes(c1) and d. configuration_2->includes(c2) ))) implies 
d. build_object->includesAll((cl. build_object - c2. buildObject)->union(c2. buildObject - cl. buildObject)) 

2. Constraint to ensure that AEOs specified as subjects of an Aerospace EngineeringDelta (over 

rolenames model _l and model_2) are forms of TraceabilityStructure. 

AerospaceEnpineerinpDelta invariant 
self. alllnstances->forall(a I 
a. model_1. oclType. oclType. ocllsKindOf (TraceabilityStructure) and 
a. model_2. oclType. oclType. ocllsKindof(TraceabilityStructure)) 

3. Rule to derive population of AerospaceEngineeringDelta elements. 

AerosaaceEngineeringDelta invariant 
self. alllnstances->forall(d I 
self. model 1->forall(m 1I self. model 2->forall(m2 I 
self. model_2. removes. to_entity->union(self. model_l. addedTo. from entity)->forall(c I 
self. model_2. succeedsAEO->exists(s I 
d. model_1->includes(ml) and 
d. modeL2->includes(m2) and 
s. from_entity->includes(m2) and s. to_entity->includes(m1) and 
d. model_2. removes. to_entity->union(d. model_l. addedTo. from entity)->includes(c) ))))) 
implies 
d. delta_aeo->includes(c) 

Iii. Aerospace Engineering Association 
1. Rule to populate composed of associations of the AerospaceEngineeringObject class for use in 

deriving AddedTo and Removes associations between AEOs. 

AerosaaceEnoineerinpObiect 
self. alllnstances->forall(al, a2 I 
self. associationEnds->forall(e I 
al. associationEnds->includes(e) and ate->includes(a2) )) 
implies 
al. composed_of->includes(a2) 

2. Rule to derive AddedTo associations. 

AerospaceEnaineerinpObiect 
self. alllnstances->select(self. all Instances. oclType. oclType. ocllsKind0f(Traceabi lityStructure))->forall (m 1 
self. succeedsAEO. to_entity->exists(m2 I 
self. addedTo->exists(d I 
self. composed_of->forall(cl I 
self. succeedsAEO. to_entity. composed_of->not exists(c2 I 
self. composed_of->forall(c' I 
self. succeedsAEO. to_entity. composed_of->not exists(c" I 
self. composed_of. attributes->forall(a I 
self. composed_of. attributes->forall(a' I 
self. composed_of. associationEnds->forall(e I 
ml. succeedsAEO. to_entity->includes(m2) and 
ml. composed_of->includes(cl) and m2. composed of->includes(c2) and 

254 



Structuring Safety Assessment and Product Management Artifacts 

cl. oclType = c2. oclType and 
cl. attributes->includes(a) and c2. attributes->includesAll(cl. attributes) and 
cl. a = c2. a and 
cl. associationEnds->includes(e) and c2. associationEnds->includesAll(cl. associationEnds) and 
cl. e->includes(c') and c2. e->includes(c") and c'. oclType = c". oclType and 
c'. attributes->includes(a') and c". attributes->includesAll(c'. attributes) and 
c'. a' = c". a')))))))))) 
implies 
d. from_entity->includes(cl) and d. to_entity->includes(m2) 

3. Rule to derive Removes associations. 

Aerospace EnqineerinqObiect 
self. alllnstances->se lect(self. all lnstances. oclType. oclType. ocllsKind0f(Traceabi lityStructure))->forall(m 1 
self. succeedsAEO. to_entity->exists(m2 I 
self. removes->exists(r I 
self. composed_of->not exists(cl I 
self. succeedsAEO. to_entity. composed_of->forall (c2 I 
self. composed_of->not exists(c' I 
self. succeedsAEO. to_entity. composed_of->forall (c" I 
self. succeedsAEO. to_entity. composed_of. attributes->forall(a 
self. succeedsAEO. to_entity. composed_of. attributes->forall(a' I 
self. succeedsAEO. to_entity. composed_of. associationEnds->forall(e I 
ml. succeedsAEO. to_entity->includes(m2) and 
ml. composed_of->includes(c1) and m2. composed_of->includes(c2) and 
cl. oclType = c2. oclType and 
c2. attributes->includes(a) and cl. attributes->includesAll(c2. attributes) and 
cl. a = c2. a and 
c2. associationEnds->includes(e) and cl. associationEnds->includesAll(c2. associationEnds) and 
c2. e->includes(c") and cl. e->includes(c') and c'. oclType = c". oclType and 
c". attributes->includes(a') and c'. attributes->includesAll(c". attributes) and 
c". a' = c'. a')))))))))) 
implies 
r. from_entity->includes(ml) and r. to_entity->includes(c2) 

We note that rules to populate AddedTo or Removes associations are based on the tenet that 'equivalent' 

elements appearing in separate models are in fact represented by different objects. This results from the 

assumed mapping process between CASE tools and the MATrA Workspace. Thus we cannot simply 

consider whether two objects are the same, but instead must determine their equivalence - i. e., whether 

they are of the same type, have the same attributes with the same values and are connected to the same 

set of 'equivalent' elements. We return to this issue in the section on future work (7.4.10). 

4. The following ensure correct instantiation of source and target elements for the SucceedsAEO, 

AddedTo and Removes AerospaceEngineeringAssociation subtypes. 

SucceedsAEO invariant 
self. alllnstances->forall(s I 
s. from entity. oclType. oclType. ocllsKindOf(TraceabilityStructure) and 
s. to_entity. ociType. oclType. ocllsKindOf(TraceabilityStructure)) 

ddedTo Invariant 
self. alllnstances->forall(a I 
a. from entity. oclType. oclType = Structure Element and 



The MATrA Configuration Model 

a. to_entity. oclType. oclType. ocllsKindOf(TraceabilityStructure)) 

Removes invariant 
self. alllnstances->forall(r I 
r. from entity. oclType. ocrType. ocllsKindOf(TraceabilityStructure) and 
r. to_entity. ocfType. oclType = StructureElement) 

We reiterate that the above are merely a selection of constraints and rules expressing possible behaviour 

of the MCM. Further areas to consider include invariants relating to an element's status16, of which the 
following provides a flavour. Specifically, it imposes a restriction that the source of a Succeeds 

association must have an "active" status, whilst the status of its target must be "abandoned" 17. 

Succeeds invariant 
self. alllnstances->forall(s I s. bd_source. status = "active" and s. bd target. status = "abandoned") 

5.5.3.2.3 O-Telos Implementation of MATrA Configuration Model Base Classes 
The following O-Telos code implements MCM base classes as per figure 5.11, along with extensions to 

the Framework Model in Chapter Three (see Appendix B, Part 1 for the 'equivalent' UML extensions). 

Aerospace Management Entity - MCM 

subtypes 

AerospaceConfigurationEntity in 
SimpleClass isA AerospaceManagementEntity 
with constraint 

abstract_ACE: $ forall t/Token, 
s/SimpleClass 

(t in s) ==> not (t in 
AerospaceConfigurationEntity)$ end 

end 

Version in SimpleClass isA 
AerospaceConfigurationEntity, Buildobject 
with attribute 

versior_name : String 
end 

Build object (abstract supertype of 
Version and BuildElement) 

Aerospace Configuration Entity subtypes 

AerospaceEngineeringDelta in SimpleClass 
isA AerospaceConfigurationEntity 
with attribute 

model-1 AerospaceEngineeringObject; 
model-2 : AerospaceEngineeringObject; 
delta_aeo : 

AerospaceEngineeringObject 
end 

ConfigurationDelta in SimpleClass isA 
AerospaceConfigurationEntity 
with attribute 

configuration_1 : Configuration; 
configuration. 2 : Configuration; 
build object : BuildObject 

end 

Configuration in SimpleClass isA 
AerospaceConfigurationEntity 
with attribute 

root_node : Version; 
build_association : BuildAssociation; 
config_build_association : 

ConfigurationBuildAssociation; 
build_object : BuildObject 

BuildObject in SimpleClass 
with constraint 

abstract_BO: $ forall t/Token, 
s/SimpleClass 

(t in s) ==> not (t in BuildObject)$ 
end 

Aerospace Build Entity - MCM subtypes 

BuildElement in SimpleClass isA 
AerospaceBuildEntity, BuildObject 
with 
constraint 

abstract_BE: $ forall t/Token, 
s/SimpleClass 

(t in s) __> not (t in BuildElement)$ 
end 

BuildDependency in SimpleClass isA 
AerospaceBuildEntity 
with attribute 

bd_source : BuildObject; 
bd_target : Buildobject 

constraint 
abstract-BD: $ forall t/Token, 

s/SimpleClass 
(t in s) ==> not (t in 

16 Recall status is a property of AerospaceTraceabilityEntity and so part of every MATrA framework class (see Appendix B, Part 1). 

17 As we do not consider option space exploration and the different status' an element may have, all revisions are assumed to be 
'active' and their predecessor, 'abandoned'. 

256 



Structuring Safety Assessment and Product Management Artifacts 

BuildDependency)$ end SimpleClass isA 
ConfigurationBuildAssociation end 

Build Dependency subtypes 

BuildAssociation in SimpleClass isA 
BuildDependency 
with 
constraint 

abstract_BA: $ forall t/Token, 
s/SimpleClass 

(t in s) __> not (t in 
BuildAssociation)$ 
end 

Note: Build Association subtypes (for 
original class) were defined in UNI. in 
Chapter 3 (subsection 3.3.5.2) 

Succeeds in SimpleClass isA 
BuildDependency end 

Impacts in SimpleClass isA 
BuildDependency end 

ConfigurationAssociation in SimpleClass 
isA BuildDependency 
with 
constraint 

abstract_CA: $ forall t/Token, 
s/SimpleClass 

(t in s) ==> not (t in 
ConfigurationAssociation)$ 
end 

ConfigurationBuildAssociation in 
SimpleClass isA BuildDependency 
with 
constraint 

abstract_CBA: $ forall t/Token, 
s/SimpleClass 

(t in s) ==> not (t in 
ConfigurationBuildAssociation)$ 
end 

Configuration Association subtypes 

HasRevision in SimpleClass isA 
ConfigurationAssociation end 

HasVariant in SimpleClass isA 
ConfigurationAssociation 
with attribute 

variant : Variant 
end 

Variant in SimpleClass isA String end 

Configuration Build Association subtypes 

HasConfigurationSubmodule in SimpleClass 
isA ConfigurationBuildAssociation end 

HasConfigurationFTsubmodule in 

HasConfigurationSubfunction in 
SimpleClass isA 
ConfigurationBuildAssociation end 

HasConfigurationCondition in SimpleClass 
isA ConfigurationBuildAssociation end 

HasConfigurationSubCondition in 
SimpleClass isA 
ConfigurationBuildAssociation end 

ConsumesConfigurationXiO in SimpleClass 
isA ConfigurationBuildAssociation end 

EncapsulatesConfiguration in SimpleClass 
isA ConfigurationBuildAssociation end 

OccuringInConfiguration in SimpleClass 
isA ConfigurationBuildAssociation end 

LeadsToConfiguration in SimpleClass isA 
ConfigurationBuildAssociation end 

Aerospace Engineering Entity - MCM 
subtypes 

AerospaceEngineeringObject in Artifact, 
SimpleClass isA 
AerospaceEngineeringEntity 
with 
is_composed_of 

composed_of 
AerospaceEngineeringObject 
constraint 

abstract_AEO: $ forall t/Token, 
s/SimpleClass 

(t in s) _=> not (t in 
AerospaceEngineeringObject)$ 
end 

Aerospace Engineering Association - MCM 

subtypes 

AddedTo in SimpleClass IsA 
AerospaceEngineeringAssociation end 

Removes in SimpleClass IsA 
AerospaceEngineeringAssociation end 

SucceedsAEO in SimpleClass IsA 
AerospaceEngineeringAssociation end 

Notes Recall a further selection of 
Aerospace Engineering Association 

subtypes were defined in Chapter 3 

(subsection 3.3.6.3.2) for use in the 

main case studies (Chapter 6, subsections 
6.2 and 6.3). 

5.5.3.3 MCM Worked Example : Tracing Revisions for the Airbus A320-100/A320-200 
Flight Control System 

To illustrate key concepts of the MCM, we now present a detailed worked example. It should be noted 

that whereas the meta-models introduced previously represented established notations (or domain- 

specific variants thereof), this section has proposed a novel structure which as such, has no recognised 

syntax. Therefore to describe elements of the model in a uniform and "canonical" formalism, a graph- 
based notation similar to DRCS (subsection 3.2.3) is adopted. 

257 



The MATrA Configuration Model 

The example demonstrates support provided by the MATrA Configuration Model for tracing revisions 
in the context of Flight Control Systems for the Airbus A320-100 and A320-200 aircraft. It considers 
the interplay between product space and version space, as well as management of Aerospace 

Engineering Objects. 

5.5.3.3.1 Background 
Designed to carry 150 passengers over short-to-medium routes, A320 was Airbus' first narrowbody 
jetliner. However, only twenty-one of the initial -100 (pronounced 'dash 100') were built, before 

production switched to the -200 revision. Effects of this evolution on the Flight Control System serve as 
the focus of our example. 

Flight Control Systems provide functions for take-off and landing, as well as in-flight manoeuvres such 

as banking and climb. These are commanded through a number of primary and secondary control 

surfaces that dictate air-flow over the wings, body and tail-plane. Our example concerns the `slats', 

secondary control surfaces preventing stall located on the wings leading edge. Readers are referred to 

Mair & Birdsall (1992) for more information on aircraft control surfaces. 

A320 was the first aircraft to adopt a completely `fly-by-wire' approach. On conventional aircraft, 

mechanical linkages transmit pilot orders to actuators, which in turn move the control surfaces. Though 

power applied to each surface is supplied from hydro-mechanical servo-amplifiers, their precise 

movements are co-ordinated solely by the flight crew. In contrast, A320 pilots provide instructions to 

f light control computers which are interpreted and used to generate actuator commands. This enables 

control law constraints to be applied to the aircraft to maintain 'flight envelope protection', thereby 

preventing certain pilot commanded actions - e. g. slat retraction at low speed - which may induce 

hazardous conditions (for instance, engine stall). 

The FCS architecture comprises three computer types: ELevator and Aileron Computers (ELACs), 

Spoiler and Elevator Computers (SECs) and Slat and Flap Control Computers (SFCCs). Redundancy, is 

essential given reliance on the system and manoeuvring difficulties in the event of total loss. In this 

scenario, we concentrate on the dual SFCCs; both divide into two channels Slat and Flap, with each 

channel further sub-divided into two lanes. Readers are referred to Favre (1994) or to Pearson & 

Rowlands (1996) for more information on A320 Flight Control Systems. 

5.5.3.3.2 Scenario 

This scenario concerns revisions to the A320-100 towards production of A320-200 - an extended range 

and increased take-off weight derivative. The MATrA Configuration Model is used to support 

modification of -100 SFCCs to accommodate (hypothetical) parameter variances stemming from the 

revised range and take-off weight requirements. In particular, we examine a function that prevents slat 

retraction by overriding pilot commands under specified conditions - the aim being to avert hazardous 

stall conditions. Our scenario comprises a number of 'episodes' which progress the example from 

258 



Structuring Safety Assessment and Product Management Artifacts 

definition of the A320-100 base aircraft, to creation of change deltas between this and the A320-200. 

The following serves as a route-map identifying the purpose of each episode, along with their relevance 
to the MCM requirements stated in subsection 5.5.3.1: - 

" Episode 1(partially) describes the PDS (using an intertwined representation) for the A320-100 base 

aircraft, including definition of the FCS and its subsystems. We also show an audit trail example for 

successive instances of one element; exhibits PDS requirements R1 and R3 (and provides context for 
Episodes 4 and 5). 

" Episode 2 (partially) describes the Workspace for the A320-100 using a Statechart meta-model 
fragment for a key function of the SFCCs (together with Aerospace Link Entities associating 
appropriate parts of the meta-model with corresponding PDS elements); provides context for 
Episodes 6 and 8. 

" Episode 3 demonstrates a partial configuration for the A320-100; exhibits PDS requirement R4. 

" Episode 4 demonstrates a partial impact change analysis over properties of the A320-100; exhibits 
PDS requirement R2. 

" Episode 5 is included for completeness and describes updating of the PDS towards definition of the 
A320-200 derivative aircraft in response to findings from the impact change analysis; also provides 
a context for Episode 7. 

" Episode 6 updates the Statechart meta-model from Episode 2 for the A320-200 revision and inserts 

appropriate audit trail associations; exhibits Workspace requirement Al. 

" Episode 7 demonstrates a partial configuration delta between A320-100 and -200 elements; exhibits 
PDS requirement R5. 

" Episode 8 demonstrates an aerospace engineering delta for the A320-100 and -200 meta-model 
fragments featured in Episode 6; exhibits Workspace requirement R2. 

Episode 1- Describing the A320-1 00 Base Aircraft 
We begin by populating the MCM with elements describing the A320-100. Firstly, a 'container' class 
for the A320 project (A320 Project) as a whole is created1g, together with a Product Data Synthesis (A320 
PDS) for this particular project. The PDS includes our base aircraft A320-1 00 (of type Version), a 

revision of the generic A320 (BuildElement of type Module) for which a number of properties 
(BuildElement(s) of type Property) are defined, as shown in figure 5.12. Specifically, Gross Wing Area, 

Landing Distance, WingLoading, Fuel Capacity, Maximum Takeoff Weight, Maximum Lift Coefficient, Payload, 

Range, Touch Down Speed, Approach Speed and Stalling Speed'9. 

'"This will contain all A320 revisions, together with variants including A321 and A319 (as indicated by the A321-100 'stub'). 
Variants are not considered further in this example as their application in terms of Configurations and Configuration Deltas, etc. 
is the same as that for revisions (except of course that multiple variants can co-exist). 19 Interested readers are referred to Mair & Birdsall (1992) for the precise meaning of these terms. 

259 



The MATrA Configuration Model 

A320 P, , *cl 

M 
(-*--`A320 

PDS 

& NMp 

A321.10041 /A3/20 
ýM°ý ! Mý. , op., ýº Stalling Speed (A321) I 

MrnN4on 

Approach Speed 
Gross Wing Area A32o-100 h' 

, h` hý. ºýýTouch Down Speed 

Lendhq Distance, 
Range 

Winil 
M77" 

M it ---ºPaytoad 
M 

Fuel Capacity 
Msprtpsily 

// 

Max WI COelOdad 

Maximus Takeoff WeO 

"ý I, 
76000kýa'ý" "1tl 1 

75 500 kg 
75 ODO kg 

Figure 5.12 - `A320-100 Product Data Synthesis Fragment - Properties' 

A320.100 

Ms, mýMadk 

SECI s 
has RkuMr Me 4atn SFCC2t 

ýiMrubnadu\OF MrFTruMaduNJ 
SEC2 L f00FCS-- 

MrFTý 
ELACI4- 

\-Riuwncdul. 

MaFTsuWnodwý 
ýý 

SFCC\ 

M` ELAC2 

chamel 

SCLane2 
Ms FTaýbnaAýM 

SCLanel 

he 
11'a, 

SCLaneia 

Disabled InK" Slat Rehaclbn 

C M(s, ý has-ConaVdan 

Not-Engaged MIA Slat RetradbM 

MsCaýý 
\ 

-e ISR-Hl Angle of Attack 

Ms CondW , 
Ms SubMwtim 

a4. ock 
ISR-LowSpeee 

Figure 5.13 - `A320-100 Product Data Synthesis Fragment - Architecture' 

260 



Structuring Safety Assessment and Product Management Artifacts 

At this point, our concern is purely to provide a context for the scenario and in particular, a set of 

properties with which to demonstrate use of Impacts associations in assessing change (Episode 4), and a 

set of architectural elements (to be introduced below) for illustrating modifications to the base aircraft 

as a result of this analysis (Episode 5). However, to give an early indication of how an audit trail of 

multiple revisions is represented using the MATrA Configuration Model, Maximum Takeoff Weight is 

shown as an emergent property captured through a succession of value specifications. 

Figure 5.13 extends our base aircraft description. It shows a (partially versioned2) vertical path through 

the FCS architecture, including twin fault tolerant SEC (SEC1 and SEC2), ELAC (ELAC1 and ELAC2) 

and SFCC (SFCC1 and SFCC2) submodules. SFCC1 is further decomposed to show the Slat and Flap 

channels (Slat Channel and Flap Channel) for this particular computer. The former is likewise 

decomposed to lanes 1 and 2 (SCLanel and SCLane2); for lane 1, we show the Inhibit Slat Retraction 

function and its two subfunctions ISR-Low Speed and ISR-High Angle of Attack. In addition, conditions 

(states) that this function may assume, namely disabled (Disabled), not engaged (Not-Engaged), speed 

baulk (Speed-Baulk) and alpha lock (Alpha-Lock) are also identified. Note the alternating 

Version/BuildElement (featuring Module, Function and Condition subtypes) pattern that characterises an 

intertwined approach. 

Inhbt Slat Retraglon 

Ms-AN_Wn 

W* k Slag RetractionAl 

Alpha-Lock Wat 
hm-00.0110" 

_º Alpha Lock 

ISR-HI-Milled Attack 
Enpaý Alpha-Locka 

Irwovl Klon 

Engaged Alpha-Lock 
ISR-HIO Angle of Attack-I 

ýý 
Release Al, he-Lock-i 

ýAaA 

pýýý-\asa Alpha-L( 
4n 

Ams-rowsw 

CAoAI 

ý7.1 degrees 

aaiweandWon 

Figure 5.14 - `Decomposition of Inhibit Slat Retraction at High Angles of Attack (A320-100)' 

Figure 5.14 further refines this decomposition through the introduction of sub-conditions for Alpha-Lock 

- namely Alpha-Lock Wait (Alpha-Lock Wait), Engaged Alpha-Lock (Engaged Alpha-Lock) and Release 

Alpha-Lock (Release Alpha-Lock). The ISR-High Angle of Attack sub-function consumes a flow of type 

Corrected Angle of Attack (CAoA) produced by external sensor devices (not shown). A transition from 

Engaged Alpha-Lock to Release Alpha-Lock occurs when the CAoA data flow value is less than 7.1 degrees 

21) Again, multiple revision elements are not shown to reduce complexity of the diagram. 

261 



The MATrA Configuration Model 

(CAM < 7.1 degrees); this event is 'carried' in the data flow21. 

Similarly, figure 5.15 introduces sub-conditions for Speed-Baulk - namely Speed Baulk Wait (Speed- 
Baulk Wait), Engaged Speed Baulk (Engaged Speed-Baulk) and Release Speed Baulk (Release Speed- 
Baulk). The ISR-Low Speed sub-function consumes a flow of type Computed Air Speed (CAS), again 
produced by external sensors. A transition from Engaged Speed-Baulk to Release Speed-Baulk occurs 
when CAS exceeds one hundred and fifty four knots (CAS > 154 knots). 

inhibit Slal Retraction 

MsýeHSgn 

inhibit Slat Retraction 4 

Mý 
\ 

n. soondr_ºSPý 
Bauk Wait 

ISR1ow Speed Msdon aar 
Engaged, SpeedBauk4 

MsdMslon 
Mss Speeo-Bauka 

M O ISR1ow Speed l 
Release Speed Bauký 

ansrm"0 

w. aaolM, 

ro\Mabn 

CAS Speed-Sauk ass 

MsnNdm 

CASs 

\\ 
CAS > 154lmb 

umsssonmaon 

Figure 5.15 - `Decomposition of Inhibit Slat Retraction at Low Speed (A320-100)' 

O-Telos objects capturing (partial) information from figures 5.12 through 5.15 are as follows: - 

Instantiation of elements in figure 5.12 

A320 in AerospaceEngineeringProject, 
Token with 
project_title 

projectTitle : "A320 Project' 
has, pds 

hasPDS : A320PDS 
end 

A320PDS in ProductDataSynthesis, Token 
with 
build-entity 

buildEntityl 
buildentity2 
buildEntity3 
buildEntity4 
buildEntity5 
buildEntity6 

AirbusA320; 
GrossWingArea; 
LandingDistance; 
WingLoading; 
FuelCapacity; 

MaximumLiftCoefficient; 
buildEntity7 Payload; 
buildEntity8 : Range; 
buildEntity9 : TouchDownSpeed; 
buildEntitylO : ApproachSpeed; 
buildEntityll : StallingSpeed; 
buildEntityl2 : MTOW 

end 

AirbusA320 in Module, Token with 
module_name 

moduleName : "A320" 
end 

A320HasVerlOO in HasRevision, Token with 
bd_source 

21 Note the Condition build element can be either versioned or treated as a primitive as needs dictate. As a rule of thumb, 
conditions representing hierarchical states composed of sub-states are versioned, (e. g., Alpha Lock), whereas simple states and 
events (as with specifications) are not (e. g., CAoA <7.1 degrees) - see figures 5.14 and 5.15. 

262 



Structuring Safety Assessment and Product Management Artifacts 

bdSource : AirbusA320 bdTarget : MTOWSpec1 
bd-target end 

bdTarget DashlOO 
end MTOWSpecSucceeds2 in Succeeds, Token with 

bd_source 
DashlOO in Version , Token with bdSource : MTOWSpec3 
version-name bd_target 

versionName : "A320-1001 bdTarget MTOWSpec2 
end end 

Dash100HasPropertyGrossWingArea in 
HasProperty, Token with 
b&source 

bdSource : DashlOO 
bd_target 

bdTarget GrossWingArea 
end 

Instantiation of elements in figure 5.13 

FlightControlSystem in Module, Token with 
module_name 

moduleName : "FCS' 
end 

GrossWingArea in Property, Token with 
property-name 

propertyName : `Gross Wing Area' 
end 

Dash100HasPropertyMTOW in HasProperty, 
Token with 
b&source 

bdSource : DashlOO 
b&target 

bdTarget : MTOW 
end 

MTOW in Property, Token with 
property-name 

propertyName : "Maximum Takeoff Weights 
end 

-- see App. B, Pt. 3 for other properties 

MTOWHasSpecificationSpecl in 
HasSpecification, Token with 
bd_source 

bdSource : MTOW 
bd_target 

bdTarget MTOWSpec1 
end 

MTOWSpec1 in Specification, Token with 
value-specification 

valueSpecification : "75 000 kg" 
end 

MTOWHasSpecificationSpec2 in 
HasSpecification, Token with 
b&source 

bdSource : MTOW 
bd_target 

bdTarget MTOWSpec2 
end 

MTOWSpec2 in Specification, Token with 
value_specification 

valueSpecification : "75 500 kg" 
end 

MTOWHasSpecificationSpec3 in 
HasSpecification, Token with 
b&source 

bdSource MTOW 
bd_target 

bdTarget MTOWSpec3 
end 

MTOWSpec3 in Specification, Token with 
value_epecification 

valueSpecification : "76 000 kg" 
end 

FCSHasVerDash100FCS in HasRevision, Token 
with 
bd_source 

bdSource : FlightControlSystem 
b&target 

bdTarget : Dash100FCS 
end 

Dash100FCS in Version , Token with 
version_name 

versionName : "-100 FCS' 
end 

Dash100FCSHasFTsubmoduleSEC1 in 
HasFTSubmodule, Token with 
bd-source 

bdSource Dash100FCS 
bd_target 

bdTarget SEC1 
end 

SEC1 in Module, Token with 
module-name 

moduleName : "SECT' 
end 

-- see App. B, Pt. 3 for SEC2 objects 

Dash100FCSHasFTsubmoduleELAC1 in 
HasFTSubmodule, Token with 
bcLsource 

bdSource Dash100FCS 
bd_target 

bdTarget ELAC1 
end 

ELAC1 in Module, Token with 
module_name 

moduleName : "ELAC1' 
end 

-- see App. B, Pt. 3 for ELAC2 objects 

Dash100FCSHasFTsubmoduleSFCC1 in 
HasFTSubmodule, Token with 
bd-source 

bdSource Dash100FCS 
bc-target 

bdTarget SFCC1 
end 

SFCC1 in Module, Token with 
module-name 

moduleName : "SFCC1' 
end 

-- see App. B, Pt. 3 for SFCC2 objects 

SFCC1HasVerDash100SFCC1 in HasRevision, 
MTOWSpecSucceedsl in Succeeds, Token with Token with 
bd-source b&source 

bdSource : MTOWSpec2 bdSource : SFCC1 
b&target b&target 

263 



The MATrA Configuration Model 

bdTarget : Dash100SFCC1 
end 

Dash100SFCC1 in Version , Token with 
version_name 

versionName : "-100 SFCC1' 
end 

-- see App. B, Pt. 3 for Flap Channel 
objects 

Dash100SFCClHasSubmoduleSlatChannel in 
HasSubmodule, Token with 
bd_source 

bdSource : Dash100SFCC1 
bd_target 

bdTarget : SlatChannel 
end 

SlatChannel in Module, Token with 
module name 

moduleName : `Slat Channel' 
end 

S1atChannelHasVerSlatChanneli in 
HasRevision, Token with 
b&source 

bdSource SlatChannel 
b&target 

bdTarget : SlatChanneli 
end 

SlatChanneli in Version , Token with 
vers ioname 

versionName : `Slat Channel-i" 
end 

S1atChanneliHasFTsubmoduleSCLane1 in 
HasFTSubmodule, Token with 
bd_source 

bdSource : SlatChanneli 
bd_target 

bdTarget SlatChannelLanel 
end 

SlatChannelLanel in Module, Token with 
module_name 

moduleName : "SCLanel' 
end 

-- see App. B, Pt. 3 for Slat Channel Lane 
2 objects 

S1atChannelLanelHasVerSlatChannelLaneli 
in HasRevision, Token 

with 
bd source 

bdSource : S1atChannelLanel 
bd_target 

bdTarget : SlatChannelLaneli 
end 

SlatChannelLaneli in Version , Token with 
version-name 

versionName : "SCLanel-i" 
end 

S1atChannelLaneliEncapsulateslnhibtSlatRe 
traction in Encapsulates, Token 
with 
bd_source 

bdSource SlatChannelLaneli 
bd_target 

bdTarget InhibitSlatRetraction 
end 

InhibitSlatRetraction in Function, Token 
with 
function, name 

functionName : 'Inhibit Slat 
Retraction, 

end 

InhibitSlatRetractionHasVerInhibitSlatRet 
ractioni in HasRevision, Token with 
bd_source 

bdSource InhibitSlatRetraction 
bd_target 

bdTarget : InhibitSlatRetractioni 
end 

InhibitSlatRetractioni in Version , Token 
with 
version_name 

versionName : "Inhibit Slat 
Retraction-i' 

end 

-- see App. B, Pt. 3 for `Disabled' and 
`Not-Engaged' condition objects 

InhibitSlatRetractioniHasConditionSpeedBa 
ulk in HasCondition, Token with 
bd_source 

bdSource : InhibitSlatRetractioni 
bc_target 

bdTarget : SpeedBaulk 
end 

SpeedBaulk in Condition, Token with 
condition label 

conditionLabel : `Speed-Baulk, 
end 

InhibitSlatRetractioniHasConditionAlphaLo 
ck in HasCondition, Token 
with 
bd_source 

bdSource : InhibitSlatRetractioni 
bd_target 

bdTarget : A1phaLock 
end 

A1phaLock in Condition, Token with 
condition-label 

conditionLabel : "Alpha-Lock' 
end 

InhibitSlatRetractioniHasSubfunctionISRLo 
wSpeed in HasSubfunction, Token with 
bd_source 

bdSource : InhibitSlatRetractioni 
bd_target 

bdTarget : ISRLowSpeed 
end 

ISRLowSpeed in Function, Token with 
function_name 

functionName : "ISR-Low Speed' 
end 

InhibitSlatRetractioniHasSubfunctionISRHi 
ghAoA in HasSubfunction, Token 
with 
bd_source 

bdSource : InhibitSlatRetractioni 
bd_target 

bdTarget : ISRHighAOA 

end 

ISRHighAOA in Function, Token with 
function_name 

functionName : `ISR-High Angle of 
Attack' 
end 

Instantiation of elaoaeats in figure 5.14 

ISRHighAoAHasVerISRHighAoAi in 
HasRevision, Token 
with 

264 



Structuring Safety Assessment and Product Management Artifacts 

bd_source 
bdSource : ISRHighAOA 

bd_target 
bdTarget : ISRHighAoAi 

end 

ISRHighAoAi in Version , Token with 
vers ion, 

_name versionName : "ISR-High Angle of 
Attack-i' 
end 

A1phaLockHasVerAlphaLocki in HasRevision, 
' Token 

with 
b&source 

bdSource A1phaLock 
bd_target 

bdTarget : A1phaLocki 
end 

A1phaLocki in Version , Token with 
version_name 

versionName : "Alpha-Lock-i" 
end 

A1phaLockiHasSubconditionEngagedAlphaLock 
in HasSubcondition, Token 
with 
bd-source 

bdSource A1phaLocki 
bd-target 

bdTarget : EngagedAlphaLock 
end 

bd_target 
bdTarget : ReleaseAlphaLocki 

end 

ReleaseAlphaLocki in Version , Token with 
version_name 

versionName : 'Release Alpha-Lock-i' 
end 

ISRHAoAiConsumesCAoA in 
ConsumesExternalIO, Token 
with 
bcl source 

bdSource : ISRHighAoAi 
bd_target 

bdTarget CAoA 
end 

CAoA in InputOutput, Token with 
flow_name 

flowName : 'CAoA' 
end 

CAoAHasVerCAoAi in HasRevision, Token 
with 
bd_source 

bdSource : CAOA 
bd_target 

bdTarget : CAOAi 
end 

CAoAi in Version, Token with 
version_name 

versionName "CAOAi' 
end 

EngagedAlphaLock in Condition, Token with 
condition_label 

conditionLabel : "Engaged Alpha-Lock" 
end 

EngagedAlphaLockHasVerEngagedAlphaLocki 
in HasRevision, Token 
with 
b&source 

bdSource EngagedAlphaLock 
bd_target 

bdTarget : EngagedAlphaLocki 
end 

EngagedAlphaLocki in Version , Token with 
version_name 

versionName : "Engaged Alpha-Lock-i' 
end 

A1phaLockiHasSubconditionReleaseAlphaLock 
in HasSubcondition, Token with 
bd_source 

bdSource : A1phaLocki 
bd_target 

bdTarget ReleaseAlphaLock 
end 

ReleaseAlphaLock in Condition, Token with 
condition_label 

conditionLabel : "Release Alpha-Lock' 
end 

ReleaseAlphaLockHasVerReleaseAlphaLocki 
in HasRevision, Token 
with 
b&source 

bdSource : ReleaseAlphaLock 

CAoAiCarriesConditionCAoA7PtlEvent in 
CarriesCondition, Token 
with 
bd_source 

bdSource : CAoAi 
bd_target 

bdTarget CAoA7PtlEvent 
end 

CAoA7PtlEvent in Condition, Token with 
condition_label 

conditionLabel : "CAoA < 7.1 degrees' 
end 

CAOA7PtlEventOccurringInEngagedAlphaLock 
in Occurringln, Token 
with 
b&source 

bdSource CAoA7PtlEvent 
bd_target 

bdTarget EngagedAlphaLock 
end 

CAoA7PtlEventLeadsToReleaseAlphaLock in 
LeadsTo, Token 
with 
bd-source 

bdSource CAoA7PtlEvent 
bd-target 

bdTarget ReleaseAlphaLock 
end 

-- see App. B, Pt. 3 for instantiation of 
elements in figure 5.15 

The following episode introduces artifacts from the traceability Workspace of our featured project. 
Again, the intention is to provide further contextual information - this time in the form of Aerospace 

Engineering Objects - for 'versioning' in subsequent episodes. 

265 



The MATrA Configuration Model 

Episode 2- Modelling the Behaviour of A320-100 SFCCs Using Statecharts 

Practitioners will typically model behaviour of Inhibit Slat Retraction as a Statechart (Harel, 1988). In a 
MATrA context, this implies a meta-model exists capable of receiving data mapped from an 

appropriate tool. Statecharts are not a feature of our work here as project NATURE (Pohl, 1996) 

produced a meta-model for the OMT dynamic model (an extension of Statecharts), and because a 
Statechart meta-model for UML also exists in the public domain. Instead, we use a simplified version of 

the latter (Appendix B, Part 4) - based on version 1.3 of the UML Specification (Rational Software 

Corporation, 1997a) - to demonstrate their representation in this example. 

Disabled 

Nrnur. auýwr w.. rrrr 
. soso . aorw.. o. r. 

Engaged Engaged 
Alpha-Lock Speed-Baulk ma`r` 

Not --- 
ý" 

ra+. +. ýr. + rrrrrý Engaged ý. ý.. rwrý w. irrr 
Speed"Baulk 

Wad ar.... ý ý... ý. r Wait 

ý.. rar. r .. norr 

Rebase Release 

Alpha-Lock Speed-Baulk 

w. r_r. wý.. d... +ý. 
Alpha-Lock Speed-Baulk 

Inhibit Slat Retraction 

Figure 5.16 - `Statechart Representation of Inhibit Slat Retraction' 

The Inhibit Slat Retraction function has been modelled with ten states (conditions) as previously described 

in figures 5.14 and 5.15; for reader orientation the complete Statechart is shown in figure 5.16. 

Essentially, we are interested in events triggering a transition from Engaged Alpha-Lock to Release-Alpha 

Lock and from Engaged Speed-Baulk to Release Speed-Baulk; recall from the PDS, these occur under 

conditions CAoA < 7.1 degrees and CAS > 154 knots respectively. However as we later demonstrate, both 

are required to change as an indirect result of increased range and take-off-weight requirements for the 

dash 200 revision. This is shown for the former by analysis of Impacts associations in Episode 4. 

Mapping the Statechart in figure 5.16, from the tool in which it was developed into the MATrA 

Workspace establishes BEelementAEO and BEmodeIAEO associations between the PDS and 

corresponding objects of the StateMachine meta-model. We demonstrate this at the logical level (i. e., as 

it appears to MATrA users) in figure 5.17, with the Statechart on the left and Product Data Synthesis on 

the right22. 

21 To maintain readability, PDS revisions are suppressed in figure 5.17. 

266 



Structuring Safety Assessment and Product Management Artifacts 

)-'I'cI s codc capturing information contained in figure 5.17 appears below. Specifically, we present 

iuslantiation cif the partial StateMachine meta-model and Aerospace Link Entity (BEmodelAEO and 

BEelementAEO) classes. 

Definition of State Machine Elements 
(subset) 

Ifill ihit: II. rtPetl'rcLioriStuutuMactlirre in 
SLatcMachine, Token with 
sobjer"t. 

-Subject: 
"Inhibit Slat Retraction" 

state 
State : A1phaLockState 

end 

AlphaLockState in SubMachineState, Pukes 
wit h 
:: t. it tc name 

:, titeName "Alpha-Lock" 
sub machine 

suhMachine : A1phaLock:; t, dt (, M, wh iii 
end 

A1phal, ockStateMachine in StateMachine, 
Token with 
state 

Statel : EngagedAlphaLockState; 
State2 : ReleaseAlphaLockState 

transition 
Transition : EngagedToReleaseCAoA 

end 

hnq, igedAlphaLockState in State, Token 
With 
S t. a t. l` 11,111lO 

:; r, 0eN, Ame "Engaged Alpha-Lock" 

Arid 

I I,, irvA1phaLockState in State, Token 
wit It 

:, t it " name 
:A ateName "Release Alpha-Lock" 

orld 

h; nct, uq ý(IToReleaseCAoA in Transition, Token 
with 
source 

transSource : LngagedAlphaLock 
target 

transTarget : ReleaseAlphaLock 

trigger 
trans-trigger 

EngagedToReleaseTriggerCAoA 
end 

EngagedToReleaseTriggerCAoA in Event, 
Token with 
event-description 

eventDescription : "CAOA < 7.1 
degrees" 
end 

Definition of Aerospace Link Entity 
Elements (subset) 

isiBIinodelAEO in LEmodelAEO, Token with 
build element 

buildElement : InhibitSlatRetraction 
aerospace-engineering-object 

aerospaceEngineeringObject 
InhibitSlatRetractionStateMachine 
end 

AlpBEelementAEO in BEelementAEO, Token 

with 
build_element 

buildElement : A1phaLock 
aerospace-engineering-object 

aerospaceEngineeringObject 
AlphaLockState 
end 

EalBEelementAEO in BEelementAEO, Token 

with 
build-element 

buildElement : EngagedAlphaLock 
aerospace-engineering-object 

aerospaceEngineeringObject 
EngagedAlphaLockState 
end 

RalBEelementAEO in BEelementAEO, Token 

with 
build-element 

buildElement : ReleaseAlphaLock 

267 

Fi} lire 5.17 - `Linking the 'I'raceability Workspace and YDS over Aerospace Link Entities' 



The MATTA Configuration Model 

aerospace_engineering_object buil&element 
aerospaceEngineeringübject buildElement : CAoA7PtlEvent 

ReleaseAlphaLockState aerospace-engineering-object 
end aerospaceEngineeringObject 

EngagedToReleaseTriggerCAoA 
AoaBEelementAEO in BEelementAEO, Token end 
with 

Next we describe a configuration constructed from versions of build elements featured in the models for 

Episode 1. 

Episode 3- Creating a Configuration for A320-100 
To create a configuration (instantiating the Configuration class) for A320-100, it is necessary to identify 

constituent elements from the versioned PDS data-set. While we purposely limit inclusion of multiple 

version elements for presentation purposes, a configuration can still be created to provide a flavour of 

what this practice involves (figure 5.18). Note the example features a representative subset of elements 
from the structures in Episode 1. Note also the omission of `spine' associations (rolename build object). 

and that all configuration build associations are assumed to be populated by the rule in 5.5.3.2.2(i. 2). 

A310-10oSampleConfiguration 

nwooMaaý 

A320.100 

hamtMomr. Mammum Takeoff Weight 

100FCS 
76 ODDkg csmsacond r nn 

rl 
CAST 

hIvFTMAwO&& OxIsManx! O --CAS>III1(((54knots 
-foo SEC1 f-----' f (ccnýc1 ocantpar 

\ 
C\ 

-100 SFCC1 Ad" 
-i ISR-Low Speed 

Engaged Speed-Baulky 
'-`Release 

Speed Baulk-I 
Ic\! 

/1t) ~SIat Channel, n.. sýccundwon 
has 

m" (cwfimntlon) (cam 
lýaýV 

S 
LaneC 1I 

Speed-Baulk-I 
1t 

I/ hý4wxffibn 
Inhibit Slat Retraction-f 

AwCaidam 
fwaftN 

Alpha-Lock-i 
MýSunhncsm 

hsºSýtloorýtlai 
I 

(N 
(mnpv" MºS'tl°or'rrmn 

Release pha-Lock-f Engaged Alpha-Lock4 
1--6. ISR-High Angle of Attack-I 

(oýWý 

conom., -xro 
CAM < 7.1 degrees (-hguraboN 

CAoN 

umsataondý 

Figure 5.18 - `Example Configuration for A320-100' 

268 



Structuring Safety Assessment and Product Management Artifacts 

In the following, we provide O-Telos code capturing information contained in the above figure (5.18). 

Configuration Instantiation buildObjectl7 
buildObjectl8 
buildObjectl9 
buildObject20 
buildObject21 

end 

ReleaseSpeedBaulki; 
CAOAi; 
CAoA7PtlEvent; 
CASi; 
CAS154KtsEvent 

A32010OSampleConfiguration in 
Configuration, Token 
with 
root_node 

rootNode : DashlOO 
build_association 

buildAssociationi 
Dash100HasPropertyMTOW; 

buildAssociation2 
MTOWHasEpecificationspec3; 

buildAssociation3 
CAoAiCarriesConditionCAoA7PtlEvent; 

buildAssociation4 
CASiCarriesConditionCAS154KtsEvent 
--Configuration Build Associations 
config. build_association 

configBuildAssociationl 
DashlOOHasConSubmoduleDash100FCS; 

configBuildAssociation2 
DashlOOFCSHasConFTsubmoduleDashlOOSFCC1; 

configBUildAssociation3 
DashlOOFCSHasConFTsubmoduleDashlOOSEC1; 

configBuildAssociation4 
DashlOOSFCClHasConSubmoduleSlatChanneli; 

configBuildAssociation5 
SlatChanneliHasConFTsubmoduleSCLaneli; 

configBuildAssociation6 
SlatChannelLaneliEncapsulatesConlSRi; 

configBuildAssociation7 
ISRiHasConSubfunctionlSRHighAoAi; 

configBuildAssociation8 
ISRiHasConConditionAlphaLocki; 

configBuildAssociation9 
AlphaLockiHasConSubconditionEALi; 

configBuildAssociationlO 
AlphaLockiHasConSubconditionRALi; 

configBuildAssociationil 
ISRiHasConSubfunctioniSRLowSpeedi; 

configsuildAssociationl2 
ISRiHasConConditionSpeedBaulki; 

configBuildAssociationl3 
SpeedBaulkiHasConSubconditionESBi; 

configBUildAssociationl4 
SpeedBaulkiHasConSubconditionRSBi; 

configBuildAssociationl5 
ISRLowSpeediConsumesConXIOCASi; 

configBuildAssociationl6 
ISRHAOAiConsumesConXIOCAOAi; 

configBUildAssociationl7 
CAoA7PtlEventOccurringInConEALi; 

configBuildAssociationlB 
CAS154KtsEventOccurringInConESBi; 

configBuildAssociationl9 
CAoA7PtlEventLeadsToConRALi; 

configBuildAssociation2O 
CASl54KtsEventLeadsToConRSBi 
--Build objects 
build-object 

buildObjectl : MTOW; 
buildObject2 : MTOWSpec3; 
buildObject3 : DashlOO; 
buildObject4 : Dash100FCS; 
buildObject5 : Dash100SFCC1; 
buildObject6 Dash100SEC1; 
buildObject7 SlatChanneli; 
buildObject8 : SlatChannelLaneli; 
buildObject9 

InhibitSlatRetractioni; 
buildObjectlO ISRHighAoAi; 
buildObjectll A1phaLocki; 
buildObjectl2 EngagedAlphaLocki; 
buildObjectl3 : ReleaseAlphaLocki; 
buildObjectl4 : ISRLowSpeedi; 
buildObjectl5 SpeedBaulki; 
buildObjectl6 EngagedSpeedBaulki; 

Configuration Build Associations 

Dash100HasConSubmoduleDash100FCS in 
HasConfigurationSubmodule, Token 
with 
bd-souce 

bdSource DashlOO 
bd_target 

bdTarget Dash100FCS 
end 

Dash100FCSHasConFTsubmoduleDash100SFCC1 
in HasConfigurationFTsubmodule, Token 
with 
bd. souce 

bdSource : Dash100FCS 
b&target 

bdTarget : Dash100SFCC1 
end 

DashlOOFCSHasConFTsubmoduleDashlOOSEClin 
HasConfigurationFTsubmodule, Token 
with 
bd-souce 

bdSource Dash100FCS 
bci target 

bdTarget : Dash100SEC1 
end 

Dash100SFCC1HasConSubmoduleSlatChanneli 
in HasConfigurationSubmodule, Token 
with 
bd-souce 

bdSource : Dash100SFCC1 
bcLtarget 

bdTarget : SlatChanneli 
end 

S1atChanne1iHasConFTsubmoduleSCLaneii in 
HasConfigurationFTsubmodule, Token 
with 
bd-souce 

bdSource : S1atChanneli 
bd_target 

bdTarget : S1atChanne1Laneli 
end 

S1atChannelLaneliEncapsulatesConlSRi in 
HasConfigurationFTsubmodule, Token 
with 
bd_souce 

bdSource : SlatChannelLaneli 
bd_target 

bdTarget : InhibitSlatRetractioni 
end 

ISRiHasConSubfunctionlSRHighAoAi in 
HasConfigurationSubfunction, Token 
with 
b&souce 

bdSource InhibitSlatRetractioni 
bc_target 

bdTarget ISRHighAoAi 
end 

ISRiHasConConditionAlphaLocki in 
HasConfigurationCondition, Token 
with 
bd_souce 

bdSource : InhibitSlatRetractioni 

269 



The MATrA Configuration Model 

bd_target 
bdTarget : A1phaLocki 

end 

A1phaLockiHasConSubconditionEALi in 
HasConfigurationCondition, Token 
with 
bd_souce 

bdSource : A1phaLocki 
bd. 

-target bdTarget : EngagedAlphaLocki 
end 

A1phaLockiHasConSubconditionRALi in 
HasConfigurationCondition, Token 
with 
bd souce 

bdSource : A1phaLocki 
bd_target 

bdTarget : ReleaseAlphaLocki 
end 

ISRiHasConSubfunctionISRLowSpeedi in 
HasConfigurationSubfunction, 
Token 
with 
bd souce 

bdSource : InhibitSlatRetractioni 
bd target 

bdTarget : ISRLowSpeedi 
end 

ISRiHasConConditionSpeedBaulki in 
HasConfigurationCondition, Token 
with 
bd souce 

bdSource InhibitSlatRetractioni 
bd target 

bdTarget : SpeedBaulki 
end 

SpeedBaulkiHasConSubconditionESBi in 
HasConfigurationCondition, Token 
with 
bd_souce 

bdSource : SpeedBaulki 
bd_target 

bdTarget EngagedSpeedBaulki 
end 

SpeedBaulkiHasConSubconditionRSBi in 
HasConfigurationCondition, Token 
with 
bd__souce 

bdSource : SpeedBaulki 
bc_target 

bdTarget : ReleaseSpeedBaulki 

end 

ISRLowSpeediConsumesConXIOCASi in 
ConsumesConfiguration%IO, Token 
with 
b&souce 

bdSource : ISRLowSpeedi 
bd-target 

bdTarget CASi 
end 

ISRHAoAiConsumesConXIOCAoAi in 
ConsumesConfigurationXiO, Token 
with 
bd_souce 

bdSource ISRHighAoAi 
bd_target 

bdTarget : CAoAi 
end 

CAoA7PtlEventOccurringlnConEALi in 
OccurringinConfiguration, 
Token 
with 
bd_souce 

bdSource : CAoA7PtlEvent 
bd__target 

bdTarget : EngagedAlphaLocki 
end 

CAS154KtsEventOccurringInConESBi in 
OccurringInConfiguration, Token 
with 
b&souce 

bdSource CAS154KtsEvent 
bd_target 

bdTarget : EngagedSpeedBaulki 
end 

CAoA7PtlEventLeadsToConRALi in 
LeadsToConfiguration, Token 
with 
bd_souce 

bdSource : CAoA7PtlEvent 
bd_target 

bdTarget : ReleaseAlphaLocki 
end 

CAS154KtsEventLeadsToConRSBi in 
LeadsToConfiguration, Token 
with 
b&souce 

bdSource CAS154KtsEvent 
bd_target 

bdTarget : ReleaseSpeedBaulki 
end 

Episode 4- Impact Analysis of A320-1 00 
At this point we shift emphasis to the consideration of Impacts dependencies between elements 
introduced in Episode 1. As indicated in subsection 5.5.3.2.1, this is necessary to assess the need for 

modifications across a populated Product Data Synthesis - either to facilitate evolutionary change, or to 

assist in the development of product variants. 

The intention is for the dependencies themselves to be inserted as development proceeds and so this 

episode is purely concerned with their application. Specifically, how changes in Range and Maximum- 

Takeoff Weight impact on various other aircraft performance properties and ultimately on the triggering 

of transitions from Engaged Alpha-Lock to Release-Alpha Lock and from Engaged Speed-Baulk to Release 

Speed-Baulk. 

270 



Structuring Safety Assessment and Product Management Artifacts 

GrossWingArea 

f 

/\ 4) 

krWcls 
Thrust 

Wino Loading &-knpects 
\T 

Max Uft Coefficient 
&*ads 

a 
Impacts Maximum Takeoff Weight Range 

(mpada Lan 
--lit 

g Distance fmpects \ Fuel Capacity f ýI 
Stalling Speed 

T hD S d 

Impacts 

auc own pee 
11- Payload 

r 
knPacts impacts 

CAS> 154 knots ApproachSpeed 

Figure 5.19 - `Impacts Associations Showing Dependency Propagation' 

It can be seen from figure 5.19 that Range influences Fuel Capacity which in turn has a bearing on the 
Maximum Takeoff Weight; this affects Wing Loading and hence Stalling Speed such that the latter impacts on 

our condition triggering the transition from Engaged Speed-Baulk to Release Speed-Baulk. Recall that the 
featured approach is pessimistic in that it simply alerts engineers to that fact that one build element is in 

some way influenced by another23. And whilst the element in question may exhibit some degree of 
'tolerance' to change, this must be affirmed by investigation. Here we assume a change to the condition 
in question is necessary and demonstrate how it is handled within MATrA in later episodes. A similar 
investigation would of course be necessary to establish whether the condition triggering transitions from 

Engaged Alpha-Lock to Release Alpha-Lock also needs to be changed. 

We now present an O-Telos example of the Impacts association class from figure 5.19, with source 
Maximum Takeoff Weight and target Wing Loading: - 

MtowlmpactsWL in Impacts, Token with 
bd_source 

bdSource: MTOW 
bd_target 

bdTarget : WingLoading 
end 

The remaining episodes in our scenario relate to structuring of changes arising from analysis of the 

existing A320-100 aircraft towards production of its successor, the A320-200. 

23 Note: a rule could specified to determine transitive dependencies between Impacts associations in order to support analysis. 

271 



The MATrA Configuration Model 

Episode 5- Describing the A320-200 Derivative 
Let us now assume development of the A320-100 is complete and that engineers are in the process of 

modifying the existing design in order to produce an extended range and increased takeoff weight 
derivative, the A320-200. In Episode 4 we described how tracing across Impacts associations within the 
Product Data Synthesis has revealed that range affects fuel-capacity, thereby increasing the weight of 
the aircraft and that this impacts transitively on its safe operational envelope. In particular, conditions 
triggering release of the Inhibit Slat Retraction sub-functions ISR-Low Speed (shown) and ISR-High Angle of 
Attack (not shown, but based on the same principles of investigation). 

Therefore having identified the need for change and established new event conditions using various 

analyses (again not shown) - the CAS threshold is modified to > 171 knots from 154, while CAoA 

becomes < 7.6 degrees from 7.1- engineers are in a position to express this information within the 

Product Data Synthesis. Firstly, a new Version object for the A320-200 aircraft (A320-200) is introduced, 

followed by new events (build elements) for the CAS and CAoA parameter conditions (figure 5.20). 

Here, the changes are relatively small. But while at a low level of decomposition, the fact an intertwined 

model underpins our approach means original elements representing behaviour, as well as the 

functional and physical architecture, are largely retained. We simply introduce appropriate revisions to 

InputOutput and Condition elements and create a new configuration. In contrast, with a version first 

approach, new versions of all 'parent' build elements (direct and transitive) would need to be created. 

A3p Pmpd 

e.. oey 
A320 PDS 

A320 
A3242o0SampleConligurallon 

A320-200 4---ý 
A320100 

ýýwýorýdr 
hid c4Nd 

Aw"aubnas N *-^h-+ 

FCS 

Aas+sNaion 

"100FC 

Release Alpha lock l 

ISR-High Angle of igtecka En ed e-Lock hs ron 

omal -xw 
row4n-1, Release Apia-Lock 

CAoA 
/ On 

A. r-ANrkn 
\ý 

t 
CAo*3__,. a ,dn 

CAo\ CAoA <7.6 degrees ý 

arnercorýCAoA c 7.1 de9r6B! 
ýrazssd, 

Figure 5.20 - `Revising the A320-100 PDS (Including Partial Configuration Selection)' 

272 



Structuring Safety Assessment and Product Management Artifacts 

Episode 6- Updating Models of Behaviour for A320-200 

While developing the revised aircraft, engineers must also update the Workspace. Therefore this 

episode considers traccahility between structures capturing information from the existing and revised 

Statecha t models. At a coarse granularity, this manifests as SucceedsAEO associations between 

successive models and at a finer level, as Removes and AddedTo associations (as described in 5.5.3.2.1). 

Inhibit Slat Retraction 

Engageu 
Alpha-Loc. 

Alpha Lock 
Wait 

Release 
Alpha-Lock 

r. yaged 
:, eed-Baulk,., _ . _., " 

Speed F3au! ý, 
ý Wait 

Release 

:, ýcBulk 

Alpha-Lock Speed-Baulk 

I' 

Why replace existing 
raises- 
issue model? 

resolves 
RemovesCAoA AddedToCAoA 

1 AddedToCAS issue RemovesCAS 

Change to CAoA and CAS 

E nyagod i nyagcd 
"ý "" Alpha-Lock Speed-Bauk 

r 
Ndid C. A: N(I. N 

N MIc* onu 

Alpha-Lock 
1, Speed-Baulk 

Mlit 
ý, d,, Wait 

II 

WO S C-J. týRelease 

cease 
Alpha Lock eedBaulk 

Alpha I ock 
Speed-Baulk 

Figure 5.21 - 'Tracing Change Over SucceedsAEO, AddedTo and Removes Associations: A 

Stalechart Example (Logical Level)' 

In the r()ntrxt of Our Icalurrcl cxwnhlc, the original conditions triggering transitions from Engaged 

273 



The MATrA Configuration Model 

Alpha-Lock to Release Alpha-Lock and Engaged Speed-Baulk to Release Speed-Baulk have been removed 

(i. e., are not present) in the new model, while their replacements (which of course were not present in 

the original) have been added. This concept is represented (again) at the logical level in figure 5.21: - 

O-Telos code implementing the associations featured in figure 5.21 appears below: - 

RemovesCAOA in Removes, Token with 
from_entity 

fromEntity : InhibitSlatRetractionStateMachineNew 
to_entity 

toEntity : EngagedToReleaseTriggerCAoA 
end 

AddedToCAoA in AddedTo, Token with 
from_entity 

fromEntity : EngagedToReleaseTriggerCAOANew 
to_entity 

toEntity : InhibitSlatRetractionStateMachine 
end 

RemovesCAS in Removes, Token with 
from_entity 

fromEntity : InhibitSlatRetractionStateMachineNew 
to_entity 

toEntity : EngagedToReleaseTriggerCAS 
end 

AddedToCAS in AddedTo, Token with 
from_entity 

fromEntity : EngagedToReleaseTriggerCASNew 
to_entity 

toEntity : InhibitSlatRetractionStateMachine 
end 

ISRSMSucceedsAEO in SucceedsAEO, Token with 
from_entity 

fromEntity : InhibitSlatRetractionStateMachineNew 
to_entity 

toEntity : InhibitSlatRetractionStateMachine 
end 

We also instantiate the Argumentation Structure (Appendix B, Part 2) with elements representing 

rationale attached to the 'ISRSMSucceedsAEO' association (from figure 5.21). In O-Telos, this is 

expressed as follows: - 

ISRSMRaiseslssue in Raiseslssue, Token with 
ate_source 

ateSource : ISRSMSucceedsAEO 
issue_target 

issueTarget : ISRSMIssue 
emd 

ISRSMIssue in Issue, Token with 
issue-text 

issueText : 'Why replace existing model? ' 
end 

ISRSMAssertionResolvesIssue in Resolveslssue, Token with 
assertion_source 

assertionSource: ISRSMAssertion 
issue_target 

issueTarget : ISRSMIssue 
end 

ISRSMAssertion in Assertion, Token with 
assertion_text 

assertionText : "Change to CAoA and CAS' 
end 

274 



Structuring Safety Assessment and Product Management Artifacts 

The final two episodes consider support for change deltas, both within the Product Data Synthesis 

(Episode 7) and the traceability Workspace (Episode 8). 

Episode 7- Configuration Delta for A320-100/A320-200 
As indicated in subsection 5.5.2.1, a configuration delta provides engineers with a summary of the 

symmetric difference between two configurations. In Episode 3, we demonstrated a fragment of a 

configuration for the A320-100 aircraft; further configurations would be taken in developing its 

successor the A320-200. The O-Telos example below provides a partial configuration delta 

(instantiating Configuration Delta) based on the configuration from Episode 3 and an assumed 

configuration (based on hypothetical elements, and those selected in Episode 5) for the A320-200. 

Recall that derived population of ConfigurationDelta is achieved by appropriate implementation of the 

rule in 5.5.3.2.2(ii. 1). 

A32010OA3202000onfigurationDelta in ConfigurationDelta, Token with 
configuration] 

_Configurationl 
A32010OSampleConfiguration 

configuration_2 

_Configuration2 : A320200SampleConfiguration 
build-object 

buildObjectl DashlOO; 
buildObject2 Dash200; 
buildObject3 : CAS154KtsEvent; 
buildObject4 CAoA7PtlEvent; 
buildObject5 : CASl7lKtsEvent; 
buildObject6 CAoA7Pt6Event; 
buildObject7 : CAoAi; 
buildObject8 CAoAii; 
buildObject9 : CASi; 
buildObjectlO CASii 

end 

Episode 8- Aerospace Engineering Delta for Behavioural Models 
Finally, we consider an aerospace engineering delta (instantiating AerospaceEngineeringDelta) expressing 

the symmetric difference between elements of our featured Statechart models derived (through 

appropriate implementation of the rule in 5.5.3.2.2(ii. 3)) from the AddedTo and Removes associations in 

Episode 6. Again, only the O-Telos representation is provided. 

ISRStateMachineAEODelta in AerospaceEngineeringDelta, Token with 
model-1 

modell InhibitSlatRetractionStateMachine 
model-2 

model2 InhibitSlatRetractionStateMachineNew 
delta_aeo 

deltaAE01 EngagedToReleaseTriggerCAoA; 
deltaAE02 : EngagedToReleaseTriggerCAS; 
deltaAE03 EngagedToReleaseTriggerCAoANew; 
deltaAE04 EngagedToReleaseTriggerCASNew 

end 

5.5.4 Summary 
Traceability of versions (subsuming revisions and variants) is essential to the aerospace industry as it 

supports continued evolution of existing aircraft, allowing manufacturers to keep pace with new 

technologies and changing markets. 

275 



The MATrA Configuration Model 

This section proposed a novel structure for managing versions, and in particular revisions to both the 

Product Data Synthesis and traceability Workspace. The model encapsulates key concepts from 

configuration management literature, notably the intertwined versioning approach, as well as support 

for structuring configurations and change deltas. 

Aspects of the model were demonstrated using a lengthy worked example, while a full evaluation again 

appears in Chapter Seven. 

276 



Structuring Safety Assessment and Product Management Artifacts : Summary 

5.6 Chapter Summary 
This chapter has presented novel meta-models (traceability structures) for well-defined and flexible 

notations used in safety assessment and product management throughout the aerospace industry; 

specifically, structures for Fault Tree Analysis and Failure Modes and Effects Analysis, together with a 
further structure based on the Programme Evaluation & Review Technique. Once more, we assume 

these are populated via the tool2matra transfer mechanism and where appropriate, verified for 

consistency against the Product Data Synthesis. 

As in the previous chapter, we expressed key syntactic elements of each notation as a UML Class 

Diagram (using the System Engineering Notation Meta-model as a common basis), with well- 

formedness, usage and other constraints stated in OCL. Again the base classes were implemented in 0- 

Telos (using ConceptBase) to provide a `flavour' of automation, while consideration of the PERT 

structure also included a small worked example. Collectively these structures provide representative 

coverage of the assessment and product management Workspace viewpoints to complement the 

development perspective from Chapter Four. 

The chapter concluded by demonstrating support for another aspect of product management, namely 

traceability of revisions and variants. In doing so we proposed the MATrA Configuration Model which 

is based on an established structuring technique from Configuration Management literature (the 

intertwined model), but which also incorporates means to represent change deltas and versioning 

related dependencies. Aspects of MCM were illustrated by a worked example. 

In the following chapter we present two case studies based on material supplied by aerospace 

practitioners. The first of these exhibits the User Centred Requirements Structure (from Chapter Four) 

and the second, the Fault Tree and Failure Mode and Effects Analysis structures. Both case studies also 

feature the MATrA Natural Language Structure. 

277 



Case Study I :A Hypothetical Mission Planning System for the Hawk 100 and 200 Series Aircraft 

6 Tracing Development and Assessment Artifacts 

6.1 Introduction 
This chapter presents two case studies that demonstrate proof of concept for the User Centred 

Requirements Structure (from section 4.3) and the Fault Tree and Failure Modes and Effects Analysis 

structures (from sections 5.2 and 5.3). 

Reader attention is drawn to the fact that featured artifacts are interleaved with O-Telos instantiations of' 

the appropriate structures. Every effort has been made to maintain flow, with large amounts of code 

appearing in the appendices (C, Part 1 and D). However, traceability is essentially a practical topic and 

so representative examples are exhibited within the text. In view of these considerations, two paths are 

proposed which readers may follow depending on their interests, its shown in table 6.1. 

Chapter 6: Suggested Reading Paths 

sectinnn title 
6.2 Case Study I: A Hypothetical Mission Planning System for the Ilaw k 100 and 200 Series 

Aircraft 

6.2.1 Mission Planning System Overview 

6.2.2 RASE Control Software Requirements and MA'I rA Representation 

6.2 2 
.I 

Use Case View' 

1 6.2.2.2 1 I111clac ion View I 

6.2 2.2.1 Erase Cartridge - Normal Path 

6.2.2.2.2 Erase Cartridge - No Cartridge ! 'resent 

6.2.2.2.3 Erase Cartridge - No I)ata on Cartridge 

6.2.2.2.4 Erase Cartridge - Pilot Chooses Not to Erase Data 

6.2 22.5 Retrieve from Cartridge - Normal Path (Timing Fragment) 

16 
. 
2.3 1 Trace Relations I 

62.4 Summary 

6.3 Case Study It :A Brake System Control Unit for a Wheel Braking System of a 
Hypothetical Aircraft 

6.3.1 Scope of Case Study 

6.3 
.2 

Overview of S 18 Wheel Braking System and Brake System Control Unit 

6.3.3 Preliminary System Safety Assessment - Brake System Control Unit 

6.3.3.1 Background on BSCU Design 

6.3.3.2 Fault Tice Analysis - Frcliminarv 

63.4 System Safety Assessment - Brake System Control Unit 

6.3.4.1 Background on 13SCU Power Supply Design 

6.3.4.2 Failure Modes and Eflicts Analysis 

6.3.4.2.1 Functional Failure Modes and Effects Analysis 

6.3.4.2.2 Instantiation of Functional Failure Modes and Effects Analysis Meta-model 

6.3.4.2.3 Piece-Patt Failure Nudes and Effects Analysis 

6.3.4.3 1 Paull 'I ice Analyis - Updated 

278 



Tracing Development & Assessment Artifacts 

6. t. 5 I racc Relations 

6.3.5.1 Instantiation of Trace Relations 

n. 11, Summary 

6. -1 ('haptrr Summary 

Applirun nI nuineeiiny, I'alh (Syslenu Nuginecr) Table 6.1 - `Chapter 6: Suggested Reading Paths' 

MrIhud I tgIIKrrm lath Cruel Ihvcliý'rl_. 
__ 

'hic path (i. e., omitting the shaded subsections in table 6.1) should be taken by 

those interested in traceability from a user perspective. Alternatively, readers concerned with tool 

devclulmient, and hence implementation of the featured structures may wish to concentrate on the 

Methýul /: ü, qüýreirn, ý path (i. e., focusing on the O-Tclos subsections shaded in table 6.1). 

6.2 Case Study I: A Hypothetical Mission Planning System for the 
Hawk 100 and 200 Series Aircraft 

In this section, we present a case study based on it Mission Planning System (MPS) for the Hawk 100 

and 200 series of trainer/lead-in-fighter aircraft produced by BAE SYSTEMS (BAe, 1999). Its purpose 

is to (lcnIonstralc features of the User Centred Requirements Structure (subsection 4.3) and to show 

support for traccahiIity across develohmcnt artifacts within the (infra-micro) horizontal dimension. 

6.2.1 Mission Planning System Overview 

The Mistinn Planning System (MPS) supports mission planning and rehearsal and the transfer of data 

(stored in a Data 'Urans 'er Cartridge - D'1'C) to and from the aircraft environment. Its components 

inrludc a I)ala'Uransfcr Module (D'I'M) which provides a receptacle for, and facilitates supporting, the 

loading and unloading of data to and from the D'UC; DTCs are inserted into the aircraft for the transfer 

and retrieval of data from aircraft avionics systems (BAc, ibid. ) 

Misswn 
>oltwarj 

BASE Control The. " Crea- 
Sollware 

7 

lion Software 

Data Transfer 
Modele Interf 

Sofiwaro 

t 

r 

A MII -STD 1553B 
Dutabus Card 

Data Transfer 
Module 

Data Transfer 
Cartridge 

Aenraft 

Figure 6.1 - 'Mission Planning System - Software Interaction' 

MI's (stures four software modules, as shown in figure 6. I- the BASE Control Software (BCS), Data 

'franslcr Module Interface Software (U'I'MIS), Modular Mission Support Software (MMSS) and 

'I'hcatic Creation Software ('I'CS). In this case study, we concentrate on the BASE Control Software. 

279 



Case Study I :A Hypothetical Mission Planning System for the Hawk 100 and 200 Series Aircraft 

6.2.2 BASE Control Software Requirements and MATrA Representation 
The BASE Control Software provides an integrated mechanism for down loading missions to a DTC, 

for retrieving data from a DTC and for the display and editing of data stored on a DTC. In this 

subsection we introduce a subset of user centred requirements for the BASE Control Software 

expressed as Use Case Diagrams, Scenarios and Message Sequence Charts. 

6.2.2.1 Use Case View 
Hypothetical `transactions' available to a pilot through the BCS shall include the ability to: - i) erase a 

cartridge; ii) retrieve (data) from a cartridge; and iii) choose a mission and aircraft (to work on). We 

now systematically consider details of these transactions, the service(s) to which they belong, their 

combination (through includes and extends), pre and post conditions and alternative paths'. 

I. Erase Cartridge 
Overview The purpose of this use case is to erase all current data from a Cartridge. 

Before proceeding with the erase process, checks are made to confirm that a 
Cartridge is present in the DTM and that the Cartridge contains data. 

Services Cartridge Administration 

Includes Check for Cartridge, Check Cartridge for Data, Erase Data from Cartridge (see 
figure 6.2). 

Post-Conditions The data on the Cartridge has been erased (assumes Normal Path scenario). 

Scenarios Normal Path, No Cartridge Present, No Data on Cartridge, Pilot Chooses Not 
to Erase Cartridge. 

As indicated, constituent use cases of Erase Cartridge (i. e., combined through «includes» associations) 

are Check for Cartridge, Check Cartridge for Data and Erase Data from Cartridge. These may be described as 

follows: - 

Check for Cartridge 

Overview 

Post-Conditions 

Scenarios 

Check Cartridge for Data 

Overview 

Pre-Conditions 

Post-Conditions 

Scenarios 

This is a utility transaction 'called' from other high-level use cases. Its purpose 
is to determine the presence or otherwise of a Cartridge in the hardware 
before processing operations (e. g., erase, load, etc. ) are attempted. 

The MPS has been informed that there Is a Cartridge present In the hardware 
(assumes Normal Path scenario). 

Normal Path, No Cartridge (Loaded In the Hardware). 

A utility transaction 'called' from other high-level use cases In order to 
determine whether there is data on the Cartridge before processing operations 
(such as erase) are attempted. 

There is a Cartridge present in the hardware. 

The MPS has been informed whether or not there is data loaded on the 
Cartridge (assumes Normal Path scenario for Check for Cartridge). 

Normal Path, No Data Present (on Cartridge). 

1 In doing so, we remain faithful to the content of the original case study document. 

280 



Tracing Development & Assessment Artifacts 

Erase Data from Cartridge 
Overview This utility transaction 'called' from high-level use cases deletes data stored 

on a Cartridge. 

Pre-Conditions The Pilot has confirmed that he wishes to erase data from the Cartridge. 

The Cartridge has to contain data. 

Post-Conditions Data has been erased from the Cartridge. 

Scenarios Normal Path. 

A graphical use case model (based on the notation introduced in 4.3.2.1) depicting the combination of 

these utility use cases towards fulfilment of the Erase Cartridge transaction is shown in figure 6.2. 

O 
7 Check for Cartridge 

«includes>>> 

Erase Cartridge Check Cartridge for Data 
Pilot Cartridge 

«includes» 

Erase Data from Cartridge 

Figure 6.2 - `Erase Cartridge Use Case Diagram' 

ii. Retrieve from Cartridge 

Overview This use case is used to retrieve Cartridge data and store it on the MPS. 

Services Mission Administration. 

Includes Check for Cartridge, Check Cartridge for Data, Retrieve Data from Cartridge, 
Display Cartridge Data (see figure 6.3). 

Post-Conditions The data on the Cartridge has been copied onto the MPS. 

The data has been displayed to the Pilot (assumes Normal Path scenario). 

Scenarios Normal Path, No-Cartridge Present, No Data on Cartridge, Pilot Retrieves a 
Subset of Data. 

Retrieve from Cartridge is further ̀extended' by Select Data to Retrieve, described as follows: - 

Select Data to Retrieve 
Overview Allows the Pilot to define the data to be retrieved from the Cartridge. 

Extends Retrieve from Cartridge (see figure 6.3). 

Post-Conditions The data types to be retrieved have been defined (assumes Normal Path). 

Scenarios Normal Path, Pilot Chooses Not To Define Data Types To Retrieve. 

The 'included' use cases for Retrieve from Cartridge not featured previously - namely Retrieve Data from 

Cartridge and Display Cartridge Data - may be described as follows: - 

F 

281 



Case Study I :A Hypothetical Mission Planning System for the Hawk 100 and 200 Series Aircraft 

Retrieve Data from Cartridge 
Overview The purpose of this use case is to retrieve data that is on the Cartridge and 

store it on the MPS. 
Pre-Conditions A Cartridge containing data is present in the hardware. 
Post-Conditions The data on the Cartridge has been copied onto the MPS (assumes Normal 

Path scenario). 
Scenarios Normal Path, Data Type Requested Not Stored on the Cartridge. 

Display Cartridge Data 
Overview The purpose of this use case Is to allow the Pilot to view data on the Cartridge. 
Pre-Conditions Data has been retrieved from the Cartridge and stored on the MPS. 

Post-Conditions The data that is currently loaded onto the Cartridge is displayed for the Pilot 
(assumes Normal Path scenario). 

Scenarios Normal Path, System Has No Data Retrieved From the Cartridge Stored. 

Display Cartridge Data is extended by Print Data, which is described as follows: - 

Print Data 
Overview The purpose of this use case is to print data items of a particular type. 

Extends Display Cartridge Data (see figure 6.3). 

Pre-Conditions The data to be printed is being displayed. 

Post-Conditions The data item has been printed by the MPS Printer. 

Scenarios Normal Path. 

Again, a graphical use case model showing combination of these use cases towards fulfilment of the 
Retrieve from Cartridge transaction is shown in figure 6.3. 

Check iwO Cartddge 

cdndudas>> 

x 

/ 

udes» 

Cartridge 

Check Cartridge for Data CD-- 

Pilot 

Retrieve from Certddge 

<dnd�dee» 

<cextendsv 

Retrieve Data from Cartridge 

Select Data to Retrieve Display Cartridge Data 

MPS Printer 

«extends>ý Print Data 

Figure 6.3 - `Retrieve From Cartridge Use Case Diagram' 

282 



Tracing Development & Assessment Artifacts 

iii. Choose Mission and Aircraft 
Overview The purpose of this use case Is to allow the Pilot to select Mission and Aircraft 

Data to work on. 
Services Mission Administration. 

Includes Retrieve from Mission Plan (see figure 6.4). 
Pre-Conditions A database must be attached to the MPS. 

Post-Conditions A mission and aircraft have been selected. 
Data for the selected Mission Plan has been loaded onto the MPS. 

Scenarios New Mission From Open Missions, New Mission From All Missions, No Data 
for Selected Mission In Mission Plan, Pilot Does Not Initially Select an Aircraft 
or Mission. 

We describe the 'included' use case for Choose Mission and Aircraft - Retrieve from Mission Plan - as 
follows: - 

Retrieve from Mission Plan 
Overview A utility use case to retrieve Mission Plan data and store it on the Mission 

Planning System. 

Pre-Conditions A mission and aircraft have been defined. 

Post-Conditions The data on the Mission Plan for the selected mission and aircraft has been 
copied onto the MPS (assumes Normal Path). 

Scenarios Normal Path, No data for selected mission in Mission Plan. 

Scenario Notes The events involved in transferring data to the Mission Planning System are 
iterated according to the number of different types of data stored in the 
Mission Plan (see also subsection 6.2.2.2.6). 

Figure 6.4 shows how Choose Mission and Aircraft and Retrieve from Mission Plan combine. 

Pilot 

Mission Plan 

Choose Mission and Aircraft 

«includes» 

Retrieve from Mission Plan 

Figure 6.4 -'Choose Mission and Aircraft Use Case Diagram' 

A summary of services (according to the concepts discussed in subsection 4.3.3.1) to which the Erase 

Cartridge, Retrieve from Cartridge and Choose Mission and Aircraft use cases contribute appears in figure 6.5. 

283 



Case Study I: A Hypothetical Mission Planning System for the Hawk 100 and 200 Series Aircraft 

Cartridge Administration 

7 Erase Cartridge 

Mission Administration 

Pilot 
Retrieve from Cartridge 

Mission Plan 

Choose Mission and Aircraft 

Figure 6.5 - `Hawk MPS : Services' 

6.2.2.1.1 Instantiation of Use Case View 
In this subsection, we instantiate O-Telos classes from the Use Case View of the User Centred 

Requirements Structure introduced in section 4.3, with a subset of requirements data for the MPS of the 

Hawk aircraft introduced above. This will allow us to demonstrate support for the representation and 

traceability of use case artifacts within MATrA. Note, the complete O-Telos code for these artifacts 

appears in Appendix C, Part One. 

Instantiation of UseCaseModel Elements 

" Actor instances 

Pilot in Actor, Token with 
actor_name 

actorName : "Pilot' 
end 

Cartridge in Actor, Token with 
actor name 

actorName : `Cartridge' 
end 

MPSPrinter in Actor, Token with 
actorJ1ame 

actorName : 'MPS Printer' 
end 

MissionPlan in Actor, Token with 
actor_name 

actorName : "Mission Plan' 
end 

" Text Nodes (for specifying Pro and 
Post Conditions) 

0 Use Case Instances 

Erase Cartridge 

EraseCartridge in UseCase, Token with 
use_case_name 

useCaseName : `Erase Cartridge' 
sub_case 

subCase : False 
post-condition 

postConditionl : ECPost1NLS 
end 

Post Condition for Erase Cartridge 

ECPost1NLS in 
MatraNatura1LanguageStructure, Token with 
mnls_composite 

mnlsCompositel ECPostC1 
mnls plain_text 

mnlsPlainTextl ECPostPT1J 
mnlsPlainText2 : ECPostPT2 

mnls_jnodule 
mnlsModulel : CartridgeNode 

end 
CartridgeNode in ModuleNode, Token with 
module name 

moduleName : `Cartridge' 
end 

MissionPlanningSystemNode in ModuleNode, 
Token with 
modulejiame 

moduleName : 'MPS' 
end 

-- Further Text Nodes in App. C, Pt. 1 

ECPostCl in MatraNLSComposite, Token with 
preceding-fragment 

precedingFragment : ECPostPT1 
subject-node 

subjectNode : CartridgeNode 
following-fragment 

followingFragment : ECPostPT2 
end 

ECPostPT1 in P1ainTextNode, Token with 
mnls_text 

284 



Tracing Development & Assessment Artifacts 

mnlsText : The data on the 
end 

ECPostPT2 in PlainTextNode, Token with 
mnls_text 

mnlsText : has been erased. ' 
end 

Check for Cartridge 

CheckforCartridge in UseCase, Token with 
use-case-name 

useCaseName : "Check for Cartridge' 
sub_case 

subCase : True 
post-condition 

postConditionl : CfCPost1NLS 
end 

Post Condition for Check for Cartridge 

CfCPost1NLS in 
MatraNaturalLanguageStructure, Token with 
mnls_composite 

mnlsCompositel : CfCPostCl; 
mnlsComposite2 : CfCPostC2 

mnls-plain text 
mnlsPlalnTextl CfCPostPTl; 
mnlsPlainText2 : CfCPostPT2; 
mnlsPlainText3 : CfCPostPT3 

mnls_module 
mnlsModulei 

Miss ionPlanningSystemNode; 
mnlsModule2 : CartridgeNode 

end 

CfCPostC1 in MatraNLSComposite, Token 
with 
preceding-fragment 

precedingFragment : CfCPostPT1 
subject_node 

subjectNode 
MissionPlanningSystemNode 
following-fragment 

followingFragment : CfCPostC2 
end 

CfCPostPT1 in PlainTextNode, Token with 
mnls_text 

mnlsText : The 
end 

CfCPostC2 in MatraNLSComposite, Token 
with 
preceding-fragment 

precedingFragment : CfCPostPT2 
subject_node 

subjectNode : CartridgeNode 
following-fragment 

followingFragment : CfCPostPT3 
end 

CfCPOStPT2 in P1ainTextNode, Token with 
mnls_text 

mnlsText has been informed that 
there is a 
end 

CfCPostPT3 in PlainTextNode, Token with 
mnls_text 

mnlsText present in the 
hardware. ' 
end 

Check Cartridge for Data 

CheckCartridgeforData in UseCase, Token 
with 

use-case-name 
useCaseName : "Check Cartridge for 

Data' 
sub case 

subCase : True 
pre-condition 

preConditionl : CCfDPre1NLS 
post_condition 

postConditionl : CCfDPost1NLS 
end 

PreCondition for Check Cartridge for Data 

CCfDPre1NLS in 
MatraNaturalLanguageStructure, Token with 
mnls_composite 

mnlsCompositel : CCfDPreC1 
mnls plain_text 

mnlsPlainTextl : CCfDPrePT1; 
mnlsPlainText2 CCfDPrePT2 

mnls. nodule 
mnlsModulel : CartridgeNode 

end 

CCfDPreCl in MatraNLSComposite, Token 
with 
preceding-fragment 

precedingFragment : CCfDPrePT1 
subject_node 

subjectNode : CartridgeNode 
following_fragment 

followingFragment : CCfDPrePT2 
end 

CCfDPrePT1 in PlainTextNode, Token with_ 
mnls_text 

mnlsText : "There is a 
end 

CCfDPrePT2 in P1ainTextNode, Token with 
mnls_text 

mnlsText present in the 
hardware. ' 
end 

Post Condition for Check Cartridge for 

Data 

CCfDPost1NLS in 
MatraNaturalLanguageStructure, Token with 
mnls_composite 

mnlsCompositel : CCfDPOStC1; 

mnlsComposite2 : CCfDPostC2 

mnls_plain_text 
mnlsPlainTextl : CCfDPOStPT1; 
mnlsPlainText2 CCfDPostPT2; 
mnlsPlainText3 CCfDPostPT3 

mnls_module 
mnlsModulel 

MissionPlanningSystemNode; 
mnlsModule2 : CartridgeNode 

end 

CCfDPostC1 in MatraNLSComposite, Token 
with 
preceding-fragment 

precedingFragment : CCfDPostPT1 
subject_node 

subjectNode 
MissionPlanningSystemNode 
following_fragment 

followingFragment : CCfDPostC2 
end 

CCfDPOStPT1 in PlainTextNode, Token with 
mnls_text 

mnlsText : The 
end 

285 



Case Study I: A Hypothetical Mission Planning System for the Hawk 100 and 200 Series Aircraft 

CCfDPostC2 in MatraNLSComposite, Token 
with 
preceding-fragment 

precedingFragment : CCfDPostPT2 
subject_node 

subjectNode : CartridgeNode 
following-fragment 

followingFragment : CCfDPostPT3 
end 

CCfDPrePT2 in PlainTextNode, Token with 
mnls_text 

mnlsText : has been informed 
whether or not there is data loaded on 
the 
end 

CartridgeNode in ModuleNode, Token with 
module_name 

moduleName : `Cartridge' 
end 

with 
preceding-fragment 

precedingFragment : EDfCPre1PT2 
subject_node 

subjectNode : CartridgeNode 
following-fragment 

followingFragment : EDfCPre1PT3 
end 

EDfCPre1PT2 in PlainTextNode, Token with 
mnls_text 

mnlsText :" has confirmed that he 
wishes to erase data from the 

end 

EDfCPre1PT3 in PlainTextNode, Token with 
mnls_text 

mnlsText : 
end 

Pre Condition 2 

CCfDPrePT3 in PlainTextNode, Token with 
mnls_text 

mnlsText : 
end 

Erase Data from Cartridge 

EraseDatafromCartridge in UseCase, Token 
with 
use_case_name 

useCaseName : `Erase Data from 
Cartridge' 

sub case 
subCase : True 

pre_condition 
preConditioni : EDfCPre1NLS; 
preCondition2 : EDfCPre2NLS 

post_condition 
postConditionl EDfCPost1NLS 

end 

Pro Conditions for Erase Data from 
Cartridge 

Pro Condition 1 

EDfCPre1NLS in 
MatraNaturalLanguageStructure, Token with 
mnls_composite 

mnlsCompositel : EDfCPre1C1; 
mnlsComposite2 : EDfCPre1C2 

mnls-plain_text 
mnlsPlainTextl EDfCPre1PT1; 
mnlsPlainText2 : EDfCPre1PT2; 
mnlsPlainText3 : EDfCPre1PT3 

mnls_module 
mnlsModulel : PilotNode; 
mnlsModule2 : CartridgeNode 

end 

EDfCPre1C1 in MatraNLSComposite, Token 
with 
preceding-fragment 

precedingFragment : EDfCPre1PT1 
subsect_node 

subjectNode : PilotNode 
following_fragment 

followingFragment : EDfCPre1C2 
end 

EDfCPre1PT1 in PlainTextNode, Token with 
mnls_text 

mnlsText : The 
end 

EDfCPre1C2 in MatraNLSComposite, Token 

EDfCPre2NLS in 
MatraNaturalLanguageStructure, Token with 
mnls_composite 

mnlsCompositel EDfCPre2C1 
mnls_plain_text 

mnlsPlainTextl EDfCPre2PT1; 
mnlsPlainText2 : EDfCPre2PT2 

mnls_nodule 
mnlsModulel : CartridgeNode 

end 

EDfCPre2C1 in MatraNLSComposite, Token 
with 
preceding-fragment 

precedingFragment : EDfCPre2PT1 
subject_node 

subjectNode : CartridgeNode 
following_fragment 

followingFragment : EDfCPre2PT2 
end 

EDfCPre2PT1 in PlainTextNode, Token with 
mnls_text 

mnlsText : "The 
end 

EDfCPre2PT2 in PlainTextNode, Token with 
mnls_text 

mnlsText : has to contain data. ' 
end 

Post Condition for Erase Data from 
Cartridge 

EDfCPOSt1NLS in 
MatraNaturalLanguageStructure, Token with 
mnls_composite 

mnlsCompositel : EDfCPostC1 
mnls plain_text 

mnlsPlainTexti : EDfCPostPTij 
mnlsPlainText2 : EDfCPostPT2 

mnls_jnodule 
mnlsModulel : CartridgeNode 

end 

EDfCPostC1 in MatraNLSComposite, Token 
with 
preceding-fragment 

precedingFragment : EDfCPostPT1 
subject-node 

subjectNode : CartridgeNode 
following_fragment 

followingFragment : EDfCPostPT2 
end 

EDfCPostPT1 in PlainTextNode, Token with 
mnls_text 

286 



Tracing Development & Assessment Artifacts 

mnlsText : Data has been erased from 
the " 

end 

EDfCPostPT2 in PlainTextNode, Token with 
mnls_text 

mnlsText 
end 

pre_condition 
preConditionl : PDPre1NLS 

post_condition 
postConditionl : PDPost1NLS 

end 

Choose Mission and Aircraft 

Retrieve from Cartridge 

RetrievefromCartridge in UseCase, Token 
with 
use_case_name 

useCaseName : `Retrieve from 
Cartridge" 
sub_case 

subCase : False 
post_condition 

postConditionl : RfCPost1NLS; 
postCondition2 RfCPost2NLS 

end 

ChooseMissionandAircraft in UseCase, 
Token with 
use-case-name 

useCaseName : 'Choose Mission and 
Aircraft' 
sub_case 

subCase : False 
pre_condition 

preConditionl : CMAPre1NLS 
post-condition 

postConditionl CMAPost1NLS; 
postCondition2 : CMAPost2NLS 

end 

- All Pre and Post conditions for the Retrieve from Mission Plan 
following Use Cases appear in App. C, Pt. l 

Select Data to Retrieve 

SelectDatatoRetrieve in UseCase, Token 
with 
use_caseame 

useCaseName : 'Select Data to 
Retrieve' 
sub-case 

subCase : True 
post-condition 

postConditionl : SDtRPost1NLS 
end 

RetrievefromMissionPlan in UseCase, Token 
with 
use_case_name 

useCaseName : 'Retrieve from Mission 
Plan' 
sub_case 

subCase : True 
pre_condition 

preConditioni RfMPPre1NLS 
post-condition 

postConditioni RfMPPost1NLS 
end 

0 Interaction Instances 

Retrieve Data from Cartridge 

RetrieveDatafromCartridge in UseCase, 
Token with 
use_case_name 

useCaseName : `Retrieve Data from 
Cartridge, 

sub-case 
subCase : True 

pre_condition 
preConditioni RDfCPre1NLS 

post-condition 
postConditionl RDfCPost1NLS 

end 

Display Cartridge Data 

DisplayCartridgeData in UseCase, Token 
with use_case_name 

useCaseName : "Display Cartridge 
Data" 
sub-case 

subCase : True 
pre_condition 

preConditionl : DCDPre1NLS 
post_condition 

postConditioni DCDPost1NLS 
end 

Print Data 

PrintData in UseCase, Token with 
use_case name 

useCaseName : "Print Data' 
sub_case 

subCase : True 

PilotEraseCartridge in Interaction, Token 
with 
interactor_1 

interactorl : Pilot 
interactor_2 

interactor2 : EraseCartridge 
end 

CartridgeCheckforCartridge in 
Interaction, Token with 
interactor_1 

interactori Cartridge 
interactor_2 

interactor2 : CheckforCartridge 
end 

CartridgeCheckCartridgeforData in 
Interaction, Token with 
interactor_1 

interactorl : Cartridge 
interactor_2 

interactor2 : CheckCartridgeforData 
end 

CartridgeEraseDatafromCartridge in 
Interaction, Token with 
interactor_1 

interactorl Cartridge 
interactor_2 

interactor2 EraseDatafromCartridge 
end 

PilotRetrievefromCartridge in 
Interaction, Token with 
interactor_1 

interactorl : Pilot 
interactor_2 

interactor2 : RetrievefromCartridge 
end 

287 



Case Study I :A Hypothetical Mission Planning System for the Hawk 100 and 200 Series Aircraft 

CartridgeRetrieveDatafromCartridge in 
Interaction, Token with 
interactor_1 

interactorl : Cartridge 
interactor_2 

interactor2 
RetrieveDatafromCartridge 
end 

PilotSelectDatatoRetrieve in Interaction, 
Token with 
interactor_1 

interactorl Pilot 
interactor_2 

interactor2 : SelectDatatoRetrieve 
end 

RetrievefromCartridgeCheckforCartridge in 
Includes, Token with 
includes_base 

includesBase : RetrievefromCartridge 
includes-include 

includesInclude : CheckforCartridge 
end 

RetrievefromCartridgeCheckCartridgeforData 
in Includes, Token with 
includes_base 

includesBase : RetrievefromCartridge 
includes-include 

includesInclude 
CheckCartridgeforData 
end 

MPSPrinterPrintData in Interaction, Token 
with 
interactor_1 

interactorl : MPSPrinter 
interactor_2 

interactor2 PrintData 
end 

PilotChooseMissionandAircraft in 
Interaction, Token with 
interactor_l 

interactorl Pilot 
interactor_2 

interactor2 
ChooseMissionandAircraft 
end 

MissionPlanRetrievefromMissionPlan in 
Interaction, Token with 
interactor_1 

interactorl : MissionPlan 
interactor_2 

interactor2 : RetrievefromMissionplan 
end 

MissionPlanChooseMissionandAircraft in 
Interaction, Token with 
interactor_1 

interactorl MissionPlan 
interactor_2 

interactor2 
ChooseMissionandAircraft 
end 

" Includes Instances 

EraseCartridgeCheckforCartridge in 
Includes, Token with 
includes_base 

includesBase : EraseCartridge 
includes-include 

includesInclude : CheckforCartridge 
end 

EraseCartridgeCheckCartridgeforData in 
Includes, Token with 
includes_base 

includesBase : EraseCartridge 
includes_include 

includesInclude 
CheckCartridgeforData 
end 

EraseCartridgeEraseDatafromCartridge in 
Includes, Token with 
includes_base 

includesBase : EraseCartridge 
includes-include 

includesInclude 
EraseDatafromCartridge 
end 

RetrievefromCartridgeRetrieveDatafromCart 
ridgein Includes, Token with 
includes_base 

includesBase : RetrievefromCartridge 
includes-include 

includesinclude 
RetrieveDatafromCartridge 
end 

RetrievefromCartridgeDisplayCartridgeData 
in Includes, Token with 
includes-base 

includesBase : RetrievefromCartridge 
includes-include 

includesinclude 
DisplayCartridgeData 
end 

ChooseMissionandAircraftRetrievefromMissi 
onPlan in Includes, Token with 
includes-base 

includesBase 
ChooseMissionandAircraft 
includes-include 

includesInclude 
RetrievefromMissionPlan 
end 

" Extends Instances 

PrintDataDisplayCartridgeData in Extends, 
Token with 
extends_base 

extendsBase : PrintData 
extends-extend 

extendsExtend : DisplayCartridgeData 
end 

SelectDatatoRetrieveRetrievefromCartrdige 
in Extends, Token with 
extends_base 

extendsBase : SelectDatatoRetrieve 
extends-extend 

extendsExtend : RetrievefromCartrdige 
end 

Erase Cartridge Uce Case Model 

EraseCartridgeModel in UseCaseModel, 
Token with model_name 

modelName : 'Erase Cartridge Model' 
ucm_comments 

ucmComments : EraseCartridgeComments 
ucm_use_case 

ucmUseCasel : EraseCartridge; 
ucmUseCase2 : CheckforCartridge; 
ucmUseCase3 : CheckCartridgeforData; 
ucmUseCase4 EraseDatafromCartridge 

ucm_actor 
ucmActorl : Pilot; 
ucmActor2 Cartridge 

288 



Tracing Development & Assessment Artifacts 

ucm_interaction 
ucminteractionl 

PilotEraseCartridge; 
ucmInteraction2 
CartridgeCheckforCartridge; 
ucmInteraction3 : 

CartridgeCheckCartridgeforData; 
ucmlnteraction4 : 

CartridgeEraseDatafromCartridge 
ucm_includes 

ucmIncludesl 
EraseCartridgeCheckforCartridge; 

ucmIncludes2 : 
EraseCartridgeCheckCartridgeforData; 
ucmIncludes3 : 
EraseCartridgeEraseDatafromCartridge 

ucm-pre_condition 
ucmPreConditionl CCfDPre1NLS; 
ucmPreCondition2 : EDfCPre1NLS; 
ucmPreCondition3 : EDfCPre2NLS 

ucm-post_condition 
ucmPostConditionl : ECPost1NLS; 
ucmPostCondition2 : CfCPostlNLS; 
ucmPostCondition3 CCfDPost1NLS; 
ucmPostCondition4 EDfCPost1NLS 

end 

-- For complete model, see App. C, Pt. 1 
end 

" Service Instances 

MissionAdministration in Service, Token 
with 
service_name 

serviceName : "Mission 
Administration" 
service_use_case 

serviceUseCasel 
RetrievefromCartridge; 

serviceUseCase2: 
ChooseMissionandAircraft 
end 

CartridgeAdministration in Service, Token 
with serviceame 

serviceName : "Cartridge 
Administration' 
service_use_case 

serviceUseCasel : EraseCartridge 
end 

Retrieve from Cartridge Use Case Model 
(Partial) 

RetrievefromCartridgeModel in 
UseCaseModel, Token with model name 

modelName : "Retrieve from Cartridge 
Model" 
ucm_comments 

ucmComments 
RetrievefromCartridgeComments 
ucm-use_case 

ucmUseCasel : RetrievefromCartridge; 

-- For complete model, see App. C, Pt. l 
end 

Choose Mission and Aircraft Use Case 
Model (Partial) 

ChooseMissionandAircraftModel in 
UseCaseModel, Token with model_name 

modelName : "Choose Mission and 
Aircraft Model" 
ucm_use_case 

ucmUseCasel 
ChooseMissionandAircraft; 

6.2.2.2 Interaction View 

" Hawk MPS Use Case View (Partial) 

HawkMPSUseCaseView in UseCaseView, Token 
with ucv_service 

ucvServicel MissionAdministration; 
ucvService2 CartridgeAdministration 

use_case_model 
useCaseModell EraseCartridgeModel; 
useCaseModel2 

Retrieve fromCartridgeModel; 
useCaseModel3 : 

ChooseMissionandAircraftModel 
end 

" Hawk MPS User Centred Requirements 
Structure 

HawkMPSUCRS in 
UserCentredRequirementsStructure, Token 
with subject nodule 

subjectModule : "Mission Planning 
System' 
use_case_view 

useCaseView : HawkMPSUseCaseView 
interaction_view 

interactionView 
HawkMPSlnteractionView 

end 

To show support for the representation and traceability of scenarios within MATrA, we present the 

UCRS Interaction View for the Erase Cartridge use case from 6.2.2.1(i). Featured paths include Normal 

Path, No Cartridge, No Data on Cartridge and Pilot Chooses Not To Erase the Data. In each case, we introduce 

logical (i. e., user) level representations in both textual and Message Sequence Chart forms (sections 

6.2.2.2.1 through 6.2.2.2.4), along with their 'equivalent' O-Telos implementation. We further include 

fragments of scenarios (sections 6.2.2.2.5 and 6.2.2.2.6) for the Retrieve from Cartridge (Normal Path) and 
Choose Mission and Aircraft (New Mission from Open Missions) use cases to demonstrate features of UCRS 

not present in the above examples (the full scenarios appear in Appendix C, Part Two). Note, 

constituent (i. e. included) use cases of Erase Cartridge, such as Check for Cartridge and Check Cartridge for 

Data are modelled separately, with their O-Telos representations appearing in Appendix C, Part One. 

289 



Case Study I :A Hypothetical Mission Planning System for the Hawk 100 and 200 Series Aircraft 

6.2.2.2.1 Erase Cartridge - Normal Path 

12. C[IP] The [sdr MPS] displays to the [«, Pilot] the [ý9 Main Screen Mamscreen_l]" 

MP 
II 

1: Erase Cartridge 
C[SR] Erae Cartritlge Reg-1 

2: Cartridge fn Hardware? 

C[IR) Rq-1 Confum Ca7ridpe 

3: Confirm Car edge in Hardware 

Data on CarMCge7 

,: 
C[IRJ --- Requex C. *. Cemtdpa Dnh 

5_Confirm Data on Care" 

'4 coy mit camaoe Dare cpPJ: 

6: Confirm Data on CaeidgeC. 

vaaDrsr dN. M. on COPP 

7 OK Proceed Erne 
: C[SRJ P-Ifir o. Grtndpe 

B: Erase Current Data 
_ 

*. 
ýC[SRJ Fis. Ad 

9: CaFndge Data Erased 

'ý-_- Cartridge Erased C[SP] 

10: Confirm An Data Deleted 
CeMdge Eased Joak. Ösn CISP], 

11: OK: Acknowledge Erese 

C[IP] Achrnwfedpe Erase 

12: Main 

Mein Screen 7 CDP] 

Figure 6.6 - `MSC: Erase Cartridge - Normal Path' 

290 



Tracing Development & Assessment Artifacts 

" Instantiation of Interaction View 

HawkMPSinteractionView in 
InteractionView, Token with 
interaction_model 

interactionModell 
CheckforCartridgeModel; 

interactionModel2 : 
CheckCartridgeforDataModel; 

interactionModel3 : 
EraseDatafromCartridgeModel; 

interactionModel4 
EraseCartridgeModel 

end 

" Instantiation of Featured Instance 
Definitions 

MPSlnstance in Instance, Token with 
instance_name 

instanceName : "MPS' 
end 

Cartridgelnstance in Instance, Token with 
instance_name 

instanceName : "Cartridge" 
end 

Pilotlnstance in Instance, Token with 
instanceame 

instanceName : "Pilot' 
end 

MissionPlanlnstance in Instance, Token 
with 
ins tance_name 

instanceName : "Mission Plan' 
end 

" Instantiation of Erase Cartridge 
Interaction Model 

EraseCartridgeModel in InteractionNodel, 
Token with model_name 

modelName : `Erase Cartridge 
Descriptions' 
describes_use_case 

describesuseCase : 'Erase Cartridge' 
inm_scenario 

inmScenariol 
EraseCartridge_NormalPath; 

inmScenario2 
EraseCartridge_NoCartridge; 

inmScenario3 
EraseCartridge_NoDataOnCartridge; 

inmScenario4 
EraseCartridge_PilotChoosesNotToEraseData 

-- 
other elements may be derived using an 

implementation of the rules in App. A, 
Pt. 2 (xi). 
end 

Iaitantiation of 8ras" Cartridgs3 Normal 
Path (Partial) 

EraseCartridge_QormalPath in Scenario, 
Token with 
scenario_title 

scenarioTitle : "Erase Cartridge - 
Normal Path' 
is exception 

isException : False 
scenario event 

scenarioEventl 
EraseCartridgeRequest; 

scenarioEvent2 
ConfirmDataPresentonCartridge; 

scenarioEvent3 
ProceedCartridgeEraseRequest; 

scenarioEvent4 
DataErasedNotification; 

scenarioEvent5 
DataErasedAcknowledgement; 

scenarioEvent6 : MainScreenDisplay_1 
includes-scenario 

includesScenariol 
CheckforCartridge_NormalPath; 

includesScenario2 : 
CheckCartridgeforData_IormalPath; 

includesScenario3 
EraseDatafromCartridge 
includedevent 

includedEventl 
CheckforCartridgeRequest; 

includedEvent2 
ConfirmCartridgePresent; 

includedEvent3 
CheckCartridgeforDataRequest; 

includedEvent4 
ConfirmCartridgeDataPresent; 

includedEvent5 

EraseCurrentDataRequest; 
includedEvent6 

CurrentDataErasedNotification 
scn_seq no 

scnSeqNol 
EraseCartridgeRequest_7ormalPathSSN; 

scnSeqNo2 
ConfirmDataPresentonCartridge_NormalPathS 
SN; 

scnSeqNo3 
ProceedCartridgeEraseRequestSSN; 

scnSeqNo4 
DataErasedNotificationSSN; 

scnSeqNo5 
DataErasedAcknowledgementSSN; 

scnSeqNo6 
MainScreenDisplay_l_NormalPathSSN 
scn_included_seq no 

scnIncludedSegNoi 
CheckforCartridgeRequest_EC_NP_ISN; 

scnIncludedSegNo2 
ConfirmCartridgePresent_EC_NP_ISN; 

scnIncludedSegNo3 
CheckCartridgeforDataRequest_EC_NP_ISN; 

scnincludedSegNo4 
ConfirmCartridgeDataPresent_EC_NP_ISN; 

scnIncludedSegNo5 
EraseCurrentDataRequest_EC_NP_ISN; 

scnincludedSegNo6 
CurrentDataErasedNotification_EC_NP_ISN 
tsn_viewpoint 

tsnViewpoint 
EraseCartridge_lormalPathTSV 
msc_viewpoint 

mscViewpoint 
EraseCartridge_lormalPathMSV 
end 

-- 'included_event' maybe instantiated 
using a variation of the rule in App. A, 
Pt. 2 (vii. c); see also App. C, Pt. 1 for 0- 
Telos implementation of includes-event 
classes 

EraseCartridgeRequestlormalPathSSN in 
SequenceNumber, Token with 
sequence-no 

sequenceNo 1 
end 

ConfirmDataPresentonCartridge NormalPathS 
SN in SequenceNumber, Token with 
sequence__no 

sequenceNo 6 
end 

291 



Case Study I: A Hypothetical Mission Planning System for the Hawk 100 and 200 Series Aircraft 

ProceedCartridgeEraseRequestSSN in 
SequenceNumber, Token with 
sequence. no 

sequenceNo :7 
end 

DataErasedNotificationSSN in 
SequenceNumber, Token with 
sequence--no 

sequenceNo : 10 
end 

DataErasedAcknowledgementSSN in 
SequenceNumber, Token with 
sequence--no 

sequenceNo : 11 
end 

MscScenarioViewpoint, Token 
with 
msv msc_comm 

msvMscComml 
EraseCartridgeRequestMSCDescription; 

msvMscComm2 
ConfirmDataPresentonCartridgeMSCDescripti 
on; 

msvMscComm3 
ProceedCartridgeEraseRequestMSCDescription; 

msvMscComm4 
DataErasedNotificationMSCDescription; 

msvMscComm5 
DataErasedAcknowledgementMSCDescription; 

mscMscComm6 
MainScreenDisplay_SMSCDescription 
end 

MainScreenDisplay_1 NormalPathSSN in 
SequenceNumber, Token with 
sequence-no 

sequenceNo : 12 
end 

CheckforCartridgeRequest_EC, NP_ISN in 
SequenceNumber, Token with 
sequence-no 

sequenceNo :2 
end 

ConfirmCartridgePresent_EC. 7P_ISN in 
SequenceNumber, Token with 
sequence_no 

sequenceNo :3 
end 

CheckCartridgeforDataRequest_EC-NP_ISN in 
SequenceNumber, Token with 
sequence_no 

sequenceNo :4 
end 

ConfirmCartridgeDataPresent_EC-NP_ISN in 
SequenceNumber, Token with 
sequence_no 

sequenceNo :5 
end 

EraseCurrentDataRequest_EC_NP_ISN in 
SequenceNumber, Token with 
sequence-no 

sequenceNo :8 
end 

CurrentDataErasedNotification EC_yP_ISN 
in SequenceNumber, Token with 
sequence_no 

sequenceNo 9 
end 

EraseCartridge_NormalPathTSV in 
TsnScenarioViewpoint, Token 
with 
tsv_tsn_comm 

tsvTsnComml 
EraseCartridgeRequestTextDescription; 

tsvTsnComm2 
ConfirmDataPresentonCartridgeTextDescript 
ion; 

tsvTsnComm3 
ProceedCartridgeEraseRequestTextDescripti 
on; 

tsvTsnComm4 
DataErasedNotificationTextDescription; 

tsvTsnComm5 
DataErasedAcknowledgementTextDescription; 

tsvTsnComm6 
MainScreenDisplay_1TextDescription 
end 

EraseCartridge. Norma1PathMSV in 

Erase Cartridge Request Event 
Instantiation 

EraseCartridgeRequest in 
CommunicationEvent, Token with 
interaction-type 

interactionType : `SR" 
sequence-no 

sequenceNol 
EraseCartridgeRequest. NormalPathSSN; 

sequenceNo2 
EraseCartridgeRequest_ToCartridgeSSN; 

sequenceNo3 
EraseCartridgeRequest_NoDataOnCartridgeSSN; 

sequenceNo4 
EraseCartridgeRequest_PilotChoosesNotToEr 
aseDataSSN 
tsn_communication_event 

tsnCommunicationEvent 
EraseCartridgeRequestTextDescription 
msc_communication_event 

mscCommunicationEvent 
EraseCartridgeRequestMSCDescription 
end 

EraseCartridgeRequestTextDescription in 
TsnCommunication, Token with 
communication-description 

communicationDescription 
EraseCartridgeRequestEventText 
end 

EraseCartridgeRequestEventText in 
ScenarioEventNatura1LanguageStructure, 
Token with 
mnls_composite 

mnlsCompositel : ECREC1; 
mnlsComposite2 ECREC2; 
mnlsComposite3 : ECREC3 

mnls_plain. text 
mnlsPlainTextl : ECREPT1; 
mnlsPlainText2 ECREPT2; 
mnlsPlainText3 ECREPT3; 
mnlsPlainText4 : ECREPT4 

tsn_sender_node 
tsnSenderNode : Pilotlnstance 

tsn_receiver node 
tsnReceiverNode : MPSlnstance 

tsnjnessage ode 
tsnMessageNode 

EraseCartridgeRequest 
end 

ECRECI in MatraNLSComposite, Token with 
preceding_fragment 

precedingFragment : ECREPTI 
subject-node 

subjectNode : Pilotlnstance 
following-fragment 

followingFragment : ECREC2 
end 

ECREC2 in MatraNLSComposite, Token with 

292 



Tracing Development & Assessment Artifacts 

preceding-fragment 
precedingFragment : ECREPT2 

subject_node 
subjectNode : EraseCartridgeRequest 

following_fragment 
followingFragment : ECREC3 

end 

ECREC3 in MatraNLSComposite, Token with 
preceding-fragment 

precedingFragment : ECREPT3 
subject-node 

subjectNode : MPSlnstance 
following_fragment 

followingFragment : ECREPT4 
end 

ECREPTI in PlainTextNode, Token with 
mnls_text 

mnlsText : The 
end 

ECREPT2 in PlainTextNode, Token with 
mnls_text 

mnlsText selects the 
end 

ECREPT3 in PlainTextNode, Token with 
mnls_text 

mnlsText on the 
end 

ECREPT4 in PlainTextNode, Token with 
mnls_text 

mnlsText Main Screen. " 
end 

EraseCartridgeRequest in Message, Token 
with 
message-name 

messageName : *Erase Cartridge 
Request' 
tsn msg_parameter 

tsnMsgParameter 
EraseCartridgeRequestTsnParameter 
msc_msg_parameter 

mscMsgParameter 
EraseCartridgeRequestMscParameter 
end 

EraseCartridgeRequestTsnParameter in 
MessageDescription, Token with 
msg-parameter 

msgParameter : "Erase Cartridge 
option' 
end 

EraseCartridgeRequestMscParameter in 
MessageDescription, Token with 
msg-parameter 

msgParameter : "Erase Cartridge' 
end 

EraseCartridgeRequestMSCDescription in 
MscCommunication, Token with 
1 ink., name 

linkName : "unspecified' 
synchronisation 

_Synchronisation _ "sim" 
frequency 

_Frequency : "aperiodic" 
delayed 

_Delayed : False 
msc_sender_instance 

mscSenderInstance : Pilotlnstance 
msc_receiver_instance 

mscReceiverInstance : MPSlnstance 
msc_nessage 

mscMessage : EraseCartridgeRequest 
end 

Confirm Data Present on Cartridge Event 
Instantiation 

ConfirmDataPresentonCartridge in 
CommunicationEvent, Token with 
interaction_type 

interactionType : `IPI 
sequence-no 

sequenceNol 
ConfirmDataPresentonCartridge_lormalPathS 
SN; 

sequenceNo2 
ConfirmDataPresentonCartridge_PilotChoose 
sNotToEraseDataSSN 
follows_from 

followsFrom 
ConfirmCartridgeDataPresent 
tsn_communication_event 

tsnCommunicationEvent 
ConfirmDataPresentonCartridgeTextDescript 
ion 
msc_communication_event 

mscCommunicationEvent 
ConfirmDataPresentonCartridgeMSCDescription 
end 

ConfirmDataPresentonCartridgeTextDescript 
ion in TsnCommunication, Token with 
communicationdescription 

communicationDescription 
ConfirmDataPresentonCartridgeEventText 
end 

ConfirmDataPresentonCartridgeEventText in 
ScenarioEventNaturalLanguageStructure, 
Token with 
mnls_composite 

mnlsCompositel CDPoCEC1; 
mnlsComposite2 CDPoCEC2; 
mnlsComposite3 : CDPoCEC3 

mnls plain_text 
mnlsPlainTextl : CDPoCEPT1; 
mnlsPlainText2 CDPoCEPT2; 
mnlsPlainText3 CDPOCEPT3; 
mnlsPlainText4 : CDPoCEPT4 

tsn_sender node 
tsnSenderNode : MPSlnstance 

tsn receiver_node 
tsnReceiverNode : Pilotlnstance 

tsnjnessage_node 
tsnMessageNode 

CartridgeDataFoundNotification 
end 

CDPOCECI in MatraNLSComposite, Token with 
preceding-fragment 

precedingFragment : CDPOCEPT1 
subject_node 

subjectNode : MPSlnstance 
following_fragment 

followingFragment : CDPOCEC2 
end 

CDPOCEC2 in MatraNLSComposite, Token with 
preceding-fragment 

precedingFragment : CDPoCEPT2 
subject_node 

subjectNode : Pilotlnstance 
following_fragment 

followingFragment : CDPoCEC3 
end 

CDPoCEC3 in MatraNLSComposite, Token with 
preceding_fragment 

precedingFragment : CDPoCEPT3 
subject-node 

subjectNode 
CartridgeDataFoundNotification 
following_fragment 

followingFragment : CDPOCEPT4 
end 

293 



Case Study I: A Hypothetical Mission Planning System for the Hawk 100 and 200 Series Aircraft 

CDPoCEPT1 in P1ainTextNode, Token with 
mnls_text 

mnlsText : The ` 
end 

CDPOCEPT2 in PlainTextNode, Token with 
mnls_text 

mnlsText : indicates to the 
end 

CDPoCEPT3 in PlainTextNode, Token with 
mnls_text 

mnlsText that 
end 

CDPOCEPT4 in PlainTextNode, Token with 
mnls_text 

mnlsText : 
end 

CartridgeDataFoundNotification in 
Message, Token with 
message-name 

messageName : `Cartridge Data Found 
Notification' 
tsn_msg_parameter 

tsnMsgParameter 
CartridgeDataFoundNotificationTsnParameter 
msc_msg_parameter 

mscMsgParameter 
CartridgeDataFoundNotificationMscParameter 

end 

CartridgeDataFoundNotificationTsnParameter 
in MessageDescription, Token with 
msg parameter 

msgParameter : there is data on the 
cartridge' 
end 

CartridgeDataFoundNotificationNscParameter 
in MessageDescription, Token with 
msg_parameter 

msgParameter : "Confirm Data on 
Cartridge' 
end 

ConfirmDataPresentonCartridge 
tsrL-communication`event 

tsnCommunicationEvent 
ProceedCartridgeEraseRequestTextDescripti 
on 
msc_communication_event 

mscCommunicationEvent 
ProceedCartridgeEraseRequestMSCDescription 
end 

ProceedCartridgeEraseRequestTextDescripti 
on in TsnCommunication, Token 
with 
communication_description 

communicationDescription 
ProceedCartridgeEraseRequestEventText 
end 

ProceedCartridgeEraseRequestEventText in 
ScenarioEventNaturalLanguageStructure, 
Token with 
mnls_composite 

mnlsCompositel PCEREC1; 
mnlsComposite2 : PCEREC2; 
mnlsComposite3 : PCEREC3 

mnls_plain text 
mnlsPlainTextl : PCEREPT1; 
mnlsPlainText2 : PCEREPT2; 
mnlsPlainText3 PCEREPT3; 
mnlsPlainText4 PCEREPT4 

tsn sender_node 
tsnSenderNode : Pilotlnstance 

tsn receiver ode 
tsnReceiverNode : MPSlnstance 

tsnjnessage_node 
tsnMessageNode 

ProceedEraseCartridge 
end 

PCERECI in MatraNLSComposite, Token with 
preceding-fragment 

precedingFragment : PCEREPTI 
subject-node 

subjectNode : Pilotlnstance 
following_fragment 

followingFragment : PCEREC2 

end 

ConfirmDataPresentonCartridgeMSCDescripti 
on in MscCommunication, Token 

with 
link name 

linkName : unspecified' 
synchronisation 

_Synchronisation 
`sim' 

frequency 

_Frequency : `aperiodic' 
delayed 

_Delayed : False 
msc_sender_instance 

mscSenderInstance : MPSlnstance 
msc_receiver_instance 

mscReceiverInstance : Pilotlnstance 
mscjnessage 

mscMessage 
CartridgeDataFoundNotification 
end 

Proceed Cartridge Erase Request Event 
Instantiation 

ProceedCartridgeEraseRequest in 
CommunicationEvent, Token 
with 
interaction_type 

interactionType : 'SR' 

sequence-no 
sequenceNol 

ProceedCartridgeEraseRequestSSN 
follows-from 

followsFrom 

PCEREC2 in MatraNLSComposite, Token with 
preceding-fragment 

precedingFragment : PCEREPT2 
subject_node 

subjectNode : MPSlnstance 
following-fragment 

followingFragment : PCEREC3 
end 

PCEREC3 in MatraNLSComposite, Token with 
preceding-fragment 

precedingFragment : PCEREPT3 
subject_node 

subjectNode : ProceedEraseCartridge 
following_fragment 

followingFragment : PCEREPT4 
end 

PCEREPTI in P1ainTextNode, Token with 
mnls_text 

mnlsText : "The 
end 

PCEREPT2 in PlainTextNode, Token with 
mnls_text 

mnlsText indicates to the 
end 

PCEREPT3 in PlainTextNode, Token with 
mnls_text 

mnlsText that it is 

end 

294 



Tracing Development & Assessment Artifacts 

PCEREPT4 in P1ainTextNode, Token with 
mnls_text 

mnlsText 
end 

ProceedEraseCartridge in Message, Token 
with 
message-name 

messageName : "Proceed Erase 
Cartridge, 
tsn_msgparameter 

tsnMsgParameter 
ProceedEraseCartridgeTsnParameter 
msc msgparameter 

mscMsgParameter 
ProceedEraseCartridgeMscParameter 
end 

ProceedEraseCartridgeTsnParameter in 
MessageDescription, Token with 
msg parameter 

msgParameter : "0K to proceed with 
Cartridge Erase" 
end 

ProceedEraseCartridgeMscParameter in 
MessageDescription, Token with 
msg_parameter 

msgParameter : "OK: Proceed Erase' 
end 

ProceedCartridgeEraseRequestMSCDescription 
in MscCommunication, Token with 
1 ink_name 

linkName : "unspecified' 
synchronisation 

_Synchronisation _ "sim' 
frequency 

_Frequency : 'aperiodic' 
delayed 

_Delayed : False 
msc_sender_instance 

mscSenderlnstance : Pilotlnstance 
msc_receiver_instance 

mscReceiverInstance : MPSlnstance 
msc. jnessage 

mscMessage : ProceedEraseCartridge 
end 

Data Erased Notification Event 
instantiation 

DataErasedNotification in 
CommunicationEvent, Token with 
interaction_type 

interactionType : "SP' 
sequence-no 

sequenceNol 
DataErasedNotificationSSN 
follows-from 

followsFrom 
CurrentDataErasedNotification 
tsn_communication-event 

tsnCommunicationEvent 
DataErasedNotificationTextDescription 
msc_communication_event 

mscCommunicationEvent 
DataErasedNotificationMSCDescription 
end 

DataErasedNotificationTextDescription in 
TsnCommunication, Token with 
communication_description 

communicationDescription 
DataErasedNotificationEventText 
end 

DataErasedNotificationEventText in 
ScenarioEventNaturalLanguageStructure, 
Token with 
mnls_composite 

mnlsCompositel DENEC1; 
mnlsComposite2 : DENEC2; 
mnlsComposite3 : DENEC3 

mnls p1ain_text 
mnlsPlainTextl : DENEPT1; 
mnlsPlainText2 : DENEPT2; 
mnlsPlainText3 DENEPT3; 
mnlsPlainText4 DENEPT4 

tsn_sender_node 
tsnSenderNode : MPSlnstance 

tsn_receiver node 
tsnReceiverNode Pilotlnstance 

tsn. jnessage node 
tsnMessageNode 

CartridgeErasedNotification 
end 

DENEC1 in MatraNLSComposite, Token 
with 
preceding-fragment 

precedingFragment : DENEPT1 
subject_node 

subjectNode : MPSlnstance 
following-fragment 

followingFragment : DENEC2 
end 

DENEC2 in MatraNLSComposite, Token with 
preceding-fragment 

precedingFragment : DENEPT2 
subject_node 

subjectNode : Pilotinstance 
following-fragment 

followingFragment : DENEC3 
end 

DENEC3 in MatraNLSComposite, Token with 
preceding-fragment 

precedingFragment : DENEPT3 
subject-node 

subjectNode 
CartridgeErasedNotification 
following_fragment 

followingFragment : DENEPT4 
end 

DENEPT1 in PlainTextNode, Token with 
mnls_text 

mnlsText : The 
end 

DENEPT2 in P1ainTextNode, Token with 
mnls_text 

mnlsText indicates to the 
end 

DENEPT3 in PlainTextNode, Token with 
mnls_text 

mnlsText : that 
end 

DENEPT4 in PlainTextNode, Token with 
mnls_text 

mnlsText 
end 

CartridgeErasedNotification in Message, 
Token with 
message-name 

messageName : `Cartridge Erased 
Notification, 
tsnjnsg_parameter 

tsnMsgParameter 
CartridgeErasedNotificationTsnParameter 
mscjnsg. parameter 

mscMsgParameter 
CartridgeErasedNotificatiofMscParameter 
end 

CartridgeErasedNotificationTsnParameter 
in MessageDescription, Token with 

295 



Case Study I: A Hypothetical Mission Planning System for the Hawk 100 and 200 Series Aircraft 

msgparameter 
msgParameter : "all current data has 

been deleted' 
end 

CartridgeErasedNotificationMscParameter 
in MessageDescription, Token with 
msg-parameter 

msgParameter : `Confirm All Data 
Deleted' 
end 

DataErasedNotificationMSCDescription in 
MscCommunication, Token 
with 
link name 

linkName : "unspecified' 
synchronisation 

_Synchronisation 
"sim' 

frequency 

-Frequency : "aperiodic' 
delayed 

_Delayed : False 
msc_sender_instance 

mscSenderInstance : MPSlnstance 

msc_receiver_instance 
mscReceiverInstance : Pilotlnstance 

msc_xnessage 
mscMessage 

CartridgeErasedNotification 
end 

Data Erased Acknowledgement Event 
Instantiation 

DataErasedAcknowledgement in 
CommunicationEvent, Token with 
interaction_type 

interactionType : 'IPI 
sequence-no 

sequenceNol 
DataErasedAcknowledgementSSN 
follows-from 

followsFrom : DataErasedNotification 
t sn_communicat ion_event 

tsnCommunicationEvent 
DataErasedAcknowledgementTextDescription 
msc_communication_event 

mscCommunicationEvent 
DataErasedAcknowledgementMSCDescription 
end 

DataErasedAcknowledgementTextDescription 
in TsnCommunication, Token with 
communication description 

communicationDescription 
DataErasedAcknowledgenentEventText 
end 

DataErasedAcknowledgementEventText in 
ScenarioEventNaturalLanguageStructure, 
Token with 
mnls_composite 

mnlsCompositel : DEAECI; 
mnlsComposite2 : DEAEC2; 
mnlsComposite3 : DEAEC3 

mnls plain_text 
mnlsPlainTexti : DEAEPT1; 
mnlsPlainText2 : DEAEPT2; 
mnlsPlainText3 : DEAEPT3; 
mnlsPlainText4 : DEAEPT4 

tsn_sender node 
tsnSenderNode : Pilotlnstance 

tsn receiver_node 
tsnReceiverNode : MPSlnstance 

tsnjnessage_node 
tsnMessageNode AcknowledgeErase 

end 

DEAEC1 in MatraNLSComposite, Token with 
preceding fragment 

precedingFragment : DEAEPT1 
subject_node 

subjectNode : Pilotlnstance 
following-fragment 

followingFragment : DEAEC2 
end 

DEAEC2 in MatraNLSComposite, Token with 
preceding-fragment 

precedingFragment : DEAEPT2 
subject_node 

subjectNode : AcknowledgeErase 
following-fragment 

followingFragment : DEAEC3 
end 

DEAEC3 in MatraNLSComposite, Token with 
preceding-fragment 

precedingFragment : DEAEPT3 
subject-node 

subjectNode : MPSlnstance 
following_fragment 

followingFragment : DEAEPT4 
end 

DEAEPTI in PlainTextNode, Token with 
mnls_text 

mnlsText : The 
end 

DEAEPT2 in PlainTextNode, Token with 
mnls_text 

mnlsText :" sends an 
end 

DEAEPT3 in PlainTextNode, Token with 
mnls_text 

mnlsText : to the 
end 

DEAEPT4 in PlainTextNode, Token with 
mnls_text 

mnlsText 
end 

AcknowledgeErase in Message, Token 
with 
message_name 

messageName : `Acknowledge Erase' 
tsn_msg_parameter 

tsnMsgParameter 
AcknowledgeEraseTsnParameter 
msc_msg-parameter 

mscMsgParameter 
AcknowledgeEraseMscParameter 
end 

AcknowledgeEraseTsnParameter in 
MessageDescription, Token with 
msg-parameter 

msgParameter : acknowledgement, 
end 

AcknowledgeEraseMscParameter in 
MessageDescription, Token with 
msg parameter 

msgParameter : `OK: Acknowledge 
Erase' 
end 

DataErasedAcknowledgementMSCDescription 
in MscCommunication, Token with 
link name 

linkName : "unspecified' 
synchronisation 

_Synchronisation :_ 'aim' 
frequency 

_Frequency : "aperiodic' 
delayed 

_Delayed : False 
msc_sender_instance 

296 



Tracing Development & Assessment Artifacts 

mscSenderinstance : Pilotlnstance 
msc_receiver_instance 

mscReceiverlnstance : MPSlnstance 
msc. jnessage 

mscMessage : AcknowledgeErase 
end 

Main Screen Display (from Erase 
Cartridge) Event Instantiation 

MainScreenDisplay_l in 
CommunicationEvent, Token with 
interaction_type 

interactionType : *IPI 
sequence-no 

sequenceNol 
MainScreenDisplay_1_NormalPathSSN; 

sequenceNo2 
MainScreenDisplay_l_NoCartridgeSSN; 

sequenceNo3 
MainScreenDisplay_lJ oDataOnCartridgeSSN; 

sequenceNo4 
MainScreenDisplay_l_PilotChoosesNotToEras 
eDataSSN 
follows-from 

followsFromi 
DataErasedAcknowledgement; 

followsFrom2 
NoCartridgeAcknowledgement; 

followsFrom3 
NoCartridgeDataPresentAcknowledgement; 

followsFrom4 CancelEraseRequest 
tsn_communication_event 

tsnCommunicationEvent 
MainScreenDisplay_lTextDescription 
msc communication_event 

mscCommunicationEvent 
MainScreenDisplay_lMSCDescription 
end 

MainScreenDisplay_lTextDescription in 
TsnCommunication, Token with 
communication-description 

communicationDescription 
MainScreenDisplay_1EventText 
end 

MainScreenDisplay_lEventText in 
ScenarioEventNaturalLanguageStructure, 
Token with 
mnls_composite 

mnlsCompositel MSD_1EC1; 
mnlsComposite2 MSD_1EC2; 
mnlsComposite3 : MSD_1EC3 

mnls_plain_text 
mnlsPlainTextl : MSD_1EPT1; 
mnlsPlainText2 MSD_1EPT2; 
mnlsPlainText3 : MSD_1EPT3; 
mnlsPlainText4 : MSD_1EPT4 

tsn_sender_node 
tsnSenderNode : MPSlnstance 

tsn_receiver_node 
tsnReceiverNode Pilotlnstance 

tsn_nessage-node 
tsnMessageNode MainScreen__1 

end 

MSD_1EC1 in MatraNLSComposite, Token with 
preceding-fragment 

precedingFragment 
subject node 

subjectNode : MPS 
following-fragment 

followingFragment 
end 

: MSD_1EPT1 

[nstance 

: MSD_1EC2 

MSD_1EC2 in MatraNLSComposite, Token with 
preceding-fragment 

precedingFragment : MSD_1EPT2 
subject node 

subjectNode : Pilotlnstance 
following-fragment 

followingFragment : MSD_1EC3 
end 

MSD_1EC3 in MatraNLSComposite, Token with 
preceding-fragment 

precedingFragment : MSD_1EPT3 
subject . node 

subjectNode : MainScreen. 1 
following_fragment 

followingFragment : MSD_1EPT4 
end 

MSD_1EPT1 in PlainTextNode, Token with 
mnls_text 

mnlsText : The 
end 

MSD_1EPT2 in PlainTextNode, Token with 
mnls_text 

mnlsText " displays to the 
end 

MSD_lEPT3 in PlainTextNode, Token with 
mnls_text 

mnlsText the 
end 

MSD_1EPT4 in PlainTextNode, Token with 
mnls_text 

mnlsText : 
end 

MainScreen_l in Message, Token with 
message_name 

messageName : "Main Screen' 
end 

MainScreenDisplay_lMSCDescription in 
MscCommunication, Token 
with 
link-name 

linkName : "unspecified' 
synchronisation 

-Synchronisation 
"sim' 

frequency 

_Frequency : "aperiodic' 
delayed 

_Delayed : False 
ms c_sender_instance 

mscSenderInstance : MPSlnstance 
msc_receiver_instance 

mscReceiverlnstance : Pilotlnstance 
msc_message 

mscMessage : MainScreen_l 
end 

297 



Case Study I :A Hypothetical Mission Planning System for the Hawk 100 and 200 Series Aircraft 

6.2.2.2.2 Erase Cartridge - No Cartridge Present 

1. C[SR] The [sd Pilot] selects the [m9 Erase Cartridge option. Erase cartridge Request] on the [«r MPS] Main Screen. 

2. C[IR] The [sd MPS] asks the [«, Cartridge] whether there [. 9 is a cartridge present in the hardware? : Request cone 

3. C[IP] The [Sid, Cartridge] responds to the [. MPS] that [ue9 there is no cartridge present in the hardware : No oeta]. 

4. C[IP] The [Si, MPS] informs the [v Pilot] that there is ['9 no cartridge is present in the hardware : No canes wlice 

5. C[IP] The [Sdf Pilot] sends an [, r69 acknowledgement A wledgeNoCMndge] to the [, ý, MPS]. 

6. C[IP] The [5d, MPS] displays to the [«, Pilot] the [rosy Main Screen Mainscreen_jj. 

00C 
1: Erase Car e 

C[SR] Ee CMO* Rpued 
2: Cage in Hardware? 

CORI wep, wv Cam Cartmoa _. -. ý 

3: No Cartridge in Hardware 
1- -- hio cm C(IPJ 

4: Report No Catridge 
Ab CrCiepe Now, *. CQPJ 

5: *( AtlmwMO9. No Crn* 
C[IPJ Ao al. dp No Crtodp. 

Figure 6.7 - `MSC: Erase Cartridge - No Cartridge' 

Instantiation of Erase Cartridge: No 
Cartridge Present 

EraseCartridge_NoCartridge in Scenario, 
Token with 
scenario_title 

scenarioTitle : "Erase Cartridge - No 
Cartridge Present" 
is-exception 

isException : True 
scenario-event 

scenarioEventl 
EraseCartridgeRequest; 

scenarioEvent2 : 
NoCartridgePresentNotification; 

scenarioEvent3 . 
NoCartridgeAcknowledgement; 

scenarioEvent4 : MainScreenDisplay_1 
includes scenario 

includesScenariol 
CheckforCartridge_NoCartridge 
included event 

includedEventl 
CheckforCartridgeRequest; 

includedEvent2 : NoCartridgePresent 
scn_seq_no 

scnSegNol 
EraseCartridgeRequest_NoCartridgeSSN; 

scnSeqNo2 : 
NoCartridgePresentNotificationSSN; 

scnSegNo3 : 
NoCartridgeAcknowledgementSSN; 

scnSegNo4 : 
MainScreenDisplay_1_NoCartridgeSSN 
scn_included_seq_no 

scnIncludedSegNol 
CheckforCartridgeRequest_EC_NC_ISN; 

scnlncludedSegNo2 : 
NoCartridgePresent_EC_NC_ISN 
tsn_viewpoint 

tsnViewpoint 
EraseCartridge_NoCartridgeTSV 
msc_viewpoint 

mscViewpoint 
EraseCartridge_NoCartridgeMSV 
end 

-- again, included event' may be 
instantiated using a variation of the 

rule in App. A, Pt. 2 (vii. c); see also 
App. C, Pt. l for O-Telos implementation of 
included event classes 

EraseCartridgeRequest_NoCartridgeSSN in 
SequenceNumber, Token with 
sequence-no 

sequenceNo :1 
end 

NoCartridgePresentNotificationSSN in 

298 



Tracing Development & Assessment Artifacts 

SequenceNumber, Token with 
sequence-no 

sequenceNo :4 
end 

NoCartridgeAcknowledgementSSN in 
SequenceNumber, Token with 
sequencejio 

sequenceNo 5 
end 

MainScreenDisplay_1 NoCartridgeSSN in 
SequenceNumber, Token with 
sequencejio 

sequenceNo :6 
end 

CheckforCartridgeRequest_EC NC_ISN in 
SequenceNumber, Token with 
sequence no 

sequenceNo :2 
end 

NoCartridgePresent_EC_NC ISN in 
SequenceNumber, Token with 
sequence_no 

sequenceNo :3 
end 

EraseCartridge-NoCartridgeTSV in 
TsnScenarioViewpoint, Token 
with 
tsv_tsn_comm 

tsvTsnComml 
EraseCartridgeRequestTextDescription; 

tsvTsnComm2 : 
NoCartridgePresentNotificationTextDescrip 
tion; 

tsvTsnComm3 
NoCartridgeAcknowledgementTextDescription 

tsvTsnComm4 
MainScreenDisplay_lTextDescription 
end 

EraseCartridge_NoCartridgeMSV in 
MscScenarioViewpoint, Token 
with 
msv_msc_comm 

msvMscComml 
EraseCartridgeRequestMSCDescription; 

msvMscComm2 : 
NoCartridgePresentNotificationMSCDescript 
ion; 

msvMscComm3 
NoCartridgeAcknowledgementMSCDescription; 

msvMscComm4 : 
Ma inScreenDisplay_SMSCDescription 
end 

No Cartridge Present Notification Event 
Instantiation 

NoCartridgePresentNotification in 
CommunicationEvent, Token with 
interaction_type 

interactionType : "IPI 
sequence_no 

sequenceNol 
NoCartridgePresentNotificationSSN 
follows-from 

followsFrom : NoCartridgePresent 
tsn_communication_event 

tsnCommunicationEvent 
NoCartridgePresentNotificationTextDescrip 
tion 
msc_communication_event 

mscCommunicationEvent 
NoCartridgePresentNotificationMSCDescript 
ion 
end 

NoCartridgePresentNotificationTextDescrip 
tion in TsnCommunication, Token with 
communication_description 

communicationDescription 
NoCartridgePresentNotificationEventText 
end 

NoCartridgePresentNotificationEventText 
in ScenarioEventNaturalLanguageStructure, 
Token with 
mnls_composite 

mnlsCompositel : NCPNECI; 
mnlsComposite2 NCPNEC2; 
mnlsComposite3 : NCPNEC3 

mnls plain_text 
mnlsPlainTextl NCPNEPT1; 
mnlsPlainText2 : NCPNEPT2; 
mnlsPlainText3 NCPNEPT3; 
mnlsPlainText4 : NCPNEPT4 

tsn_sender_node 
tsnSenderNode MPSinstance 

tsn_receiver node 
tsnReceiverNode : Pilotinstance 

tsn_message_node 
tsnMessageNode 

NoCartridgeNotification 
end 

NCPNEC1 in MatraNLSComposite, Token with 
preceding-fragment 

precedingFragment : NCPNEPTI 
subject_node 

subjectNode : MPSlnstance 
following-fragment 

followingFragment : NCPNEC2 
end 

NCPNEC2 in MatraNLSComposite, Token with 
preceding-fragment 

precedingFragment : NCPNEPT2 
subject-node 

subjectNode : Pilotlnstance 
following_fragment 

followingFragment : NCPNEC3 
end 

NCPNEC3 in MatraNLSComposite, Token with 
preceding-fragment 

precedingFragment : NCPNEPT3 
subject_node 

subjectNode : NoCartridgeNotification 
following-fragment 

followingFragment : NCPNEPT4 
end 

NCPNEPT1 in P1ainTextNode, Token with 
mnls_text 

mnlsText : The 
end 

NCPNEPT2 in PlainTextNode, Token with 
mnls_text 

mnlsText informs the 
end 

NCPNEPT3 in PlainTextNode, Token with 
mnls_text 

mnlsText : that there is 
end 

NCPNEPT4 in PlainTextNode, Token with 
mnls_text 

mnlsText 
end 

NoCartridgeNotification in Message, Token 
with 
message_name 

messageName : No Cartridge 
Notification' 

299 



Case Study I: A Hypothetical Mission Planning System for the Hawk 100 and 200 Series Aircraft 

tsnjnsgparameter 
tsnMsgParameter 

NoCartridgeNotificationTsnParameter 
mscjnsgparameter 

mscMsgParameter 
NoCartridgeNotificationMscParameter 
end 

NoCartridgeNotificationTsnParameter in 
MessageDescription, Token with 
msg parameter 

msgParameter : no cartridge present 
in the hardware' 
end 

NoCartridgeNotificationMscParameter in 
MessageDescription, Token with 
msg-parameter 

msgParameter : "Report No Cartridge' 
end 

NoCartridgePresentNotificationMSCDescript 
ion in MscCommunication, Token with 
link name 

linkName : unspecified' 
synchronisation 

_Synchronisation "sim' 
frequency 

_Frequency : "aperiodic' 
delayed 

_Delayed : False 
msc_sender_instance 

mscSenderInstance : MPSinstance 
msc_receiver_instance 

mscReceiverlnstance : Pilotlnstance 
msc-message 

mscMessage : NoCartridgeNotification 
end 

No Cartridge Acknowledgement Event 
Instantiation 

NoCartridgeAcknowledgement in 
CommunicationEvent, Token with 
interaction_type 

interactionType : "IPI 
sequence no 

sequenceNol 
NoCartridgeAcknowledgementSSN 
follows-from 

followsFrom 
NoCartridgePresentNotification 
tsn_communication_event 

tsnCommunicationEvent 
NoCartridgeAcknowledgementTextDescription 
msc_communicationevent 

mscCommunicationEvent 
NoCartridgeAcknowledgementMSCDescription 
end 

NoCartridgeAcknowledgementTextDescription 
in TsnCommunication, Token with 
communication_description 

communicationDescription 
NoCartridgeAcknowledgementEventText 
end 

tsn_receiver_node 
tsnReceiverNode : MPSlnstance 

tsnxnessage. node 
tsnMessageNode 

AcknowledgeNoCartridge 
end 

NCAECI in MatraNLSComposite, Token with 
preceding-fragment 

precedingFragment : NCAEPT1 
subject_node 

subjectNode : Pilotlnstance 
following_fragment 

followingFragment : NCAEC2 
end 

NCAEC2 in MatraNLSComposite, Token with 
preceding-fragment 

precedingFragment : NCAEPT2 
subject_node 

subjectNode : AcknowledgeNoCartridge 
following-fragment 

followingFragment : NCAEC3 
end 

NCAEC3 in MatraNLSComposite, Token with 
preceding-fragment 

precedingFragment : NCAEPT3 
subject_node 

subjectNode : MPSlnstance 
following_fragment 

followingFragment : NCAEPT4 
end 

NCAEPT1 in PlainTextNode, Token with 
mnls_text 

mnlsText : The 
end 

NCAEPT2 in PlainTextNode, Token with 
mnls_text 

mnlsText ` sends an 
end 

NCAEPT3 in PlainTextNode, Token with 
mnls_text 

mnlsText to the 
end 

NCAEPT4 in PlainTextNode, Token with 
mnls_text 

mnlsText 
end 

AcknowledgeNoCartridge in Message, Token 
with 
message name 

messageName : `Acknowledge No 
Cartridge' 
tsn1nsg-parameter 

tsnMsgParameter 
AcknowledgeNoCartridgeTsnParameter 
mscjnsgparameter 

mscMsgParameter 
AcknowledgeNoCartridgeMscParameter 
end 

NoCartridgeAcknowledgementEventText in 
ScenarioEventNaturalLanguageStructure, 
Token with 
mnls_composite 

mnlsCompositel : NCAECI; 
mnlsComposite2 : NCAEC2; 
mnlsComposite3 : NCAEC3 

mnls_plain_text 
mnlsPlainTextl NCAEPT1; 
mnlsPlainText2 : NCAEPT2; 
mnlsPlainText3 NCAEPT3; 
mnlsPlainText4 NCAEPT4 

tsn_sender_node 
tsnSenderNode : Pilotlnstance 

AcknowledgeNoCartridgeTsnParameter in 
MessageDescription, Token with 
msg parameter 

msgParameter : `acknowledgement' 
end 

AcknowledgeNoCartridgeMSCParameter in 
MessageDescription, Token with 
msg parameter 

msgParameter : 'OK: Acknowlege No 
Cartridge' 
end 

NoCartridgeACknowledgementMSCDescription 

300 



Tracing Development & Assessment Artifacts 

in MscCommunication, Token with 
1ink_name 

linkName : "unspecified" 
synchronisation 

_Synchronisation 
"sim" 

frequency 

_Frequency : "aperiodic" 
delayed 

_Delayed : False 
msc_sender_instance 

mscSenderInstance : Pilotlnstance 
msc_receiver_instance 

mscReceiverlnstance : MPSlnstance 
msc_message 

mscMessage : AcknowledgeNoCartridge 
end 

6.2.2.2.3 Erase Cartridge - No Data on Cartridge 

0I 
1: Erase Cartfidge 

CISRI Erose CSdMpe Request Cartridgef 
in Hardware? 

3: Confirm Carlndge in Hardware 
C-emaCaa e COPT 

I: Data on Cartridge? 
_ _ am' 

CDR] Roqued C-Arm Cartridge Dd. 

+ 5: No Dataon Cartridge 
. , 

No CerbiOq Deb C[IPI 

6 Report No Data on CatAdge 
~ 

No Canndge Data Naarc. em CPP]i 

7: OK: Acknowledge No Data 
C[IPj Acknowledge No Defe 

B: Main Saeen 

M- sonn I CDPI 

Figure 6.8 - "NISC: Erase Cartridge - No Data on Cartridge' 

Instantiation of Erase Cartridge: No Data isException : True 
on Cartridge scenario-event 

scenarioEventl 
h: ý. c: eCarLi ickje_ NuU,, LaOu(',, itrich in EraseCartridgeRequest; 

: tcunario, 'luken with scenarioEvent2 : 

scenario-title NoCartridgeDataPresentNotification; 

scenarioTitle : "Erase Cartridge - No scenarioEvent3 : 
Data on Cartridge" NoCartridgeDataPresentAcknowledgement; 
is-exception scenarioEvent4 : MainScreenDisplay_l 

301 



Case Study I: A Hypothetical Mission Planning System for the Hawk 100 and 200 Series Aircraft 

includes-scenario 
includesScenariol 

CheckforCartridge_NormalPath; 
includesScenario2 

CheckCartridgeforData_NoData 
included_event 

includedEventl 
CheckforCartridgeRequest; 

includedEvent2 
ConfirmCartridgePresent; 

includedEvent3 
CheckCartridgeforDataRequest; 

includedEvent4 
NoCartridgeDataPresent 
scn_seq_no 

scnSegNo1 
Eras eCartridgeRequest_NoDataonCartridgeSSN; 

scnSeqNo2 
NoCartridgeDataPresentNotificationSSN; 

scnSeqNo3 
NoCartridgeDataPresentAcknowledgementSSN; 

scnSeqNo4 
MainScreenDisplay_l_NoDataOnCartridgeSSN 
scn_includeci seq_no 

scnIncludedSegNol 
CheckforCartridgeRequest_EC_. NID_ISN; 

scnIncludedSegNo2 
ConfirmCartridgePresent_EC-. NID_ISN; 

scnIncludedSegNo3 
CheckCartridgeforDataRequest_EC-. NID_ISN; 

scnlncludedSegNo4 
NoCartridgeDataPresent_EC_ND ISN 
tsn_viewpoint 

tsnViewpoint 
EraseCartridge_NoDataOnCartridgeTSV 
msc_viewpoint 

mscViewpoint 
EraseCartridge_NoDataOnCartridgeMSV 
end 

-- again 'included. event' may be 
instantiated using a variation of the 
rule in App. A, Pt2 (vii. c); see also App. 
C, Pt. 1 for O-Telos implementation of 
included_event classes 

EraseCartridgeRequest NoDataOnCartridgeSS 
N in SequenceNumber, Token with 
sequence_no 

sequenceNo 
end 

CheckCartridgeforDataRequest_EC_NID_ISN in 
SequenceNumber, Token with 
sequence_no 

sequenceNo :4 
end 

NoCartridgeDataPresent_EC_NID_ISN in 
SequenceNumber, Token with 
sequence_no 

sequenceNo :5 
end 

EraseCartridge_NoDataOnCartridgeTSV in 
TsnScenarioViewpoint, Token 

with 
tsv_tsn_comm 

tsvTsnComml 
EraseCartridgeRequestTextDescription; 

tsvTsnComm2 : 
NoCartridgeDataPresentNotificationTextDes 
cription; 

tsvTsnComm3 
NoCartridgeDataPresentACknowledgementText 
Description; 

tsvTsnComm4 
MainScreenDisplay_1TextDescription 
end 

EraseCartridge NODataOnCartridgeMSV in 
MscScenarioViewpoint, Token 
with 
msv_insc_comm 

msvMscComml 
ErasecartridgeRequestMSCDescription; 

msvMscComm2 : 
NoCartridgeDataPresentNotificationMSCDesc 
ription; 

msvMscComm3 
NoCartridgeDataPresentACknowledgementMSCD 
escription; 

msvMscComm4 
MainScreenDisplay_1MSCDescription 
end 

No Cartridge Data Present Notification 
Event Instantiation 

NoCartridgeDataPresentNOtification in 
CommunicationEvent, Token with 
interaction_type 

interactionType : `IPI 
NoCartridgeDataPresentNotificationSSN in 
SequenceNumber, Token with 
sequence-no 

sequenceNo :6 
end 

NoCartridgeDataPresentAcknowledgementSSN 
in SequenceNumber, Token with 
sequence-no 

SequenceNo :7 
end 

MainScreenDisplay_1-NoDataOnCartridgeSSN 
in SequenceNumber, Token with 
sequence_no 

sequenceNo :8 
end 

CheckforCartridgeRequest_EC__NID_ISN in 
SequenceNumber, Token with 
sequence_no 

sequenceNo :2 
end 

ConfirmCartridgePresent_EC_ND ISN in 
SequenceNumber, Token with 
sequence-no 

sequenceNo 3 
end 

sequence-no 
sequenceNol 

NoCartridgeDataPresentNotificationSSN 
follows-from 

followsFrom : NoCartridgeDataPresent 
tsn_communication_event 

tsnCommunicationEvent 
NoCartridgeDataPresentNotificationTextDes 
cription 
msc_communication_event 

mscCommunicationEvent 
NoCartridgeDataPresentNotificationNSCDesc 
ription 
end 

NoCartridgeDataPresentNotificationTextDes 
cription in TsnCommunication, Token with 
communication_description 

communicationDescription 
NoCartridgeDataPresentNotificationEventTe 
xt 
end 

NoCartridgeDataPresentNotificationEventTe 
xt in 
ScenarioEventNaturalLanguageStructure, 
Token with 
mnls_composite 

mnlsCompositel : NCDPNEC1; 

302 



Tracing Development & Assessment Artifacts 

mnlsComposite2 : NCDPNEC2; 
mnlsComposite3 : NCDPNEC3 

mnls p1ain_text 
mnlsPlainTextl : NCDPNEPT1; 
mnlsPlainText2 : NCDPNEPT2; 
mnlsPlainText3 NCDPNEPT3; 
mnlsPlainText4 : NCDPNEPT4 

tsn_senderode 
tsnSenderNode : MPSlnstance 

tsn receiver node 
tsnReceiverNode : Pilotlnstance 

tsnjnessage node 
tsnMessageNode 

NoCartridgeDataNotification 
end 

NCDPNEC1 in MatraNLSComposite, Token with 
preceding-fragment 

precedingFragment : NCDPNEPT1 
subject_node 

subjectNode : MPSlnstance 
following-fragment 

followingFragment : NCDPNEC2 
end 

NCDPNEC2 in MatraNLSComposite, Token with 
preceding-fragment 

precedingFragment : NCDPNEPT2 
subject-node 

subjectNode : Pilotinstance 
following_fragment 

followingFragment : NCDPNEC3 
end 

NCDPNEC3 in MatraNLSComposite, Token with 
preceding_fragment 

precedingFragment : NCDPNEPT3 
subject-node 

subjectNode 
NoCartridgeDataNotification 
following_fragment 

followingFragment : NCDPNEPT4 
end 

NCDPNEPTI in PlainTextNode, Token with 
mnls_text 

mnlsText : The 
end 

NCDPNEPT2 in PlainTextNode, Token with 
mnis_text 

mnlsText informs the 
end 

NCDPNEPT3 in PlainTextNode, Token with 
mnls_text 

mnlsText that there is 
end 

NCDPNEPT4 in PlainTextNode, Token with 
mnls_text 

mnlsText 
end 

NoCartridgeDataNotification in Message, 
Token with 
message name 

messageName : No Cartridge Data 
Notification" 
tsnjnsgparameter 

tsnMsgParameter 
NoCartridgeDataNotificationTsnParameter 
mscjnsg,. parameter 

mscMsgParameter 
NoCartridgeDataNotificationMscParameter 
end 

NoCartridgeDataNotificationTsnParameter 
in MessageDescription, Token with 
msg_parameter 

msgParameter : no data on the 

cartridge' 
end 

NoCartridgeDataNotificationMscParameter 
in MessageDescription, Token with 
msg parameter 

msgParameter : `Report No Data on 
Cartridge' 
end 

NoCartridgeDataPresentNotificationMSCDesc 
ription in MscCommunication, Token with 
link_name 

linkName : "unspecified' 
synchronisation 

_Synchronisation _ "sim' 
frequency 

_Frequency : "aperiodic' 
delayed 

_Delayed : False 
msc_sender_instance 

mscSenderInstance : MPSlnstance 
msc_receiver_instance 

mscReceiverInstance : Pilotlnstance 
msc. Jnessage 

mscMessage 
NoCartridgeDataNotification 
end 

No Cartridge Data Acknowledgment Event 
Instantiation 

NoCartridgeDataPresentAcknowledgement in 

CommunicationEvent, Token with 
interaction_type 

interactionType : "IP' 
sequence_no 

sequenceNol 
NoCartridgeDataPresentACknowledgementSSN 
follows-from 

followsFrom 
NoCartridgeDataPresentNOtification 
tsn_communication_event 

tsnCommunicationEvent 
NoCartridgeDataPresentAcknowledgementText 
Description 
msc_communication_event 

mscCommunicationEvent 
NoCartridgeDataPresentAcknowledgementMSCD 
escription 
end 

NoCartridgeDataPresentAcknowledgementText 
Description in TsnCommunication, Token 
with 
communication-description 

communicationDescription 
NoCartridgeDataPresentAcknowledgementEVen 
tText 
end 

NoCartridgeDataPresentACknowledgementEven 
tText in 
ScenarioEventNaturalLanguageStructure, 
Token with 
mnls_composite 

mnlsCompositel : NCDPAECI; 
mnlsComposite2 NCDPAEC2; 
mnlsComposite3 NCDPAEC3 

mnls plain text 
mnlsPlainTextl : NCDPAEPT1; 

mnlsPlainText2 NCDPAEPT2; 

mnlsPlainText3 : NCDPAEPT3: 

mnlsPlainText4 : NCDPAEPT4 
tsn_sender node 

tsnSenderNode : Pilotlnstance 
tsn receiver ode 

tsnReceiverNode : MPSlnstance 
tsn_message_node 

tsnNessageNode AcknowledgeNOData 
end 

303 



Case Study I :A Hypothetical Mission Planning System for the Hawk 100 and 200 Series Aircraft 

mnlsText . NCDPAEC1 in MatraNLSComposite, Token with end 
preceding-fragment 

precedingFragment : NCDPAEPTI 
subject_node 

subjectNode : Pilotlnstance 
following-fragment 

followingFragment : NCDPAEC2 
end 

NCDPAEC2 in MatraNLSComposite, Token with 
preceding-fragment 

precedingFragment : NCDPAEPT2 
subject_node 

subjectNode : AcknowledgeNoData 
following-fragment 

followingFragment : NCDPAEC3 
end 

NCDPAEC3 in MatraNLSComposite, Token with 
preceding fragment 

precedingFragment 
subject_node 

subjectNode : MPS 
following-fragment 

followingFragment 
end 

AcknowledgeNoData in Message, Token with 
message-name 

messageName : "Acknowledge No Data" 
tsn_msg_parameter 

tsnMsgParameter 
AcknowledgeNoDataTsnParameter 
msc_msg_parameter 

mscMsgParameter 
AcknowledgeNoDataMscParameter 
end 

AcknowledgeNoDataTsnParameter in 
MessageDescription, Token with 
msg parameter 

msgParameter : "acknowledgement" 
end 

AcknowledgeNoDataMscParameter in 
NCDPAEPT3 MessageDescription, Token with 

msg parameter 
Instance msgParameter : "OK: Acknowledge No 

Data" 
NCDPAEPT4 end 

NCDPAEPT1 in PlainTextNode, Token with 
mn1s_text 

mnlsText : "The 
end 

NCDPAEPT2 in PlainTextNode, Token with 
mnls_text 

mnlsText " sends an 
end 

NCDPAEPT3 in PlainTextNode, Token with 
mnls_text 

mnlsText :" to the 
end 

NCDPAEPT4 in PlainTextNode, Token with 
mnls_text 

NoCartridgeDataPresentAcknowledgementMSCD 
escription in MscCommunication, Token 
with 
link-name 

linkName : "unspecified" 
synchronisation 

_Synchronisation 
"sim" 

frequency 

_Frequency : "aperiodic" 
delayed 

_Delayed 
: False 

msc_sender_instance 
mscSenderInstance : Pilotlnstance 

msc_receiver-instance 
mscReceiverInstance : MPSlnstance 

msc_message 
mscMessage : AcknowledgeNoData 

end 

6.2.2.2.4 Erase Cartridge - Pilot Chooses Not to Erase Data 

304 



Tracing Development & Assessment Artifacts 

1. Erase Cartridge-_ 

C[SR] Ens. C. ndpe Req s 
Cartddge in Hardware? 

COR] RegrearConr cmu, p 
º 

3: Confirm Cartridge in Hardware 
co smc; maý C(ipJ: 

4: Data on Cartridge? 
C[IR] Rogoml Confirm Cartndge Data -i'' 

5: Confirm Data on Cartridge 

6: Conlin Dale on Catndge 
Certndpe Date F" d Nnfitceem COP) 

7: Cancel Erase 

C[IP[ _. Cerrcel Epee CMrwpe -- --º 

8: Main Screen 

CpPj: Main Snean r 

1' igurc 6.9 - 'NISC: Erase Cartridge - Pilot Chooses Not To Erase Data' 

Instantiation of Erase Cartridge: Pilot 
Chooses Not to Erase Data 

I"a , acc( i; tr i(kJe_Pilot Chooses NotToEraseDa 
to in Scenario, Token with 
scenario_title 

sconarioTitle "Erase Cartridge - 
Pilot Chooses Not to Erase Data" 
is-exception 

isException : True 
scenario-event 

scenarioEventl 
EraseCartridgeRequest; 

scenarioEvent2 : 
ConfirmDataPresentonCartridge; 

scenarioEvent3 
CancelEraseRequest; 

scenarioEvent4 
MainScreenDisplay_1 
includes-scenario 

includesScenariol 
(ýhec: kforCartridge_NormalPath; 

includesScenario2 : 
CheckCartridgeforData_NormalPath 
included event 

includedEventl 
Check for CartridgeRequest; 

includedEvent2 
SonLirmCartridgePresent; 

includedEvent3 
CheckC'artridgeforDataRequest; 

includedEvent4 
CorrfirmCartridgeDataPresent 
scn_seq_no 

scnSeqNol 
EraseCartridgeRequest_PilotChoosesNotTo 
EraseDataSSN; 

scnSegNo2 
ConfirmDataPresentonCartridge_PilotChoo 
sosNot10EraseDataSSN; 

scnSeqNo3 CancelEraseRequestSSN; 
scnSeqNo4 

Ma inScreenDisplay_l_PilotChoosesNotToEr 

useDataSSN 

scn_included_seq_no 
scnIncludedSegNol 

CheckforCartridgeRequest_EC_PCNTED_ISN; 
scnIncludedSegNo2 : 

ConfirmCartridgePresent_EC_PCNTED_ISN; 
scnIncludedSegNo3 : 

CheckCartridgeforDataRequest_EC_PCNTED_ 
ISN; 

scnIncludedSegNo4 
ConfirmCartridgeDataPresent_EC_PCNTED_I 
SN 
tsn_viewpoint 

tsnViewpoint 
EraseCartridge_PilotChoosesNotToEraseDa 
taTSV 
msc_viewpoint 

mscViewpoint 
EraseCartridge_PilotChoosesNotToEraseDa 
taMSV 
end 

-- again 'included event' may be 
instantiated using a variation of the 

rule in App. A, Pt. 2 (vii. c); see also 
App. C, Pt. l for 0-Telos implementation 

of included event classes 

EraseCartridgeRequest_PilotChoosesNotTo 
EraseDataSSN in SequenceNumber, Token 
with 
sequence-no 

sequenceNo 1 
end 

ConfirmDataPresentonCartridge_PilotChoo 
sesNotToEraseDataSSN in SequenceNumber, 
Token with 
sequence-no 

sequenceNo 6 

end 

CancelEraseRequestSSN in 
SequenceNumber, Token with 
sequence-no 

305 



Case Study I: A Hypothetical Mission Planning System for the Hawk 100 and 200 Series Aircraft 

sequenceNo :7 
end 

MainScreenDisplay_1_PilotChoosesNotToEr 
aseDataSSN in SequenceNumber, Token 
with 
sequence_no 

sequenceNo :8 
end 

CheckforCartridgeRequest_EC_PCNTED ISN 
in SequenceNumber, Token with 
sequence_no 

sequenceNo :2 
end 

ConfirmCartridgePresent_EC_PCNTED ISN 
in SequenceNumber, Token with 
sequence_no 

sequenceNo :3 
end 

CheckCartridgeforDataRequest_EC_PCNTED_ 
ISN in SequenceNumber, Token with 
sequence_no 

sequenceNo :4 
end 

CancelEraseRequestTextDescription in 
TsnCommunication, Token with 
communication description 

communicationDescription 
CancelEraseRequestEventText 
end 

CancelEraseRequestEventText in 
ScenarioEventNaturalLanguageStructure, 
Token with 
mnls_composite 

mnlsCompositel : CEREC1; 
mnlsComposite2 CEREC2; 
mnlsComposite3 : CEREC3 

mnls plain_text 
mnlsPlainTextl CEREPT1; 
mnlsPlainText2 CEREPT2; 
mnlsPlainText3 : CEREPT3; 
mnlsPlainText4 CEREPT4 

tsn`sender_node 
tsnSenderNode : Pilotlnstance 

tsn receiver_node 
tsnReceiverNode : MPSInstance 

tsn_message node 
tsnMessageNode 

CancelEraseCartridge 
end 

ConfirmCartridgeDataPresent_EC_PCNTED_I 
SN in SequenceNumber, Token with 
sequence_jlo 

sequenceNo :5 
end 

EraseCartridge_PilotChoosesNotToEraseDa 
taTSV in TsnScenarioViewpoint, Token 
with tsv_tsn_comm 

tsvTsnComml 
EraseCartridgeRequestTextDescription; 

tsvTsnComm2 
ConfirmDataPresentonCartridgeTextDescri 
ption; 

tsvTsnComm3 
CancelEraseRequestTextDescription; 

tsvTsnComm4 
MainScreenDisplay_1TextDescription 
end 

EraseCartridge_PilotChoosesNotToEraseDa 
taMSV in MscScenarioViewpoint, Token 
with msv msc_comm 

msvMscComml 
EraseCartridgeRequestMSCDescription; 

msvMscComm2 
ConfirmDataPresentonCartridgeMSCDescrip 
tion; 

msvMscComm3 
CancelEraseRequestMSCDescription; 

msvMscComm4 
MainScreenDisplay_1MSCDescription 
end 

Cancel Erase Request Event 
Instantiation 

CancelEraseRequest in 
CommunicationEvent, Token with 
interaction_type 

interactionType : `IP' 
sequence_no 

sequenceNol : CancelEraseRequestSSN 
follows-from 

followsFrom 
ConfirmDataPresentonCartridge 
tsn_communication_event 

tsnCommunicationEvent 
CancelEraseRequestTextDescription 
msc_communicatiot_event 

mscCommunicationEvent 
CancelEraseRequestMSCDescription 
end 

CERECI in MatraNLSComposite, Token with 
preceding-fragment 

precedingFragment : CEREPT1 

subject-node 
subjectNode : Pilotinstance 

following_fragment 
followingFragment : CEREC2 

end 

CEREC2 in MatraNLSComposite, Token with 
preceding-fragment 

precedingFragment : CEREPT2 
subject_node 

subjectNode : MPSlnstance 
following fragment 

followingFragment : CEREC3 

end 

CEREC3 in MatraNLSComposite, Token with 
preceding_fragment 

precedingFragment : CEREPT3 

subject-node 
subjectNode : CancelEraseCartridge 

following_fragment 
followingFragment : CEREPT4 

end 

CEREPT1 in PlainTextNode, Token with 
mnls_text 

mnlsText : The 
end 

CEREPT2 in PlainTextNode, Token with 
mnls_text 

mnlsText " indicates to the 
end 

CEREPT3 in PlainTextNode, Token with 
mnls_text 

mnlsText " that he wishes to 
end 

CEREPT4 in PlainTextNode, Token with 
mnls_text 

mnlsText . 
end 

CancelEraseCartridge in Message, Token 
with 
message_name 

messageName : "Cancel Erase 
cartridge' 
tsn_msg_parameter 

306 



Tracing Development & Assessment Artifacts 

t mMsgParameter : 
C. 111c7e 1 Er aseCartridgeTsnParameter 
msc_msg_parameter 

mscMsgParameter 
Cance1EraseCartridgeMscParameter 
end 

CancelEraseCartridgeTsnParameter in 
MessageDescription, Token with 
msq parameter 

msgParameter : "cancel the Erase 
cart-ridge request" 
end 

Cancel EraseCartridgeMscParameter in 
MessageDescription, Token with 
msq_parameter 

msgParameter : "Cancel Erase" 
end 

CancelEraseRequestMSCDescription in 
MscCommunication, Token with 
link-name 

linkName : "unspecified" 
synchronisation 

_Synchronisation _ "sim" 
frequency 

_Frequency : "aperiodic" 
delayed 

Delayed : False 
msc_sender_instance 

mscSenderInstance : Pilotlnstance 
msc_receiver_instance 

mscReceiverlnstance : MPSlnstance 
msc_message 

mscMessage : CancelEraseCartridge 
end 

6.2.2.2.5 Retrieve from Cartridge - Normal Path (Timing Fragment) 

I rinn Retrieve from Cartridge (Normal Path), we consider the following additional scenario fragment to 

drinunstrate instantiation of tinier-set, time-out and internal action events (the full logical level 

rcl)rescntation appears in Appendix C, Part Two). 

11. T The [,;,,,,., e, MPS] sets the [, ., DataTimer] to [onratae 10 seconds). 

12. C[SP] The [,,,, MPS] informs the [,, Pilot] that [eý4type_1 data has been retrieved : Type-1 Retrieved Notification]. 

13. T The , neoýtMPSJ [tunerDataTimer] times-out. 

14. A The [b,,, t, cr MPS] [ac, stores typet data ; store Type_ .1 Data]. 

MP ri eII ri r 

Icnalarým. rýwfiaýoýas) 

'. 12: Type) Removed 
rypr rMewed lokpur C(SPI 1: 1 DMA- 

4: si,. Type 1 
Oala 

Figure 6.10 - 'Retrieve from Cartridge - Normal Path (Timing Fragment)' 

Set Data Timer (Event N 11) Instantiation 

: iý1I 
. 
t, i'1'imerl in TimingEvent, Token wit. li 

ming_descIiption 
timingDescription 

SetDataTimer1EventText 
end 

tt: n timing event 
t:; wrimin9Event 

s ,i i). it . r'Pimer1't'extDescription 
timin9_event 

msrTiminq Event 
SetDataTimerIMSCDescription 
end 

Set I)taTimerl'PextDescription in 
'I'sn'1'iming, Token with 

SetDataTimerlEventText in 
ScenarioEventNaturalLanguageStructure, 
Token with 
mnls_composite 

mnlsCompositel SDTIECI; 

mnlsComposite2 : SDTIEC2; 

mnlsComposite3 : SDTIEC3 

mnls_plain_text 
mnlsPlainTextl : SDTIEPT1; 

mnlsPlainText2 SDTIEPT2; 

307 



Case Study I: A Hypothetical Mission Planning System for the Hawk 100 and 200 Series Aircraft 

mnlsPlainText3 : SDTIEPT3; 
mnlsPlainText4 : SDTIEPT4 

tsn_timer_set_node 
tsnTimerSetNode : MPSlnstance 

tsn. timer_instance_node 
tsnTimerInstanceNode : DataTimer 

tsn timer_duration 
tsnTimerDuration 

SetDataTimerlDuration 
end 

end 

Type-1 (Data) Retrieved Notification 
(Event # 12) Instantiation 

RetrievedTypelNotification in 
CommunicationEvent, Token with 
interaction-type 

interactionType : "SP" 

SDTIEC1 in MatraNLSComposite, Token with 
preceding_fragment 

precedingFragment : SDTIEPT1 
subject_node 

subjectNode : MPSlnstance 
following_fragment 

followingFragment : SDTIEC2 
end 

SDTIEC2 in MatrarLSComposite, Token with 
preceding-fragment 

precedingFragment : SDTIEPT2 
subject_node 

subjectNode : DataTimer 
following-fragment 

followingFragment : SDTIEC3 
end 

SDTIEC3 in MatraNLSComposite, Token with 
preceding-fragment 

precedingFragment : SDTIEPT3 
subject_node 

subjectNode : SetDataTimeriDuration 
following_fragment 

followingFragment : SDTIEPT4 
end 

SDTIEPTI in PlainTextNode, Token with 
mnls_text 

mnlsText : The 
end 

SDTIEPT2 in P1ainTextNode, Token with 
mnls_text 

mnlsText : sets the 
end 

SDTIEPT3 in PlainTextNode, Token with 
mnls_text 

mnlsText : to 
end 

SDTIEPT4 in PlainTextNode, Token with 
mnls_text 

mnlsText : 
end 

DataTimer in Timer, Token with 
timer-name 

timerName : "DataTimer' 
timer-duration 

timerDurationl 
SetDataTimerlDuration 
end 

SetDataTimerlDuration in TimerDuration, 
Token with 
duration 

_Duration : `10 Seconds, 
end 

SetDataTimerlMSCDescription in MscTiming, 
Token with 
msc_timer_set_instance 

msCTimerSetInstance : MPSlnstance 
msc_timer_instance 

mscTimerlnstance DataTimer 
msc_timer_duration 

mscTimerDuration 
SetDataTimerlDuration 

tsn_communication_event 
tsnCommunicationEvent 

RetrievedTypelNotificationTextDescription 
msc_communication_event 

mscCommunicationEvent 
RetrievedTypelNotificationMSCDescription 
end 

RetrievedTypelNotificationTextDescription 
in TsnCommunication, Token with 
communication_description 

communicationDescription 
RetrievedTypelNotificationEventText 
end 

RetrievedTypelNotificationEventText in 
ScenarioEventNaturalLanguageStructure, 
Token with 
mnls_composite 

mnlsCompositel : RTiNEC1; 
mnlsComposite2 RTINEC2; 
mnlsComposite3 : RTINEC3 

mnls. plain_text 
mnlsPlainTextl RTINEPT1; 
mnlsPlainText2 RTINEPT2; 
mnlsPlainText3 RTiNEPT3; 
mnlsPlainText4 : RTINEPT4 

tsn_sender_node 
tsnSenderNode : MPSlnstance 

tsn_receiver_node 
tsnReceiverNode : Pilotlnstance 

tsnjnessage_node 
tsnMessageNode 

Type_SRetrievedNotification 
end 

RTINECI in MatraNLSComposite, Token with 
preceding-fragment 

precedingFragment : RTINEPTI 
subject_node 

subjectNode : MPSlnstance 
following-fragment 

followingFragment : RTINEC2 
end 

RTINEC2 in MatraNLSComposite, Token with 
preceding-fragment 

precedingFragment : RTINEPT2 
subject-node 

subjectNode : Pilotlnstance 
following-fragment 

followingFragment : RTINEC3 
end 

RTINEC3 in MatraNLSComposite, Token with 
preceding-fragment 

precedingFragment : RTINEPT3 
subject. -node subjectNode 
Type_iRetrievedNotification 
following-fragment 

followingFragment : RTINEPT4 
end 

RTINEPT1 in PlainTextNode, Token with 
mnls_text 

mnlsText : "The " 
end 

RTINEPT2 in PlainTextNode, Token with 

308 



Tracing Development & Assessment Artifacts 

mnls_text 
mnlsText : informs the 

end 

RTINEPT3 in PlainTextNode, Token with 
mnls_text 

mnlsText : that 
end 

RTINEPT4 in PlainTextNode, Token with 
mnls_text 

mnlsText 
end 

Type_SRetrievedNotification in Message, 
Token with 
message_name 

messageName : "Type_1 Retrieved 
Notification' 
tsn_nsgparameter 

tsnMsgParameter 
RetrievedTypelNotificationTsnParameter 
msc_msg_parameter 

mscMsgParameter 
RetrievedTypelNotificationMscParameter 
end 

RetrievedTypelNotificationTsnParameter in 
MessageDescription, Token with 
msg-parameter 

msgParameter : "type_1 data has been 
retrieved' 
end 

RetrievedTypelNotificationMscParameter in 
MessageDescription, Token with 
msgparameter 

msgParameter : "Type-1 Retrieved' 
end 

RetrievedTypelNotificationMSCDescription 
in MscCommunication, Token with 
link_name 

linkName : unspecified" 
synchronisation 

_Synchronisation _ "sim" 
frequency 

_Frequency : "aperiodic' 
delayed 

_Delayed : False 
msc_sender_instance 

mscSenderInstance : MPSlnstance 
msc_receiver_instance 

mscReceiverInstance : Pilotlnstance 
msc. jnessage 

mscMessage 
Type_1RetrievedNotification 
end 

Time-out Data Timer (Event M 13) 
Instantiation 

TimeoutDataTimerl in TimingEvent, Token 
with 

tsn_timing_event 
tsnTimingEvent 

TimeoutDataTimerlTextDescription 
msc_timing_event 

mscTimingEvent 
TimeoutDataTimerlMSCDescription 
end 

TimeoutDataTimerlTextDescription in 
TsnTiming, Token with 
timing_description 

timingDescription 
TimeoutDataTimer1EventText 
end 

TimeoutDataTimerlEventText in 
ScenarioEventNaturalLanguageStructure, 
Token with 
mnls_composite 

mnlsCompositel : TODTIECI; 
mnlsComposite2 TODTIEC2 

mnls, plain text 
mnlsPlainTextl : TODTIEPT1; 
mnlsPlainText2 TODTIEPT2 

mnls_null 
mnlsNull : TODT1ENu111 

tsn ost_on_timeout_node 
tsnHostOnTimeoutNode : MPSlnstance 

tsn_timer_instance_node 
tsnTimerInstanceNode : DataTimer 

end 

TODTIEC1 in MatraNLSComposite, Token with 
preceding-fragment 

precedingFragment : TODTIEPTI 
subject_node 

subjectNode : MPSlnstance 
following-fragment 

followingFragment : TODTIEC2 
end 

TODTIEC2 in MatraNLSComposite, Token with 
preceding-fragment 

precedingFragment : TODT1ENu111 
subject_node 

subjectNode : DataTimer 
following_fragment 

followingFragment : TODTIEPT2 
end 

TODTIEPT1 in PlainTextNode, Token with 
mnls_text 

mnlsText : The 
end 

TODTIEPT2 in P1ainTextNode, Token with 
mnls_text 

mnlsText : times-out. " 
end 

TimeoutDataTimerlMSCDescription in 
MscTiming, Token with 
msc_host_on_timeout_instance 

mscHostOnTimeoutInstance 
MPSlnstance 
msc_timer_instance 

mscTimerlnstance : DataTimer 
end 

Storage Type_1 Data (Event Y 14) 
Inotantiation 

StorageTypel in InternalActionEvent, 
Token with 

tsn_action-event 
tsnActionEvent 

StorageTypelTextDescription 
msc_action_event 

mscActionEvent 
StorageTypelMSCDescription 
end 

StorageTypelTextDescription in TsnAction, 
Token with 
action_description 

actionDescription 
StorageTypelEventText 
end 

StorageTypelEventText in 
ScenarioEventNatura1LanguageStructure, 
Token with 
mnls_composite 

mnlsCompositel : ST1EC1; 
mnlsComposite2 : ST1EC2 

309 



Case Study I :A Hypothetical Mission Planning System for the Hawk 100 and 200 Series Aircraft 

mnls_plain_text 
mnlsPlainTextl STIEPTI; 
mnlsPlainText2 : STIEPT2 

mnls_null 
mnlsNull : ST1ENu111 

tsn_sdr_rcr_node 
tsnSdrRcrNode : MPSlnstance 

tsn_action node 
tsnActionNode : StoreType_1Data 

end 

end 
mnlsText : The " 

ST1EC1 in MatraNLSComposite, Token with 
preceding-fragment 

precedingFragment : STIEPT1 
subject_node 

subjectNode : MPSlnstance 
following-fragment 

followingFragment : ST1EC2 
end 

ST1EC2 in MatraNLSComposite, Token with 
preceding-fragment 

precedingFragment : ST1ENu111 
subject-node 

subjectNode : StoreType_iData 
following-fragment 

followingFragment : STIEPT2 
end 

STIEPT1 in P1ainTextNode, Token with 
mnls_text 

STIEPT2 in P1ainTextNode, Token with 
mnls_text 

mnlsText 
end 

StoreType_1Data in Action, Token with 
action_name 

actionName : "Store Type-1 Data" 
tsn_act_parameter 

tsnActParameter 
StoreTypelTsnParameter 
end 

StoreTypelTsnParameter in 
MessageDescription, Token with 
action-parameter 

actionParameter : "stores type-1 
data" 
end 

StorageTypelMSCDescription in MscAction, 
Token with 
msc_sdr_rcr_instance 

mscSdrRcrInstance : MPSlnstance 
msc_system_action 

mscSystemAction : StoreType_iData 

end 

6.2.2.2.6 Choose Mission and Aircraft (Event Group Fragment) 

Finally, from Choose Mission and Aircraft (New Mission from Open Missions), we consider the following 

fragment to demonstrate elements for event grouping and upper and lower hounds on iteration. 

I ITERATION: Lower Bound =1: Upper Bound = card data types Mission Piano 

11. C[IR] The [sdr MPS] asks the[,,, Mission Plan] to [, q supply a data item. Reqmt Data item]. 

12. C[IP] The [sdr Mission Plan] supplies the [, ýgdata item for the selected Mission and Aircraft Missbnanc eam ne�] to the 

[. MPS]. 

13. A The [1d, 11. MPS] [., stores the data item for the selected Mission and Aircraft : Store Selected Missionaac Data]. 

Pilo MPS JMission Plan 

ue__ am uaI, rypaz Mswn Pianp 11 Request Data Item 
C[IRI 

_ 
12: Data Item to, Selectbn 

MissorSAC vateIrom IP]I 

13. Store Selected 
Missen and Aircraft 

Data 

Figure 6.11 - `Choose Mission and Aircraft - New Mission from Open Missions 

(Event Group Fragment)' 

310 



Tracing Development & Assessment Artifacts 

Data Item Request (Event N 11) 
Instantiation 

DataltemRequest in CommunicationEvent, 
Token with 
interaction_type 

interactionType : "IR" 

tsn_communication_event 
tsnCommunicationEvent 

DataItemRequestTextDescription 
msc_communication_event 

mscCommunicationEvent 
DataItemRequestMSCDescription 
end 

DataltemRequestTextDescription in 
TsnCommunication, Token with 
communication_description 

communicationDescription 
DataItemRequestEventText 
end 

DataltemRequestEventText in 
ScenarioEventNaturalLanguageStructure, 
Token with 
mnls_composite 

mnlsCompositel : DIRECT; 
mnlsComposite2 : DIREC2; 
mnlsComposite3 DIREC3 

mnls plain_text 
mnlsPlainTextl DIREPTI; 
mnlsPlainText2 : DIREPT2; 
mnlsPlainText3 DIREPT3; 
mnlsPlainText4 : DIREPT4 

tsn, 
_, sender_node 
tsnSenderNode : MPSlnstance 

tsn_receiver node 
tsnReceiverNode MissionPlanlnstance 

tsn_message_node 
tsnMessageNode : RequestDataltem 

end 

DIREC1 in MatraNLSComposite, Token with 
preceding-fragment 

precedingFragment : DIREPT1 
subject_node 

subjectNode : MPSlnstance 
following_fragment 

followingFragment : DIREC2 
end 

DIREC2 in MatraNLSComposite, Token with 
preceding_fragment 

precedingFragment : DIREPT2 
subject_node 

subjectNode : MissionPlanlnstance 
following-fragment 

followingFragment : DIREC3 
end 

DIREC3 in MatraNLSComposite, Token with 
preceding_fragment 

precedingFragment : DIREPT3 
subject_node 

subjectNode : RequestDataltem 
following_fragment 

followingFragment : DIREPT4 
end 

DIREPT1 in PlainTextNode, Token with 
mnls_text 

mnlsText : "The 
end 

DIREPT2 in PlainTextNode, Token with 
mnls_text 

mnlsText asks the 

end 

DIREPT3 in PlainTextNode, Token with 
mnls_text 

mnlsText " to 
end 

DIREPT4 in PlainTextNode, Token with 
mnls_text 

mnlsText : 
end 

RequestDataltem in Message, Token 
with 
message-name 

messageName : `Request Data Item' 
tsn_msg_parameter 

tsnMsgParameter 
RequestDataItemTsnParameter 
end 

RequestDataltemTsnParameter in 
MessageDescription, Token with 
msg parameter 

msgParameter : "supply a data item' 
end 

DataltemRequestMSCDescription in 
MscCommunication, Token with 
link name 

linkName : "unspecified' 
synchronisation 

_Synchronisation _ 'sim' 
frequency 

_Frequency : 'aperiodic' 
delayed 

-Delayed : False 
msc_sender_instance 

mscSenderInstance : MPSlnstance 
msc_receiver_instance 

mscReceiverInstance 
MissionPlanlnstance 
mscjnessage 

mscMessage : RequestDataltem 
end 

Mission And Aircraft Data Item Provision 
(Event #12) Instantiation 

MACDataItemProvision in 
CommunicationEvent, Token with 
interaction_type 

interactionType : "IP' 

tsn_communication_event 
tsnCommunicationEvent 

MACDataItemProvisionTextDescription 
msc_communication_event 

mscCommunicationEvent 
MACDataitemProvisionMSCDescription 
end 

MACDataItemProvisionTextDescription in 
TsnCommunication, Token with 
communication-description 

communicationDescription 
MACDataItemProvisionEventText 
end 

MACDataItemProvisionEventText in 
ScenarioEventNaturalLanguageStructure, 
Token with 
mnls_composite 

mnlsCompositel MACDIPEC1; 
mnlsComposite2 MACDIPEC2; 
mnlsComposite3 MACDIPEC3 

mnls plain_text 

311 



Case Study I :A Hypothetical Mission Planning System for the Hawk 100 and 200 Series Aircraft 

mnlsPlainTextl : MACDIPEPT1; 
mnlsPlainText2 : MACDIPEPT2; 
mnlsPlainText3 : MACDIPEPT3; 
mnlsPlainText4 : MACDIPEPT4 

tsn sender_node 
tsnSenderNode : MissionPlanlnstance 

tsn_receiver_node 
tsnReceiverNode MPSlrnstance 

tsn message node 
tsnMessageNode : Miss ion&ACDataItem 

end 

MACDIPEC1 in MatraNLSComposite, Token 
with 
preceding_fragment 

precedingFragment : MACDIPEPT1 
subject_node 

subjectNode : MissionPlanlnstance 
following_fragment 

followingFragment : MACDIPEC2 
end 

MACDIPEC2 in MatraNLSComposite, Token 
with 
preceding_fragment 

precedingFragment : MACDIPEPT2 
subject_node 

subjectNode : Mission&ACDataltem 
following-fragment 

followingFragment : MACDIPEC3 
end 

Mission&ACDataItemMscParameter in 
MessageDescription, Token with 
msg parameter 

msgParameter : Data Item for 
Selection' 
end 

MACDataItemProvisionMSCDescription in 
MscCommunication, Token with 
link_name 

linkName : "unspecified' 
synchronisation 

_Synchronisation 
"sim' 

frequency 

_Frequency : "aperiodic' 
delayed 

_Delayed : False 
msc_sender_instance 

mscSenderlnstance 
MissionPlaninstance 
msc_receiver_instance 

mscReceiverInstance : MPSlnstance 
mscjnessage 

mscMessage : Mission&ACDataltem 
end 

Storage Mietion and Aircraft Data (Event 
#13) Instantiation 

StorageMAC in InternalActionEvent, Token 
with 

MACDIPEC3 in MatraNLSComposite, Token 
with 
preceding-fragment 

precedingFragment : MACDIPEPT3 
subject_node 

subjectNode : MPSlnstance 
following-fragment 

followingFragment : MACDIPEPT4 
end 

MACDIPEPT1 in PlainTextNode, Token with 
mnls_text 

mnlsText : The 
end 

MACDIPEPT2 in PlainTextNode, Token with 
mnls_text 

mnlsText : supplies the 
end 

MACDIPEPT3 in PlainTextNode, Token with 
mnls_text 

mnlsText : to the 
end 

MACDIPEPT4 in PlainTextNode, Token with 
mnls_text 

mnlsText : 
end 

Mission&ACDataltem in Message, Token 
with 
message-name 

messageName : 'Mission&AC Data Item' 
tsnjnsg. arameter 

tsnMsgParameter 
Mission&ACDataltemTsnParameter 
mscjnsgparameter 

mscMsgParameter 
Mission&ACDataltemMscParameter 
end 

Mission&ACDataItemTsnParameter in 
MessageDescription, Token with 
msgparameter 

msgParameter : data item for the 
selected Mission and Aircraft' 
end 

tsn_action_event 
tsnActionEvent 

StorageMACTextDescription 

msc_action_event 
mscActionEvent 

StorageMACMSCDescription 
end 

StorageMACTextDescription in TsnAction, 
Token with 
actiondescription 

actionDescription 
StorageMACEventText 
end 

StorageMACEventText in 

ScenarioEventNaturalLanguageStructure, 
Token with 
mnls_composite 

mnlsCompositel : SMACEC1: 
mnlsComposite2 SMACEC2 

mnls_plain_text 
mnlsPlainTextl : SMACEPT1i 

mnlsPlainText2 SMACEPT2 

mnls_null 
mnlsNull : SMACENu111 

tsn__sdr_rcr_node 
tsnSdrRcrNode : MPSlnstance 

tsn_action_node 
tsnActionNode 

StoreSelectedMission&ACData 
end 

SMACEC1 in MatraNLSComposite, Token 
with 
preceding_fragment 

precedingFragment : SMACEPT1 
subject_node 

subjectNode : MPS2nstance 
following_fragment 

followingFragment : SMACEC2 
end 

SMACEC2 in MatraNLSComposite, Token 
with 
preceding-fragment 

precedingFragment : SMACENU111 
subject_node 

312 



Tracing Development & Assessment Artifacts 

subjectNode : 
StoreSelectedMission&ACData 
following-fragment 

followingFragment : SMACEPT2 
end 

SMACEPTI in PlainTextNode, Token with 
mnls_text 

mnlsText : The 
end 

SMACEPT2 in PlainTextNode, Token with 
mnls_text 

mnlsText 
end 

actionParameter : 
"Store Selected Mission and Aircraft 
Data' 
end 

StorageMACMSCDescription in MscAction, 
Token 
with 
msc_sdr_rcr_instance 

mscSdrRcrInstance : MPSlnstance 
msc_system_action 

mscSystemAction 
StoreSelectedMission&ACData 
end 

StoreSelectedmission&ACData in Action, 
Token 
with 
action_name 

actionName : "Store Selected 
Mission&AC Data" 
tsn_act. parameter 

tsnActParameter 
StoreSelectedmission&ACDataTsnParameter 
msc_actparameter 

mscActParameter 
StoreSelectedMission&ACDataMscParameter 
end 

StoreSelectedMission&ACDataTsnParameter 
in MessageDescription, Token 
with 
action-parameter 

actionParameter 
'stores the data item for the selected 
Mission and Aircraft' 
end 

StoreSelectedMission&ACDataMscParameter 
in MessageDescription, Token 
with 
action-parameter 

6.2.3 Trace Relations 

Grouping for Events 11-13 

Events11Tol3Group in EventGroup, Token 
with 
group_event 

groupEventl : DataltemRequest; 
groupEvent2 : MACDataItemProvision; 
groupEvent3 : StorageMAC 

grp_lb 
grpLb Events11To13GroupLB 

grp_ub 
grpUb : EventsllTol3GroupUB 

end 

EventsllTo13GroupLB in LowerBound, Token 
with 
lower_bound 

lowerBound : "1' 
end 

EventsllTol3GroupUB 
with 
upper_bound 

upperBound 
"card data types 

end 

in UpperBound, Token 

Mission Plano' 

This subsection will demonstrate how, given the meta-model representations in subsection 6.2.2.1.1 and 
in subsections 6.2.2.2.1 through 6.2.2.2.6, the MATrA workspace is able to support traceability of user 

centred requirements artifacts within (in this case) the intra-micro horizontal dimension. In doing so, we 
instantiate a subset of trace relations introduced in subsection 3.3.6.3.2. These relations are illustrated at 

a logical level in figure 6.12 (and summarised in table 6.2). 

It should be noted that the featured examples are fairly arbitrary. Indeed, as Chapter Three indicated, a 

thorough investigation (combining literature review and practitioner consultation) is deemed necessary 

to develop a comprehensive set of associations for linking different artifact types used throughout the 

aerospace industry; this is earmarked as a future work item in subsection 7.4.3. The investigation would 

need to consider a wide variety of notations and techniques as potential source and targets of these 

associations - including requirements, design, implementation, safety assessment and product 

management. Those for requirements could potentially build on the taxonomy proposed by project 

NATURE (Pohl, 1996) referred to in subsection 3.2.1. 

313 



Case Study I :A Hypothetical Mission Planning System for the Hawk 100 and 200 Series Aircraft 

is-a-role-of 

- path-through 

Scenario Name: Erase Cartridge - Normal Path 

I CJSRJ Th ýPnol elects the [., o Erase Cartridge option c-ýn, a.. J on the [. MPSI Man Screen. 

2. C[ IR] The (,,, MPS[ asks the [� Cartridge] whether there [ý Is a cartridge present in the hardwares wa. n ns er c. , - 

3. C]IPJ The[- Cartridge] responds to the ], o MPS[ that [., there is a carthage present in the hardware car. ma ). 

4. C]IR) The [� MPS[ asks the [� Cartridge] whether mere [is data on the cartridge? wo. - -r.,,.. w. r-J. 

5 C[ IP] The [,,, Carthage[ responds lo the ]-MPS[ that [,, there is data on the Cartridge ----; 

mob. C[IPI The lý, MPS rrrf rms the [., Pdot) thet ý,, ý mere re data on the Cartrbge c, maw u, o raw w. +a�oýlý 

y Qr1s 
tij l: 'v j ". z[I w rY re t3 Crüaw A Cew *Sa3e; »w !i . VLUn'rom re: 611^j Mrýn : ue: 

A 

C[IRI The [n MPS) displa}'s the,, open Missions] for the [-Pilot] to select fror 

illustrated-by 

Figure 6.12 - 'Exemplar Inh a-Alicro Horizontal Traceability Relations' 

SOURCE RELATION TARGET 
TYPE 

Model Element Model Element 

Interaction Model 'Erase Cartridge' Path-Through Use Case Model 'Erase Cartridge' 
(Scenario) (Use Case) 

Interaction Model Pilot (message Is-A-Role-Of Use Case Model Pilot (Actor) 

sender) Instance 
('Erase Cartridge '- 
Event #1) 

Interaction Model 'Erase Cartridge' Illustrated-By Interaction Model 'Erase Cartridge' 
(Event #6 - Textual (Event #6 - MSC 
View) View) 

Interaction Model 'New Mission from Has-Common- Interaction Model 'Erase Cartridge' 

Open Missions' Instance (Scenario) 
(Scenario) 

Table 6.2 - `Summary of Traceability Relations' (from figure 6.12) 

314 



Tracing Development & Assessment Artifacts 

6.2.3.1 Instantiation of Trace Relations 
We now demonstrate application of these relations by instantiating the appropriate O-Telos base classes 
introduced in Chapter Three (subsection 3.3.6.3.2). 

Our first example populates the PathThrough relation; its source (fromEntity) is a textual scenario for 
`Erase Cartridge - Normal Path2' (EraseCartridge_NormatPathTSV) and its destination (toEntity), the Erase 
Cartridge (EraseCartridge) use case of the Erase Cartridge use case model (EraseCartridgeModel). 

PathThroughBy01 in PathThrough, Token with 
from-entity 

fromEntity : EraseCartridge_IormalPathTSV 
to_entity 

toEntity : EraseCartridge 

end 

Example two populates IsARoleOf 
, 

in this case between the Pilot (sender instance) of a textual scenario3 
and the cognate Actor element from the Erase Cartridge use case model (EraseCartridgeModel). 

IsARoleOf01 in IsARoleQf, Token with 
from_entity 

fromEntity : Pilotlnstance 
to_entity 

toEntity : Pilot 
end 

Our third example populates the IllustratedBy association. This particular relationship exists between 

corresponding textual and sequence diagram representations of the same event. 

IllustratedByOl in IllustratedBy, Token with 
from_entity 

fromEntity : ConfirmDataPresentonCartridgeTextDescription 
to_entity 

toEntity : ConfirmDataPresentonCartridgeMSCDescription 
end 

Our final example populates the HasCommonInstance association linking two scenarios, 'Erase Cartridge 

- Normal Path' and 'New Mission from Open Missions', both of which include Pilot and MPS instances 

(one such event for the 'New Mission from Open Missions' scenario is highlighted in figure 6.12). 

HasCommonlnstance0l in HasCommonlnstance, Token with 
from-entity 

fromEntity : EraseCartridge, NormalPath 
to_entity 

toEntity : NewMissionfromOpenNissions 
end 

Note the source element of HasCommonlnstance0l, EraseCartridge_NormalPath, comes from instantiation 

of the Interaction View in 6.2.2.2.1 (EraseCartridgeModel), while its target NewMissionfrom0pen Missions is 

introduced purely to support the example. 

2A corresponding PathThrough association would also exist between the MSC (EraseCartridge_NormalPathMSV) representation 
and EraseCartridge. 
3 Recall that textual and MSC scenario representations share common Instance objects such that figure 6.12 could show a similar 
logical-level association from the corresponding Sequence Diagram element. 

315 



Case Study I: A Hypothetical Mission Planning System for the Hawk 100 and 200 Series Aircraft 

6.2.4 Summary 

This case study has demonstrated application of the User Centred Requirements Structure introduced in 

section 4.3. In doing so, a commercial specification supplied by BAE SYSTEMS was used to populate 

an O-Telos implementation of (UCRS) base classes. We then illustrated how constituent models and 

elements of the structure may be linked using various trace relations. The results of this case study will 

be considered as part of our overall thesis evaluation in Chapter Seven. 

316 



Tracing Development & Assessment Artifacts 

6.3 Case Study II :A Brake System Control Unit for a Wheel Braking 
System of a Hypothetical Aircraft 

']'his section presents a case study based on extracts from a contiguous example in ARP 4761 

(Appendix L). We use a subset of artifacts featured in that example describing assessment of a 

hypothetical aircraft - the S 18 - to demonstrate aspects of the Fault Tree and Failure Modes and Effects 

Analysis structures introduced in sections 5.2 and 5.3. We also show how elements of these structures 

may he linked using trace relations, again based on the approach shown in 3.3.6.3.2. 

6.3.1 Scope of Case Study 

TI IC case study concentnites on a subset of activities from the ARP 4761 assessment process and in 

doing Su, on one particular component (item) of the S IS aircraft. Specifically, we consider 

identification and verification of quantitative (safety) requirements for the Brake System Control Unit 

(BSCU) computer, a sub-module of the SIR Wheel Braking System (WBS). Requirements 

dent it cat ion forms hart of Preliminary System Safety Assessment (PSSA) of the BSCU and 

verification, part of System Safety Assessment (SSA). This is placed in context by the following 

diagram fragment (figure 6.13); note readers are referred hack to figure 1.6 in subsection 1.4.6.2.2 for 

the Complete diagram and a description of the ARP 4761 assessment process. 

Item I Item 
_T 

Requirement Design Item Verification 
Identification Implementation 

From FHA and System PSSA To System and Aircraft Verification 

PSSA SSA 

1'ýýiulxliN HýxIW'IS . ... 

Prelim FTA ýd 

ý"" 

FTA S, Wy Wlucevex In FM EA, Updat 

1fm,,, Hard- 
n e,. inyl. vTn. nM FMEA 
11WI. 111, ware Wine PIQý"Ci 

1 fllýý ,. Level fia6 

nmhlb tili, ulýll 
ýI 

Soft- rnllue Enece 

sWLav, 4 llgI 
Verification 

swLadware 11111, according to 
other standards, 

Focus of Case Study including 

--- -- 101 DO-178b (SW) 

Figure 6.13 - `ARI' Assessment Process (Partial)' 

6.3.2 Overview of S18 Wheel Braking System and Brake System Control Unit 

The Wheel Braking System is installed on the main landing gears, its purpose to decelerate aircraft on 

the ground (without the tyres skidding) during taxi and landing phases and in the event of rcjectcd take- 

ulI. Braking is automatically performed on landing, or when manually activated by the pilot. 

317 



Case Study 11: A Brake System Control Unit for a Wheel Braking System of a Hypothetical Aircraft 

Each wheel brake assembly is operated by two independent sets of hydraulic pistons. One set operates 
from the Green hydraulic supply and is used in Normal Braking mode. The Alternate mode which uses 
the Blue hydraulic supply is on standby and is selected automatically when the Normal system fails. An 

Emergency braking mode is also available, although designers take the decision that all safety 

requirements shall be met without regard to this system. In the Normal mode, all wheels are individually 

braked from their own servo valves according to commands received from one of two Braking System 

Control Unit computers - normally BSCUI or, if system I reports a failure, BSCU2. 

Failure conditions relating to this function include `Loss of all Wheel Braking' (shown by the fault tree 
in figure 5.1, subsection 5.2.2.1) and `Inadvertent Wheel Braking' - the focus of this case study. Such 

events are established by a (Braking System) Functional Hazard Assessment (FHA), with budget 

probabilities allocated according to severity. These requirements provide inputs to the (Braking 

System) PSSA; to determine causality, catastrophic and hazardous conditions form top events of fault 

trees (an example of this relationship is shown at aircraft level in figure 1.5 of Chapter One). In turn, 

basic events of the system PSSA trees derive requirements that feed into an item level PSSA. This is the 

point at which we join the example from ARP 4761. 

6.3.3 Preliminary System Safety Assessment - Brake System Control Unit 

For the purpose of this case study, we assume a fault tree (not shown) developed as part of the Wheel 

Braking System PSSA has a basic event imposing the following item level requirement over the 

component BSCU: - 

0 The probability of'BSCU commands braking in absence of braking commands and causes 

inadvertent braking' shall be less that 2.5E-9 per flight. 

Preliminary System Safety Assessment of the BSCU subsequently serves to complete safety 

requirements for this particular component. These include quantitative requirements, again derived 

using fault trees - one of which will now be used to demonstrate instantiation of 'preliminary' elements 

of the Fault Tree Analysis structure. 

6.3.3.1 Background on BSCU Design 
The BSCU design consists of two independent systems (referred to previously as BSCUI and BSCU2). 

Both generate necessary voltages from their respective power supplies; out of specification voltages are 

detected within each system by a power supply monitor (described in 6.3.4.1). 

According to the design proposal considered here, each system will also contain a command and 

monitor channel which computes braking commands based on brake pedal inputs. The commands 

generated by each channel are compared, with a failure reported when a disparity is detected. 

Results of the power supply monitor and comparator are then provided to a system validity monitor; a 

failure reported by either BSCU causes that system to disable its outputs and set the system validity 

318 



Tracing Development & Assessment Artifacts 

monitor to invalid. Each system validity monitor is provided to an overall BSCU validity monitor; 
failure of both BSCU1 and BSCU2 causes the selector valve to switch to the Alternate Braking System. 

In normal operation, BSCUI provides the braking commands. When a failure is reported (via its system 
validity monitor), the output of BSCU2 (if valid) is switched in to allow braking. If system 2 also fails, 
all BSCU outputs are disabled and the BSCU validity monitor set to invalid. 

6.3.3.2 Fault Tree Analysis - Preliminary 
The fault tree in figures 6.14i to 6.14iii considers inadvertent wheel braking attributable to the BSCU 
(with requirement 2.5E-9 per flight hour as stated in subsection 6.3.3) to determine feasibility of the 
design outlined above. In the interests of readability, transfer-in/transfer-out symbols (denoted by a 
triangle with a horizontal line from its side) are employed allowing the two main fault tree branches to 
be shown as separate figures. 

In addition to safety requirements from the previous assessment phase, PSSA also takes into account 
operational considerations. Those relevant to this analysis include average flight length (5 hours), 

average power-up interval (100 hours), estimated aircraft life (100,000 hours) and time between Vland 
VR (0.004167 hour)4. These provide exposure times and are used (together with failure rates based on 
design data and service experience) in calculating probabilities for basic fault tree events. 

It can be seen from figure 6.14i that the tree assumes no undetected BSCU failures can lead to 
inadvertent braking (BSCUUNDF); such an assumption must be proved correct through Failure Modes 

and Effects Analysis and/or Common Mode Analysis. The other branch of the fault tree (developed in 
figures 6.14ii and 6.14iii) addresses combinations of monitored BSCU failures and monitor failuress. 

The fault tree in 6.14ii describes analysis of the BSCU1 detectable failures causing bad data event 
(BSCUIDETD). In summary, this event can occur if the power supply monitor is stuck valid 
(BS 1 PSMOFV) and the power supply failure causes bad data (BSCUIPSF). An alternative path to the 

event is if the monitor channel always reports valid due to hardware failure (BSCUIMOFV) and 

command channel 11O failure causes bad data (BSCU11/OF) or, command channel CPU hardware 

failure causes bad data (BSCUICPUF). 

The fault tree in figure 6.14iii contains the same failure information relative to BSCU2. However, this 

system is only applied to the brakes upon activation of the monitor/select switch. Thus the event of the 

switch being in position 2 (SWITCH2) is And-ed with BSCU2 failures. Two conditions may result in 

switch activation, a previously detected failure of BSCU1 (BSCUITF), or an independent monitor 

switch failure (SWIFAIL2). 

4VI is the take off decision speed at which it is possible to take off safely following engine failure. It is also the speed whereby, 
if take off were abandoned, then the aircraft may be brought to a safe stop within the remaining runway. VR is the speed where 
the aircraft begins to rotate to lift off attitude and climb. 
s Note event labels in figures 6.14i-6.14iii contain the subject entity (preceded by an optional qualifying entity enclosed in 
square brackets) and a condition, separated by a period. 

319 



Case Study 11: A Brake System Control Unit for a Wheel Braking System of a Hypothetical Aircraft 

Braking in Absence of 
Braking Input Causing 

... 

ýý ll, ý 

BSCU Single BSCU De 
Undetected Failure Failure Res 

Causing Inadvertent 
... Inadvertent 

PBSCU1 
Detectable BSCU2 Detectable 

Failure Causes Bad Data Failure Causes Bad Data 

BSCU1DETD BSCU2DFTD 

11 

A& 
Figure 6.14i - `BSCU Commands Braking in Absence of Brake Input Causing Inadvertent 

Braking - Preliminary Fault Tree (page 1)' 

BSCU1 Detectable 
Failure Causes Bad Data 

Power Supply Failure 
Causes Bad Data Causes Bad .. 

scul ower Supply LBSCU1LCommand C 
onto, 

tSCU 
lCPOwer Supply [BSCU1]Monitor Chanel 

net Failure/Error 
Monitor Stuck Valid ure Causes Bad Data Always Reports Valid Causes Bad Data 

RS1PjMOFV A CUIP. FyL ORV RSCI II C PF 

tý tý AN A 

(BSCUI]Valitlity Monitor I I(BSCUlJCommand Chanl (BSCUt]Command Chan 
Failed Valid due to 

[BSCU1]MOnitor Channel I net CPU. CPU net I/O I/O Failure 
Hardware Failure Design Error Failure/Error Causes Bad.. Causes Bad Data 

net CPU Hardware 
Failure Causes Bad Data 

Figure 6.14ii - 'BSCU Commands Braking in Absence of Brake Input Causing Inadvertent 

Braking - Preliminary Fault Tree (page 2)' 

320 



Tracing Development & Assessment Artifacts 

RSGU2 Daiactalýle 
F : iilýiýo t. aiýses (fad Uata 

I8SCUTS11- Swncn- 
SwSC1i 2 Pnxihon 

WITCI 

BSCUl Dalactad Fellur. IBSCUjSe1w 1_ Swilck 
I Slack I Paskbn T I 

l fýSCI1ITF r II -SV JIFRfC2-ý- 
_ 

ýi 

w 
4HI 02 xý.. iý. ,. 

ýI 
IE3SGU21II rS fM, lY- ýýOSCU 

IP ýB 
dDaýa Mn A Sluck V IM 

1C ýSZnýMaýv AC02VS 
, oil 

LT" 
2MI IBSCUnre/Btl 

S1ý 

ýBSCUZ)Qnýmiaoa C-1 ( 

Ftla 

_ 
U3 

12E-aB ýýzýo, 
wier 0.00E+0u 

mw lw 

Figure 6.14iii - 'J SCU Commands Braking in Absence of' Brake Input Causing Inadvertent 

Braking - Preliminary Fault Tree (page 3)' 

6.3.3.2.1 Instantiation of Fault Tree Analysis Meta-model - Preliminary Fault Tree 

In the following, we inslanliatc an O 1'clus imhlcmcntalion cal'the Fault Tree Analysis incla-model front 

section 5.2 with failure behaviours shown in figure 6.14. At this static, we instantiate the preliminary 

U-cc and Ixcluninary event profiles only. However, subsection 6.3.4.3 revisits the meta-model with 

respect to the I3SC1J System Safety Assessment and in doing so, completes population of the updated 

lice and updated event profiles. 

Definition of Event `BSCUINADD' 
GvenrA in Event, Token with 
i (h1I it for 

identilior : "BSCUINADD" 
preliminary-profile 

proiiminaryProfile 
Event APreliminary Profile 

enci 

L"IventAPrelirninaryProfile in 
PreliminaryEventProfile, Token with 
type 

-Type : "top" 

i! vent_connective 
eventConnective : OrGatelP 

preliminary-budget 
preliminaryBudget 

I"Iven tAPrel iminaryBudget 

preliminary-label 
prelimiriaryLabel 

EventAPreliminaryLabel 
nd 

EventAPreliminaryBudget in 
BudgetProbability, Token with 
probability 

Probability 2.50E-09 

annotation 
Annotation 

EventAPreliminaryBudgetMNLS 
end 

EventAPreliminaryBudgetMNLS in 

MatraNaturalLanguageStructure, Token 

with 
mnls_plain_text 

mnlsPlainTextl : EventAPBPT1 

end 

EventAPBPT1 in PlainTextNode, Token with 

321 



Case Study 11: A Brake System Control Unit for a Wheel Braking System of a Hypothetical Aircraft 

mnls_text 
mnlsText : "Requirement is per 5 

hour flight. " 
end 

EventAPreliminaryLabel in SimpleLabel, 
Token with 
simple-description 

simpleDescription 
EventASimpleEventDescription 
end 

EventASimpleEventDescription in 
SimpleEventDescription, Token with 
entity 

_Entity : "BSCU' 
condition 

_Condition : 'Commands Braking in 
Absence of Braking Input Causing 
Inadvertent Braking' 
end 

Gate definitions 

OrGatelP in OrGate, Token with 
input 

_Inputl : EventBPreliminaryProfile; 

_Input2 : EventCPreliminaryProfile 
end 

Definition of Event `BSCUUNDF' 

in SimpleEventDescription, Token with 
entity 

-Entity : "BSCU" 
condition 

-Condition : "Single Undetected 
Failure Causing Inadvertent Braking' 
end 

Definition of Event `BSCVDETFD' 

EventC in Event, Token with 
identifier 

_Identifier : "BSCUDETFD' 
preliminary-profile 

preliminaryProfile 
EventCPreliminaryProfile 
end 

EventCPreliminaryProfile in 
PreliminaryEventProfile, Token with 
type 

_Type : `int" 
event_connective 

eventConnective : OrGate2P 
preliminary-budget 

preliminaryBudget 
EventCPreliminaryBudget 
preliminary-label 

preliminaryLabel 
EventCPreliminaryLabel 
end 

EventB in Event, Token with 
identifier 

_Identifier : `BSCUUNDF' 
preliminary-profile 

preliminaryProfile 
EventBPreliminaryProfile 
end 

EventBPreliminaryProfile in 
PreliminaryEventProfile, Token with 
type 

_Type : `ext' 
preliminary_budget 

preliminaryBudget 
EventBPreliminaryBudget 
preliminary_label 

preliminaryLabel : 
EventBPreliminaryLabel 
end 

EventBPreliminaryBudget in 
BudgetProbability, Token with 
probability 

_Probability : 0.00E+00 
annotation 

-Annotation EventBPreliminaryBudgetMNLS 
end 

EventBPreliminaryBudgetMNLS in 
MatraNaturalLanguageStructure, Token 
with 
mnlsplain_text 

mnlsPlainTextl : EventBPBPTI 
end 

EventBPBPT1 in P1ainTextNode, Token with 
mnls_text 

mnlsText : "Prove no exist' 
end 

EventBPreliminaryLabel in SimpleLabel, 
Token with 
simple-description 

simpleDescription 
EventBPreliminarySimpleEventDescription 
end 

EventBPreliminarySimpleEventDescription 

EventCPreliminaryBudget in 
BudgetProbability, Token with 
probability 

_Probability : 2.50E-09 
end 

EventCPreliminaryLabel in SimpleLabel, 
Token with 
simple-description 

simpleDescription 
EventCSimpleEventDescription 
end 

EventCSimpleEventDescription in 
SimpleEventDescription, Token with 
entity 

_Entity : "BSCU' 
condition 

_Condition : 'Detectable Failure 
Resulting in Inadvertent Braking' 
end 

Gate definitions 

OrGate2P in OrGate, Token with 
input 

_Inputl : EventDPreliminaryProfile; 

_Input2 
EventEPreliminaryProfile 

end 

Definition of Event `BSCU DETD' 

EventD in Event, Token with 
identifier 

_Identifier : *BSCUIDETD" 
preliminary-profile 

preliminaryProfile 
EventDPreliminaryProfile 
end 

EventDPreliminaryProfile in 
PreliminaryEventProfile, Token with 
type 

_Type : lint' 
event_connective 

EventConnective : OrGate3P 
preliminary_budget 

preliminaryBudget 
EventDPreliminaryBudget 

322 



Tracing Development & Assessment Artifacts 

preliminary_label 
preliminaryLabel 

EventDPreliminaryLabel 
end 

EventDPreliminaryBudget in 
BudgetProbability, Token with 
probability 

_Probability : 2.00E-09 
end 

EventDPreliminaryLabel in SimpleLabel, 
Token with 
simple-description 

simpleDescription 
EventDSimpleEventDescription 
end 

EventDSimpleEventDescription in 
SimpleEventDescription, Token with 
entity 

_Entity : "BSCU1" 
condition 

_Condition : "Detectable Failure 
Causes Bad Data" 
end 

Definition of Event `BSCU2DETD' 

EventE in Event, Token with 
identifier 

_Identifier : "BSCU2DETD' 
preliminary_profile 

preliminaryProfile 
EventEPreliminaryProfile 
end 

EventEPreliminaryProfile in 
PreliminaryEventProfile, Token with 
type 

_Type : "int' 
event-connective 

EventConnective : AndGate3P 
preliminary-budget 

preliminaryBudget 
EventEPreliminaryBudget 
preliminary-label 

preliminaryLabel 
EventEPreliminaryLabel 
end 

EventEPreliminaryBudget in 
BudgetProbability, Token with 
probability 

Probability : 5.00E-10 
end 

EventEPreliminaryLabel in SimpleLabel, 
Token with 
simple-description 

simpleDescription 
EventESimpleEventDescription 
end 

EventESimpleEventDescription in 
SimpleEventEDescription, Token with 
entity 

_Entity : "BSCU2" 
condition 

_Condition : "Detectable Failure 
Causes Bad Data" 
end 

Gate definitions 

OrGate3P in OrGate, Token with 
input 

_Inputl : EventFPreliminaryProfile; 

_Input2 
EventGPreliminaryProfile 

end 

Definition of Event `SSCU1PSIND' 

EventF in Event, Token with 
identifier 

_Identifier : `BSCUIPSIND' 
preliminary_profile 

preliminaryProfile 
EventFPreliminaryProfile 
end 

EventFPreliminaryProfile in 
PreliminaryEventProfile, Token with 
type 

_Type : `int' 
event_connective 

EventConnective : AndGatelP 
preliminary-, budget 

preliminaryBudget 
EventFPrel iminaryBudget 
preliminary-label 

preliminaryLabel : 
EventFPreliminaryLabel 
end 

EventFPreliminaryBudget in 
BudgetProbability, Token with 
probability 

_Probability : 1.00E-09 
end 

EventFPreliminaryLabel in SimpleLabel, '' 
Token with 
simple_description 

simpleDescription 
EventFSimpleEventDescription 
end 

EventFSimpleEventDescription in 
SimpleEventFDescription, Token with 
entity 

_Entity : 'Power_Supply' 
qualifiying_entity 

qualifyingEntity : "BSCU1' 
condition 

_Condition : `Power Supply Failure 
Causes Bad Data' 
end 

Definition of Event 'BSCIIICDIND' 

EventG in Event, Token with 
identifier 

Identifier : 'BSCUICDIND' 
preliminary-profile 

preliminaryProfile 
EventGPreliminaryProfile 
end 

EventGPreliminaryProfile in 
PreliminaryEventProfile, Token with 
type 

_Type : lint' 
event_connective 

EventConnective : AndGate2P 
preliminary-budget 

preliminaryBudget 
EventGPreliminaryBudget 
preliminary-label 

preliminaryLabel 
EventGPreliminaryLabel 
end 

EventGPreliminaryBudget in 
BudgetProbability, Token with 
probability 

_Probability : 1.00E-09 
end 

EventGPreliminaryLabel in SimpleLabel, 
Token with 
simple-description 

323 



Case Study 11: A Brake System Control Unit for a Wheel Braking System of a Hypothetical Aircraft 

simpleDescription : 
EventGSimpleEventDescription 
end 

EventGSimpleEventDescription in 
SimpleEventGDescription, Token with 
entity 

_Entity : "Computational-Channel, 
qualifiying_entity 

qualifyingEntity : "BSCU1' 
condition 

_Condition : 'Failure/Error Causes 
Bad Data' 
end 

end 

EventHPreliminaryExposure in Exposure, 
Token with 
period 

_Period : 100000.00 
end 

EventHPreliminaryLabel in SimpleLabel, 
Token with 
simple-description 

simpleDescription 
EventHSimpleEventDescription 
end 

Gate definitions 

AndGateiP in AndGate, Token with 
input 

_Input : HlEventSetP 
end 

AndGate2P in AndGate, Token with 
input 

_Input : JKEventSetP 
end 

HlEventSetP in EventSet, Token with 
event-profile 

eventProfilel 
EventHPreliminaryProfile; 

eventProfile2 : 
EventiPreliminaryProfile 
end 

JKEventSetP in EventSet, Token with 
event-profile 

eventProfilel 
EventJPreliminaryProfile; 

eventProfile2 : 
EventKPreliminaryProfile 
end 

Definition of Event 'SS1PSMOFV' 

EventH in Event, Token with 
identifier 

_Identifier : `BSIPSMOFV" 
preliminary-profile 

preliminaryProfile 
EventHPreliminaryProfile 
end 

EventHPreliminaryProfile in 
PreliminaryEventProfile, Token with 
type 

_Type : "bas' 
preliminary-, budget 

preliminaryBudget 
EventHPreliminaryBudget 
preliminary-rate 

preliminaryRate 
EventHPreliminaryRate 
preliminary-exposure 

preliminaryExposure 
EventHPreliminaryExposure 
preliminary-label 

preliminaryLabel 
EventHPreliminaryLabel 
end 

EventHPreliminaryBudget in 
BudgetProbability, Token with 
probability 

Probability : 2.00E-02 
end 

EventHPreliminaryRate in Rate, Token 
with 
failure-rate 

failureRate : 2.00E-07 

EventHSimpleEventDescription in 
SimpleEventDescription, Token with 
entity 

_Entity : "Power_Supply_Monitor' 
quailfiying_entity 

qualifyingEntity : "BSCU11 
condition 

_Condition : "Monitor Stuck Valid' 
end 

Definition of Event `SSCU1PSF' 

Eventl in Event, Token with 
identifier 

_Identifier : "BSCUIPSF" 
preliminary-profile 

preliminaryProfile 
EventlPreliminaryProfile 
end 

EventlPreliminaryProfile in 
PreliminaryEventProfile, Token with 
type 

_Type : `bas' 
preliminary-budget 

preliminaryBudget 
EventIPreliminaryBudget 
preliminary-rate 

preliminaryRate 
EventiPreliminaryRate 
preliminary-exposure 

preliminaryExposure 
EventlPreliminaryExposure 
preliminary-label 

preliminaryLabel 
EventlPreliminaryLabel 
end 

EventlPreliminaryBudget in 
BudgetProbability, Token with 
probability 

_Probability : 5.00E-08 
end 

EventlPreliminaryRate in Rate, Token 
with 
failure-rate 

failureRate : 1.20E-05 
end 

EventlPreliminaryExposure in Exposure, 
Token with 
period 

_Period : 0.004167 
end 

EventlPreliminaryLabel in SimpleLabel, 
Token with 
simple-description 

simpleDescription 
EventlSimpleEventDescription 
end 

EventlSimpleEventDescription in 
SimpleEventDescription, Token with 
entity 

324 



Tracing Development & Assessment Artifacts 

_Entity : "Power_Supply' 
qualifiying_entity 

qualifyingEntity : "BSCU1" 
condition 

_Condition : "Failure Causes Bad 
Data' 
end 

Definition of Event 'BSCViMORV' 

Event) in Event, Token with 
identifier 

_Identifier : `BSCUIMORV" 
preliminary_profile 

preliminaryProfile 
EventJPreliminaryProfile 
end 

EventJPreliminaryProfile in 
PreliminaryEventProfile, Token with 
type 

_Type : "int" 
event_connective 

EventConnective : OrGate4P 
preliminary-budget 

preliminaryBudget 
EventJPreliminaryBudget 
preliminary_label 

preliminaryLabel 
EventJPreliminaryLabel 
end 

EventJPreliminaryBudget in 
BudgetProbability, Token with 
probability 

-Probability : 2.00E-02 
end 

EventJPreliminaryLabel in SimpleLabel, 
Token with 
simple_description 

simpleDescription 
EventJSimpleEventDescription 
end 

EventJSimpleEventDescription in 
SimpleEventDescription, Token with 
entity 

_Entity : "Monitor_Channel" 
qualifiying_entity 

qualifyingEntity : "BSCU1" 
condition 

_Condition : "Always Reports Valid' 
end 

Definition of Event 'BSCUICDF' 

EventK in Event, Token with 
identifier 

Identifier : "BSCUICDF" 
preliminary-profile 

preliminaryProfile 
EventKPreliminaryProflie 
end 

EventKPreliminaryProfile in 
PreliminaryEventProfile, Token with 
type 

_Type : lint' 
event_connective 

EventConnective : OrGate5P 
preliminary-budget 

preliminaryBudget 
EventKPre1iminaryBudget 
preliminary-label 

preliminaryLabel 
EventKPreliminaryLabel 
end 

EventKPreliminaryBudget in 
BudgetProbability, Token with 

probability 

_Probability : 5.00E-08 
end 

EventKPreliminaryLabel in SimpleLabel, 
Token with 
simple-description 

simpleDescription 
Event KS imp leEventDescription 
end 

EventKSimpleEventDescription in 
SimpleEventDescription, Token with 
entity 

.. 
Entity : 'Command_Channel' 

qualifiying_entity 
qualifyingEntity : `BSCU1' 

condition 

_Condition : `Failure/Error Causes 
Bad Data' 
end 

Gate definitions 

OrGate4P in OrGate, Token with 
input 

_inputl : EventLPreliminaryProfile; 

_2nput2 : EventMPreliminaryProfile 
end 

OrGate5P in OrGate, Token with 
input 

_Inputl : EventNPreliminaryProfile; 

_Input2 : EventOPreliminaryProfile 
end 

Definition of Event `BSCUIMOFV' 

EventL in Event, Token with 
identifier 

-Identifier : `BSCUIMOFV" 
preliminary-profile 

preliminaryProfile 
EventLPreliminaryProfile 
end 

EventLPreliminaryProfile in 
PreliminaryEventProfile, Token with 
type 

_Type : `base 
preliminary_budget 

preliminaryBudget 
EventLPreliminaryBudget 
preliminary-rate 

preliminaryRate 
EventLPreliminaryRate 
preliminary-exposure 

preliminaryExposure 
EventLPreliminaryExposure 
preliminary-label 

preliminaryLabel 
EventLPreliminaryLabel 
end 

EventLPreliminaryBudget in 
BudgetProbability, Token with 
probability 

_Probability : 2.00E-02 
end 

EventLPreliminaryRate in Rate, Token 
with 
failure_rate 

failureRate : 2.00E-07 
end 

EventLPreliminaryExposure in Exposure, 
Token with 
period 

_Period : 100000 
end 

325 



Case Study 11: A Brake System Control Unit for a Wheel Braking System of a Hypothetical Aircraft 

preliminaryBudget : EventLPreliminaryLabel in SimpleLabel, EventNPreliminaryBudget 
Token with preliminary_label 
simple_description preliminaryLabel 

simpleDescription EventNPreliminaryLabel 
EventLSimpleEventDescription end 
end 

EventNPreliminaryBudget in 
EventLSimpleEventDescription in BudgetProbability, Token with 
SimpleEventDescription, Token with probability 
entity 

_Probability : 3.12E-08 
_Entity : "Validity_Monitor" end 

qualifiying entity 
qualifyingEntity : "BSCU1" EventNPreliminaryLabel in SimpleLabel, 

condition Token with 
-Condition : "Failed Valid due to simple_description 

Hardware Failure' simpleDescription 
end EventNSimpleEventDescription 

end 
Definition of Event `BSCU1CMDE' 

EventM in Event, Token with 
identifier 

_Identifier : "BSCUICMDE' 
preliminary-profile 

preliminaryProfile 
EventMPreliminaryProfile 
end 

EventMPreliminaryProfile in 
PreliminaryEventProfile, Token with 
type 

_Type : 'und» 
preliminary-budget 

preliminaryBudget 
EventMPreliminaryBudget 
preliminary_label 

preliminaryLabel 
EventMPreliminaryLabel 
end 

EventNSimpleEventDescription in 
SimpleEventDescription, Token with 
entity 

_Entity : 'Command_Channel_CPU' 
qualifiying_entity 

qualifyingEntity : 'BSCU1' 
condition 

_Condition : "CPU Failure/Error 
Causes Bad Data' 
end 

Definition of Event `ESCU1I/OF' 

EventO in Event, Token with 
identifier 

_Identifier : "BSCUII/OF' 
preliminary-profile 

preliminaryProfile 
EventOPreliminaryProfile 
end 

EventMPreliminaryBudget in 
BudgetProbability, Token with 
probability 

_Probability : 0.00E+00 
end 

EventMPreliminaryLabel in SimpleLabel, 
Token with 
simple_description 

simpleDescription 
EventMSimpleEventDescription 
end 

EventMSimpleEventDescription in 
SimpleEventDescription, Token with 
entity 

-Entity : "Monitor_Channel' 
qualifiying_entity 

qualifyingEntity : "BSCU1" 
condition 

_Condition : "Design Error' 
end 

Definition of Event `BSCVICPUBD" 

EventN in Event, Token with 
identifier 

-Identifier : `BSCUICPUBD" 
preliminary-profile 

preliminaryProfile 
EventNPreliminaryProfile 
end 

EventNPreliminaryProfile in 
PreliminaryEventProfile, Token with 
type 

_Type : "int' 
event_connective 

EventConnective : OrGate6P 
preliminary-budget 

EventOPreliminaryProfile in 
PreliminaryEventProfile, Token with 
type 

_Type : "bas" 
preliminary_budget 

preliminarysudget 
EventOPreliminaryBudget 
preliminary-rate 

preliminaryRate 
EventOPreliminaryRate 
preliminary-exposure 

preliminaryExposure 
EventOPreliminaryExposure 
preliminary-label 

preliminaryLabel 
EventOPreliminaryLabel 
end 

EventOPreliminaryBudget in 
BudgetProbability, Token with 
probability 

_Probability : 1.88E-08 
end 

EventOPreliminaryRate in Rate, Token 
with 
failure_rate 

failureRate : 4.50E-06 
end 

EventOPreliminaryExposure in Exposure, 
Token with 
period 

_Period : 0.004167 
end 

EventOPreliminaryLabel in SimpleLabel, 
Token with 
simple_description 

simpleDescription 

326 



Tracing Development & Assessment Artifacts 

EventOSimpleEventDescription 
end 

EventOSimpleEventDescription in 
SimpleEventDescription, Token with 
entity 

_Entity : "Command, Channel_I/0" 
qualifiying_entity 

qualifyingEntity : "BSCU1" 
condition 

_Condition : I/O "Failure Causes 
Data' 
end 

Gate definitions 

OrCate6P in OrGate, Token with 
input 

_Inputi 
EventPPreliminar! 

_Input2 
EventQPreliminar 

end 

condition 

_Condition : "Hardware Failure 
Causes Bad Data, 
end 

Definition of Event `BSCU1CPUDE1 

EventQ in Event, Token with 
identifier 

_Identifier : "BSCUICPUDE" 
Bad preliminary_profile 

preliminaryProfile 
EventQPreliminaryProfile 
end 

EventQPreliminaryProfile in 
PreliminaryEventProfile, Token with 
type 

EventPPreliminaryProfile; 
EventQPreliminaryProfile 

Definition of Event `BSCUICPIIB' 

EventP in Event, Token with 
identifier 

_Identifier : "BSCUICPUF" 
preliminary profile 

preliminaryProfile 
EventPPreliminaryProfile 
end 

EventPPreliminaryProfile in 
PreliminaryEventProfile, Token with 
type 

_Type : "bas' 
preliminary_budget 

preliminaryBudget 
EventPPreliminaryBudget 
preliminary_rate 

preliminaryRate 
EventPPreliminaryRate 
preliminary_exposure 

preliminaryExposure 
EventPPreliminaryExposure 
preliminary_label 

preliminaryLabel 
EventPPreliminaryLabel 
end 

EventPPreliminaryBudget in 
BudgetProbability, Token with 
probability 

_Probability : 3.12E-08 
end 

EventPPreliminaryRate in Rate, Token 
with 
failure_rate 

failureRate : 7.50E-06 
end 

EventPPreliminaryExposure in Exposure, 
Token with 
period 

Period : 0.004167 
end 

EventPPreliminaryLabel in SimpleLabel, 
Token with 
simple_description 

simpleDescription 
EventPSimpleEventDescription 
end 

EventPSimpleEventDescription in 
SimpleEventDescription, Token with 
entity 

_Entity : "Comman&Channel_CPU' 
qualifiying_entity 

qualifyingEntity : "BSCU1' 

_Type : *und« 
preliminary_budget 

preliminaryBudget 
EventQPreliminaryBudget 
preliminary_label 

preliminaryLabel 
EventQPreliminaryLabel 
end 

EventQPreliminaryBudget in 
BudgetProbability, Token with 
probability 

_Probability : 0.00E+00 
end 

EventQPreliminaryLabel in SimpleLabel, 
Token with 
simple_description 

simpleDescription 
EventQSimpleEventDescription 
end 

EventQSimpleEventDescription in 
SimpleEventDescription, Token with 
entity 

_Entity : "Command_Channel_CPU" 
qualifiying_entity 

qualifyingEntity : "BSCU1' 
condition 

_Condition : 'Design Error Causes 
Bad Data' 
end 

Gate definitions 

AndGate3P in AndGate, Token with 
input 

_Input : RSEventSetP 
end 

RSEventSetP in EventSet, Token with 
event-profile 

eventProfilei 
EventRPreliminaryProfile; 

eventProfile2 : 
EventSPreliminaryProfile 
end 

Definition of Event `SWITCH21 

EventR in Event, Token with 
identifier 

_Identifier : "SWITCH21 
preliminary-profile 

preliminaryProfile 
EventRPreliminaryProfile 
end 

EventRPreliminaryProfile in 
PreliminaryEventProfile, Token with 
type 

_Type : "int' 
event_connective 

327 



Case Study 11: A Brake System Control Unit for a Wheel Braking System of a Hypothetical Aircraft 

EventConnective : OrGate7P 
preliminary_budget 

preliminaryBudget 
EventRPreliminaryBudget 
preliminary-label 

preliminaryLabel 
EventRPreliminaryLabel 
end 

EventRPreliminaryBudget in 
BudgetProbability, Token with 
probability 

_Probability : 2.50E-01 
end 

EventRPreliminaryLabel in SimpleLabel, 
Token with 
simple_description 

simpleDescription 
EventRSimpleEventDescription 
end 

EventRSimpleEventDescription in 
SimpleEventDescription, Token with 
entity 

_Entity : "Select_Switch' 
qualifiying_entity 

qualifyingEntity : 'BSCU' 
condition 

_Condition : "Switch 2 Position' 
end 

Definition of Event `BSCU2INADCM' 

EventS in Event, Token with 
identifier 

_Identifier : `BSCU2INADCM" 
preliminary-profile 

preliminaryProfile 
EventSPreliminaryProfile 
end 

EventSPreliminaryProfile in 
PreliminaryEventProfile, Token with 
type 

_Type : `int" 
event_connective 

EventConnective : OrGate8P 

preliminary_budget 
preliminaryBudget 

EventSPreliminaryBudget 
preliminary-label 

preliminaryLabel 
EventSPreliminaryLabel 
end 

input 

_Inputl : EventTPreliminaryProfile; 

_Input2 : EventUPreliminaryProfile 
end 

OrGate8P in OrGate, Token with 
input 

_Inputl 
EventVPreliminaryProfile; 

_Input2 
EventWPreliminaryProfile 

end 

Definition of Event `BSCU1TF' 

EventT in Event, Token with 
identifier 

_Identifier : "BSCUITF" 
preliminary-profile 

preliminaryProfile 
EventTPreliminaryProfile 
end 

EventTPreliminaryProfile in 
PreliminaryEventProfile, Token with 
type 

_Type : "bas' 
preliminary_budget 

preliminaryBudget 
EventTPreliminaryBudget 
preliminary-rate 

preliminaryRate 
EventTPreliminaryRate 
preliminary_exposure 

preliminaryExposure 
EventTPreliminaryExposure 
preliminary-label 

preliminaryLabel 
EventTPreliminaryLabel 
end 

EventTPreliminaryBudget in 
BudgetProbability, Token with 
probability 

_Probability : 2.36E-01 
end 

EventTPreliminaryRate in Rate, Token 
with 
failure_rate 

failureRate : 4.72E-02 
end 

EventTPreliminaryExposure in Exposure, 
Token with 
period 

Period : 5.00 
end 

EventSPreliminaryBudget in 
BudgetProbability, Token with 
probability 

_Probability : 2.00E-09 
end 

EventSPreliminaryLabel in SimpleLabel, 
Token with 
simple_description 

simpleDescription 
EventSSimpleEventDescription 
end 

EventSSimpleEventDescription in 
SimpleEventDescription, Token with 
entity 

_Entity : "BSCU2' 
condition 

_Condition : `Fault Causes 
Inadvertent Braking Command' 
end 

Gate definitions 

OrGate7P in OrGate, Token with 

EventTPreliminaryLabel in SimpleLabel, 
Token with 
simple_description 

simpleDescription 
EventTSimpleEventDescription 
end 

EventTSimpleEventDescription in 
SimpleEventDescription, Token with 
entity 

_Entity : "BSCU1" 
condition 

_Condition : "Detected Failure' 
end 

Definition of Event `SWIYAIL2' 

EventU in Event, Token with 
identifier 

_Identifier : `SWIFAIL2' 
preliminary-profile 

preliminaryProfile 
EventUPreliminaryProfile 
end 

328 



Tracing Development & Assessment Artifacts 

EventUPreliminaryProfile in 
PreliminaryEventprofile, Token with 
type 

_Type : "bass 
preliminary-budget 

preliminaryBudget 
EventUPreliminaryBudget 
preliminary-rate 

preliminaryRate 
EventUPreliminaryRate 
preliminary-exposure 

preliminaryExposure 
EventUPreliminaryExposure 
preliminary_label 

preliminaryLabel 
EventUPreliminaryLabel 
end 

EventUPreliminaryBudget in 
BudgetProbability, Token with 
probability 

_Probability : 1.48E-02 
end 

EventUPreliminaryRate in Rate, Token 
with 
failure-rate 

failureRate : 1.00E-06 
end 

EventUPreliminaryExposure in Exposure, 
Token with 
period 

_Period : 14750.00 
end 

EventUPreliminaryLabel in SimpleLabel, 
Token with 
simple-description 

simpleDescription 
EventUSimpleEventDescription 
end 

EventUSimpleEventDescription in 
SimpleEventDescription, Token with 
entity 

_Entity : 'Select-Switch, 
qua iifiying_entity 

qualifyingEntity : "BSCU' 
condition 

_Condition : "Stuck at Position 21 
end 

Definition of Event `BSCU2PSIND" 

EventV in Event, Token with 
identifier 

_Identifier : "BSCU2PSIND' 
preliminary-profile 

preliminaryProfile 
EventVPreliminaryProfile 
end 

EventVPreliminaryProfile in 
PreliminaryEventProfile, Token with 
type 

_Type : "int' 
event-connective 

EventConnective : AndGate4P 
preliminary-budget 

preliminaryBudget 
EventVPreliminaryBudget 
preliminary-label 

preliminaryLabel 
EventVPreliminaryLabel 
end 

EventVPreliminaryBudget in 
BudgetProbability, Token with 
probability 

_Probability : 1.00E-09 
end 

EventVPreliminaryLabel in SimpleLabel, 
Token with 
simple_description 

simpleDescription 
EventVSimpleEventDescription 
end 

EventVSimpleEventDescription in 
SimpleEventDescription, Token with 
entity 

_Entity : "Power_Supply' 
qualifiying_entity 

qualifyingEntity : "BSCU2' 
condition 

_Condition : "Power Supply Failure 
Causes Bad Data' 
end 

Definition of Event `BSCU2CDIND' 

EventW in Event, Token with 
identifier 

_Identifier : `BSCU2CDIND' 
preliminary-profile 

preliminaryProfile 
EventWPreliminaryProfile 
end 

EventWPreliminaryProfile in 
PreliminaryEventProfile, Token with 
type 

_Type : lint' 
event_connective 

EventConnective : AndGate5P 
preliminary_budget 

preliminaryBudget 
EventWPreliminaryBudget 
preliminary-label 

preliminaryLabel 
EventWPreliminaryLabel 
end 

EventWPreliminaryBudget in 
BudgetProbability, Token with 
probability 

_Probability : 1.00E-09 
end 

EventWPreliminaryLabel in SimpleLabel, 
Token with 
simple_description 

simpleDescription 
EventWSimpleEventDescription 
end 

EventWSimpleEventDescription in 
SimpleEventDescription, Token with 
entity 

_Entity : "Computational_Channel' 
quailfiying_entity 

qualifyingEntity : 'BSCU2' 
condition 

_Condition : "Failure/Error Causes 
Bad Data' 
end 

Gate definitions 

AndGate4P in AndGate, Token with 
input 

_Input 
: XYEventSetP 

end 

AndGate5P in AndGate, Token with 
input 

_Input : ZAAEventSetP 
end 

329 



Case Study ll :A Brake System Control Unit for a Wheel Braking System of a Hypothetical Aircraft 

XYEventSetP in EventSet, Token with EventY in Event, Token with 
event-profile identifier 

eventProfilel 
_Identifier : "BSCU2PSF' 

EventXPreliminaryProfile; preliminary-profile 
eventProfile2 : preliminaryProfile 

EventYPreliminaryProfile EventYPreliminaryProfile 
end end 

ZAAEventSetP in EventSet, Token with 
event-profile 

eventProfilel 
EventZPreliminaryProfile; 

eventProfile2 
EventAAPreliminaryProfile 
end 

Definition of Event `BS2PSMOFV' 

EventX in Event, Token with 
identifier 

_Identifier : "BS2PSMOFV' 
preliminary_profile 

preliminaryProfile 
EventXPreliminaryProfile 
end 

EventYPreliminaryProfile in 
PreliminaryEventProfile, Token with 
type 

_Type : 'bas' 
preliminary-budget 

preliminaryBudget 
EventYPreliminaryBudget 
preliminary-rate 

preliminaryRate 
EventYPreliminaryRate 
preliminary-exposure 

preliminaryExposure 
EventYPreliminaryExposure 
preliminary-label 

preliminaryLabel 
EventYPreliminaryLabel 
end 

EventxPreliminaryProfile in 
PreliminaryEventProfile, Token with 
type 

_Type : "bas' 
preliminary_budget 

preliminaryBudget 
EventXPreliminaryBudget 
preliminary_rate 

preliminaryRate 
EventXPreliminaryRate 
preliminary_exposure 

preliminaryExposure 
EventXPreliminaryExposure 
preliminary_label 

preliminaryLabel 
EventXPreliminaryLabel 
end 

EventXPreliminaryBudget in 
BudgetProbability, Token with 
probability 

_Probability : 2.00E-02 
end 

EventXPreliminaryRate in Rate, Token 
with 
failure-rate 

failureRate : 2.00E-07 
end 

EventXPreliminaryExposure in Exposure, 
Token with 
period 

_Period : 100000.00 
end 

EventXPreliminaryLabel in SimpleLabel, 
Token with 
simple_description 

simpleDescription 
EventXSimpleEventDescription 
end 

EventXSimpleEventDescription in 
SimpleEventDescription, Token with 
entity 

_Entity : "Power_Supply_Monitor' 
qualifying-entity 

qualifyingEntity : `BSCU2' 
condition 

_Condition : `Monitor Stuck Valid' 
end 

Definition of Event 4SSC[J2PSF' 

EventYPreliminaryBudget in 
BudgetProbability, Token with 
probability 

_Probability : 5.00E-08 
end 

EventYPreliminaryRate in Rate, Token 
with 
failure_rate 

failureRate : 1.20E-05 
end 

EventYPreliminaryExposure in Exposure, 
Token with 
period 

_Period : 0.004167 
end 

EventYPreliminaryLabel in SimpleLabel, 
Token with 
simple_description 

simpleDescription 
EventYSimpleEventDescription 
end 

EventYSimpleEventDescription in 
SimpleEventDescription, Token with 
entity 

_Entity : 'Power_Supply 
qualifiying_entity 

qualifyingEntity : "BSCU2' 
condition 

_Condition : "Failure Causes Bad 
Data' 
end 

Definition of Event `BSCU2MORV' 

EventZ in Event, Token with 
identifier 

_Identifier : "BSCU2MORV' 
preliminary-profile 

preliminaryProfile 
EventZPreliminaryProfile 
end 

EventZPreliminaryProfile in 
PreliminaryEventProfile, Token with 
type 

_Type : `int" 
event_connective 

EventConnective : OrGate9P 
preliminary-budget 

preliminaryBudget 
EventZPreliminaryBudget 

330 



Tracing Development & Assessment Artifacts 

preliminary_label 
preliminaryLabel 

EventZPreliminaryLabel 
end 

EventZPreliminaryBudget in 
BudgetProbability, Token with 
probability 

_Probability : 2.00E-02 
end 

EventZPreliminaryLabel in SimpleLabel, 
Token with 
simple-description 

simpleDescription 
EventZSimpleEventDescription 
end 

EventZSimpleEventDescription in 
SimpleEventDescription, Token with 
entity 

_Entity : "Monitor_Channel' 
qualifiying_entity 

qualifyingEntity : "BSCU21 
condition 

_Condition : "Always Reports Valid' 
end 

Definition of Event `BSCU2CDF" 

EventAA in Event, Token with 
identifier 

_Identifier : "BSCU2CDF" 
preliminary-profile 

preliminaryProfile 
EventAAPre1iminaryProfile 
end 

EventAAPreliminaryProfile in 
PreliminaryEventProfile, Token with 
type 

_Type : "int" 
event-connective 

EventConnective : OrGatelOP 
preliminary-budget 

preliminaryBudget 
EventAAPreliminaryBudget 
preliminary-label 

preliminaryLabel 
EventAAPreliminaryLabe1 
end 

EventAAPreliminaryBudget in 
BudgetProbability, Token with 
probability 

_Probability : 5.00E-08 
end 

EventAAPreliminaryLabel in SimpleLabel, 
Token with 
simple_description 

simpleDescription 
EventAASimpleEventDescription 
end 

EventAASimpleEventDescription in 
SimpleEventDescription, Token 
with 
entity 

_Entity : "Command-Channel' 
qualifiying_entity 

qualifyingEntity : "BSCU2" 
condition 

_Condition : "Failure/Error Causes 
Bad Data' 
end 

Gate definitions 

OrGate9P in OrGate, Token with 
input 

_Inputl : EventBBPreliminaryProfile; 

_input2 : EventCCreliminaryProfile 
end 

OrGatelOP in OrGate, Token with 
input 

_Inputl : EventDDPreliminaryProfile; 

_Input2 
EventEEPreliminaryProfile 

end 

Definition of Event `BSCU2MOFV' 

EventBB in Event, Token with 
identifier 

_Identifier : "BSCU2MOFV" 
preliminary-profile 

preliminaryProfile 
EventBBPreliminaryProfile 
end 

EventBBPreliminaryProfile in 
PreliminaryEventProfile, Token with 
type 

_Type : "bas' 
preliminary-budget 

preliminaryßudget 
EventBBPreliminaryBudget 
preliminary-rate 

preliminaryRate 
EventBBPreliminaryRate 
preliminary-exposure 

preliminaryExposure 
EventBBPreliminaryExposure 
preliminary-label 

preliminaryLabel 
EventBBPreliminaryLabel 
end 

EventBBPreliminaryBudget in 
BudgetProbability, Token with 
probability 

_Probability : 2.00E-02 
end 

EventBBPreliminaryRate in Rate, Token 
with 
failure_rate 

failureRate : 2.00E-07 
end 

EventBBPreliminaryExposure in Exposure, 
Token with 
period 

_Period : 100000.00 
end 

EventBBPreliminaryLabel in SimpleLabel, 
Token with 
simple_description 

simpleDescription 
EventBBSimpleEventDescription 
end 

EventBBSimpleEventDescription in 
SimpleEventDescription, Token with 
entity 

_Entity : "Validity_Monitor' 
qualifiying_entity 

qualifyingEntity : "BSCU2' 
condition 

_Condition : 'Failed Valid due to 
Hardware Failure' 
end 

Definition of Event `BSCU2CNDE' 

EventCC in Event, Token with 
identifier 

_Identifier : "BSCU2CMDE" 
preliminary-profile 

preliminaryProfile 

331 



Case Study!!: A Brake System Control Unit for a Wheel Braking System of a Hypothetical Aircraft 

EventCCPreliminaryProfile 
end 

EventCCPreliminaryProfile in 
PreliminaryEventProfile, Token with 
type 

_Type : 'und' 
preliminary-budget 

preliminaryBudget 
EventCCPreliminaryBudget 
preliminary_label 

preliminaryLabel 
EventCCPreliminaryLabel 
end 

EventCCPreliminaryBudget in 
BudgetProbability, Token 
with 
probability 

_Probability : 0.00E+00 
end 

EventCCPreliminaryLabel in SimpleLabel, 
Token with 
simple-description 

simpleDescription 
EventCCSimpleEventDescription 
end 

EventCCSimpleEventDescription in 
SimpleEventDescription, Token with 
entity 

_Entity : 'Monitor_Channel' 
qualifiying_entity 

qualifyingEntity : `BSCU2' 
condition 

_Condition : "Design Error, 
end 

Definition of Event `SSCU2CPUBD' 

EventDD in Event, Token with 
identifier 

_Identifier : "BSCU2CPUBD' 
preliminary-profile 

preliminaryProfile 
EventDDPreliminaryProfile 
end 

EventDDPreliminaryProfile in 
PreliminaryEventProfile, Token with 
type 

_Type : `int' 
event_connective 

EventConnective : OrGateliP 
preliminary_budget 

preliminaryBudget 
EventDDPreliminaryBudget 
preliminary_label 

preliminaryLabel 
EventDDPreliminaryLabel 
end 

EventDDPreliminaryBudget in 
BudgetProbability, Token with 
probability 

_Probability : 3.12E-08 
end 

EventDDPreliminaryLabel in SimpleLabel, 
Token with 
simple-description 

simpleDescription 
EventDDSimpleEventDescription 
end 

EventDDSimpleEventDescription in 
SimpleEventDescription, Token with 
entity 

-Entity : "Command`Channel_CPU' 
qualifiying_entity 

qualifyingEntity : "BSCU2" 
condition 

_Condition : 'CPU Failure/Error 
Causes Bad Data, 
end 

Definition of Event 'BSCU2I/OF' 

EventEE in Event, Token with 
identifier 

_Identifier : "BSCU2I/OF1 
preliminary-profile 

preliminaryProfile 
EventEEPreliminaryProfile 
end 

EventEEPreliminaryProfile in 
PreliminaryEventProfile, Token with 
type 

_Type : "bas" 
preliminary-budget 

preliminaryBudget 
EventEEPreliminaryBudget 
preliminary-rate 

preliminaryRate 
EventEEPreliminaryRate 
preliminary-exposure 

preliminaryExposure 
EventEEPreliminaryExposure 
preliminary-label 

preliminaryLabel 
EventEEPreliminaryLabel 
end 

EventEEPreliminaryBudget in 
BudgetProbability, Token with 
probability 

_Probability : 1.88E-08 
end 

EventEEPreliminaryRate in Rate, Token 
with 
failure_rate 

failureRate : 4.50E-06 
end 

EventEEPreliminaryExposure in Exposure, 
Token with 
period 

_Period : 0.004167 
end 

EventEEPreliminaryLabel in SimpleLabel, 
Token with 
simple-description 

simpleDescription 
EventEESimpleEventDescription 
end 

EventEESimpleEventDescription in 
SimpleEventDescription, Token 
with 
entity 

_Entity : "Command. Channel_I/0' 
qualifiying_entity 

qualifyingEntity : 'BSCU2' 
condition 

_Condition : I/O Failure Causes Bad 
Data' 
end 

Gate definitions 

OrGatellP in OrGate, Token with 
input 

_Inputl EventFFPreliminaryProfile; 

_Input2 : EventGGreliminaryProfile 
end 

Definition of Event `BSCU2CPUF' 

332 



Tracing Development & Assessment Artifacts 

EventFF in Event, Token 
with 
identifier 

_Identifier : "BSCU2CPUF" 
preliminary profile 

preliminaryProfile 
EventFFPreliminaryProfile 
end 

EventFFPreliminaryProfile in 
PreliminaryEventProfile, Token with 
type 

_Type : "bas' 
preliminary_budget 

preliminaryBudget 
EventFFPreliminaryBudget 
preliminary-rate 

preliminaryRate 
EventFFPreliminaryRate 
preliminary_exposure 

preliminaryExposure 
EventFFPreliminaryExposure 
preliminary-label 

preliminaryLabel 
EventFFPreliminaryLabel 
end 

EventFFPreliminaryBudget in 
BudgetProbability, Token 
with 
probability 

_Probability : 3.12E-08 
end 

EventFFPreliminaryRate in Rate, Token 
with 
failure-rate 

failureRate : 7.50E-06 
end 

EventFFPreliminaryExposure in Exposure, 
Token with 
period 

_Period : 0.004167 
end 

EventFFPreliminaryLabel in SimpleLabel, 
Token 
with 
simple_description 

simpleDescription 
EventFFSimpleEventDescription 
end 

EventFFSimpleEventDescription in 
SimpleEventDescription, Token 
with 
entity 

_Entity : "Command Channel_CPU" 
qualifiying_entity 

qualifyingEntity : "BSCU2" 
condition 

_Condition : "Hardware Failure 
Causes Bad Data" 
end 

Definition of Event `BSCU2CPUDE" 

EventGG in Event, Token 
with 
identifier 

_Identifier : "BSCU2CPUDE" 
preliminary-profile 

preliminaryProfile 
EventGGPreliminaryProfile 
end 

EventGGPreliminaryProfile in 
PreliminaryEventProfile, Token 
with 
type 

_Type : "und' 
preliminary_budget 

preliminaryBudget 
EventGGPreliminaryBudget 
preliminary_label 

preliminaryLabel 
EventGGPreliminaryLabel 
end 

EventGGPreliminaryBudget in 
BudgetProbability, Token 
with 
probability 

-Probability : 0.00E+00 
end 

EventGGPreliminaryLabel in SimpleLabel, 
Token with 
simple-description 

simpleDescription 
EventGGSimpleEventDescription 
end 

EventGGSimpleEventDescription in 
SimpleEventDescription, Token 
with 
entity 

Entity : "Command_Channel_CPU" 
qualifiying_entity 

qualifyingEntity : "BSCU2' 
condition 

_Condition : "Design Error Causes 
Bad Data' 
end 

Instantiation of Preliminary Fault Tree 

BscuPssaPrelimFT in 
PreliminaryFaultTree, Token 
with 
ft_and_gate 

ftAndGatel AndGatelP; 
ftAndGate2 AndGate2P; 
ftAndGate3 AndGate3P; 
ftAndGate4 : AndGate4P; 
ftAndGate5 AndGate5P 

ft_or_gate 
ftOrGatel : OrGatelP; 
ftOrGate2 : OrGate2P; 
ftOrGate3 : OrGate3P; 
ftOrGate4 : OrGate4P; 
ftOrGate5 : OrGate5P; 
ftOrGate6 : OrGate6P; 
ftOrGate7 : OrGate7P; 
ftOrGate8 : OrGate8P; 
ftOrGate9 : OrGate9P; 
ftOrGatelO : OrGatelOP; 
ftOrGatell : OrGatellP 

ft_event_set 
ftEventSetl : HlEventSetP; 
ftEventSet2 : JKEventSetP; 
ftEventSet3 RSEventSetP; 
ftEventSet4 XYEventSetP; 
ftEventSet5 : ZAAEventSetP 

ft_event_profile 
ftEventProfilel 

EventAPreliminaryProfile; 
ftEventProfile2 

EventBPreliminaryProfile; 
ftEventProfile3 

EventCPreliminaryProflie; 
ftEventProfile4 

EventDPreliminaryProflie; 
ftEventProfile5 

EventEPreliminaryProfile; 

ftEventProfile33 : 
EventGGPreliminaryProfile 
ft_budget 

ftBudgetl : EventAPreliminaryBudget; 

333 



Case Study 11: A Brake System Control Unit for a Wheel Braking System of a Hypothetical Aircraft 

ftBudget2 : EventBPreliminaryBudget; 
ftBudget3 : EventCPreliminaryBudget; 
ftBudget4 EventDPreliminaryBudget; 
ftBudget5 EventEPreliminaryBudget; 

ftBudget33: EventGGPreliminaryBudget 
ft-rate 

ftRatel : EventHPreliminaryRate; 
ftRate2 : EventlPreliminaryRate; 
ftRate3 : EventLPreliminaryRate; 
ftRate4 : EventOPreliminaryRate; 
ftRate5 : EventPPreliminaryRate; 
ftRate6 : EventTPreliminaryRate; 
ftRate7 : EventUPreliminaryRate; 
ftRate8 : EventXPreliminaryRate; 
ftRate9 : EventYPreliminaryRate; 
ftRatelO : EventBBPreliminaryRate; 
ftRatell : EventEEPreliminaryRate; 
ftRatel2 : EventFFPreliminaryRate 

ft_exposure 
ftExposurel 

EventHPreliminaryExposure; 
ftExposure2 

EventlPreliminaryExposure; 
ftExposure3 

EventLPreliminaryExposure; 
ftExposure4 

EventOPreliminaryExposure; 
ftExposure5 

EventPPreliminaryExposure; 
ftExposure6 

EventTPreliminaryExposure; 
ftExposure7 

EventUPreliminaryExposure; 
ftExposure8 

EventXPreliminaryExposure; 
ftExposure9 

EventYPreliminaryExposure; 
ftExposurel0 

EventBBPreliminaryExposure; 
ftExposurell 

EventEEPreliminaryExposure; 
ftExposurel2 

EventFFPrelim 
ft_simple 

ftSimplel 
ftSimple2 
ftSimple3 
ftSimple4 
ftSimple5 

inaryExposure 

: EventAPreliminaryLabel; 
: EventBPreliminaryLabel; 
: EventCPreliminaryLabel; 
: EventDPreliminaryLabel; 
: EventEPreliminaryLabel; 

ftSimple33 : EventGGPreliminaryLabel 
ft_simple_desc 

ftSimpleDescl 
EventASimpleEventDescription; 

ftSimpleDesc2 
EventBPreliminarySimpleEventDescription; 

ftSimpleDesc3 
EventCSimpleEventDescription; 

ftSimpleDesc4 
EventDSimpleEventDescription; 

ftSimpleDesc5 
EventESimpleEventDescription; 

ftSimpleDesc33 : 
EventGGSimpleEventDescription 
ft_annotation 

ftAnnotationl 
EventAPreliminaryBudgetMwLS; 

ftAnnotation2 : 
EventBPreliminaryBudgetMNLS 
end 

Instantiation of Fault Tres Analysis 

BscuFTA in FaultTreeAnalysis, Token 
with 
subject module 

subjectModule "BSCU" 
fta_preliminary_tree 

ftaPreliminaryTree 
BscuPssaPrelimFT 
end 

6.3.4 System Safety Assessment - Brake System Control Unit 
At this point, we assume the PSSA is sufficiently developed to allow detailed design implementation to 

proceed. Therefore our example resumes post-implementation by considering System Safety 

Assessment of the BSCU towards verification of PSSA safety objectives. This includes Functional and 
Piece-Part FMEAs of the power supply and power supply monitor respectively, as well as updating of 

the preliminary fault tree introduced in 6.3.3.2. Artifacts produced by these activities will be used to 

demonstrate instantiation of the FMEA and Fault Tree Analysis structures, together with a partial 

population of the Circuit Diagram meta-model from Chapter Three. 

6.3.4.1 Background on BSCU Power Supply Design 

The BSCUI and BSCU2 power supplies are identical in both their design and implementation and are 

located in physically remote areas of the BSCU circuit card assembly. Within each BSCU, the power 

supply and power supply monitor functions are physically independently located. Power supply design 

is depicted in the block diagram6 in figure 6.15, whilst a detailed circuit schematic of the +5 volt 

monitor appears in figure 6.16. 

6 Failure rates in figure 6.15 are determined by the functional FMEA; e. g., +5 volt rate derived from the sum of failures shown in 
table 6.3 (subsection 6.3.4.2.1). 

334 



Tracing Development & Assessment Artifacts 

r. n. - a. zut-n 
+15 Volt 

Power Supply 

28 V DC I NJ Filter 
--ý & Storage 

F. R. = 2.07E-6 

Transformer +5 Volt 
Power Supply 

F. R. = 0.21E-6 
Current 
Sense 

Pulse Width 
Modulator 
F. R. =1.93E-6 

Figure 6.15 - 'BSCU Power Supply Block Diagram' 

Power Supply 
Monitor 

F. R. - 0.306E-6 
Monitor 
Output 

Power Valid 

The power supply monitors are window comparators7. Both +5 volt and +15 volt (shown as 'Power 

Supply Monitor' in figure 6.15) are monitored for over and under voltage conditions and their outputs 
And-ed together such that if voltage exceeds the trip-point, high or low, monitor output is pulled low. 

+5V +5V 

Supply 
Output 

We now introduce O-Telos code demonstrating partial population of the Circuit Diagram meta-model 

(from subsection 3.3.7) for the power supply monitor (figure 6.16); partial in the sense of identifying 

only those elements from the circuit relevant to the +5 volt power supply and without providing either 

their descriptions or inter-connections. Note that no meta-model definition of block diagrams is 

provided, although their inherent simplicity suggests the same approach can be applied as that used to 

represent other graphical notations demonstrated by this thesis. 

7 Window comparators monitor an output line and inform the controller when voltage moves outside specific settings. 

335 

Figure 6.16 - `BSCU +5 Volt Power Supply Monitor Circuit Schematic' 



Case Study ll :A Brake System Control Unit for a Wheel Braking System of a Hypothetical Aircraft 

Definition of Power Supply Monitor Circuit Schematic 

CircuitDiagram in DevelopmentStructure, SimpleClass -- base classes from 3.3.7.3.3 
isA AerospaceEngineeringObject with has-property 

circuit-name : String 
has-element 

resistor : Resistor; 
capacitor : Capacitor; 
comparator : Comparator; 
and-gate AndGate; 
dc-source DCSource 

end 

PowerSupplyMonitorCD in CircuitDiagram, Token with -- elements from figure 6.16 
circuit_name 

circuitName : `Power Supply Monitor' 
resistor 

resistorl : R1; 
resistor2 R2; 
resistor3 : R3; 
resistor4 : R4; 
resistor5 : R5; 
resistor6 R6; 
resistor? R7 

capacitor 
capacitorl : Cl; 
capacitor2 : C2 

comparator 
comparatorl : U1A; 
comparator2 U1B 

and gate 
andGate : U2 

dc_source 
dcSource : U3 

end 

We return to the Circuit Diagram meta-model in subsection 6.3.5 when demonstrating trace relations 
between development and assessment artifacts. 

6.3.4.2 Failure Modes and Effects Analysis 
This FMEA considers the BSCU power supply with respect to safety objectives for basic events in the 
'inadvertent wheel braking' fault tree from 6.3.3.2. Basic events supported by this particular analysis 
are Power Supply " Failure Causes Bad Data and Power Supply Monitor " Monitor Stuck Valid. 

The FMEA is performed in two parts: i) a functional analysis of the entire power supply; and ii) a 
piece-part analysis of the power supply monitor. For the purpose of this example, the latter is assumed 
to be necessary after results of the functional FMEA did not meet the safety objectives. Note, that the 
functional FMEA on the power supply monitor is superseded by the piece-part FMEA. 

6.3.4.2.1 Functional Failure Modes and Effects Analysis 
According to the scenario outlined in ARP 4761, initial analysis of the power supply was conducted by 

computing the total power supply failure rate based on parts counts and failure rates. Conservative 

analysis (details of which are not included) failed to meet the safety budget for Power Supply " Failure 

Causes Bad Data (namely 1.20E-05 as shown in figure 6.14) and so a functional FMEA was performed 

to provide better resolution to the failure rates of the various failure modes. This investigation 

concluded that the only failure that may cause bad data and may not be detected by a fully functioning 

power supply monitor is `loss of filtering'. This failure can cause increased ripple on the output 

336 



Tracing Development & Assessment Artifacts 

voltages at such a level and frequency that it goes undetected by the monitor. Table 6.3 shows a partial 

results table for the BSCU power supply functional FMEA showing analysis of the +5 volt function. 

Function Name Failure Mode Flight Phase Failure Rate Failure Effect Detection Method Comments 

+5 Volt Power +5 volt out of All 0.2143E-06 Power Supply The Power Supply The chazu 
Supply spec shut down. Monitor is tripped. fails. 

+5 volt short All 0.2857E-06 Power Supply The Power Supply 
to ground shut down. Monitor will pass 

invalid power supply 
to other BSCU. 

loss of All 0.3571E-06 Increased May emit out of spec May cause 
filtering Ripple. voltage if ripple is not spurious trip. 

detected by monitor. 

+5 volt open All 0.5714E-06 Power Supply The Power Supply 
shut down. Monitor will pass 

invalid power supply 
to other BSCU. 

No Effect All 0.1429E-06 No Effect. None/No Effect. No Effect. 

Table 6.3 - `Functional FMEA (Partial) of BSCU Power Supply' 

ARP 4761 states that the actual failure rate for Power Supply " Failure Causes Bad Data is 1.06E-05 

(derivation not shown) which satisfies the requirement of 1.20E-05 failures per hour. This information 

will be used in subsection 6.3.4.3 to update the BSCU preliminary fault tree. 

6.3.4.2.2 Instantiation of Functional Failure Modes and Effects Analysis Meta-model 

We now instantiate the O-Telos representation of our Functional Failure Modes and Effects Analysis 

mcta-modcl from section 5.3 with a subset of information from table 6.3. 

+5 Volt Power Supply runction Failure 
Mode Descriptions 

+5voltpsFailureDescription in 
FunctionFailureDescription, Token with 
fnc_id 

fncId : "+ 5 Volt Power Supply, 
fnc_fail_node_description 

fncFailModeDescriptionl 
VoltageOutofSpecFailureModeDescription; 

fncFailModeDescription2 
ShortToGndFailureModeDescription; 

fncFailModeDescription3 
LossOfFilteringFailureModeDescription: 

fncFailModeDescription4 
VoltageOpenFailureModeDescription 
end 

VoltageOutofSpecFailureModeDescription in 
FunctionFailureMOdeDescription, Token 
with 
fnc_fail_node 

fncFailMode : "+5 volt out of spec" 
fnc_flight-phasedesc 

fncFlightPhaseDescl 
Vol tageOutofSpecFllghtPhaseFailureDeacrip 
tion 
fnc_detection 

fncDetection 
VoltageOutofSpecDetection 
fnc_comment 

fncComment : VoltageOutofSpecComments 

end 

VoltageOutofSpecFlightPhaseFailureDescrip 
tion in FlightPhaseFailureDescription, 
Token with 
fnc_flight-phase 

fncFlightPhase : 'All' 
fnc_fail_rate 

fncFailRate : 0.2143E-06 
fnc. phase_fail_effect 

fncPhaseFailEffect : "Power Supply 
shut down. ' 
end 

VoltageOutofSpecDetection in 
MatraNaturalLanguageStructure, Token 
with 
mnls_composite 

mnlsCompositel : VOoSDCi; 
mnlsComposite2 : VOoSDC2 

mnls_plain_text 
mnlsPlainTextl VOoSDPT1; 
mnlsPlainText2 VOoSDPT2; 
mnlsPlainText3 VOoSDPT3 

mnls_module 
mnlsModulei : PowerSupplyMonitorNode 

mnls_condition 
mnlsConditionl 

PowerSupplyMonitorTripNode 
end 

VOoSDC1 in MatraNLSComposite, Token with 

337 



Case Study ll :A Brake System Control Unit for a Wheel Braking System of a Hypothetical Aircraft 

preceding-fragment module_name 
precedingFragment : VOoSDPT1 moduleName : "BSCU' 

subject_node end 
subjectNode : PowerSupplyMonitorNode 

following-fragment VOoSCPT2 in PlainTextNode, Token with followingFragment : VOoSDC2 mnls_text 
end mnlsText : 

end 
VOOSDPT1 in PlainTextNode, Token with 
mnls_text 

mnlsText : The 
end 

PowerSupplyMonitorNode in ModuleNode, 
Token with 
module_name 

moduleName : `Power Supply Monitor' 
end 

VOoSDC2 in MatraNLSComposite, Token with 
preceding-fragment 

precedingFragment : VOoSDPT2 
subject node 

subjectNode 
PowerSupplyMonitorTripNode 
following-fragment 

followingFragment : VOoSDPT3 
end 

VOOSDPT2 in PlainTextNode, Token with 
mnls_text 

mnlsText : is 
end 

PowerSupplyMonitorTripNode in 
ConditionNode, Token with 
condition name 

conditionName : `tripped' 
end 

VOoSDPT3 in PlainTextNode, Token with 
mnls_text 

mnlsText : 
end 

VoltageOutofSpecComments in 
MatraNaturalLanguageStructure, Token 
with 
mnls_composite 

mnlsCompositel : VOoSCC1 
mnls-plain_. text 

mnlsPlainTextl : VOoSCPT1; 
mnlsPlainText2 : VOOSCPT2 

mnls_condition_node 
mnlsConditionNodel 

BSCUChannelFailNode 
end 

VOOSCC1 in MatraNLSComposite, Token with 
preceding-fragment 

precedingFragment : VOoSCPTI 
subject-node 

subjectNode : BSCUChannelFailNode 
following_fragment 

followingFragment : VOoSCPT2 
end 

VOOSCPT1 in PlainTextNode, Token with 
mnls_text 

mnlsText : The 
end 

BSCUChannelFailNode in ConditionNode, 
Token with 
condition. name 

conditionName : `channel fails' 
qualified by 

qualifiedBy : BSCUNode 
end 

BSCUNode in ModuleNode, Token with 

ShortToGndFailureModeDescription in 
FunctionFailureModeDescription, Token 
with 
fnc_fail_mode 

fncFailMode : 1+5 volt short to 
ground' 
fnc_flight phase_desc 

fncFlightPhaseDescl 
ShortToGndFlightPhaseFailureDescription 
fnc_detection 

fncDetection : ShortToGndDetection 
end 

ShortToGndFlightPhaseFailureDescription 
in FlightPhaseFailureDescription, Token 
with 
fnc_flight, phase 

fncFlightPhase : `All' 
fnc_fail_rate 

fncFailRate : 0.2857E-06 
fnc_phase_fail_effect 

fncPhaseFailEffect : 'Power Supply 
shut down. ' 
end 

ShortToGndDetection in 
MatraNaturalLanguageStructure, Token with 
mnlsplainntext 

mnlsPlainTextl : StGDPT1 
end 

StGDPT1 in PlainTextNode, Token with 
mnls_text 

mnlsText : The Power Supply Monitor 
will pass invalid power supply to other 
BSCU. ' 

end 
-- Note : primitives not demarcated in 
this and following MNLS examples 

LossOfFilteringFailureModeDescription in 
FunctionFailureModeDescription, Token 
with 
fnc_fail_mode 

fncFailMode : `loss of filtering' 
fnc_flightphase_desc 

fncFlightPhaseDescl 
LossofFilteringFlightPhaseFailureDescript 
ion 
fnc_detection 

fncDetection 
LossofFilteringDetection 
fnc_comment 

fncComment : LossofFilteringComments 
end 

LossofFilteringFlightPhaseFailureDescript 
ion in FlightPhaseFailureDescription, 
Token with 
fnc_flight_phase 

fncFlightPhase : "All' 
fnc_fail_rate 

fncFailRate : 0.3571E-06 
fnc phase_fail_effect 

fncPhaseFailEffect : "Increased 
Ripple. ' 
end 

LossofFilteringDetection in 
MatraNaturalLanguageStructure, Token 
with 
mnls. plain_text 

338 



Tracing Development & Assessment Artifacts 

mnlsPlainTextl : LOFDPT1 
end 

LoFDPT1 in PlainTextNode, Token with 
mnls_text 

mnlsText : May emit out of spec 
voltage if ripple is not detected by 
monitor. * 
end 

LossofFilteringComments in 
MatraNaturalLanguageStructure, Token with 
mnlsylain text 

mnlaPlainTextl : LoFCPT1 
end 

LoFCPT1 in PlainTextNode, Token with 
mnls_text 

mnlsText : May cause spurious trip. ' 
end 

VoltageOpenFailureModeDescription in 
FunctionFailureModeDescription, Token 
with 
fnc_fail_mode 

fncFailMode : "+5 volt open' 
fnc_flight_phase_desc 

fncFlightPhaseDescl 
Vol tageopenFlightPhaseFailureDescription 
fnc_detection 

fncDetection : VoltageOpenDetection 
end 

VoltageOpenFlightPhaseFailureDescription 
in FlightPhaseFailureDescription, Token 
with 
fnc_flight-phase 

fncFlightPhase : "All, 
fnc_fail_rate 

fncFailRate : 0.5714E-06 
fnc. phase_fail_effect 

fncPhaseFailEffect : "Power Supply 
shut down. ' 
end 

VoltageOpenDetection in 
MatraNaturalLanguageStructure, Token 
with 
mnla_plain_text 

mnlsPlainTextl : VODPTI 
end 

VODPT1 in PlainTextNode, Token with 
mnls_text 

mnlsText s The Power Supply Monitor 
will pass invalid power supply to other 
BSCU. ' 
end 

SSCU Power Supply rMEA älements (Partial) 

BSCUPowarSupplyFailureMode&EffectaAnalyais 
in FunctionalFMEA, Token with 
subject nodule 

subjectModule : "SSCU Power Supply' 
finea_mode 

fineaModel : '+5 volt out of spec'; 
fmeaMode2 : 1+5 volt short to 

ground'; 
fmeaMode3 : "loss of filtering'; 
fineaMode4 : "+5 volt open' 

finea_effect 
fmeaEffectl : 'Power Supply shut 

down. '; 
fmeaEffect2 : "Power Supply shut 

down. '; 
fmeaEffect3 : "Increased Ripple. '; 
fineaEffect4 : 'Power Supply shut 

down. ' 
finea_detection 

fmeaDetectionl 
VoltageOutofSpecDetection; 

fineaDetection2 ShortToGndDetection; 
fineaDetection3 

LossofFilteringDetection; 
fmeaDetection4 : VoltageOpenDetection 

finea_comment 
fineaCommentl 

Vol tageOutofSpecComments; 
fineaComment2 : 

LossofFilteringComments 
finea_function 

fineaFunctionl : "+ 5 Volt Power 
Supply", 
finea_rate 

fmeaRatel 0.2143E-06; 
fineaRate2 0.2857E-06; 
fmeaRate3 0.3571E-06; 
fmeaRate4 : 0.5714E-06 

finea_phase 
fineaPhasel 'All'; 
fineaPhase2 "All'; 
fmeaPhase3 : "All'; 
fineaPhase4 "All' 

finea_fnc_fail_desc 
fmeaFncFailDescl 

+5voltpsFailureDescription 
finea_fnc_fail_mode_desc 

fmeaFncFailModeDescl 
VoltageOutofSpecFailureModeDescription; 

fineaFncFailModeDesc2 
ShortToGndFailureModeDescription; 

fineaFncFailModeDesc3 
LossOfFilteringFailureModeDescription; 

fineaFncFailModeDesc4 
VoltageOpenFailureModeDescription 
finea_flight_phase_desc 

fmeaFlightPhaseDescl 
VoltageOutofSpecFlightPhaseFailureDescrip 
tion; 

fmeaFlightPhaseDesc2 
ShortToGndFlightPhaseFailureDescription; 

fineaFlightPhaseDesc3 
LossofFilteringFlightPhaseFailureDescript 
ion; 

fineaFlightPhaseDesc4 
Vol tageOpenFlightPhaseFailureDescription 
end 

6.3.4.2.3 Piece-Part Failure Modes and Effects Analysis 

Turning to the other basic event under consideration, Monitor Stuck Valid; our scenario assumes initial 

analysis of the power supply monitor was part of the functional FMEA of the entire power supply. 

1 lowcvcr, it was found that the total failure rate of the power supply monitor was 3.06E-7 failures per 

hour which does not comply with the budgeted requirement of 2.0E-7 (as shown in figure 6.14). 

Accordingly a detailed piece-part FMEA was conducted to provide better resolution into the probability 

of Monitor Stuck Valid. Partial results of this analysis are shown in table 6.4. 

339 



Case Study // :A Brake System Control Unit for a Wheel Braking System of a Hypothetical Aircraft 

Component Component Type Failure Mode Failure Rate Failure Effect Detection Method 

Cl Ceramic Capacitor short 0.0073E-06 Monitor stuck tripped Power Supply shut 
down by Monitor. 

open 0.0013E-06 Loss of delay Power Supply shut 
down. 

Spurious monitor trip 

low cap 0.0019E-06 Decrease delay to trip 

C2 Ceramic Capacitor short 0.0073E-06 Monitor stuck tripped Power Supply shut 
down by Monitor. 

open 0.0013E-06 Loss of delay Power Supply shut 
down. 

Spurious monitor trip 

low cap 0.0019E-06 Decrease delay to trip 

U IA Comparator IC output open 0.0124E-06 Monitor stuck valid Bench test. 

output 0.0056E-06 Monitor trip Power Supply shut 
grounded down. 

high offset 0.0062E-06 Loss of monitor Bench test. 
voltage sensitivity 

U1B Comparator IC output open 0.0124E-06 Monitor stuck valid Bench test. 

output 0.0056E-06 Monitor trip Power Supply shut 
grounded down. 

high offset 0.0062E-06 Loss of monitor Bench test. 

voltage sensitivity 

RI Film Resistor open 0.0009E-06 Monitor trip Power Supply shut 
down. 

increase 0.0005E-06 Trip window shifts 

resistance down 

decrease 0.0004E-06 Trip window shifts up 
resistance 

R2 Film Resistor open 0.0009E-06 Monitor trip Power Supply shut 
down. 

increase 0.0005E-06 Trip window shifts up 
resistance 

decrease 0.0004E-06 Trip window shifts 
resistance down 

R3 Film Resistor open 0.0009E-06 Monitor trip Power Supply shut 
down. 

increase 0.0005E-06 Trip window shifts up 
resistance 

decrease 0.0004E-06 Trip window shifts 
resistance down 

R4 Film Resistor open 0.0009E-06 Monitor stuck valid Bench test. 

increase 0.0005E-06 Trip window tightens Bench test. 

resistance 

decrease 0.0004E-06 Trip window widens Bench test. 

resistance Monitor stuck valid 

R5 Film Resistor open 0.0009E-06 Monitor trip Power Supply shut 
down. 

increase 0.0005E-06 Trip window shifts 
resistance down 

decrease 0.0004E-06 Trip window shifts up 

resistance 

340 



Tracing Development & Assessment Artifacts 

Component Component Type Failure Mode Failure Rate Failure Effect Detection Method 

R6 Filin Resistor open 0.0009E-06 Monitor stuck tripped Power Supply shut 
down. 

R7 Film Resistor open 0.0009E-06 Monitor stuck tripped Power Supply shut 
down. 

U2 AND Gate stuck high 0.0108E-06 Monitor stuck valid Bench test. 

stuck low 0.0054E-06 Monitor stuck tripped Power Supply shut 
down. 

U3 Voltage Reference inop 0.01 IOE-06 Monitor trip Power Supply shut 
down. 

out of spec 0.0058E-06 Window shift 

short 0.0026E-06 Monitor trip Power Supply shut 
down. 

open 0.0245E-06 Monitor trip Power Supply shut 
down. 

Table 6.4 - 'Piece-Part FMEA (Partial) of BSCU Power Supply Monitor' 

Examination of table 6.4 reveals several potential failure modes that may cause a monitor to become 

'stuck valid', namely U1A " output open, U1B " output open, R4 " open, R4 " decrease resistance and U2 " 

stuck high. Summed rates (including those not shown in the above) for contributing failures yield an 

actual failure rate of 1.429E-07, which satisfies the budget of 2.00E-07. This information will also be 

used in subsection 6.3.4.3 to update the BSCU preliminary fault tree. 

6.3.4.2.4 Instantiation of Piece-Part Failure Modes and Effects Analysis Meta-model 

We now instantiate elements from the O-Telos representation of our Piece-Part Failure Modes and 

Effects Analysis mcta-model with information from table 6.4. 

Power Supply Monitor Component Failure conLdetection 
Mods Descriptions comDetection : ClShortDetection 

end 
Definition of component Cl failure 
description 

C1FailureDescription in 
ComponentFailureDescription. Token 
with 
comname 

comName "C1" 
com_type 

comType "Ceramic Capacitor" 
com_fail_mode_description 

comFailModeDescriptionl 
CiShortFailModeDescriptionr 

comFailModeDescription2 
C10penFailModeDescriptionr 

comFailModeDescription3 
CiLowCapFailModeDescription 
end 

ClShortFailModeDescription in 
ComponentFailureMOdeDescription, Token 
with 
com_fail_mode 

comFailMode 'short' 
com_fail_rate 

comFailRate 0.0073 
com_fail_effect 

comFailEffectl : 'Monitor stuck 
tripped' 

ClShortDetection in 
MatraNaturalLanguageStructure, Token 
with 
mnla_plain text 

mnlsPlainTextl : ClShortDPT1 
end 

C1ShortDPT1 in PlainTextNode, Token 
with 
mnls_text 

mnlsText : `Power Supply shut down by 
Monitor. " 
end 
-- Note : MNLS primitives not demarcated 

C10penFailModeDescription in 
ComponentFailureModeDescription, Token 
with 
com_fail_mode 

comFailMode `open' 
com_fail_rate 

comFailRate : 0.0013E-06 
com_fail_effect 

comFailEffectl : `Loss of delay'; 
comFailEffect2 : `Spurious monitor 

trip' 
com_detection 

341 



Case Study 11: A Brake System Control Unit for a Wheel Braking System of a Hypothetical Aircraft 

comDetection : C10penDetection 
end 

C1OpenDetection in 
MatraNaturalLanguageStructure, Token 
with 
mnlsplain_text 

mnlsPlainTextl : C1OpenDPT1 
end 

coinfail_rate 
comFailRate : 0.0013E-06 

com_fail_effect 
comFailEffectl : `Loss of delay'; 
comFailEffect2 : `Spurious monitor 

trip' 
com_detection 

comDetection : C20penDetection 
end 

C1OpenDPT1 in PlainTextNode, Token C20penDetection in 
with MatraNaturalLanguageStructure, Token 
mnls_text with 

mnlsText : "Power Supply shut down. ' mnls_plain_text 
end mnlsPlainTextl : C20penDPT1 

end 
ClLowCapFailModeDescription in 
ComponentFailureModeDescription, Token 
with 
com_fail_mode 

comFailMode : 'low cap' 
com_fail_rate 

comFailRate : 0.0019E-06 
com_fail_effect 

'comFailEffectl : 'Decrease delay to 
trip' 
end 

Definition of component C2 failure 
description 

C2FailureDescription in 
ComponentFailureDescription, Token 
with 
comLyiame 

comName "C2" 
con_type 

comType "Ceramic Capacitor" 
com-fail_mode_description 

comFailModeDescriptionl 
C2ShortFailModeDescription; 

comFailModeDescription2 
C2OpenFailModeDescription; 

comFailModeDescription3 
C2LowCapFailModeDescription 
end 

C2ShortFailModeDescription in 
ComponentFailureModeDescription, Token 
with 
com_fail_mode 

comFailMode "short' 
com_fail_rate 

comFailRate 0.0073E-06 
com fail_effect 

comFailEffecti : `Monitor stuck 
tripped' 
com_detection 

comDetection : C2ShortDetection 
end 

C2ShortDetection in 
MatraNaturalLanguageStructure, Token 
with 
mnlsplain_text 

mnlsPlainTextl : C2ShortDPT1 
end 

C20penDPT1 in PlainTextNode, Token 
with 
mnls_text 

mnlsText : "Power Supply shut down. ' 
end 

C2LowCapFailModeDescription in 
ComponentFailureModeDescription, Token 
with 
com_fail_mode 

comFailMode : `low cap' 
com_fail_rate 

comFailRate : 0.0019E-06 
com_fail_effect 

comFailEffectl : `Decrease delay to 
trip' 
end 

Definition of component thu failure 
description 

UlAFailureDescription in 
ComponentFailureDescription, Token 
with 
com name 

comName : "UlA' 
com_type 

comType "Comparator IC' 
cofail_aode_description 

comFailModeDescriptionl 
U1AOutputOpenFailMOdeDescription; 

comFailModeDescription2 : 
UlAOutputGroundedFailMOdeDescription; 

comFailModeDescription3 : 
UJAHighOffsetVoltageFailMOdeDescription 
end 

UlAOutputOpenFailModeDescription in 
ComponentFailureModeDescription, Token 
with 
conn. fail, mode 

comFailMode : "output open' 
com_fail_rate 

comFailRate : 0.0124E-06 
com_fail_effect 

comFailEffectl : `Monitor stuck 
valid' 
conLdetection 

comDetection : UlAOutputOpenDetection 
end 

C2ShortDPTl in PlainTextNode, Token UlAOutputOpenDetection in 

with MatraNaturalLanguageStructure, Token 

mnls_text with 
mnlsText : `Power Supply shut down by mnls plain_text 

monitor. ' mnlsPlainTextl : UlAOutputOpenDPTl 
end end 

C20penFailModeDescription in 
ComponentFailureModeDescription, Token 
with 
com_fail-inode 

comFailMode : `open' 

UlAOutputOpenDPT1 in PlainTextNode, Token 
with 
mnls_text 

mnlsText : `Bench test. ' 
end 

342 



Tracing Development & Assessment Artifacts 

UlAOutputGroundedFailModeDescription in 
ComponentFailureModeDescription. Token 
with 
com_fail_mode 

comFailMode "output grounded' 
com_fail_rate 

comFailRate 0.0056E-06 
cor_fail_effect 

comFailEffectl : "Monitor trip, 
cor_detection 

comDetection 
UlAOutputGroundedDetection 
end 

UlAOutputGroundedDetection in 
MatraNaturalLanguageStructure, Token 
with 
mnls_plain_text 

mnlsPlainTextl 
UlAOutputGroundedDPT1 
end 

UlAOutputGroundedDPT1 in PlainTextNode, 
Token with 
mnls_text 

mnlsText : "Power Supply shut down. ' 
end 

UlAHighOffsetVoltageFailModeDescription 
in ComponentFailureModeDescription, Token 
with 
com_fail_mode 

comFailMode "high offset voltage, 
com_fail_rate 

comFailRate 0.0062E-06 
com_fail_effect 

comFailEffectl : "Loss of monitor 
sensitivity" 
com_detection 

comDetection 
UlAHighOffsetVoltageDetection 
end 

U1AHighOffsetVoltageDetection in 
MatraNaturalLanguageStructure, Token 
with 
mnls_plain.. text 

mnlsPlainTextl 
U1AHighOffsetVoltageDPT1 
and 

UlAHighOffsetVoltageDPTl in 
PlainTextNode, Token with 
mnle text 

mnleText s "Bench teat. ' 
end 

Definition of component Ui8 failure 
description 

UlBFailureDescription in 
ComponentFailureDescription, Token 
with 
corn name 

comName : "U1B" 
cook-type 

comType s "Comparator IC' 
com_fail_mode_description 

comFailModeDescriptionl 
U1BOutputOpenFailModeDescriptions 

comFailModeDescription2 
U1BOutputGroundedFai1ModeDescription; 

comFailModeDescription3 
U18HighOffsetVoltageFailModeDescription 
end 

U1BOutputOpenFai1ModeDescription in 
ComponentFailureModeDescription, Token 
with 
com_failjnode 

comFailMode : "output open' 
com-fail_rate 

comFailRate : 0.0124E-06 
com_fail_effect 

comFailEffectl : "Monitor stuck 
valid' 
com_detection 

comDetection : USBOutputOpenDetection 
end 

U1BOutputOpenDetection in 
MatraNaturalLanguageStructure, Token 
with 
mnls_plain_text 

mnlsPlainTextl : U1BOutputOpenDPT1 
end 

U1BOutputOpenDPT1 in PlainTextNode, Token 
with 
mnls_text 

mnlsText : `Bench test. ' 
end 

UlBOutputGroundedFailModeDescription in 
ComponentFailureModeDescription, Token 
with 
com_fail_node 

comFailMode : "output grounded' 
com_fail_rate 

comFailRate 0.0056E-06 
com_fail_effect 

comFailEffectl : "Monitor trip' 
coin-detection 

comDetection 
UlBOutputGroundedDetection 
end 

U1BOutputGroundedDetection in 
MatraNaturalLanguageStructure, Token 
with 
mnls plain text 

mnlsPlainTextl 
U1BOutputGroundedDPT1 
end 

UlBOutputGroundedDPTlin PlainTextNode, 
Token with 
mnls_text 

mnlsText : "Power Supply shut down. " 
end 

U1BHighOffsetVoltageFailModeDescription 
in ComponentFailureModeDescription, Token 
with 
com_fail_mode 

comFailMode "high offset voltage' 
con_fail_rate 

comFailRate 0.0062E-06 
com_fail_effect 

comFailEffectl : "Loss of monitor 
sensitivity' 
com_detection 

comDetection 
UlBHighOffsetVoltageDetection 
end 

U1SHighOffsetVoltageDetection in 
MatraNaturalLanguageStructure, Token 
with 
mnls_plain_text 

mnlsPlainTextl 
U1DHighOffsetVoltageDPT1 
end 

U1BHighOffsetVoltageDPTlin PlainTextNode, 
Token with 
mnls_text 

mnlsText : "Bench test. ' 
end 

343 



Case Study 11: A Brake System Control Unit for a Wheel Braking System of a Hypothetical Aircraft 

Definition of component R1 failure 
description 

RlFailureDescription in 
ComponentFailureDescription, Token 
with 
com. name 

comName : "Rl' 
conLtype 

conType : "Film Resistor' 
conLfailmode_description 

comFailModeDescriptionl 
R10penFailModeDescription; 

comFailModeDescription2 
RllncreaseResistanceFailModeDescription; 

comFailModeDescription3 
RiDecreaseResistanceFailModeDescription 
end 

R10penFailModeDescription in 
ComponentFailureModeDescription, Token 
with 
com_fail mode 

comFailMode : open' 
com_fail_rate 

comFailRate : 0.0009E-06 
com_fail_effect 

comFailEffectl : `Monitor trip' 
com detection 

comDetection : RlOpenDetection 
end 

comFailModeDescriptionl 
R20penFailModeDescription; 

comFailModeDescription2 
R2 lncreaseResistanceFailModeDescription; 

comFailModeDescription3 
R2DecreaseResistanceFailModeDescription 
end 

R20penFailModeDescription in 
ComponentFailureModeDescription, Token 
with 
com_fail. jnode 

comFailMode "open' 
com_fail_rate 

comFailRate : 0.0009E-06 
com_fail_effect 

comFailEffecti : 'Monitor trip' 
com_detection 

comDetection : R20penDetection 
end 

R20penDetection in 
MatraNaturalLanguageStructure, Token with 
mnls plairLtext 

mnlsPlainTextl : R20penDPT1 
end 

R20penDPT1 in PlainTextNode, Token with 
mnls_text 

mnlsText : `Power Supply shut down. ' 
end 

R1OpenDetection in 
MatraNaturalLanguageStructure, Token 
with 
mnls plain. text 

mnlsPlainTexti : R1OpenDPT1 
end 

R1OpenDPT1 in PlainTextNode, Token 
with 
mnls_text 

mnlsText : "Power Supply shut down. ' 
end , 

RilncreaseResistanceFailModeDescription 
in ComponentFailureModeDescription, Token 
with 
com_fail_mode 

comFailMode "increase resistance' 
com_fail_rate 

comFailRate 0.0005E-06 
corn_fail_effect 

comFailEffecti : `Trip window shifts 
down' 
end 

R1DecreaseResistanceFailModeDescription 
in ComponentFailureModeDescription, Token 
with 
com_fail. jnode 

comFailMode : "decrease resistance' 
com_fail_rate 

comFailRate 0.0004E-06 
com_fail_effect 

comFailEffectl : "Trip window shifts 
UP . 
end 

Definition of component R2 failure 
description 

R2FailureDescription in 
ComponentFailureDescription, Token 
with 
comlame 

comName "R2' 
com_type 

comType : `Film Resistor' 
com_fail mode_description 

R21ncreaseResistanceFailModeDescription 
in ComponentFailureModeDescription, Token 
with 
com_fail_node 

comFailMode : "increase resistance" 
com_fail_rate 

comFailRate : 0.0005E-06 
com_fail_effect 

comFailEffecti : "Trip window shifts 
up' 
end 

R2DecreaseResistanceFailModeDescription 
in ComponentFailureModeDescription, Token 
with 
com_fail_mode 

comFailMode : "decrease resistance' 
com_fail_rate 

comFailRate : 0.0004E-06 
com_fail_effect 

comFailEffecti : "Trip window shifts 
down' 
end 

Definition of component R3 failure 
description 

R3FailureDescription in 
ComponentFailureDescription, Token 
with 
com_name 

comName "R3' 
com_type 

comType : "Film Resistor' 
com_fail_mode_description 

comFailModeDescriptionl 
R30penFailMOdeDescription; 

comFailModeDescription2 
R31ncreaseResistanceFailModeDescription; 

comFailModeDescription3 : 
R3DecreaseResistanceFailModeDescription 
end 

R30penFailModeDescription in 
ComponentFailureModeDescription, Token 
with 
com_fail_jnode 

344 



Tracing Development & Assessment Artifacts 

comFailMode : "open' 
com_fail_rate 

comFailRate 0.0009E-06 
com-fail_effect 

corFailEffectl : "Monitor trip' 
com_detection 

comDetection : R30penDetection 
end 

R30DenDetection in 
MatraNaturalLanguageStructure, Token 
with 
mnlsplain_text 

mnlsPlainTextl : R30penDPT1 
end 

R30penDPT1 in PlainTextNode, Token with 
mnls_text 

mnlsText : "Power Supply shut down. " 
end 
R31ncreaseResistanceFailModeDescription 
in ComponentFailureModeDescription, Token 
with 
com_fail_mode 

comFailMode "increase resistance- 
com_fail_rate 

comFailRate : 0.0005E-06 
com_fail_effect 

comFailEffectl : "Trip window shifts 
up" 
end 

R3DecreaseResistanceFailModeDescription 
in ComponentFailureModeDescription, Token 
with 
com_fail_ mode 

comFailMode : "decrease resistance- 
com_fail_rate 

comFailRate : 0.0004E-06 
com_fail_effect 

comFallEffectl : "Trip window shifts 
down' 
end 

Definition of component R4 failur. 
description 

R4FailureDescription in 
ComponentFailureDescription, Token 
with 
com name 

comName "R4" 
conLtype 

comType "Film Resistor' 
com_fail_mode_description 

comFailModeDescriptionl 
R40penFailModeDescription; 

comFailModeDescription2 
R4 IncreaseResistanceFailMOdeDescriptionr 

comFailModeDescription3 : 
R4DecreaseResistanceFailModeDescription 
end 

R40penFailModeDescription in 
ComponentFailureModeDescription, Token 
with 
com_fail_mode 

comFailMode "open' 
com_fail_rate 

comFailRate 0.0009E-06 
com.. fail_effect 

comFailEffectl : 'Monitor stuck 
valid' 
com_detection 

comDetection : R40penDetection 
end 

R40penDetection in 
MatraNaturalLanguageStructure, Token 
with 

mnlsplain_text 
mnlsPlainTextl : R40penDPT1 

end 

R40penDPT1 in PlainTextNode, Token 
with 
mnis_text 

mnlsText : `Bench test. ' 
end 

R4 lncreaseResistanceFailModeDescription 
in ComponentFailureModeDescription, Token 
with 
com_fail_node 

comFailMode : "increase resistance- 
com_fail_rate 

comFailRate : 0.0005E-06 
com_fail_effect 

comFailEffectl : "Trip window 
tightens' 
com_detection 

comDetection 
R4 lncreaseResistanceDetection 
end 

R4IncreaseResistanceDetection in 
MatraNaturalLanguageStructure, Token 
with 
mn1s_plain_text 

mnlsPlainTextl 
R41ncreaseResistanceDPT1 
end 

R4IncreaseResistanceDPT1 in 
PlainTextNode, Token with 
mnls_text 

mnlsText : "Bench test. ' 
end 

R4DecreaseResistanceFailModeDescription 
in ComponentFailureModeDescription, Token 
with 
com_fail_mode 

comFailMode : "decrease resistance' 
com_fail_rate 

comFailRate 0.0004E-06 
com_fail_effect 

comFailEffecti : "Trip window 
widens'; 

comFailEffect2 : "Monitor stuck 
valid' 
com_detection 

comDetection 
R4DecreaseResistanceDetection 
end 

R4DecreaseResistanceDetection in 
Ma traNaturalLanguageStructure, Token 
with 
mnlsplair_text 

mnlsPlainTextl 
R4DecreaseResistanceDPT1 
end 

R4DecreaseResistanceDPT1 in 
PlainTextNode, Token with 
mnls_text 

mnlsText : "Bench test. " 
end 

Definition of component R5 failure 
description 

R5FailureDescription in 
ComponentFailureDescription, Token 
with 
couLname 

comName "R5' 
com_type 

comType "Film Resistor' 

345 



Case Study 11: A Brake System Control Unit for a Wheel Braking System of a Hypothetical Aircraft 

com_fail_xaode_description 
comFailModeDescriptionl 

R5OpenFailModeDescription; 
comFailModeDescription2 

R5lncreaseResistanceFailModeDescription; 
comFailModeDescription3 : 

R5DecreaseResistanceFailModeDescription 
end 

com_fail_rate 
comFailRate : 0.0009E-06 

com_fail_effect 
comFailEffectl : `Monitor stuck 

tripped' 
com_detection 

comDetection : R60penDetection 
end 

R50penFailModeDescription in 
ComponentFailureModeDescription, Token 
with 
com_fail_mode 

comFailMode : open' 
com_fail_rate 

comFailRate : 0.0009E-06 
com_fail_effect 

comFailEffectl : `Monitor trip" 
com_detection 

comDetection : R50penDetection 
end 

R50penDetection in 
MatraNaturalLanguageStructure, Token 
with 
mnlsplain`text 

mnlsPlainTextl : R50penDPT1 
end 

R50penDPT1 in PlainTextNode, Token 
with 
mnls_text 

mnlsText : `Power Supply shut down. ' 
end 

R5IncreaseResistanceFailModeDescription 
in ComponentFailureModeDescription, Token 
with 
com_failjnode 

comFailMode : `increase resistance' 
com-fail_rate 

comFailRate : 0.0005E-06 
com. fail_effect 

comFailEffectl : `Trip window shifts 
down' 
end 

R5DecreaseResistanceFailModeDescription 
in ComponentFailureModeDescription, Token 
with 
com_fail__node 

comFailMode "decrease resistance' 
com_fail_rate 

comFailRate : 0.0004E-06 
com fail_effect 

comFailEffectl : `Trip window shifts 
up' 
end 

Definition of component R6 failure 
description 

R6FailureDescription in 
ComponentFailureDescription, Token 
with 
co mme 

comName "R6" 
cotype 

comType "Film Resistor' 
com_fai Lmode_description 

comFailModeDescriptionl 
R6openFailModeDescription 
end 

R6OpenFailModeDescription in 
ComponentFailureModeDescription, Token 
with 
com fail node 

conFailMode : "open" 

R60penDetection in 
MatraNaturalLanguageStructure, Token 
with 
mnls, plain_text 

mnlsPlainTextl : R60penDPT1 
end 

R60penDPT1 in PlainTextNode, Token 
with 
mnls_text 

mnlsText : `Power Supply shut down. ' 
end 

Definition of component R7 failure 
description 

R7FailureDescription in 
ComponentFailureDescription, Token 
with 
com_name 

comName : "R7' 
com_type 

comType : "Film Resistor' 
com_fail_mode_description 

comFailModeDescriptionl 
R70penFailModeDescription 
end 

R70penFailModeDescription in 
ComponentFailureModeDescription, Token 
with 
com_failjnode 

comFailMode : 'open' 
com-fail_rate 

comFailRate : 0.0009E-06 
com_fail_effect 

comFailEffecti : "Monitor stuck 
tripped' 
com_detection 

comDetection : R70penDetection 
end 

R7OpenDetection in 
MatraNaturalLanguageStructure, Token 
with 
mnls p1ainntext 

mnlsPlainTextl : R7OpenDPT1 
end 

R70penDPT1 in PlainTextNode, Token 
with 
mnls_text 

mnlsText : "Power Supply shut down. ' 
end 

Definition of component U2 failure 
description 

U2FailureDescription in 
ComponentFailureDescription, Token 
with 
com_name 

comName "U2' 
com_type 

comType `AND Gate 
com_fail_mode_description 

comFailModeDescriptionl 
U2StuckHighFailModeDescription; 

comFailModeDescription2 : 
U2StuckLowFailModeDescription 

346 



Tracing Development & Assessment Artifacts 

end 

U2StuckHighFailModeDescription in 
ComponentFailureModeDescription, Token 
with 
com_fail, mode 

comFailMode "stuck high' 
com_fail_rate 

comFailRate 0.0108E-06 
com_fail_effect 

comFailEffectl : "Monitor stuck 
valid' 
com_detection 

comDetection : U2StuckHighDetection 
end 

U2StuckHighDetection in 
MatraNaturalLanguageStructure, Token 
with 
mnls,.. plain_text 

mnlsPlainTextl : U2StuckHighDPT1 
end 

U2StuckHighDPT1 in PlainTextNode, Token 
with 
mnls_text 

mnlsText : "Bench test. ' 
end 
U2StuckLowFailModeDescription in 
ComponentFailureModeDescription, Token 
with 
com_fail mode 

comFailMode : "stuck low' 
com_fail_rate 

comFailRate : 0.0054E-06 
com_fail_effect 

comFailEffectl : 'Monitor stuck 
tripped' 
cowdetection 

comDetection : U2StuckLowDetection 
end 

U2StuckLowDetection in 
MatraNaturalLanguageStructure, Token 
with 
mnl8_plain_text 

mnl8PlainTextl : U2StuckLowDPT1 
end 

U2StuckLowDPT1 in P1ainTextNode, Token 
with 
mnls_text 

mnlsText : `Power Supply shut down., 
end 

Definition of component ü3 failure 
description 

U3FailureDescription in 
ComponentFailureDescription, Token 
with 
com_: ame 

comName "U3" 
corn-type 

comType "Voltage Reference' 
com_fail_mode_description 

comFailModeDescriptionl 
U3 InopFailModeDescription; 

comFailModeDescription2 
U30utofSpecFailModeDescription: 

comFailModeDescription3 
U3ShortFailModeDescription; 

comFailModeDescription4 
U30penFailModeDescription 
end 

U3 InopFailModeDescription in 
ComponentFailureModeDescription, Token 
with 
com-fa i 1_node 

comFailMode : "inop' 
com_fail_rate 

comFailRate 0.0110E-06 
coný_fail_effect 

comFailEffectl : "Monitor trip' 
com_detection 

comDetection : U3InopDetection 
end 

U3InopDetection in 
MatraNaturalLanguageStructure, Token 
with 
mnls plain text 

mnlsPlainTextl : U3InopDPT1 
end 

U3InopDPTlin PlainTextNode, Token 
with 
mnls_text 

mnlsText : "Power Supply shut down. " 
end 

U30utofSpecFailModeDescription in 
ComponentFailureModeDescription, Token 
with 
con-fail mode 

comFailMode : out of spec' 
com_fail_rate 

comFailRate : 0.0058E-06 
com_fail_effect 

comFailEffectl : "Window shift' 
end 

U3ShortFailModeDescription in 
ComponentFailureModeDescription, Token 
with 
com-fail_node 

comFailMode : "short' 
conn_fail_rate 

comFailRate 0.0026E-06 
cor_fail_effect 

comFailEffectl : "Monitor trip' 
cowdetection 

comDetection : U3ShortDetection 
end 

U3ShortDetection in 
MatraNatura1LanguageStructure, Token 
with 
mnlsplain_text 

mnlsPlainTextl : U3ShortDPT1 
end 

U3ShortDPTl in PlainTextNode, Token 
with 
mnls_text 

mnlsText : "Power Supply shut down. * 
end 

U30penFailModeDescription in 
ComponentFailureModeDescription, Token 
with 
com_fail. jnode 

comFailMode : `open, 
com_fail_rate 

comFailRate : 0.0245E-06 
com_fail_effect 

comFailEffectl : "Monitor trip' 
com_detection 

comDetection : U30penDetection 
end 

U30penDetection in 
MatraNaturalLanguageStructure, Token 
with 
mnls-plain_text 

mnlsPlainTexti : U30penDPT1 
end 

347 



Case Study 11: A Brake System Control Unit for a Wheel Braking System of a Hypothetical Aircraft 

U30penDPT1 in PlainTextNode, Token fineaComponentl3 : "U3' 
with finea_comp_type 
mnls_text fmeaCompTypel 'Ceramic Capacitor'; 

mnlsText : 'Power Supply shut down. ' fmeaCompType2 : "Ceramic Capacitor'; 
end fineaCompType3 : "Comparator IC'; 

fmeaCompType4 : "Comparator IC'; 
fineaCompType5 : 'Film Resistor'; 

BSCU Power Supply Monitor FMEA Elements 
(Partial) 

BSCUPowerSupplyMonitorFailureMode&Effects 
Analysis in PiecePartFMEA, Token 
with 
subject nodule 

subjectModule : "BSCU Power Supply 
Monitor' 
finea mode 

fineaModel : "short'; 
fmeaMode2 : "open'; 
fineaMode3 : low cap' 
fineaMode4 : "short'; 
fmeaMode5 : "open'; 

fmeaCompTypel3 
fineajnode_rate 

fmeaModeRatel 
fineaModeRate2 
fmeaModeRate3 
fineaModeRate4 
fineaModeRate5 

: `Voltage Reference' 

fineaMode35 : "open' 
finea_effact 

fineaEffectl: "Monitor stuck tripped'; 
fmeaEffect2 : 'Loss of delay'; 
fmeaEffect3 :, Spurious monitor trip'; 
fmeaEffect4 : `Decrease delay to trip'; 
fineaEffect5 : "Monitor stuck tripped'; 

fineaEffect38: 'Monitor trip' 
finea_detection 

fineaDetectionl C1ShortDetection; 
fineaDetection2 : C10penDetection; 
fineaDetection3 : C2ShortDetection; 
fmeaDetection4 C20penDetection; 
fmeaDetection5 

UlAOutputOpenDetection; 

fmeaDetection24 : U30penDetection 
finea_component 

fmeaComponentl : "C11; 
fmeaComponent2 "C21; 
fmeaComponent3 : "MAI; 
fineaComponent4 "MB'; 

6.3.4.3 Fault Tree Analysis - Updated 

0.0073E-06; 
0.0013E-06; 
0.0019E-06; 
0.0073E-06; 
0.0013E-06; 

fmeaModeRate35 : 0.0245E-06 
finea_com_fail_desc 

fmeaComFailDescl 
C1FailureDescription; 

fmeaComFailDesc2 
C2FailureDescription; 

fmeaComFailDesc3 
UlAFailureDescription; 

fmeaComFailDesc4 
UlBFailureDescription; 

fmeaComFailDesc5 
RiFailureDescription; 

fineaComFailDescl3 
U3FailureDescription 
finea_com_fail. jnode_desc 

fineaComFailModeDesc1 
ClShortFailModeDescription; 

fineaComFailModeDesc2 
C10penFailModeDescription; 

fineaComFailModeDesc3 
ClLowCapFailModeDescription; 

fineaComFailModeDesc4 
C2ShortFailModeDescription; 

fineaCoiFailModeDesc5 
C20penFailModeDescription; 

fineaComFailModeDesc35 
U30penFailModeDescription 
end 

The results of Failure Modes & Effects Analyses, together with those of other techniques such as 
Common Mode Analysis are used to update the fault trees developed as part of Preliminary System 

Safety Assessment. In doing so, evidence is provided for certification demonstrating that safety 

requirements for undesirable top events have been met. 

In this subsection we update failure rates and probabilities for the fault tree in 6.3.3.2, which recall 

considered as its top event inadvertent braking attributable to the BSCU, and which has a requirement 

of 2.5E-09. Note the description for this example is the same as given previously. 

Rather than repeat what is essentially the same tree but with additional and revised quantitative data, 

we include a subset of events (figure 6.17) from its upper levels (down to the transfer gates), with the 

remainder appearing in Appendix D. 

348 



Tracing Development & Assessment Artifacts 

Braking in Absence of 
Braking Input Causing 

... 
BSCl1INADD 

2.50E-9 

BSCU Single BSCU Detectable 
Undetectable Failure Failure Resulting in 

Causing Inadvonont 
... Inadvertent Braking 

I'ý( IIIINI II - -- IiKCllfICTF1) 

il I[ H,, 

T 
BSCU1 Detectable BSCU2 Detectable 

Failure Causes Bad Data Failure Causes Bad Data 

"CHIN ID HI; (JJ? DETD 

.. Ipi Ufll ýý H1 11 .l 5001 10 

Figure 6.17 - 'HS(i I Commands Braking in Absence of Brake Input Causing Inadvertent 

Braking - Updated Fault Tree (partial)' 

IS si i' Ili, additional and rc\ iýr(i yuilluit ui\r dala, the label of event BSCUUNDF has been inodilicd 

Ir0nu 'single undetected ...... toi 'single undetectable ....... and its type from external to basic. In Ihr 

hollowing subsection, we ronnlplelc instantiation of the Fault Tree Analysis begun in 6.3.3.2.1 by 

canting ululated prohiles capturing these iiiodiIicatioils for events shown in figure 6.17 (readers are 

again mfrrrrd IO Appendix 1) fur the complete Irre). 

6.3.4.3.1 Instantiation of Fault Tree Analysis Meta-Model - Updated Fault Tree 

Updated Event Definition `BSCUINADD' luput I I': vent l3Upl, It c< 1Prýý1 i l; 

lttput2 PlveIt 
. 
CUpclaCedPI(Itile 

P' IA in I": v, nt, i k, ti with 
ulýýl. ýl ý"il Iýtýýl i l. " 

I, (I, tt_r"(iPiutiI Iv, ýtttAtJ (httc(71'rotilo 
ond 

I"ivi"nP AIIInl,, t i"(II'! ul i lc ill 

Ulxl, it cll": vent I'1 ,I il, ", 'Pukc"11 with 
I VI", 

"i'yl, i" "t eil,,, 
, volit r nn "< tiv 

, "v 'nt P'unnoc"t ive : OrGatelU 

, wtu,, I pf''I,, Il, iIity 

, irt 11,11I't , kIhi lit y 
I: v, it AArl u. l I I't ()I, nl>i 1i ty 

I'letimin. ny I, ucll l 

I, t("I imin'uyltudglet 
I": v. "ntAl'r, I imiI I, II YI lget 

1u1l , 1, t' l 
t u,, lt.. il>eI EventAPreliminaryLabel 

"n l 

1": v, iilAA tu, tll'ruh, tl>ilily in 

At UI I I'tIIII. tIII I It y, 'P ken with 
I, t l,, il, i Iity 

I't l ,, t ility1.2 iE 09 

ýýnýl 

Oat. definitions 

Updated Event Definition `BSCUUNDF' 

I: výn t-. li in Kve+nt, Token wit. h 

up(Litoc1 protJI 

updatedProtile : EventBUpdatedPxotile 
end 

EventBUpdatedProfile in 
UpdatedEventProfile, Token with 
type 

Type : "bas" 
actual-probability 

actualProbability 
EventBActua1Probability 
preliminary_budget 

preliminaryBudget 
EventBPreliminaryBudget 
actual label 

actualLabel : EventBActualLabel 

end 

EventBActualProbability in 

ActualProbability, Token with 
probability 

_Probability 
: 0.00E+00 

, 11d 

-III in ýuý;, ýtý", 'I' kuii wit ti 

nt ut 

EveritBActualLabel in SimpleLabel, Token 

with 

341) 



Case Study 11: A Brake System Control Unit fora Wheel Braking System of a Hypothetical Aircraft 

simple-description updated-profile 
simpleDescription : updatedProfile : EventDUpdatedProfile 

EventBActualSimpleEventDescription end 
end 

EventBActualSimpleEventDescription in 
SimpleEventDescription, Token 
with 
entity 

_Entity : "BSCU' 
condition 

_Condition : `Single Undetectable 
Failure Causing Inadvertent Braking' 
end 

Updated Event Definition 'BSCUDETFD' 

EventC in Event, Token with 
updated_profile 

updatedProfile : EventCIIpdatedProfile 
end 

EventCUpdatedProfile in 
UpdatedEventProfile, Token with 
type 

-Type : "int" 
event-connective 

eventConnective : OrGate2U 
actual-probability 

actualProbability 
EventCActualProbability 
preliminary-budget 

preliminaryBudget 
EventCPreliminaryBudget 
actual-label 

actualLabel : EventCPreliminaryLabel 
end 

EventCActualProbability in 
ActualProbability, Token 
with 
probability 

_Probability : 1.23E-09 
end 

Gate definitions 

OrGate2U in OrGate, Token with 
input 

_Inputl : EventDUpdatedProfile; 

_Input2 : EventEUpdatedProfile 
end 

Updated Event Definition `BSCU1DETD" 

EventD in Event, Token with 

EventDUpdatedProfile in 
UpdatedEventProfile, Token with 
type 

_Type : lint' 
event_connective 

EventConnective : OrGate3U 
actual-probability 

actualProbability 
EventDActualProbabiiity 
preliminary-budget 

preliminaryBudget 
EventDPreliminaryBudget 
actual-label 

actualLabel : EventDPreliminaryLabel 
end 

EventDActualProbability in 
ActualProbability, Token 
with 
probability 

_Probability : 1.23E-09 
end 

Updated Event Definition `BSCU2DETD" 

EventE in Event, Token with 
updated-profile 

updatedProfile : EventEUpdatedProfile 
end 

EventEUpdatedProfile in 
UpdatedEventProfile, Token with 
type 

_Type : "int" 
event_connective 

EventConnective : AndGate3U 
actual_probability 

actualProbability 
EventEActualProbability 
preliminary-budget 

preliminaryBudget 
EventEPreliminaryBudget 
actual-label 

actualLabel : EventEPreliminaryLabel 
end 

EventEActualProbability in 
ActualProbability, Token 
with 
probability 

_Probability : 2.84E-13 
end 

Failure effects and probabilities from the item level SSA are subsequently used to verify system level 

analyses (including fault trees), and thence aircraft level analyses. However, these are beyond the scope 

of this investigation; interested readers are again referred to EUROCAE (1996b) for more details. 

6.3.5 Trace Relations 
This case study has further demonstrated population of meta-models within the traceability Workspace. 

Trace relations may again be added to provide means of navigating between these models, and elements 

of these models, as we now illustrate. 

From the artifacts represented, a number of possible associations can be established as shown in figure 

6.18 (and summarised in table 6.5): - 

350 



Tracing Development & Assessment Artifacts 

..., iý, . u.. 
..,... 1 

ýI 

., l ý 

ý,,, 
ý .. 

ýrý. 

Figlire 6.18 - 'Exemplar Inh-. 1-Micro Horizontal & Vertical Traceability Relations' 

SOURCE RELATION TARGET 
TYPE 

Model Element Model Element 
P()wi, r Supply Function Power Supply Monitor Implemented-By Power Supply Monitor 
IiI()ck Di, rgrun (Function) Circuit Diagram 
Power Supply Monitor U1B (Capacitor) Assessed-By Failure Modes & Effects U1B Failure 
Circuit Diagram Analysis Table Description 

(Component, Type 
and Failure Modes) 

failure Modes & Effects Monitor stuck valid Effects Power Supply Function Power Supply 
Analysis Table (Failure Mode Block Diagram Monitor (Function) 

Description ) 

F allure Modes & Effects output open (Failure Contributes-to Fault Tree Analysis Power Supply 
Analysis Table Mode Description Monitor " Monitor 

Stuck Valid (Event 
Profile) 

Table 6.5 - 'tiummarv of Traceability Relations' (from figure 6.18) 

fu rl; uily 11w : thovC Icl; iliu is aL'O)Fdinu iii the traceability axes front Chapter One (subsection I. 4.3): 

ill are deemed infra micro since - in ARP 476l terminology - they describe various views within it 

inl le 'itrtn' (IUS('(I) 01 time Wheel 131; ikin" Sy, tem. AssessedBy and Effects are vertical relations (from 

iinl, leineiitati011 I0 asses. timent artifact, and front assessment to design respectively), as is Implemented- 

By (assuming we regard the block cliagrain as it design artifact and the Circuit Diagrane an 

nil)lrntrnt: uion artifact). Finally, Contributes-to is a horiumtal relation among SSA assessment artifacts. 

Apain, VL is ilei Ir Ih; ii Ihrse assuciaiioils are fairly arhiuary and that a literature survey tugcther with 

P' i 'dourer runsullal ion will he necessary ti) produce a comprehensive sei relevant Icy the aerospace 

M. he li. ti('1 I tlcry al'u he n"p: utlcd ati a . yalrlu In IS ut%n rtghl and hence rwnpunrnls sorb as 131, as cunsulucnl ilclus of that 

' slriu 

Stil 

(f" 
ý., -: N 



Case Study ll :A Brake System Control Unit fora Wheel Braking System of a Hypothetical Aircraft 

industry and artifacts from that domain (see further work item in Chapter Seven, subsection 7.4.3). 

6.3.5.1 Instantiation of Trace Relations 
To demonstrate application of these relations, we instantiate the appropriate O-Telos base classes - 
specialisations of AerospaceEngineeringAssociation - introduced in Chapter Three (subsection 3.3.6.3.2). 

Our first example populates the ImplementedBy relation; its source (fromEntity) is the Power Supply 

Monitor (PowerSupplyMonitor) function (element) of the Function Block Diagram, and its destination 

(toEntity), the Power Supply Monitor Circuit Diagram (PowerSupplyMonitorCD). 

ImplementedBy01 in ImplementedBy, Token with 
from_entity 

fromEntity : PowerSupplyMonitor 
to_entity 

toEntity : PowerSupplyMonitorCD 
end 

Example two populates AssessedBy, in this case between U1 B, a comparator element of the Power 

Supply Monitor Circuit Diagram - and the corresponding description of failures for that particular 

component (in terms of component, type and failure mode9) from the piece-part FMEA table 

(U1 BFailureDescription). 

AssessedBy01 in AssessedBy, Token with 
from_entity 

fromEntity : U1B 
to_entity 

toEntity : U1BFailureDescription 
end 

Our third example populates the Effects association; it occurs between an instance of failure effect 
details (i. e., mode, effect, rate, etc. ) from the FMEA table (Ui BOutputOpenFailModeDescription)10, and the 
PowerSupplyMonitor function of the Function Block Diagram. 

EffectsOi in Effects, Token with 
from_entity 

fromEntity : U1BOutputOpenFailModeDescription 
to_entity 

toEntity : PowerSupplyMonitor 
end 

Our final example populates the ContributesTo association between details of a failure effect (again 

U1 BOutputOpenFailModeDescription from example three) and a fault tree updated profile 

(EventHUpdatedProfile). Note, here, using aggregated objects as source and target (i. e., opting for a 

relatively coarse granularity) adds context to the association (as it does with examples two and three 

above) which in this case might otherwise simply link rates in the FMEA to those in the fault tree. 

ContributesTo01 in ContributesTo, Token with 
from_entity 

fromEntity : U1BOutputOpenFailModeDescription 
to_entity 

toEntity : EventHUpdatedProfile 

end 

9 This relates to the aggregated ComponentFailureDescription class from the FMEA meta-model in subsection 5.3.3.2.1. 
to This relates to the aggregated ComponentFailureModeDescription class from the FMEA meta-model in subsection 5.3.3.2.1; 

similar Effects relations apply to the other FMEA failure descriptions shown in figure 6.18 as these also impact on the Monitor. 

352 



Tracing Development & Assessment Artifacts 

6.3.6 Summary 
This section has demonstrated application of the Fault Tree Analysis and Failure Modes and Effects 

Analysis structures introduced in sections 5.2 and 5.3 respectively. In doing so, extracts of artifacts 
described in a case study from an aerospace industry standard (ARP 4761) were used to populate 0- 

Telos implementations of both structures. We then illustrated how these models and their elements may 
be linked using various trace relations. The results of this case study will again be considered as part of 

our overall thesis evaluation in Chapter Seven. 

353 



Case Study lI :A Brake System Control Unit for a Wheel Braking System of a Hypothetical Aircraft 

6.4 Chapter Summary 
This chapter has exhibited a number of traceability structures (meta-models) introduced in Chapters 
Four and Five using case studies supplied by aerospace practitioners. These, along with worked 
examples from the previous chapters, provide a flavour of one possible means of automation for 
MATrA. 

Our first case study used specification documents for a Mission Planning System for the Hawk Aircraft 

to populate the User Centred Requirements Structure (incorporating the MATrA Natural Language 
Structure). Three Use Case Models were instantiated, along with textual Scenarios and Message 
Sequence Chart representations of paths through one particular use case. Two further path fragments 

were included to demonstrate population of model elements for timing events and event grouping. We 

also featured a small number of example trace associations to show potential ways in which UCRS 

elements may be linked using the AerospaceEngineeringAssociation concept (from subsection 3.3.6.3.2). 

The case study confirmed that UCRS is capable of representing commercial specifications expressed in 

it constituent notations and that traceability linkages can be established between its elements. While 

acknowledging the implementation yields a large number of O-Telos objects, readers are again 

reminded that these will be created automatically by the tool2matra function and 'concealed' from 

users by an appropriate interface. 

The second case study used material from Appendix L of ARP 476111 (featuring a braking system for a 
hypothetical aircraft) to populate the Fault Tree and Failure Modes and Effects Analysis Structures (the 

latter again incorporating MNLS). Featured artifacts included preliminary and updated fault trees, as 

well as fragments of functional and piece-part FMEA tables. Again example associations demonstrating 

potential traceability paths between elements of these structures were also included. The study showed 
that both the Fault Tree and Failure Modes and Effects Analysis Structures are able to represent, and 

support traceability across, artifacts expressed in these notations. 

We regard the benefits of using MATrA shown by these case studies to be twofold. The first is simply 
improved traceability; engineers are able to create links, both among elements of individual structures 
(as shown by the Hawk case study), but perhaps more importantly, between elements of different 

structures (as demonstrated by the ARP 4761 case study). Given that featured notations are likely to be 

supported by disparate tools, this was the main aim of the thesis. 

The second benefit stems from rigour imposed on developers when encoding their specifications in the 

MATrA structures. This was particularly true for the Hawk case study which features structures for 

notations that are not rigorously defined (for instance, use cases and textual scenarios). Thus, given 
implementation of the well-formedness and PDS consistency checks featured throughout (see future 

work item 7.4.13), the richness and granularity at which the structures are represented can potentially 
lead to specifications that are not only more traceable, but also of better quality. 

11 Several deficiencies exist with the case study material presented in ARP 4761 (see Dawkins eta!., 1999). However it is 

acknowledged as the best published example from the safety literature and is often used for academic and training purposes. 

354 



Conclusions 

Chapter 7 Conclusions 

7.1 Introduction 
This chapter summarises the dissertation, highlights its contributions and provides some directions for 

further work. 

7.2 Concluding Remarks 
It is useful to begin by revisiting the thesis argument from Chapter One (subsection 1.3) which stated 

the following: - 

Most notations for development, assessment and product management used by aerospace practitioners 
have (bespoke or commercial) tool support; however a lack of well-defined approaches to integration 
limits traceability between their respective data sets. 

We argue that traceability across tools can be achieved by exporting these data sets to an integrated 

environment consisting of. i) a Workspace comprising a set of structures or meta-models (literally, 

models describing models) capturing data elements for a representative set of development, assessment 
and product management notations; ii) a further structure capturing fundamental elements of the 

emerging product that maintains consistency within the Workspace (where 'fundamental elements' 
refers to system components, their functions and behaviour, etc. ); iii) well-formedness constraints over 
these structures; and iv) associations and consistency constraints between the structures. 

We also argue that development and assessment information populates four traceability dimensions, of 
which three record links between project artifacts (conceptualised as a cube), while the fourth relates 
artifacts across different projects (i. e., cubes) and across product families within the same project. 
Hence, the structures must provide coverage across four dimensions. 

This thesis has defined and demonstrated an approach supporting traceability for the development and 

assessment of complex aerospace (an in particular avionics) systems. Its contribution lies in five areas: - 

"A meta-framework defining traceability in the context of aerospace (avionics) 

systems engineering and a visual conceptualisation of the traceability `dimensions'. 

" Classification of traceability techniques. 

"A concrete framework for traceability across artifacts from aerospace (avionics) 

systems engineering projects. 
" Meta-models for a representative set of development notations. 

" Meta-models for a representative set of safety assessment and product management 

notations, together with a structure for configuration (i. e. version) management. 

In the following sections we summarise the thesis and draw some conclusions from each of these 

elements of the research. 

355 



Conclusions 

7.2.1 Traceability for Avionics: Definitions & Drivers 
In Chapter One, we provided a context for the thesis by stating our motivation for investigating 

traceability for avionics. Essentially this was derived from observations on the characteristic nature of 

aerospace projects gleaned in part from the literature, but mainly from discussions with practitioners. 
Properties such as protracted life-cycles, the complexity of products and processes used to develop 

them, use of fault tolerant architectures and the need for certification collectively challenge the 

provision of effective traceability within that industry. 

Most existing work on traceability stems from software engineering literature. This is evident from 

definitions of the term that are couched in a language which undermines their application to systems 

engineering. For instance, they are often hardwired to an implied 'waterfall' model, explicitly state 

artifact types with a software orientation and fail to address the issues involved in tracing across system 

and component descriptions. 

Understanding of the term 'traceability' has moved on considerably in the last ten years. Most authors 

are now agreed that we can differentiate aspects of traceability by considering such factors as the 

direction and type of artifact being traced. It is therefore common to refer to forward and backward 

traceability in describing navigation to 'up-stream' and 'downstream' artifacts. Likewise the notion of 
horizontal and vertical traceability describes facilities for navigating between artifacts of the same and 

different types respectively. 

While traceability must surely be a basic necessity for all but the most trivial of engineering 

endeavours, work investigating means for its realisation has mainly surfaced since the 1990s. We 

attributed this general growth to two factors, the emergence of requirements engineering as a topic of 

interest and increased use of compliance frameworks (specifically, process improvement models and 

standards and guidelines). 

7.2.1.1 Contribution 
From our observation that existing definitions of traceability do not reflect the complex structure of 

aerospace (including avionics) products and processes, we proposed an appropriate meta-framework. 

This was based on a definition taxonomy in which we refined the notion of horizontal and vertical 

traceability by introducing the qualifiers micro and macro to differentiate traceability within and across 

decomposition levels (e. g., system, sub-system, component), and the qualifiers intra and inter to 

distinguish traceability within and across system descriptions (i. e., systems that interact with one 

another). We also recognised traceability of revisions and variants through separate definitions in 

preference to overloading the horizontal definition (as is normally the case). 

To provide a visual conceptualisation, horizontal, vertical and revision traceability were represented as 

dimensions of a cube. This novel idea was extended to variant traceability (i. e., the variant dimension) 

by depicting traceability between cubes. The cube abstraction intuitively conveys salient features of 

356 



Conclusions 

traceability that are not well-characterised by existing two-dimensional images which tend to disregard 

revisions and variants, usually as a corollary of failing to distinguish them from the horizontal 
dimension. 

7.2.2 Modelling Concepts, Techniques & Tools 
Chapter Two provided an overview of traceability techniques which we considered from three 
perspectives, namely structure (e. g., support for typing of artifacts and relationships, and for abstraction 
concepts such as generalisation and aggregation), integrity (e. g., means to specify rules and constraints 
over constituent elements of artifacts) and manipulation (e. g., means for selective information 

retrieval). For reader orientation, an overview of the UML, OCL and O-Telos representation techniques 

employed in this thesis was also provided. The chapter concluded by investigating various proprietary 
and commercial tools supporting the techniques considered. These included DOORS which we noted is 

moving towards the MATrA Workspace approach of transferring data from CASE tools onto 
information models expressed in a common language (termed DOORS 'surrogate' modules) and 
creating links between these models to support traceability. 

7.2.2.1 Contribution 
A means for classifying traceability techniques according to their basis of representation was proposed. 
Specifically, we differentiated between approaches employing higher-order and lower-order cross 

referencing (both of which are founded on graphs and matrices) from those using a data-modelling 

approach. The key difference between this classification scheme and others stems from its starting point 

- the premise that set theory is the mathematical foundation of all traceability techniques and so the 
level of sophistication afforded by a particular technique depends on what additional concepts (in terms 

of facilities for structure, integrity and manipulation) it adds to basic set theoretic constructs. This 

contrast with other classifications such as Gotel (1995) which do not divorce the underlying principles 
from their means of realisation. 

7.2.3 MATrA: Towards A Concrete Framework for Traceability 

Chapter Three proposed a concrete traceability framework for avionics engineering (a realisation of the 
dimensions meta-framework). Several principles were identified as 'fundamental' to this framework, 

while a review of the literature revealed existing work that provided a 'foundation' for its development. 

Framework principles included a Workspace of notation dependent structures (meta-models) 

representing project data transferred from CASE tools and linkages between this data; a Meta-class 

model providing a common underlying representation for Workspace meta-models; a mapping function 

(tool2matra) to allow data transfer from CASE tools to the Workspace; the Product Data Synthesis, a 

notation independent structure representing fundamental elements of the emerging system (e. g., 

components, functions, behaviour and means for their association) which maintains Workspace 

consistency by preventing bad data from entering via tool2matra (i. e., preventing data being mapped to 

a notation dependent structure) unless the PDS contains corresponding data elements, and by 

357 



Conclusions 

preventing violations once the data is 'inside'; and the Framework Model that provides a basis for 

managing framework elements and their inter-relationships. The main foundations of these principles 

were ESPRIT project NATURE (Pohl, 1996), ESPRIT project SEDRES (Johnson, 1997) and the 

Design Rational Capture System (Klein, 1993a). 

In particular, we were influenced by NATURE's use of a conceptual modelling language to structure 

object-based representations of requirements notations for IS Development. Accordingly, we adopted a 

similar approach to developing Workspace meta-models for design, implementation, safety analysis and 

product management notations; the aim being to provide a seamless environment for traceability that is 

unconstrained by tool boundaries. We were also influenced by NATURE partners use of a common 

meta-level structure as is evident in the MATrA Meta-class model, and by their approach to creating 

associations between the various meta-model representations. 

SEDRES' main influence on MATrA was in providing evidence of the ability to map data from CASE 

tools onto information models. This enabled us to treat Workspace population as a 'black-box' through 

the interface to an undefined function (tool2matra) and to concentrate on other aspects of the 

traceability framework. The symmetry with DOORS' notion of surrogate modules was again cited as 

further evidence of feasibility. 

The main influence of the Design Rational Capture System on MATrA has been development of the 

Product Data Synthesis which takes as its starting point the Artifact Synthesis structure component of 

DRCS. Extensions were necessary however as the Artifact Synthesis lacks elements to record functional 

architecture and behaviour. The literature provided a basis for developing these extensions, in 

particular, work by Oliver (1994). 

Chapter Three also stressed that the emphasis of this thesis was to be on development and validation of 

Workspace meta-models for a representative and diverse set of notations. Selection was guided not only 

by their relevance to avionics engineering, but also by a desire to include different representation 

formats (textual, graphical, tabular and program code) and hence address the different modelling 

challenges presented by each. Featured notations therefore included a Natural Language Structure, a 

User Centred Requirements Structure, a Real-Time Network Specification Language (RTN-SL) 

Structure, a SPARK Ada Structure, a Fault Tree Analysis (FTA) Structure, a Failure Mode and Effects 

Analysis (FMEA) Structure and a Programme Evaluation & Review Technique (PERT) Structure. For 

reader orientation, we used a further notation (Circuit Diagrams) to show how work on these structures 

would be presented in Chapters Four and Five. 

7.2.3.1 Contribution 
MATrA has integrated and extended a number of existing works towards a concrete traceability 

framework for avionics engineering. What sets it apart from the majority is consideration of traceability 

between notations. Besides SEDRES (through its support for data exchange), NATURE and to some 

358 



Conclusions 

extent SAM (Wilson & McDermid, 1995), no other approach has addressed this issue. Moreover, 
NATURE concentrates on the requirements phase, functions independently of CASE tools and ignores 

consistency between notations. SAM meanwhile has an even narrower focus, offering support for 
traceability as a by-product of structuring descriptions of safety arguments for critical systems. 

In addition, we are unaware of any other work addressing all four traceability dimensions 'in concert' as 
MATrA does; the framework as introduced in Chapter Three provided support for horizontal and 
vertical traceability which we then extended in Chapter Five (see 7.25) for the revision and variant 
dimensions. 

7.2.4 Meta-models for System Development 
As per the stated emphasis of our work, Chapter Four proposed meta-models for representing artifacts 
expressed in Natural Language, as Use Case Models, Scenarios and Message Sequence Charts via the 
User Centred Requirements Structure, in the Real-Time Network Specification Language and in 

SPARK Ada. In each case we described factors motivating their inclusion, introduced the basic 

concepts, proposed a meta-model in UML with well-formedness and PDS consistency checks expressed 
in OCL and gave a `flavour' of tool support by implementing the base classes in O-Telos (using 

ConceptBase). We further provided worked examples instantiating these base classes, or else 

committed to a more detailed case study in Chapter Six. 

7.2.4.1 Contribution 
The MATrA Natural Language Structure is based on an approach to representing textual artifacts 

proposed by project NATURE and supports fine grained traceability at a user-determined granularity. 
Its main role in this thesis has been to augment the design of other structures (e. g., to represent pre and 

post-conditions of the Use Case Model in subsection 4.3 and the detection column for FMEA tables in 

5.3), the idea being to replace a standard String type with an MNLS wherever PDS elements embedded 
in a prose statement must be promoted to primitives for traceability purposes. The introduction of node 
typing to enable PDS consistency checks on these primitives makes MNLS fundamentally different to 

the NATURE structure, whilst adding to its practicality. It also differentiates our work from 

functionally similar facilities offered by the DOORS and RTM tools. MNLS was evaluated by case 

studies in Chapter Six (see 7.2.6). 

The User Centred Requirements Structure captures syntactic elements of three complementary 

requirements elicitation, analysis and documentation notations: Use Case Models, Scenarios and 
Message Sequence Charts. UCRS is entirely novel and was devised from observations on usage of these 

notations in actual commercial specifications. Accordingly, the structure allows management of, 
including the sharing of elements across, multiple Use Case Models. Paths through each use case are 
described in terms of interactions using textual Scenarios and/or Message Sequence Charts (the former 

expressed using a specialisation of MNLS), both of which share a common underlying representation 

on the basis that they contain the same core elements (allowing generation of MSCs from Scenarios and 

359 



Conclusions 

visa versa). Formal conditions were also defined to preserve PDS consistency, usage restrictions and 

well-formedness, as well as consistency within the UCRS itself (i. e., between the three constituent 

notations). Again, the User Centred Requirements Structure was evaluated by case study in Chapter Six 

(see 7.2.6). 

To demonstrate application of meta-modelling to a graphical design notation, we developed a novel 

structure representing artifacts expressed using the Real-Time Network Specification Language (RTN- 

SL) in which concurrent processing components exchange information and synchronise through shared 

data in the connections. All key syntactic elements are represented by the structure, although we 

confined definition of constraints to the principal restrictions needed to ensure an RTN-SL specification 

is internally consistent; a number of PDS consistency checks were also stated. The RTN-SL structure 

was then evaluated by implementing a number of (mostly hypothetical) worked examples in O-Telos 

using ConceptBase. Whilst providing proof-of-concept in that the structure allows us to represent (and 

hence with the insertion of appropriate linkages, trace to and from) artifacts represented in this 

particular language, we concede that some further evaluation using actual commercial specifications is 

desirable simply to increase confidence in these findings and to determine scalability (see 7.4.8). 

Finally, to demonstrate how meta-modelling can be applied to the representation of software source 

code, we presented a novel structure capturing a subset of the concrete (well-formedness) syntax for 

SPARK Ada, a programming language used to develop safety-critical systems. The structure was 

developed in parallel with a modelling philosophy -a set of guidelines for representing languages with a 

formal grammar - and was presented as a series of schemas showing the source BNF (Backus Naur 

Form) syntax, corresponding UML Class Diagram and its implementation in O-Telos. The structure 

was evaluated by expressing worked examples of two source code fragments in ConceptBase. These 

successfully showed the ability to represent our chosen SPARK Ada subset and hence with the insertion 

of appropriate linkages, trace to and from its constituent elements. While use of a larger subset and 

worked examples would have provided further proof of concept, we felt there is little to be gained from 

this other than perhaps in terms of assessing scalability (again see 7.4.8). Finally, to evaluate versatility 

of the above-mentioned guidelines, we successfully applied them to development of a further structure 

representing a small subset of the RTN-SL textual syntax. This showed that the guidelines can 

potentially be used in extending MATrA to support any formal language expressed in BNF. 

7.2.5 Meta-models for Safety Assessment & Product Management 

Continuing the theme of our emphasis, Chapter Five introduced meta-models for expressing results of 

Fault Tree Analysis and Failure Modes and Effects Analysis, as well as artifacts represented using the 

Programme Evaluation & Review Technique. Again, we described for each the factors motivating their 

inclusion, introduced the basic concepts, proposed a UML meta-model with rules and constraints 

expressed in OCL and provided a foundation for tool support by implementing the base classes in O- 

Telos using ConceptBase. We further included a worked example of each meta-model, or else resolved 

to do a more detailed case study in Chapter Six. Finally, to support traceability of revisions and variants 

360 



Conclusions 

the MATrA Configuration Model was introduced. 

7.2.5.1 Contribution 
To demonstrate how meta-modelling can be applied to graphical safety analysis techniques, we 
developed a novel Fault Tree Structure which captures results of Fault Tree Analysis, a deductive 

approach to determining and relating all events which may lead to a failure condition. The structure was 
guided by observations on usage of fault trees, notably in the context of ARP 4761 guidelines for 

certification of civil aircraft. Therefore in addition to supporting the main concepts underpinning Fault 
Tree Analysis, the structure enables representation and management of preliminary trees expressing 
budget safety objectives, together with their updated counterparts showing realisation of these 

requirements. To remove duplication of data between the two trees whilst helping to maintain 

consistency and increase traceability, the Fault Tree Structure permits sharing of events (or more 

specifically, elements of their descriptions) through the notion of 'event profiles'. In addition, well- 
formedness constraints (building on earlier work in Mason & Saeed, 1998) were expressed over the 
logical tree structure, together with safety-criteria identifying common cause and single failures. We 

further introduced a 'light-weight' approach to the formalisation of event labels by typing events 

according to a taxonomy from the literature and by specifying their content at a level of granularity that 

allows for their verification against the PDS. The Fault Tree Structure was evaluated by case study in 

Chapter Six (see subsection 7.2.6). 

To demonstrate how meta-modelling can also be applied to tabular safety analysis techniques, we 
developed a novel structure for expressing the results of Failure Modes and Effects Analysis, an 
inductive approach to tracking the effects of failures within a system and determining their 

consequences. The structure supports recording of results for both functional and piece-part (i. e. 

component) analyses, while its content is consistent with the suggested worksheet formats detailed in 

ARP 4761; a number of formal checks verifying FMEA elements against the Product Data Synthesis 

were also defined. Again, the Failure Modes and Effects Analysis Structure was evaluated by case study 
in Chapter Six (see 7.2.6). 

Finally, (for completeness and) to demonstrate how meta-modelling can be applied to the representation 

of product management structures, we proposed a novel structure capturing the graphical notation for 

the Programme Evaluation & Review Technique which represents inter-relationships between the 

timing of events and project activities in the form of a network. Again we captured the main syntactic 

elements and principal well-formedness restrictions. The structure was evaluated using hypothetical 

worked examples implemented in O-Telos using ConceptBase, one of which we included in the main 

text and which provides proof of the ability to represent artifacts expressed in this notation. 

To demonstrate another aspect of product management, the MATrA Configuration Model was proposed 

(and the Framework model from Chapter Three extended) to manage revisions and variants across the 

Workspace and Product Data Synthesis. The model is based on an intertwined approach (Conradi & 

361 



Conclusions 

Westfechtel, 1998) and features elements to represent configurations and change deltas, as well as 

means to record various versioning related dependencies; rules were defined for deriving deltas and 

constraints to ensure correct instantiation of dependencies. A lengthy worked example successfully 
demonstrated aspects of the Configuration Model, including realisation of the intertwined approach: in 

particular, articulation of revisions t6 product structures within the PDS, the ability to establish 
dependencies between PDS and Workspace elements, to create configurations, perform impact analysis 

and to effect change based on this analysis. As previously stated, no other work has sought to address 

the four dimensions as a whole and hence to integrate configuration management and traceability as 

called for by Ramesh & Jarke (1999). 

7.2.6 Application of the MATrA Framework 
To evaluate aspects of the framework not demonstrated by worked example, Chapter Six featured two 

in depth case studies, both based on material supplied by aerospace practitioners. 

Our first case study used data from a commercial specification supplied by BAE SYSTEMS to 

instantiate a ConceptBase implementation of base classes for the User Centred Requirements Structure. 

Specifically, we populated three Use Case Models, together with textual Scenario and Message 

Sequence Chart paths (both normal and exceptional) through one particular use case. In addition, 

fragments of two further paths were populated to show instantiation of additional concepts for 

representing timing events and event grouping. A small number of example associations between 

elements of the UCRS were also introduced to demonstrate traceability among the constituent notations 

(we return to this subject in subsection 7.4.3). The study therefore provided proof that UCRS is capable 

of representing commercial specifications expressed using its combination of notations, and of 

supporting traceability. 

In the second case study, material from an example featured in Appendix L of ARP 4761 was used to 

populate ConceptBase implementations of the Fault Tree and Failure Modes and Effects Analysis 

Structures. Specifically, preliminary and updated fault trees were created, together with fragments of 

functional and piece part FMEA tables, with the latter expressed over elements instantiating the Circuit 

Diagram meta-model introduced in Chapter Three. Further examples of associations were also included 

to indicate traceability between elements of these structures (again, see subsection 7.4.3); the fact that 

the associations linked data originating from (potentially) disparate source tools underlines the seamless 

nature of the Workspace. Again, the study provided proof that the featured meta-models are able to 

represent and support traceability across data from commercial artifacts expressed in these notations. 

In addition, both case studies showcased the MATrA Natural Language Structure, the former in 

representing pre and post-conditions of the Use Case Model and the latter, the comment and detection 

columns for FMEA tables. To demonstrate its versatility, a range of text strings were successfully 

converted to 'MNLS form', with significant primitives extracted accordingly. 

362 



Conclusions 

7.2.7 Overall Contribution 
As stated throughout, this thesis has concentrated on meta-modelling aspects of the MATrA framework. 

Aside from claims made in subsections 7.2.4.1 and 7.2.5.1 on the contribution made by these structures, 
discussions with practitioners indicates that the practice of developing such models can itself prove 
beneficial. That is, the investigative process involved in producing a MATrA meta-model can lead to 
better understanding of the notation it represents, or perhaps more importantly, the particular usage of 
the notation for a development or assessment activity. This is especially true for notations that are less 

rigorously defined but which offer flexibility as a result. 

However, the main purpose of the thesis has been to provide an environment enabling traceability 

among the data sets of tools, along the dimensions introduced in Chapter One. Therefore the 

fundamental gain from the notation dependent meta-models is their ability to be linked to form 

navigable paths through the Workspace (note that 'dimension-wise', the type of traceability existing 
between two meta-models depends entirely on when and for what purpose they are being used relative 

to the development and assessment process). Furthermore, by identifying means by which to make 
CASE tools part of MATrA and by providing a way of increasing confidence in the consistency of data 

transferred from these tools (using a common set of typed primitives - e. g., module, function, condition, 

etc. ), we have improved industrial practicality of the framework. Therefore, this thesis can justifiably 

claim to have maintained the argument stated by our position in section 1.3 (and re-iterated in 7.2). 

7.3 Limitations 
We are aware of certain limitations in our work, as well as in the confidence and validity of some 

claims made with respect to it. These are as follows: - 

" Absence of a tool2matra function 

" Duplication of CASE tool data in the Workspace 

" Object proliferation 

7.3.1 Absence of a tool2matra Function 
The main limitation of work presented here relates to the fact we do not have in place a function to map 

data from CASE tool data structures onto MATrA Workspace meta-models. This potentially 

undermines confidence in the framework itself and material presented to support its validation. 

However, given that DOORS, a leading commercial traceability tool now employs a similar (although 

less rigorous) approach and given that reputable public domain evidence from SEDRES partners has 

addressed the technical issues involved, we suggest the feasibility of this aspect of MATrA is beyond 

reasonable doubt. 

7.3.2 Duplication of CASE Tool Data in Workspace 

The fact that CASE tool data is replicated in the Workspace is potentially a further limitation, especially 

given the issue of scale alluded to throughout. Vendors of the DOORS tool (which is widely used in the 

aerospace domain) would claim that this is a price developers are prepared to pay in return for the 

363 



Conclusions 

improved traceability across tools that results. Moreover, we are proposing to investigate as a future 

work item a possible alternative which restricts persistent storage of Workspace elements to trace 
associations (see subsection 7.4.11). 

7.3.3 Object Proliferation 
Related to the previous point, it has been suggested that instantiation of MATrA structures yields an 
overly large number of objects (cf. subsection 6.2 and 6.3. ) To counter such claims, we assert that the 

relationship between elements of notation dependent (i. e. meta-model) and CASE tool data structures is 
linear rather than exponential, that population will be automated by means of tool2matra and that 
irrespective of these issues, all such objects will be concealed from users beneath a graphical interface. 

7.4 Further Work 
During the course of our research, several areas worthy of further investigation were identified. These 
include the following: - 

" Extension of Workspace notations 

" Application of MATrA to other safety-critical domains 

" Survey of domain requirements for trace associations 

" Enriching the Product Data Synthesis 

" Specifying requirements using the MATrA Natural Language Structure 

" Systems Engineering process issues for MATrA 

" Investigation of an inverse mapping function (matra2tool) 

" Contiguous case study across all dimensions 

" Investigation of analysis objectives 

" Use of tool2matra to optimise Workspace revisions 

" Confinement of persistent Workspace to trace associations 

" Incorporation of standards knowledge into MATrA 

" Use of a commercial tool as a basis for implementing MATrA 

" Re-expression of structures in EXPRESS 

In the following sections we provide a brief introduction to possible directions of further work in the 

areas identified above. 

7.4.1 Extension of Workspace Notations 
To maintain a tractable scope, the Workspace only featured a small (if representative) subset of 

notations and techniques used by aerospace practitioners. Clearly, to provide a practical engineering 

environment this subset must be increased. For example we could include a formal notation such as 
VDM (Jones, 1990) or Z (Spivey, 1989), both of which can potentially be represented by applying the 

modelling philosophy alluded to in subsection 4.5.3.1.1. Other candidates (some of which were 
developed but omitted due to space limitations) are Viewpoints (Mullery, 1979) and Piping & 

Instrumentation Diagrams for development (Turton et al., 1997), Event Tree Analysis (Villemeur, 

364 



Conclusions 

1992) and Goal Structure Notation (Wilson et al., 1995) for safety and Responsibility Modelling 
(Dobson & Strens, 1994 ) for product management. Moreover, given that we considered a diversity of 
notations, both in terms of purpose (requirements, design, implementation, safety and product 
management) and means of representation (natural language, tabular and graphical), the existing set of 
structures provides an instructive source of reference for anyone seeking to extend the Workspace. 

7.4.2 Application of MATrA to Other Safety-Critical Domains 
While development of MATrA has been oriented towards avionics engineering, some of the industry 

characteristics enumerated in Chapter One can be said to apply to other sectors. It would therefore be 

worthwhile investigating the potential application of MATrA to other domains utilising complex 
dependable systems, in particular the Nuclear and Rail industries. Prima facie, this is likely to involve 

expansion of notations supported by the Workspace, although specific requirements would need to be 

established through discussions with practitioners and a review of current literature, including standards 

and guidelines. 

7.4.3 Survey of Domain Requirements for Trace Associations 
Despite considering a mechanism for creating relationships between Workspace meta-models, only a 

small number of arbitrary examples were included in the thesis, their purpose being to demonstrate the 

mechanism itself, rather than any specific traceability gain. We did however highlight the need to 

compile (through literature review and practitioner consultation) a comprehensive set of associations for 

relating requirements, design, implementation and other artifact types. Factors to consider include the 

specific types of notations to be related and the processes that apply them. A useful starting point for 

the latter was provided in subsection 1.2 (C2); recall our heuristic that regards the process of 

transforming an input artifact to an output artifact as an abstraction of a traceability association between 

the two. 

7.4.4 Enriching the Product Data Synthesis 

To increase utility of the Product Data Synthesis, consideration should be given to enriching the 

structure. In particular, the following have been suggested to the author: - 

" Predefined Aerospace Types 
Following a SEDRES approach (Herzog & Scerri, 1998), benefits could be gained from separating PDS 

definitions from their instances. This would reduce the modelling workload of developers and ensure 

`like' profiles are both consistent and complete. It could be accomplished through an additional layer of 

abstraction whereby build elements are promoted to meta-level classes whose instances define standard 

modelling components. This is perhaps best explained by example. 

At present, the existing Module class could be instantiated as the object TrimTank, with properties such as 
Capacity and NormalWorkingPressure. We could also define an InnerTransferTank, an OuterTransferTank, a 
CentralTank and so on, each with the same set of properties, but with variances in their respective 

parameter values. However, such an approach means engineers would have to replicate the same basic 

365 



Conclusions 

profile each time they introduced a new tank, with all the attendant risks of inconsistency that this form 

of action entails. 

Alternatively, a generic FuelTank (with the properties previously stated) could be specified as an 
instance of the Module meta-class (and conceivably a specialisation of some Tank superclass) whose 
instances - TrimTank, OuterTransferTank and CentralTank - would automatically share a common definition 

profile. This principle could be extended to other `standard' modules which continuing the fuel system 
theme, might include piping, valve and pump types. 

Such an approach is only made possible by concentrating on a specific domain, and one which by 

nature is instinctively conservative. The resulting set of `Predefined Aerospace Types' would enable 
MATrA to operate over standardised definitions, which in turn provides increased scope for analysis. 
Moreover, the cost of establishing such definitions could be offset against the benefits of reusability. 

" Spatial Relations 
The set of build associations introduced in subsection 3.3.5 may be extended to include spatial- 

relations. These would be used for example, to integrate MATrA with CAD tools and to define 

properties associated with fault tolerance, such as segregation (maintenance of independence through 

use of a physical barrier between components) and separation (maintenance of independence by means 

of physical distance between components). A preliminary literature survey suggests a number of spatial 

relations may be of use; these are shown in Appendix E. 

7.4.5 Specifying Requirements using the MATrA Natural Language Structure 
An obvious use of the MNLS not considered in this thesis concerns the specification of textual 

requirements. Initial thoughts suggest that with some minor modifications, the structure could be used 

to express and partially validate certain properties of such statements. For instance, that they contain an 
imperative (such as must or shall) and that the singularity condition holds; i. e., the requirement is 

unambiguously expressed over one build element, and that said build element exists in the Product Data 

Synthesis. Moreover, were we to enrich the PDS with Predefined Aerospace Types in the manner 
described in 7.4.4, then the validity of values assigned to certain properties could be range checked. 

7.4.6 Systems Engineering Process Issues for MATrA 
Any traceability framework will be ineffectual without a well-defined mechanism for putting it into 

practice. MATrA raises several issues pertaining to its integration within a systems engineering 

environment that such mechanisms need to address. For instance, who should be given 'design 

authority' for managing and maintaining the Product Data Synthesis, when and how often should 

tool2matra be used to synchronise the CASE tool and Workspace data-sets and how are exceptions 

arising from this synchronisation to be dealt with. It is important to remember that traceability cannot be 

treated as a 'bolt-on'; as such, these and other process issues must be addressed before MATrA can be 

put to practical use. 

366 



Conclusions 

7.4.7 Investigation of an Inverse Mapping Function (matra2tooo 
To further integrate MATrA with the tool environment, an inverse function (matra2tool) capable of 

mapping data from the Workspace onto CASE tool data structures could be investigated. This would 

allow for limited editing to be performed within the Workspace itself, with results uploaded to the 

corresponding tool. 

Early thoughts on definition of the function suggest the interface would take as its input parameters, an 

un-populated CASE tool data structure (uCDS) with a corresponding populated notation dependent 

structure (pNDS) and the Product Data Synthesis (PDS), and return a populated CASE tool data 

structure (pCDS). 

pCDS matra2tool (uCDS, pNDS, PDS) 

Following our discussion in 7.4.6, it should be noted that that this facility raises a number of additional 

process issues which would also need to be considered (e. g., alignment of the CASE tool and 
Workspace data sets). 

7.4.8 Contiguous Case Study Across All Dimensions 
Each of the structures considered in this thesis has been validated either through worked examples, or 

else by a more in depth case study (mostly conducted using material provided by practitioners from the 

aerospace industry). However, for a more thorough test of its usefulness (particularly in terms of 

scalability) the MATrA framework needs exposure to a contiguous example spanning all the 

traceability dimensions. This would call for the representation and linking of requirements, design, 

implementation, safety assessment and product management artifacts (including revisions and variants) 

at aircraft, system, item and hardware/software levels for two or more interacting systems. Only then 

could we begin to gauge the potential for practical application of MATrA. 

7.4.9 Investigation of Analysis Objectives 

The traceability Workspace and Product Data Synthesis are both potentially rich sources of 

information; in order to realise this potential, means are required for its extraction. These may include 

for example, mechanisms supporting impact analysis to determine the effects of change. However, 

given that MATrA structures have a formal foundation and therefore offer such broad scope for 

analysis, it would be worthwhile conducting a practitioner consultation to identify precise analysis 

needs. 

7.4.10 Use of tool2matra to Optimise Workspace Revisions 

While introducing the Configuration Model in subsection 5.5, it was remarked upon that `equivalent' 

elements across revisions to Workspace models are actually represented by different objects. This is 

due to the assumed mapping from CASE tools into MATrA, which because of its theoretical treatment 

throughout, is intentionally simplistic. Thus for two models MI and M2 containing objects Ob, and Ob., 

respectively, where M2 'succeeds' MI and Ob2 represents the same build element as Ob, (without 

modification), there clearly exists some redundancy. However, consideration could be given to 

367 



Conclusions 

development of a more sophisticated function capable of reusing the same object in more than one 

revision. Given the limitations discussed in subsection 7.3.3, this appears to be an area with potential 
for relieving the Workspace `overhead'. 

7.4.11 Confinement of Persistent Workspace to Trace Associations 
Continuing the optimisation theme, it would be interesting to consider the possibility of restricting 

persistent storage of Workspace elements to trace associations. Such a possibility is motivated by 

observations that the additional trace data (i. e., dependencies among models and their elements) is what 

actually differentiates the CASE tool and Workspace data sets. First impressions suggest tool2matra 

would need to ensure that whenever the Workspace became active, `existing' elements were recreated 

(by repeating the mapping of CASE tool data onto corresponding meta-models) using the original 

object identifiers. This would allow instances of AerospaceEngineeringAssociation subtypes to be 

'reunited' with the correct from and to objects. 

7.4.12 Incorporation of Standards Knowledge Into MATrA 
Adherence to development and assessment processes set out in various standards is an important issue 

within the aerospace domain as evidence supporting claims of compliance often forms part of the safety 

argument. It has therefore been suggested that the potential for managing such processes within MATrA 

be explored, in particular the ability to associate and (possibly) perform checks against, individual 

process steps, the requirements on the data they are to produce and the Workspace artifacts that satisfy 

these criteria. Moreover, where a standard mandates use of a particular design feature (e. g., dual 

independent channels), these requirements may be linked to the appropriate PDS elements discharging 

them. 

7.4.13 Use of a Commercial Tool as a Basis for Implementing MATrA 

The functionality provided by commercial traceability tools (e. g., DOORS) has moved on rapidly 

during the course of our research. Hence, while ConceptBase was used in this thesis to provide a 

'flavour' of automation, it would be worth investigating use of commercial tools as a basis for 

developing MATrA further, notably to enable implementation of the rules and constraints stated in 

Chapters Three to Five. Therefore apart from being able to represent the structures themselves, the 

richness of set and boolean operators (or a procedural extension language capable of replicating them) 

provided by a tool is of particular interest; a lack of such facilities (relative to OCL) prevents many 

formal aspects of MATrA from being realised in ConceptBase. 

7.4.14 Re-Expresston of Structures in EXPRESS 
A first step towards development of a tool2matra mapping function would be to re-express the 

structures described in this thesis using EXPRESS (see subsection 2.2.2.2.7). EXPRESS was developed 

as part of the STEP framework (introduced in subsection 3.2.2) which provides a tool neutral format for 

data representation and exchange. It would of course be necessary to determine means of translating 

data from the CASE tools into this neutral format and thence to a format interpretable by the target 

368 



Conclusions 

MATrA tool. However, as work by Riddle (2000) demonstrates, the actual mechanics of re-expressing 

current object-based representations of the structures in EXPRESS is unlikely to pose a problem. 

7.5 Epilogue 
We conclude that work in this thesis has been shown to provide the basis for a framework enabling 

traceability between CASE tools used by avionics engineers. The framework supports traceability 

across four dimensions using an integrated set of structures whose development and evaluation formed 

the main strands of our research. These structures are among the core principles on which the 
framework is based; the other principle relates to a function for populating a subset of framework 

structures using data transferred from CASE tools. Work towards realisation of this principle was not 

possible within the confines of a Doctoral programme; instead we identified credible evidence from 

current literature to support its feasibility. It is hoped the framework presented will contribute to the 

furtherance of traceability, both generally and within the aerospace industry. 

369 



References 

References 

Airbus, 2001 Airbus Industrie - AM2085 : Method for Common Airbus Requirements 
Engineering (CARE) 

Alford & Burns, 1976 Alford, M. W. & Burns, I. F. -R Nets: A Graph Model For Real-Time 
Software Requirements, Proc. Symposium on Computer Software 
Engineering, Apr., pp. 97-108 

Alford, 1977 Alford, M. W. -A Requirements Engineering Methodology For Real-Time 
Processing Requirements, IEEE Trans. on Software Engineering, Jan., pp. 
60-69 

Alford, 1994 Alford, M. W. - Types of Traceability, Requirenautics Quarterly, Oct., pp. 
4-5 

Alvarez & Castell, 1996 Alvarez, J. & Castell, N. - Knowledge-Based Techniques For Software 
Requirements Validation, Uni PolitBcnica de Catalunya TR: LSI-96-65-R 

Ambras & O'Day, 1988 Ambras, J. & O'Day, V. - Microscope: A Knowledge Based Programming 
Environment, IEEE Software, May, pp. 50-58 

Anderson & Lee, 1991 Anderson, T. & Lee, P. A. - Fault Tolerance: Principles & Practice, 2nd 
Edition, Springer-Verlag 

Anderson, 1989 Anderson, Evan E. -A Heuristic For Software Evaluation & Selection, 
Software Practice & Experience, Aug., pp. 707-716 

ANSI/IEEE Std. 830-1984,1984 ANSI/IEEE Guide To Software Requirements Specifications 

Arango et at., 1991 Arango, G., Bruneau, L. Cloarec, J. & Feroldi, A. -A Tool Shell for 
Tracking Design Decisions, IEEE Software, Mar., pp. 75-83 

Armstrong, 1993 Armstrong, James R. - Systems Engineering Methods Compared, Proc. 
Annual Int'l Symposium - National Council on Systems Engineering, VA, 
USA, Jul., pp. 181-187 

Ascent, 1997 Ascent Logic - RDD-100 Marketing Material, Ascent Logic Corporation, 
Trinity Court, Batchworth Island, Church Street, Rickmansworth, 
Hertfordshire WD3 IRT, UK; obtained from http: //www. alc. com 

Attipoe, 1996 Attipoe, Alfred K. - Modelling Design Documentation for Knowledge 
Traceability, Proc. 1996 Knowledge Acquisition Workshop; obtained from 
http: //ksi. cpsc. ucalgary. ca/KAW/KAW96/KAW96Abstracts. html 

BAe, 1999 British Aerospace Defence Limited : Military Aircraft & Aerostructures - 
Top Level Requirements for a Mission Planning System for the Hawk 
Aircraft, BAe-BSY-DR-HWK-000194 

Bailin et al., 1990 Bailin, S. C., Moore, J. M., Bentz, R. & Bewtra, M. - KAPTUR: 
Knowledge Acquisition for Preservation of Tradeoffs and Underlying 
Rationales, Proc. 5th Conf. on Knowledge Based Software Assistant, 
Liverpool NY, Sep. 

Balzer et al., 1983 Balzer, R., Cheatham, T. & Green, C. - Software Technology In The 
1990's: Using A New Paradigm, IEEE Computer, Nov., pp. 39-45 

Barbaste & Desmons, 1988 Barbaste, L. & Desmons, J. P. - Software Quality Assurance and 
Certification: The A320 Experience, Proc. Ist European Seminar on 
Software Quality, Brussels, Belgium, Apr., pp. 135-147 

Barbier, 1994 Barbier, F. - Traceability in the Object-Oriented Software Life Cycle, Proc. 
13th Int'l Conf. on Technology of Object-Oriented Languages, Versailles, 
France, pp. 293-301 

Barja et al., 1995 Barja, M. L., Fernandes, A. A. A., Paton, N. W., Williams, M. H., Dinn, A., 

and Abdelmoty, A. I.. - Design and Implementation of ROCK & ROLL: A 

R-1 



References 

Deductive Object-Oriented Database System, Information Systems, 20(3), 
pp. 185-211 

Barnes, 1996 Barnes, J. - Programming in Ada 95, Addison-Wesley 

Barnes, 1997 Barnes, J. - High Integrity Ada: The Spark Approach, Addison Wesley 

Belford & Taylor, 1976 Belford, P. C. & Taylor, D. S. - Specification Verification: A Key To 
Improving Software Reliability, Proc. Symposium on Computer Software 
Engineering, Apr., pp. 83-96 

Bell et al., 1977 Bell, T. E., Bixler, D. C. & Dyer, M. E. - An Extendable Approach To 
Computer-Aided Software Requirements Engineering, IEEE Trans. on 
Software Engineering, Jan pp. 49-59 

Bellagamba et al., 1993 Bellagamba, L., Gernand, J. & Tribble, A. - Case Studies: Applications of 
QFD In Accord With Military Standard 499B, Proc. Annual Int'l 
Symposium - National Council on Systems Engineering, VA, USA, Jul., pp. 
483-490 

Bersoff & Davis, 1991 Bersoff, E. H. & Davis, Alan M. - Impacts of Life Cycle Models on 
Software Configuration Management, Communications of the ACM, 34(8), 
pp. 104-117 

Bhattacharyya, 1992 Bhattacharyya, K. C. - Configuration Management for Quality Avionic 
Systems, Proc. National Workshop on Reliability Engineering, Bombay, 
India, Nov., pp. 67-69 

Bigelow, 1988 Bigelow, J. - Hypertext and CASE, IEEE Software, Mar., pp. 23-27 

Boehm, 1976 Boehm, B. - Software Engineering, IEEE Trans. on Computers, Dec., pp. 
1226-1241 

Boehm, 1981 Boehm, B. - Software Engineering Economics, Prentice-Hall 

Bohner, 1995 Bohner, Shawn Anthony -A Graph Traceability Approach For Software 
Change Impact Analysis, George Mason University, USA, Ph. D. Thesis 

Booch, 1994 Booch, G. - Object-Oriented Analysis and Design with Applications, 
Benjamin/Cummings 

Booth, 1993 Booth, Stuart - Risk Assessment and Mitigation Planning Early in the 
Development Life Cycle, Proc. Annual Int'l Symposium - National Council 
on Systems Engineering, Arlington, VA, USA, Jul., pp. 507-512 

Börstler & Janning, 1992 Börstler, Jürgen & Janning, Thorsten - Traceability Between Requirements 
and Design: A Transformational Approach, Proc. 16th Annual Int'l 
Computer Software and Applications Conf., Chicago, IL, USA, Sep., pp. 
362-368 

Börstler, 1994 Börstler, Jürgen - IPSEN: An Integrated Environment To Support 
Development For & With Reuse, in Schäfer, W., Prieto-Diaz, R. & 
Matsumoto M. (eds. ): Software Reusability, Ellis-Horwood 

Börstler, 1996 Börstler, Jürgen - User Centered Requirements Engineering in RECORD 
An Overview, Proc. Nordic Workshop on Programming Environment 
Research, Aalborg, Denmark, May 

Bosch, 1998 Bosch, Jan - Design Patterns as Language Constructs, Journal of Object- 
Oriented Programming, 11(2), pp. 18-32 

Boyd, 1993 Boyd, Joanne Lee - Designing Reactive Systems For Strong Traceability, 
Carleton University Ph. D. Thesis, Jan. 

Brodie, 1984 Brodie, M. - On the Development of Data Models, in Brodie, M., 
Mylopoulos, J., and Schmidt, J. (editors), On Conceptual Modelling, 
Perspectives from Artificial Intelligence, Databases and Programming 
Languages, Springer-Verlag, pp. 19-48 

R-2 



References 

Brooks, 1987 Brooks jr., F. P. - Essence and Accidents of Software Engineering, IEEE 
Computer, Apr., pp. 10-19 

Brouse, 1992 Brouse, Peggy Sharleen Lane =A Process For Use of Multimedia 
Information In Requirements Identification & Traceability, George Mason 
University, USA, Ph. D. Thesis, Feb. 

Brown, 1991 Brown, P. G. - QFD: Echoing The Voice of the Customer, AT&T Technical 
Journal, Mar/Apr., pp. 18-32 

Brown, 1993 Brown, Dean D. - Implementation of a Requirements Verification Database, 
Proc. Annual Int'l Symposium - National Council on Systems Engineering, 
Arlington, VA, USA, Jul., pp. 623-629 

Brown, 1999 Brown, N. - Evaluation of a CASE Tool for Support of Requirements 
Traceability in Dependable Avionics Systems, Department of Computing 
Science, University of Newcastle upon Tyne, MSc. Dissertation, Sep. 

Buhr, 1995 Buhr, R. J. A. - Use Case Maps: A New Model to Bridge the Gap Between 
Requirements and Design, Contribution to the Use Case Workshop at 
OOPSLA `95, Austin, TX, USA, Oct.; obtained from 
http: //www. sce. carleton. ca/ftp/pub/UseCaseMaps/ 

Bussolini, 1971 Bussolini, J. J. - High Reliability Design Techniques applied to the Lunar 
Module, Lecture Series No. 47 on Avionics Systems, London, Sep. 

Buus et al., 1997 Buus, H., McLees, R. Orgun, M. Pasztor, E. & Schultz, L. - 777 Flight 
Controls Validation, IEEE Trans. on Aerospace and Electronic Systems, 
33(2), Apr., pp. 656-667 

Buzan, 1989 Buzan, T. - Use Your Head (Revised Edition). London: BBC Books 

Canfora et al., 1995 Canfora, Gerado, Lanubile, F. & Visaggio, G. - IESEM: Integrated 
Environment for Software Evolution Management, Int'l Journal of Software 
Engineering and Knowledge Engineering, 5(1), pp. 49-71 

Card, 1988 Card, David N. - Software Product Assurance: Measurement and Control, 
Information & Software Technology, Jul. /Aug., pp. 322-330 

Carr6 et al., 1990 Carr6, B. A., Jennings, T. J., Maclennan, F. J., Farrow, P. F., Garnsworthy, 
J. R. - SPARK - The Spade Ada Kernel - 3rd ed., Program Validation 
Limited 

Casemore, 1998 Casemore, K. J. - Study of a CASE Tool to Support Traceability for a 
Dependable Avionics System, Final Year Project Dissertation, Department 

of Computing Science, University of Newcastle upon Tyne 

Chandrasekaran et al., 1993 Chandrasekaran, B., Goel, A. & Iwasaki, Y. - Functional Representation as 
Design Rationale, IEEE Computer, Jan., pp. 48-56 

Chen et al., 1993 Chen, S., Drake, J. M. & Tsai, W. T. - Database Requirements For A 
Software Engineering Environment: Criteria & Empirical Evaluation, 
Information & Software Technology, Mar., pp. 149-161 

Chen, 1976 Chen, P. - The Entity-Relationship Model: Toward a Unifying View of 
Data, ACM Trans. on Database Systems, Mar., pp. 9-36 

Choi & Scacchi, 1989 Choi, Song C. & Scacchi, Walt - Assuring the Correctness of Configured 
Software Descriptions, Software Engineering Notes, Nov., pp. 66-75 

Chudge & Fulton, 1994 Chudge, J. & Fulton, D. - Trust and Co-operation In Systems Development: 
Applying Responsibility Modeling To The Problem of Changing 
Requirements, Papers of the Workshop on Requirements Elicitation For 
Software-Based Systems, University of Keele, Staffordshire, UK, Jul. 

Chung et al., 1995 Chung, L., Nixon, B. & Yu, E. - Using Non-Functional Requirements to 
Systematically Support Change, Proc. 2nd Int'l Symposium on 

R-3 



References 

Requirements Engineering, York, UK, Mar. 

Cimitile et al. 1992 Cimitile, A., Lanubile, F. & Visaggio, G. - Traceability Based on Design 
Decisions, Proc. 8th Conf. on Software Maintenance, Orlando, Florida, 
USA, Nov., pp. 309-317 

Coallier, 1994 Coallier, Francois - How ISO 9001 Fits into the Software World, IEEE 
Software, Jan., pp. 98-100 

Cockram et a!., 1998 Cockram, T., Parker, R., Tiley, D., Woodward, H., Smith, J. & Vickers, A. 
-A System Requirements Traceability Model: An Industrial Application, 
Proc. Safety Critical Systems Symposium (SSS '98): Industrial Perspectives 
of Safety-Critical Systems, Birmingham, UK, Feb. 

Codd, 1970 Codd, E. F. -A Relational Model of Data for Large Shared Data Banks, 
Communications of the ACM, 13(6), Jun., pp. 377-387 

Cogdell, 1999 Cogdell, J. R. - Foundations of Electric Circuits, Prentice Hall 

Collofello & Vennergrund, 1987 Collofello, J. S. & Vennergrund, D. A. - Ripple Effect Analysis Based on 
Semantic Information, AFIPS Conf. Proc. (NCC), Vol. 56, pp. 675-682 

Conklin & Yakemovic, 1991 Conklin, J. E. & Yakemovic, K. C. B. -A Process-Oriented Approach to 
Design Rationale, Human-Computer-Interaction, 6(3-4), pp. 357-391 

Conklin, 1987 Conklin, Jeff - Hypertext: An Introduction and Survey, IEEE Computer, 
Sep., pp. 17-41 

Conradi & Westfechtel (1998) Conradi, R. & Westfechtel, B. - Version Models for Software Configuration 
Management, ACM Computing Surveys, Vol. 30., No. 2, Jun. pp. 232-282 

Cook & Daniels, 1994 Cook, S. & Daniels, J. - Designing Object Systems: Object-Modelling with 
Syntropy, Prentice-Hall 

Corriveau & Hayashi, 1994 Corriveau, Jean-Pierre & Hayashi, Craig -A Strategy For Realizing 
Traceability In An Object-Oriented Design Environment, Proc. 4th Int'l 
Workshop on Computer Aided Systems Theory, Ottawa, May., pp. 191-204 

Corriveau, 1996 Corriveau, Jean-Pierre - Traceability For Large Object-Oriented Projects, 
IEEE Computer, Sep., pp. 63-68 

Coyne, 1993 Coyne, Bob - Requirements Change Process Development, Proc. Annual 
Int'l Symposium - National Council on Systems Engineering, Arlington, 
VA, USA, Jul., pp. 391-387 

Cross, 1996 Cross, Gary - Tracking the Changing Face of System Development, Real- 
Time Magazine, 96/1, pp. 10-12 

Cullyer et al., 1991 Cullyer, W. J., Goodenough, S. J. & Wichmann, B. A. - The Choice of 
Programming Languages for use in Safety-Critical Systems, Software 
Engineering Journal, 6(2), pp. 51-58 

Curran et al., 1994 Curran, P., 0' Donoghue, P. G., Jackson, K., Hull, M. E. C. & Griffiths, L. 

- BORIS-R Specification of the Requirements of Large Scale Software 
Intensive Systems, Papers of the Workshop on Requirements Elicitation For 
Software-Based Systems, University of Keele, Staffordshire, Jul. 

Cybulski & Reed, 1992 Cybulski, J. L. & Reed, K. -A Hypertext Based Software Engineering 
Environment, IEEE Software, March, pp. 62-68 

Czejdo et al., 1992 Czejdo, B., Embley, D. W. & Rusinkiewicz, M. - View Updates for an 
Extended Entity-Relationship Model, Information Sciences, No. 62, pp. 41- 
64 

Dardenne et al., 1993 Dardenne, A., van Lamsweerde, A. & Fickas, S. - Goal-Directed 
Requirements Acquisition, Science of Computer Programming, Vol. 20, pp. 
3-50 

R-4 



References 

Date, 1995 

Davis & Vick, 1977 

Davis, 1990 

Date, C. J. - An Introduction to Database Systems, 6th edition, Addison- 
Wesley 

Davis, C. G. & Vick, C. R. - The Software Development System, IEEE 
Trans. on Software Engineering, Jan., pp. 69-84 

Davis, Alan. M. - Software Requirements Analysis & Specification, 
Prentice-Hall Inc. 

Dawkins & Riddle, 2000 Dawkins, S. & Riddle, S. - Managing and Supporting the use of COTS, 
Proc. of the 8th Annual Safety Critical Systems Symposium, Southampton, 
UK 

Dawkins et al., 1999 Dawkins, S., Kelly, T., McDermid, J., Murdoch, J. & Pumfrey, D. - Issues 
in the Conduct of PSSA, Proceedings of the 17th International Safety 
Conference, Florida, USA 

de Lemos et al., 1995 de Lemos, R., Saeed, A. & Anderson, T. - Analyzing Safety Requirements 
for Process-Control Systems, IEEE Software, May, pp. 42-52 

Dean, 1992 Dean, Edwin B. - Quality Function Deployment for Large Systems, Proc. 
1992 Int'l Engineering Management Conf., Eatontown, NJ, USA, Oct. 

Devanbu et al., 1991 Devanbu, P., Brachman, R. J., Selfridge, P. G. & Ballard, B. W. - LaSSIE - 
A Knowledge Based Software Information System, Communications of the 
ACM, 34(5), pp. 34-49 

Diagne & Kordon, 1996 Diagne, Alioune & Kordon, Fabrice -A Multi-Formalisms Prototyping 
Approach From Formal Description to Implementation of Distributed 
Systems, Proc. 7th Int'l Workshop on Rapid Systems Prototyping, 
Thessaloniki, Greece, Jun., pp. 102-107 

Dick, 1999 Dick, J. - Rich Traceability, Telelogic Technical Paper; obtained from 
http: //www. telelogic. com/resources/ 

Distaso et al., 1980 Distaso, J., Manley, J., Stucki, L. & Munson, J. - Software Technology: 
Key Issues of the '80s, in COMPCON, Feb., pp. 387-389 

Dobson & Strens, 1994 Dobson, J. E. D. & Sirens, R. - Enterprise Modelling as a Technique for 
Organisational Requirements Definition, Intelligent Systems Engineering, 
Spring, pp. 20-26 

DoD, 1992 Department of Defense (US) - Systems Engineering, Draft Military 
Standard 499b, Oct. 

DoD, 1994 Department of Defense (US) - Software Development and Documentation 
Standard, Military Standard 498; obtained from 
http: //diamond. spawar. navy. mil/498/ 

Dömges & Pohl, 1998 Dömges, R. & Pohl, K. - Adapting Traceability to Project-Specific Needs, 
Communications of the ACM, 41(12), pp. 54-62 

Dömges et al., 1998 Dömges, R., Pohl, K. & Schreck, K. -A Filter-Mechanism for Method- 
Driven Trace Capture, Proc. 10th Int'l Conf. on Advanced Information 
Systems Engineering, Pisa, Italy, Jun. 

Dorfman & Flynn, 1984 Dorfman, M. & Flynn, R. F. - Arts - An Automated Traceability System, 
Journal of Systems & Software, 4(1), pp. 63-74 

Dubois, 1994 Dubois, E. - ALBERT at the Age of Two, Position Papers of the Dagstuhl 
Seminar on System Requirements Analysis: Management and Exploitation, 
Dagstuhl, Germany 

Duke & Harrison, 1995 Duke, D. & Harrison, M. - Mapping User Requirements To 
Implementations, Software Engineering Journal, Jan., pp. 13-20 

Duvall, 1997 Duvall, S. - Tool Supported Traceability for Development & Certification, 
Dpt. of Comp. Sci., University of Newcastle upon Tyne, MSc. Dissertation 

R-5 



References 

Easterbrook et al., 1994 Easterbrook, S, Finkelstein, A. Kramer, J. & Nuseibeh, B. - Co-ordinated 
Distributed ViewPoints: The Anatomy of a Consistency Check, Imperial 
College of Science Technology & Medicine, University of London, UK, 
Technical Report, TR 94/7 

Eberlein et al., 1997 Eberlein, A., Crowther, M. & Halsall, F. - Development of New Telecomrns 
Services Using An Expert System, BT Tech Journal, Jan., pp. 217-223 

Ecklund et al., 1996 Ecklund, E. F., Delcambre, L. M. L. & Freiling, M. J. - Change Cases: Use 
Cases that Identify Future Requirements, 11th Annual Conf. on Object- 
Oriented Programming Systems Languages and Applications, in SIGPLAN 
Notices, 31(10), San Jose, California, USA, Oct., pp. 342-358 

Edwards & Bergstein, 1993 Edwards, Michael & Bergstein, David -A Look at the Current Automated 
Capabilities of Traceability, Real-Time Applications Workshop, New York, 
USA, May, pp. 204-206 

Elmasri & Navathe, 1997 Elmasri, R. & Navathe, S. B. - Fundamentals of Database Systems, 3rd 
Edition, Addison-Wesley 

Emmerich et al., 1999 Emmerich, W., Finkelstein, A., Montangero, C., Antonelli, S., Armitage, S. 
& Stevens, R. - Managing Standards Compliance, IEEE Trans. on Software 
Engineering, 25(6) 

ESA, 1991 European Space Agency - ESA Software Engineering Standards, ESA PSS- 
05, ESA Publications 

Escudie et al., 1994 Escudie, A. , Lambolez, P. Y., Queille, J. P., Sedes, F. & Voidrot, J. F. -A 
Traceability-Based Model For an Integrated Maintenance Environment, 
Proc. Intelligent Multimedia Information Retrieval Systems & Management 
Conf., Toulouse, France, pp. 358-363 

EUROCAE, 1992 European Organization for Civil Aviation Electronics - Software 
Considerations in Airborne Systems and Equipment Certification, 
EUROCAE document ED-12B, Dec. (Issued in the United States by the 
Requirements and Technical Concepts for Aviation Inc. as RATC document 
SC 167/D0-178B) 

EUROCAE, 1996a European Organization for Civil Aviation Electronics - Certification 
Considerations For Highly-Integrated or Complex Aircraft Systems, 
EUROCAE document ARP 4754, Nov. (Issued in the United States by the 
Society of Automotive Engineers) 

EUROCAE, 1996b European Organization for Civil Aviation Electronics - Guidelines and 
Methods for Conducting the Safety Assessment Process on Civil Airborne 
Systems and Equipment, EUROCAE document ARP 4761, Dec. (Issued in 
the United States by the Society of Automotive Engineers) 

Evans, 1989 Evans, M. W. - The Software Factory, John Wiley & Sons 

FAA, 2001 Federal Aviation Administration - Transport Airplane Fuel Tank System 
Design Review, Flammability Reduction and Maintenance and Inspection 
Requirements, Federal Register, Vol. 66, No. 88 

Fan & Yih, 1999 Fan, Chin-Feng & Yih, Swu - Safety Markup Language, in Felici, M., 
Kanoun, K. & Pasquini, A. (eds. ), Proc. Conf. on Computer Safety, 
Reliability and Security (SafeComp), France, Sep., pp. 177-186 

Favre, 1994 Favre, C. - Fly-by-Wire for Commercial Aircraft: The Airbus Experience, 
International Journal of Control, Vol. 59, No. 1, pp. 139-157 

Feather, 1991 Feather, Martin S. - Requirements Engineering: Getting Right From Wrong, 
in van Lamsweerde, A. & Fugetta, A. (eds. ), 3rd European Software 
Engineering Conf., Milan, Italy, Oct., pp. 485-488 

Fickas & Finkelstein, 1993 Fickas, S. & Finkelstein, A. - Requirements Engineering 1993, Proc. Ist 
Int'l Symposium on Requirements Engineering, San Diego, California, 

R-6 



References 

USA, Jan., pp. v-vi 
Fiksel & Hayes-Roth, 1993 Fiksel, Joseph & Hayes-Roth, Frederick - Computer-Aided Requirements 

Management, Concurrent Engineering: Research & Applications, Jan., pp. 
83-92 

FIPSP, 1993 Federal Information Processing Standards Publication - Announcing the 
Standard for Integration Definition for Information Modeling (IDEFIX); 
obtained from http: //www. idef. com/ 

Fischer & Walker, 1979 Fischer, K. F. & Walker, M. G. - Improved Software Reliability Through 
Requirements Verification, IEEE Trans. on Reliability, Aug., pp. 233-240 

Fischer, 1991 Fischer, Wolf E. - CASE Seen From Both Sides of the Fence, in van 
Lamsweerde, A. & Fugetta, A. (eds. ), 3rd European Software Engineering 
Conf., Milan, Italy, Oct., pp. 509-511 

Flynn & Dorfman, 1990 Flynn, R. & Dorfman, M. - The Automated Requirements Traceability 
System (ARTS): An Experience of Eight Years, in Thayer, R. & Dorfman, 
M. (eds. ), System & Software Requirements Engineering, IEEE Computer 
Society Press, pp. 423-438 

Fragola & Spahn, 1973 Fragola, J. R. & Spahn. J. F. - The Software Error Effects Analysis :A 
Qualitative Design Tool, Proc. IEEE Symposium on Comp. S/W Rel., pp. 
90-93 

Fraser et al., 1991 Fraser, M. D., Kamax, K. & Vaishnavi, V. K. - Informal and Formal 
Requirements Specification Languages: Bridging the Gap, IEEE Trans. on 
Software Engineering, May, pp. 454-464 

Freedman & Weinberg, 1981 Freedman, D. P. & Weinberg, G. M. -A Checklist for Potential Side 
Effects of a Maintenance Change, in Parikh, G. (ed. ), Techniques of 
Program and System Maintenance, pp. 93-100 

Fyson & Boldyreff, 1998 Fyson, M. J. & Boldyreff, C. - Using Application Understanding to Support 
Impact Analysis, Software Maintenance: Research & Practice, Vol. 10, No. 
2, pp. 93-110 

Galle, 1996 Galle, Johan - HOORA: Hierarchical Object-Oriented Requirements 
Analysis for the European Space Agency, Journal of Object-Oriented 
Programming, Jun., pp. 38-46,75 

Garcia, 1994 Garcia, Lucy H. -A Tool For Design Traceability, Proc. National 
Aerospace and Electronics Conf., Dayton, Ohio, USA, Apr., pp. 807-813 

Gardner, 1994 Gardner, Forrest K. - RayTracer: Traceability For Software Engineering, 
Proc. 3rd Symposium on the Assessment of Quality Software Development 
Tools, Washington, DC, USA, Mar., pp. 224-232 

Garg & Scacchi, 1989 Garg, P. K. & Scacchi, W. - ISHYS : Designing an Intelligent Software 
Hypertext System, IEEE Expert, Autumn, pp. 52-62, 

Garg & Scacchi, 1990 Garg, P. K. & Scacchi, W. - Hypertext System To Manage Software Life- 

cycle Documents, IEEE Software, May, pp. 90-98 

Gieszl, 1992 Gieszl, Louis R. - Traceability For Integration, Proc. 2nd Int'l Conf. on 
Systems Integration, Morristown, New Jersey, USA, Jun., pp. 220-228 

Gladden, 1982 Gladden, G. R. - Stop The Life-Cycle I Want To Get Off, Software 
Engineering Notes, Apr., pp. 35-39 

Gogolla & Hohenstein, 1991 Gogolla, M. & Hohenstein, U. - Towards a Semantic View of an Extended 
Entity-Relationship Model, ACM Transactions on Database Systems, 16(3), 

pp. 369-416 

Gogolla, 1994 Gogolla, M. - An Extended Entity-Relationship Model - Fundamentals and 
Pragmatics, Springer, Berlin, LNCS 767. 

R-7 



References 

Goguen, 1996a Goguen, J. A. - Formality and Informality in Requirements Engineering, 
Proc. 2nd Int'l Conf. on Requirements Engineering, Orlando, Florida, USA, 
Apr., pp. 2-10 

Goguen, 1996b Goguen, J. A. - Paramaterized Programming & Software Architecture, Proc. 
4th Int'l Conf. on Software Reuse, Apr., pp. 2-11 

G6rski & Wardzinski (1995) G6rski, J. & Wardzinski, A. - Formalising Fault Trees, Proc. Safety-Critical 
Systems Symposium, Brighton, UK, pp. 310-327 

Gossain, 1995 Gossain, Sanjiv - Tracking Requirements in Object Development, Object 
Expo '95, London, UK, Sep., pp. 86-102 

Gotel, 1995 Gotel, O. - Contribution Structures For Requirements Traceability, Imperial 
College of Science, Technology & Medicine, University of London, UK, 
Ph. D. Thesis, Aug. 

Gronbaek & Trigg, 1994 Gronbaek, K. & Trigg, R. - Design Issues For Dexter-Based Hypermedia 
System, Communications of the ACM, Feb., pp. 40-49 

Grant & Minker, 1992 Grant, J. & Minker, J. - The Impact of Logic Programming on Databases, 
Communications of the ACM, Mar., pp. 66-81 

Greenspan & McGowan, 1978 Greenspan, Sol & McGowan, Clement - Structuring Software Development 
for Reliability, Microelectronics & Reliability, 17(1), pp. 75-84 

Gries, 1997 Gries, Michael J. - System Engineering For the 777 Autopilot System, IEEE 
Trans. on Aerospace and Electronic Systems, 33(2), Apr., pp. 649-655 

Grigg & Henderson, 2000 Grigg, A. & Henderson, N. -A Systematic Method for Development of 
Real-Time Systems, TR7 10, Department of Computing Science, University 

of Newcastle upon Tyne 

Halasz & Schwartz, 1994 Halasz, F. & Schwartz, M. - The Dexter Hypertext Reference Model, 
Communications of the ACM, Feb., pp. 30-39 

Halpin, 1998 Halpin, T. - Object Role Modeling, Handbook on Architectures of 
Information Systems, in Bernus, P., Mertins, K. & Schmidt G. (eds), 
Springer-Verlag, Berlin, pp. 81-101 

Hammer & McLeod, 1981 Hammer, M. & McLeod, D. - Database Description with SDM: a Semantic 
Data Model, ACM Transactions on Database Systems, 6(3), pp. 351--386 

Han, 1995 Han, Jun -A Document Based Approach to Software Engineering 
Environments, Proc. 5th Int'l CASE Symposium, Changsha, Hunan, China, 
Oct. /Nov., pp. 128-133 

Ilan, 1996 Han, Jun - Supporting Impact Analysis and Change Propagation In 
Software Engineering Environments, University of Monash, Victoria, 
Australia, TR-96-09, Oct. 

Han, 1997a Han, Jun - Designing For Increased Software Maintainability, Proc. Int'l 
Conf, on Software Maintenance, Bari, Italy, Sep. /Oct., pp. 278-286 

Han, 1997b Han, Jun - Traceability and Consistency Support in Computer-Aided 
Design Environments, Proc. of 5th Int'l Conf. on Computer Aided Systems 
Theory & Technology, Las Palmas de Gran Canaria, Spain, Feb., pp. 11-15. 

Hansford et al., 2000 Hansford, G., Harrison, A. & Vickers, A. - Digital Advanced Radio for 
Trains (DART): The Safety Management & Engineering Case, Proc. of the 
Safety-Critical Systems Symposium, Redmill, F. & Anderson, T. (eds. ), 
Southampton, UK, Feb., pp. 187-205 

Harel, 1988 Harel, D. - On Visual Formalisms, Communications of the ACM, Vol. 31. 
No. 5, May, pp. 514 - 530 

Harker & Eason, 1993 Harker, S. & Eason, K. - The Change and Evolution of Requirements as a 
Challenge to the Practice of Software Engineering, Proc. Ist Int'l 

R-8 



References 

Symposium on Requirements Engineering, San Diego, California, USA, 
Jan., pp. 266-272 

Harris & Candy, 1999 Harris, D. & Candy, L. - Evaluation in the SEDRES Project: Measuring the 
Effectiveness of Model Data Exchange between Systems Engineering 
Tools, Proc. 9th International Symposium of the International Council on 
Systems Engineering (INCOSE), Brighton, UK, Jun. 

Halley & Pirbhai, 1987 Halley, D. J. & Pirbhai, I. A. - Strategies For Real Time System 
Specification, New York: Dorset House 

Haveman & Pearson, 1997 Haveman, J. & Pearson, S. - Tracing Transactions, University of Newcastle 
upon Tyne/BAe Dependable Computing Systems Centre Technical Report, 
DCSCYTR/97/1, Jan. 

Haveman et at., 1997 Haveman, J., Paynter, S. and Armstrong J. M. -A Transaction Model for 
Real-Time Systems. TR607, Department of Computing Science, University 
of Newcastle upon Tyne 

Hermens, 1991 Hermens, L. -A Software Specification Tool For Increased Requirements 
Traceability, University of Idaho, USA, MSc. Dissertation 

Herzog & Scerri, 1998 Herzog, E. & Scerri, P. -The SEDRES Draft Standard /2 Data Model, 
SEDRES Deliverable W. 4.6.1, May 

Herzog & Törne, 1999 Herzog, E. & Törne, A. -A Seed for a STEP Application Protocol for 
Systems Engineering, Proc. Conference & Workshop on Engineering of 
Computer-Based Systems (ECBS '99), Nashville, TN, Mar. pp. 174-180 

Hill, 1996 Hill, Mike - Parasitic Languages For Requirements, Proc. 2nd Int'l Conf. on 
Requirements Engineering, Orlando, Florida, USA, Apr., pp. 69-75 

Hodge, 1994 Hodge, J. D. - Parametric Cost Estimating, in Readings in Program Control, 
Hoban, Francis T., Lawbaugh, William M. & Hoffman, Edward J. (eds. ), 
NASA SP-6103 

Hoffman, 1990 Hoffman, Daniel - On Criteria For Module Interfaces, IEEE Trans. on 
Software Engineering,, May, pp. 537-542 

Hoffnagle & Beregi, 1985 Hoffnagle, G. & Beregi, W. - Automating the Software Development 
Process, IBM Systems Journal, 24(2), pp. 102-120 

Horrowitz & Williamson, 1986 Horrowitz, Ellis & Williamson, R. C. - SODOS: A Software 
Documentation Support Environment, IEEE Trans. on Software 
Engineering, Aug., pp. 849-859 

Hsia et al., 1994 Hsia, P., Samuel, J., Gao, J. & Kung, D. - Formal Approaches to Scenario 
Analysis, IEEE Software, March 

Hugge & Lang, 1995 Hugge, P. B. & Lang, J. D. - Results of Implementing A Disciplined 
Avionic Development Process: Advanced Design for Quality Avionic 
Systems (ADQAS), Proc. of the National Aerospace & Electronics Conf., 

Ohio, USA, pp. 220-226 

Hughes & Martin, 1998 Hughes, T. & Martin, C. - Design Traceability of Complex Systems, Proc. 
4th Annual Symposium on Human Interaction with Complex Systems, 
Ohio, USA, Mar., pp. 37-41 

Hughes et al., 1995 Hughes, J., Rodden, T., Rouncefield, M. & Sommerville, I. - Presenting 
Ethnography in the Requirements Engineering Process, Proc. 2nd Int'l 
Symposium on Requirements Engineering, York, UK, Mar., pp. 27-34 

Hull et al. (1991) Hull, M. E. C., O'Donoghue, P. G. & Hagan, B. J. - Development Methods 
for Real-Time Systems, The Computer Journal, Vol. 34, No. 2, pp. 164-172 

Humphrey, 1988 Humphrey, Watts S. - Characterizing the Software Process: A Maturity 
Framework, IEEE Software, Mar., pp. 73-79 

R-9 



References 

IEC, 1985 International Electrical Commission - Analysis Techniques for System 
Reliability: Procedures for Failure Modes and Effects Analysis, 
International Standard 812, IEC 

IEC, 1998 International Electrical Commission - Functional Safety of 
Electrical/Electronic/Programmable Electronic Safety Related Systems, 
International Standard 61508 

IEEE, 1977 Institute of Electrical & Electronics Engineers - Special Issue on 
Requirements Analysis and Requirements Tools, IEEE Trans. on Software 
Engineering, Jan., SE-3, No. 1 

IEEE, 1987 Institute of Electrical & Electronics Engineers - Guide to Software 
Configuration Management, IEEE STD 1042-1987 

IEEE, 1992 Institute of Electrical & Electronics Engineers - Recommended Practice for 
the Evaluation and Selection of CASE Tools, IEEE Std 1209-1992, Dec. 

IEEE, 1993a Institute of Electrical & Electronics Engineers - Standard For Software 
Maintenance, Jun. 

IEEE, 1993b Institute of Electrical & Electronics Engineers - Systems Engineering of 
Computer Based Systems, Report of the IEEE Working Group on the State 
of Practice into Systems Engineering of Computer-Based Systems, IEEE 
Computer, 26(11), pp. 54-65 

Ihme et at., 1995 Ihme, T., Niemelä, E., Salmela, M. & Seppanen, V. - Object-Oriented Re- 
engineering of Embedded Software, Mechatronics, 5(1), pp. 73-86 

Ince et al., 1993 Ince, D., Sharp, H. & Woodman, M. - Introduction To Software Project 
Management and Quality Assurance, McGraw-Hill 

Ince, 1994 Ince, Darrel - ISO 9001 and Software Quality Assurance, McGraw-Hill 

INCOSE, 1996 International Council on Systems Engineering - Systems Engineering 
Capability Assessment Model (version 1.50), Jun 

INCOSE, 1999 International Council on Systems Engineering - Results of Requirements 
Tools Survey (Revised); obtained from 
http: //www. incose. org/workgrps/tools/rqsrvifo. html 

Integrated, 1997 Integrated Chipware - Requirements Traceability Management, User 
Documentation 

ITU-T, 1993 International Telecommunications Union - Recommendation Z. 120: 
Message Sequence Chart (MSC) 

Jackson & Renton, 1993 Jackson, Scott & Renton, Meg - First Order System Engineering: A Case 
Study, Proc. Annual Int'l Symposium - National Council on Systems 
Engineering, Arlington, VA, USA, Jul., pp. 55-61 

Jackson, 1986 Jackson, K. - Mascot 3 and Ada, Software Engineering Journal, May, pp. 
121-135 

Jackson, 1991 Jackson, Justin -A Keyphrase Based Traceability Scheme, Tools and 
Techniques For Maintaining Traceability During Design, IEE Colloquium, 
UK Digest Number: 1991/180, Dec., pp. 2/1-2/4 

Jacobs & Kethers, 1994 Jacobs, Stephen & Kethers, Stefanie - Improving Communication & 
Decision Making within Quality Function Deployment, Proc. 1st Int'l Conf. 

on Concurrent Engineering, Research and Applications, Pennsylvania, USA 

Jacobson et al., 1993 Jacobson, I., Christerson, M., Jonsson, P. & Overgaard, G. - Object- 
Oriented Software Engineering -A Use Case Driven Approach, Addison- 
Wesley 

Jarke et al., 1995 Jarke, M., Gallersdörfer, R., Jeusfeld, M., Staudt, M. & Eherer, S. - 
ConceptBase -A Deductive Object Base for Meta Data, Journal of 

R-10 



References 

Jayaratna, 1994 

Jenkins, 1994 

Intelligent Information Systems, Mar., pp. 167-192 

Jayaratna, N. - Understanding and Evaluating Methodologies, NIMSAD, A 
Systematic Framework, McGraw-Hill 

Jenkins, D. - Designers Using Co-operative Knowledge, IEE Colloquium 
on Issues of Co-operative Working in Concurrent Engineering, Digest No. 
1994/177, Oct., pp. 8/1- 8/3 

Jenkins, et al., 1997 Jenkins, D., Lees, B., Livingstone, D. & Reglinslki, A. - Managing the 
Safety Argument Using A Memory Prosthesis, Daniel, P. (ed. ), Proc. 16th 
Int'l Conf. on Computer Safety, Reliability and Security, York, UK, pp. 98 

-110 
Johnson & Merrithew, 1978 Johnson, L. A. & Merrithew, P. B. - Requirements/Design Analysis and 

Traceability, Proc. National Aerospace and Electronics Conf., Dayton, 
Ohio, USA, May, pp. 1130 

Johnson et al., 1991 Johnson, W., Feather, M. & Harris, D. - Integrating Domain Knowledge, 
Requirements and Specifications, Journal of Systems Integration, Vol. 1, 
pp. 283-320 

Johnson et al., 1992 Johnson, W. L., Feather, M. S. & Harris, D. R. - Representation and 
Presentation of Requirements Knowledge, IEEE Trans. on Software 
Engineering, 18(10), Oct., pp. 853-869 

Johnson et al., 1999 Johnson, J. F. E. , Luise, F., Loeuillet, J-L., Inderst, M., Nilsson, B., Torne, 
A., Candy, L. & Harris, D. - The Future System Engineering Data Exchange 
Standard STEP AP-233: Sharing the Results of the SEDRES Project, Proc. 
of 9th INCOSE Symposium, Brighton, UK 

Johnson, 1997 Johnson, J. F. E. - The SEDRES Project (Systems Engineering Data 
Representation & Exchange); Extending STEP from Structural Definition 
To Product Functionality, Proc. 8th Int'l Conf. on CALS & Electronic 
Commerce in Europe, Frankfurt, Germany, Sep., pp. 92-107 

Johnson, 1998 Johnson, J. F. E. - The SEDRES Project: Producing a Data Exchange 
Standard Supporting Integrated Systems Engineering, Proc. of 8`h INCOSE 
Symposium, Vancouver, Canada, pp. 367-374 

Johnson, 2000 Johnson, J. F. E. - The Latest Developments in Design Data Exchange: 
Towards Fully Integrated Aerospace Design Environments, Proc. of 22nd 
International Congress of Aeronautical Sciences, Harrogate, UK 

Jones, 1990 Jones, C. B. - Systematic Software Development Using VDM, Prentice-Hall 

Kaindl, 1993 Kaindl, H. - The Missing Link In Requirements Engineering, Software 
Engineering Notes, Apr., pp. 30-39 

Kalinsky et al., 1989 Kalinsky, D., Shilo, R. & Avnur, A. - Sunk Without A Trace, Systems Int'l, 
Apr., pp. 71-74 

Karat & Bennett, 1991 Karat, J. & Bennett, J. L. - Using Scenarios in Design Meetings -A Case 
Study Example. in Karat, J. (ed. ), Taking Software Design Seriously: 
Practical Techniques for Human-Computer Interaction Design, Academic 
Press 

Kelley, 1990 Kelley, C. - Does It Fit the Bill?, Systems International, Jun., pp. 32-34 

Kelly & McDermid, 1997 Kelly, T. P. & McDermid, J. A. - Safety Case Construction and Reuse using 
Patterns, Proceedings of the 14th International Conference on Computer 
Safety, Reliability and Security (SafeComp '97), York, Sep. pp 55-69 

Kelly & McDermid, 1999 Kelly, T. P. & McDermid, J. A. -A Systematic Approach to Safety Case 
Maintenance, Proceedings of the 16th International Conference on 
Computer Safety, Reliability and Security (SafeComp '99), Toulouse, 

France, Sep. pp 13-26 

R-11 



References 

Kenny, 1996 Kenny, Christy - Requirements Traceability; obtained from 
http: //www. cs. usask. ca/grads/cab 130/856/trace. ps 

Keys, 1991 Keys, Ellen -A Workbench Providing Traceability In Real-Time System 
Development, Tools and Techniques For Maintaining Traceability During 
Design, IEE Colloquium, UK Digest Number: 1991/180, Dec., pp. 3/1-3/2 

King et al., 2000 King, S., Hammond, J., Chapman, R. & Pryor, A. - Is Proof More Cost- 
Effective Than Testing?, IEEE Transactions on Software Engineering, 
26(8), pp. 675- 695 

Klein, 1993a Klein, Mark - Capturing Design Rationale In Concurrent Engineering 
Teams, IEEE Computer, Jan., pp. 39-47 

Klein, 1993b Klein, Mark - Supporting Conflict Management in Cooperative Design 
Teams, Journal of Group Decision & Negotiation, No. 2, pp. 259-278 

Klein, 1997a Klein, Mark - An Exception Handling Approach to Enhancing Consistency, 
Completeness and Correctness in Collaborative Requirements Capture, 
Journal of Concurrent Engineering: Research & Applications, Mar. 

Klein, 1997b Klein, Mark - Capturing Geometry Rationale for Collaborative Design, 
Proc. 6th Workshop on Enabling Technologies: Infrastructure for 
Collaborative Enterprises (WETICE '97), Massachusetts, USA, Jun. 

Kotonya & Sommerville, 1998 Kotonya, G. & Sommerville, I. - Requirements Engineering - Processes and 
Techniques, John Wiley & Sons Ltd. 

Kunz & Rittel, 1970 Kunz, W. & Rittel, H. - Issues as Elements of Information Systems, 
Working Paper No. 131, University of Berkeley, California, USA, Center 
for Planning and Development Research 

Kydd et al., 1994 Kydd, S. Dyke, A. & Jenkins D. - Hypermedia Version Support for the On- 
Line Design Journal, Proc. CSCW Workshop on Collaborative Hypermedia 
Systems, North Carolina, USA 

Kyng, 1995 Kyng, M. - Creating Contexts for Design, in Carroll, J. M. (ed. ), Scenario.. 
Based Design, Envisioning Work & Technology in System Development, 
Wiley- 

Laitinen, 1992 Laitinen, K. - Document Classification for Software Quality Systems, 
Software Engineering Notes, Oct., pp. 32-39 

Landes & Studer, 1995 Landes, D. & Studer, R. - The Treatment of Non-Functional Requirements 
In MIKE, Proc. 5th European Software Engineering Conf., Sitges, Spain, 
Sep., pp. 294-306 

Lano, 1979 Lano, R. J. A. - Techniques for Software & System Design, TRW Series on 
Software Technology, Vol. III, North-Holland 

Lanubile & Visaggio, 1995 Lanubile, F. & Visaggio, G. - Decision Driven Maintenance, Software 
Maintenance: Research & Practice, Vol. 7, pp. 91-115 

Laprie, 1989 Laprie, J. C. - Dependability: A Unifying Concept for Reliable Computing 

and Fault Tolerance, in Anderson, T. (ed. ), Dependability of Resilient 
Computers, BSP Professional Books, pp. 1-28 

Laubengayer & Spearman, 1994 Laubengayer, R. C. & Spearman, J. S. -A Model of Pre-Requirements 
Specification Traceability in the Department of Defense, Naval 
Postgraduate School, Monterey, California, USA, MS Dissertation, Jun. 

Lee & Yen, 1993 Lee, J. & Yen, J. - Enhancing the Software Life-Cycle of Knowledge Based 
Systems Using A Task Based Specification Methodology, Int'l Journal of 
Software Engineering & Knowledge Engineering, 3(1), pp. 3-15 

Lee, 1991 Lee, J. - Extending the Potts and Bruns Model for Recording Design 
Rationale, Proc. 13th Int'l Conf. on Software Engineering, TX, USA, May, 

R-12 



References 

pp. 114-125 

Lefering, 1993 Lefering, Martin - An Incremental Integration Tool Between Requirements 
Engineering and Programming in the Large, Proc. Ist Int'l Symposium on 
Requirements Engineering, San Diego, California, USA, Jan., pp. 82-89 

Lehman & Belady, 1985 Lehman, M. M. & Belady, L. A. - Program Evolution: Processes of 
Software Change, London: Academic Press 

Leite et al., 1997 Leite, J., Rossi, G., Balaguer, F., Maiorana, V., Kaplan, G., Hadad, G. & 
Oliveros, A. - Enhancing A Requirements Baseline With Scenarios, Proc. 
3rd Int'l Symp. on Requirements Engineering, MD, USA, Jan., pp. 44-53 

Leveson & Harvey, 1983 Leveson, N. G. & Harvey, P. R. - Software Fault Tree Analysis, Journal of 
Systems and Software, vol. 3, pp. 173-181 

Leveson & Reese, 1998 Leveson, N. & Reese, J. - SpecTRM: A Toolset to Support the Safeware 
Methodology, Proc. 16th Int'l System Safety Conf., Seattle, USA, Sep., pp. 
256 - 262 

Leveson, 1995 Leveson, N. G. - Safeware: System Safety and Computers, Addison-Wesley 

Lindsay & Traynor, 1998 Lindsay, P. & Traynor, O. - Supporting Fine-Grained Traceability in 
Software Development Environments, University of Queensland Technical 
Report, No. 98-10, Jul.; obtained from http: //svrc. it. uq. edu. au 

Lindvall, 1997 Lindvall, M. - An Empirical Study of Requirements-Driven Impact Analysis 
in Object-Oriented Software Evolution, Linköping University, Sweden, 
Ph. D. Thesis 

Liu et al., 1993 Liu, L. Robson, D. & Ellis, R. - Regression Testing Database Model, Proc. 
4th European Software Engineering Conf., Garmisch-Partenkirchen, 
Germany, Sep. 

Lubars et al., 1993 Lubars, M., Potts, C. & Richter, C. A- Review of the State of the Art In 
Requirements Modelling, Proc. 1st Int'l Symposium on Requirements 
Engineering, California, USA, Jan., pp. 2-14 

Lucey, 1992 Lucey, T. - Quantitative Techniques: 4`" Edition, DP Publications Ltd. 

Lueders, 1984 Lueders, G. - Verification Techniques for Improving Software Quality 
Through Automated Requirements Databases, Proc. 6th Digital Avionics 
Systems Conf., MD, USA, Dec., pp. 309-311 

Luqi, 1990 Luqi -A Graph Model For Software Evolution, IEEE Trans. on Software 
Engineering, Aug., pp. 917-927 

Macaulay, 1992 Macaulay, Linda - Requirements Capture As A Cooperative Activity, Proc. 
Ist Int'l Symposium on Requirements Engineering, San Diego, California, 
USA, pp. 174-181 

MacLean et al., 1991 MacLean, A., Young, R., Bellotti, V. & Moran, T. - Questions, Options and 
Criteria: Elements of Design Space Analysis Human Computer Interaction, 
6(3-4), pp. 201-250 

Madhavji, 1992 Madhavji, N. - Evolution Environment: The Prism Model of Changes, IEEE 
Trans. on Software Engineering, May, pp. 380-392 

Maier, 1993 Maier, M. - Integrated Modeling: An Avionics Case Study, Proc. Annual 

y 
Int'l Symposium - National Council on Systems Engineering, VA, USA, 
Jul., pp. 151-158 

Mair & Birdsall, 1992 Mair, W. A. & Birdsall, D. L. - Aircraft Performance, Cambridge 
University Press 

Martin et al., 1993 Martin, R., Proietto, A., Scardia, B. & Szymanski, J. - Heuristics Driven 
Real Time Software Design, IFIP Trans. Computer Science and 
Technology, Vol. 39, pp. 383-400 

R-13 



References 

Mason & Saeed, 1998 Mason, P. & Saeed, A. - Tracing Support for Safety Properties: An Object- 
Oriented and Deductive Approach, Proc. 16th Int'l System Safety 
Conference, Seattle, WA, Sept. 

Mason, 1996 Mason, P. -A Database Tool To Support Traceability For Dependable 
Avionic Systems, Department of Computing Science, University of 
Newcastle upon Tyne, MSc. Dissertation 

Mattsson & Elmqvist, 1998 Mattsson, S. E. & Elmqvist, H. - An Overview of the Modeling Language 
Modelica, Eurosim'98 Simulation Congress, Helsinki, Finland 

Mays et al., 1985 Mays, R., Orzech, L., Ciarfella, W. & Phillips, R. - PDM A Requirements 
Methodology For Software System Enhancements, IBM Systems Journal, 
No. 2, pp. 134-149 

McDermid & Pumfrey, 1994 McDermid, J. A. & Pumfrey, D. J., A Development of Hazard Analysis to 
aid Software Design, COMPASS '94: Proc. of the Ninth Annual Conf. on 
Computer Assurance, Gaithersburg, MD, pp. 17-25 

McFarland et al., 1997 McFarland, G., Rudmik, A., Lange, D. - Object-Oriented Database 
Management Systems Revisited, DoD Data & Analysis Centre for Software 
State-of-the-Art-Report (Revised), Dec. 1997 

McKay et al., 1996 McKay, A., Erens, F. & Bloor, M. - Relating Product Definition and 
Product Variety, Research in Engineering Design, Vol. 63, No. 2, pp. 63-80 

Mejzak, 1990 Mejzak, R. -A Traceable Systems Engineering Methodology, Proc. 9th 
Digital Avionics Conf., Virginia Beach, VA, USA, Oct., pp. 474-479 

Minker, 1988 Minker, J. - Perspectives in Deductive Databases, Logic Programming, No. 
5, pp. 33-60 

MoD, 1985 Ministry of Defense (UK) - Modular Approach to Software Construction, 
Operation and Test - MASCOT, Defence Standard 00-17, Oct. 

MoD, 1996 Ministry of Defense (UK) - Safety Management Requirements for Defence 
Systems Containing Programmable Electronics, Second Draft Defence 
Standard 00-56, Aug. 

MoD, 1997 Ministry of Defense (UK) - The Procurement of Safety Related Software in 
Defence Equipment, (Part 1: Requirements; Part 2: Guidance), Interim 
Defence Standard 00-55, Apr. 

Monk et al., 1995 Monk, S., Sommerville, I., Pendaries, J. M. & Durin, B. - Supporting 
Design Rationale For System Evolution, Cooperative Systems Engineering 
Group, University of Central Lancashire, Technical Report TR/17/95 

Moore, 1993 Moore, K. G. - Tracing Requirements into Implementation Environments, 
Proc. 13th Structured Development Forum: Innovation in Software 
Engineering, Philadelphia, USA, Aug., pp. 303 

Moores & Champion, 1994 Moores, T. T. & Champion, R. E. M. - Software Quality Through the 
Traceability of Requirements Specifications, Proc. Ist Int'l Conf. on 
Software Testing, Reliability and Quality Assurance, New Delhi, India, 
Dec., pp. 100-104 

Mordechai, 1994 Mordechai, Ben-Manachem - Software Configuration, Management 
Guidebook, McGraw-Hill 

Morris et al., 1994 Morris, P., Coombes, A. & McDermid, J. - Requirements and Traceability. 
Proc. 1st Int'l Workshop on Requirements Engineering: Foundation of 
Software Quality, Utrecht, The Netherlands, Jun., pp. 82-87 

Morris et al., 1995 Morris, P., Masera, M., & Wilikens, M. - Industrial Workshop on 
Requirements Engineering, Ispra, Italy,. Oct. 

Mosley, 1992 Mosley, Vicky - How To Assess Tools Efficiently and Quantitatively, IEEE 

R-14 



References 

Software, May, pp. 29-32 

Muller, 1997 Muller, Pierre-Alain - Instant UML, Wrox Press Ltd. 

Mullery, 1979 Mullery, G. -A Method for Controlled Requirements Specifications, Proc. 
International Conference on Software Engineering, Munich, Germany, pp. 
126-135 

Mylopoulos et al., 1990 Mylopoulos, J., Borgida, A., Jarke, M. & Koubarakis, M. - TELOS: 
Representing Knowledge about Information Systems, ACM Trans. on 
Information Systems, 8(4), Oct., pp. 325-362 

Mylopoulos et al., 1992 Mylopoulos, J., Chung, L. & Nixon, B. - Representing and Using Non- 
functional Requirements: A Process Oriented Approach, IEEE Trans. on 
Software Engineering, 18(6), pp. 483-497 

NASA, 1993 National Aeronautics and Space Administration - Software Formal 
Inspection Standard (NASA-Std-2202), 

Neely & Hartley, 1993 Neely, M. & Hartley, J. - SYNERGE: A Tool for Managing System 
Engineering Information, Proc. Annual Int'l Symposium - National Council 
on Systems Engineering, VA, USA, Jul., pp. 231-238 

Nejmeh et al., 1989 Nejmeh, B. A., Dickey, T. E. & Wartik, S. P. - Traceability Technology at 
the Software Productivity Consortium, Proc. IFIP 11th World Computer 
Congress, San Francisco, CA, USA, Aug. /Sep., pp. 981-984 

Ni et al., 1994 Ni, D. C., Martinez, J., Eccles, D., Thomas, D. & Lai, P. K. M. - Process 
Automation with Enumeration and Traceability Tools, Proc. Int'l Conf. on 
Industrial Technology, Canton, China, pp. 361-365 

Nixon et al., 1987 Nixon, B., Chung, L., Lauzon, D., Borgida, A., Mylopoulos, J. & Stanley, 
M. - Implementation of a Compiler for a Semantic Data Model: 
Experiences with Taxis. In Proc. of ACM/SIGMOD 

Oliver, 1994 Oliver, D. -A Draft Integration of Information Models: Complement Model 
and Oliver Model, Proc. of Tutorial and Workshop on Systems Engineering 
of Computer-Based Systems, pp. 44-69 

Palmer & Evans, 1994 Palmer, J. D. & Evans, R. P. - An Integrated Semantic and Syntactic 
Framework For Requirements Traceability, Proc. Complex Systems 
Engineering Synthesis and Assessment Technology Workshop, 
Washington, DC, USA, Jul., pp. 9-14 

Palmer, 1997 Palmer, J. D. - Traceability, in Thayer, R. H. & Dorfman, M. (eds. ), 
Software Requirements Engineering (2nd Edition), IEEE Computer Society 
Press Tutorial, pp. 364-373 

Papaioannou & Theodoulidis, Papaioannou, V. & Theodoulidis, B. - Hypermedia Environment for 
1996 Requirements Engineering, Proc. 7th Workshop on the Next Generation of 

CASE Tools, Heraklian, Crete, May. 

Parent et al., 1989 Parent, C., Rolin, H., Yetongnon, K. & Spaccapietra, S. - An ER Calculus 
for the Entity-Relationship Complex Model. In Frederick H. Lochovsky, 
(editor), Proc. 8th Int. Conf. on Entity-Relationship Approach, pp. 75-98 

Patel et al., 1993 Patel, B., Tamanaha, D. & Rudzik, L. - Real Time Systems/Software 
Methodologies For Large Aerospace Systems, Proc. Annual Int'l 
Symposium - National Council on Systems Engineering, Arlington, VA, 
USA, Jul., pp. 113-120 

Paulk et al., 1993 Paulk, M., Curtis, B., Chrissis, M., & Weber, C. - Capability Maturity 
Model, Version 1.1, IEEE Software, Jul., pp. 18-27 

Paulk, 1995 Paulk, M. - How ISO 9001 Compares with the CMM, IEEE Software, Jan., 

pp. 74-83 

R-15 



References 

Paynter, 1995 Paynter, S. E. - Structuring the Semantic Definitions of Graphical Design 
Notations, Software Engineering Journal, May, pp. 105-115 

Paynter, 2000 Paynter, S. E. - RTN-SL: The Real-Time Network Specification Language, 
MBDA Technical Report DR 20656, Nov. 

Pearson & Rowlands, 1996 Pearson, S. & Rowlands, M. - Airbus Traceability Case Study, University 
of Newcastle upon Tyne/BAe Dependable Computing Systems Centre 
Technical Report, TR DCSC! TR/96/16, Jan. 

Pearson & Saeed, 1995 Pearson, S. & Saeed, A. - Information Structures For Traceability For 
Dependable Avionic Systems, University of Newcastle upon Tyne/BAe 
Dependable Computing Systems Centre Technical Report, TR 
DCSC/TR/95/10 

Pearson & Saeed, 1996 Pearson, S. & Saeed, A. -A Traceability Method - Preliminary Guidance, 
University of Newcastle upon Tyne/BAe Dependable Computing Systems 
Centre Technical Report, DCSC/TR/96/2, Feb. 

Pearson et al., 1998 Pearson, S., Riddle, S. & Saeed, A. - Traceability for the Development & 
Assessment of Safe Avionic Systems". Proc. of 8th INCOSE Symposium, 
Vancouver, Canada 

Pearson, 1996 Pearson, Justin K. - Requirements, Traceability and Formal Software 
Development or a Further Analysis of Requirements Traceability, 
University of London, Oct.; obtained from 
ftp: //ftp. des. rhbnc. ac. uk/pub/Justin. Pearson/traceability. ps 

Peckham & Maryanski, 1988 Peckham, J. & Maryanski, F. - Semantic Data Models, ACM Computing 
Surveys, Vol. 20., No. 3, pp. 153-189 

Pena-Mora, 1995 Pena-Mora, F., Sriram, D. & Logcher, R. - Design Rationale for Computer.. 
Supported Conflict Mitigation, Journal of Computing in Civil Engineering, 
Vol. 9, No. 1, pp. 57-72 

Pierce, 1978 Pierce, Robert A. -A Requirements Tracing Tool, ACM Software 
Engineering Notes, Nov., pp. 53-60 

Pirnia & Hayek, 1981 Pirnia, S. & Hayek, M. J. - Requirements Definition Approach for an 
Automated Requirements Traceability Tool, Proc. National Aerospace and 
Electronics Conf., Dayton, Ohio, USA, Vol. 1, May, pp. 389-394 

Plant & Tsoumpas, 1995 Plant, R. & Tsoumpas, P. -A Survey of Current Practice In Aerospace 
Software Development, Information & Software Technology, 37(11), pp. 
623-636 

Pohl & Haumer, 1995 Pohl, K. & Haumer, P. - HYDRA: A Hypertext Model for Structuring 
Informal Requirements Representations, Proc. 2nd Int'l Workshop on 
Requirements Engineering: Foundation of Software Quality (REFSQ '95), 
Jyväskylä, Finland 

Pohl & Jacobs, 1994 Pohl, K. & Jacobs, S. - Concurrent Engineering: Enabling Traceability and 
Mutual Understanding, Concurrent Engineering: Research & Applications, 
2(4), pp. 279-290 

Pohl, 1996 Pohl, K. - Process Centered Requirements Engineering, Research Studies 
Press 

Polack, 1990 Polack, A. - Practical Applications of CASE Tools on DoD Projects, ACM 
SIGSOFT Software Engineering Notes, Vol. 15, No. I 

Popov et at., 2001 Popov, P., Strigini, L., Riddle, S. & Romanovsky, A. - Protective Wrapping 
of OTS Components, Proc., 4th ICSE Workshop on Component-Based 
Software Engineering, Toronto, Canada 

Potts & Bruns, 1988 Potts, C. & Bruns, G. - Recording the Reasons for Design Decisions, Proc. 
1 0th Int'l Conf. on Software Engineering, pp. 418-427 

R-16 



References 

Potts et al. 1994 Potts, C., Takahashi, K. & Anton, A. - Inquiry-Based Requirements 
Analysis, IEEE Software, 2(11): 21-32, March 

Potts, 1994 Potts, Colin - Inquiry Based Requirements Analysis, IEEE Software, Mar., 
pp. 21-32 

Premerlani, 1994 Premerlani, W. - Object Model Transformations, Proc. Object Expo Europe 
Conf., London, UK, Sep., pp. 237.240 

Prowell & Poore, 1998 Prowell, S. & Poore, J. - Sequence-Based Software Specification of 
Deterministic Systems, Software Practice & Experience, Mar., pp. 329-344 

Pyle et al., 1993 Pyle, I., Hruschka, P., Lissandre, M. & Jackson, K. - Real-Time Systems: 
Investigating Industrial Practice, John Wiley Ltd 

QSS, 1998 Quality Systems & Software - DOORS Reference Manual, v4.0 
Queille et al., 1994 Queille, J-P., Richermo, A., Voidrot, J. F. & Sedes, F. - Modelling and 

Exploiting Traceability Between Development Documents, 3rd Annual 
Symposium on Document Analysis and Information Retrieval, Las Vegas, 
NV, Apr., pp. 349-360 

Quillian, 1968 Quillian, M. R. - Semantic Memory, in Minsky, M. (ed. ), Semantic 
Information Processing, MIT Press, pp. 227-270. 

Ramamoorthy et al., 1986 Ramamoorthy, C., Garg, V. & Prakash, A. - Programming in the Large, 
IEEE Trans. on Software Engineering, 12(7), pp. 769-783 

Ramamoorthy et al., 1990 Ramamoorthy, C. V., Usuda, Y., Prakash, A. & Tsai, W. T. - The Evolution 
Support Environment System, IEEE Trans. on Software Engineering, 
16(11), Nov., 1225-1234 

Ramesh & Dhar, 1992 Ramesh, B. & Dhar, V. - Supporting Systems Development by Capturing 
Deliberations During Requirements Engineering, IEEE Trans. on Software 
Engineering, 18(6), pp. 498-510 

Ramesh & Edwards, 1993 Ramesh, B. & Edwards, M. - Issues In the Development of a Requirements 
Traceability Model, Proc. Ist Int'l Symposium on Requirements 
Engineering, San Diego, California, USA, Jan., pp. 256-259 

Ramesh & Jarke, 1999 Ramesh, B. & Jarke, M. - Towards Reference Models for Requirements 
Traceability, CREWS Technical Report-99-13; obtained from 
ftp: //sunsite. informatik. rwth-aachen. de/pub/CREWS/CREW S-99-13. ps. gz 

Ramesh et al., 1995 Ramesh, B., Powers, T., Stubbs, C. & Edwards, M. - Implementing 
Requirements Traceability: A Case Study, Proc. 2nd Int'l Symposium on 
Requirements Engineering, York, UK, Mar., pp. 89-95 

Ramesh, 1994 Ramesh, B. - Towards A Pre-Requirements Specification Traceability 
Model, Proc. Complex Systems Engineering Synthesis and Assessment 
Technology Workshop, Washington DC, USA, Jul., pp. 1-7 

Ramsay & Bernsen, 1995 Ramsay, J. & Bernsen, J. - Traceability Support For Modelling In the 
Design Process, Oxford University Technical Report, IP/WP45, May 

Rational Software Corporation, Rational Software Corporation - The Unified Modelling Language, Version 
1997a 1.3; obtained from http: //www. rational. com 

Rational Software Corporation, Rational Software Corporation - Object Constraint Language Specification, 
1997b Version 1.1; obtained from http: //www. rational. com 

Redden, 1999 Redden, L. E. -A Traceability Procedure to Support Project Management 
and the Development Process in Dependable Avionics Systems, Final Year 
Diss'n, Department of Comp. Sci., University of Newcastle upon Tyne 

Regnell et al., 1996 Regnell, B., Anderson, M. & Bergstrand, J. -A Hierarchical Use Case 
Model with Graphical Representation, Proc. Int. Sym. and Workshop on 
Engineering of Computer-Based Systems, Friedrichshafen, Germany 

R-17 



References 

Reifer, 1979 Reifer, D. J. - Software Failure Modes and Effects Analysis, IEEE Trans. 
on Reliability, 28(3), pp. 247-249, Aug. 

Reubenstein & Waters, 1991 Reubenstein, H. B. & Waters, Richard C. - The Requirements Apprentice: 
Automated Assistance For Requirements Acquisition, IEEE Trans. on 
Software Engineering, Mar pp. 226-240 

Riddle & Saeed, 1997 Riddle, S. & Saeed, A. - Implementation and Analysis of Traceability 
Structures Using A Deductive Database, University of Newcastle upon 
TyneBAe Dependable Computing Systems Centre Technical Report, 
DCSCI TR/97/11 

Riddle & Saeed, 1998 Riddle, S. & Saeed, A. - Tracing Support for Variants & Evolutionary 
Development, University of Newcastle upon TyneBAe Dependable 
Computing Systems Centre Technical Report, DCSC/TR/98/01 

Riddle & Saeed, 1999a Riddle, S. & Saeed, A. - Application of Traceability Structures, University 
of Newcastle upon Tyne/BAe Dependable Computing Systems Centre 
Technical Report, DCSC/TR/99/02 

Riddle & Saeed, 1999b Riddle, S. & Saeed, A. - Tool Support for Implementation and Analysis of 
Traceability Structures, Proc. 9th International Symposium of the 
International Council on Systems Engineering (INCOSE), Brighton, UK, 
Jun., pp. 1083-1090 

Riddle & Saeed, 2000 Riddle, S. & Saeed, A. - Optimisation of the Traceability Structures, 
University of Newcastle upon TyneBAE SYSTEMS Dependable 
Computing Systems Centre Technical Report, DCSC/TR/99/18 

Riddle, 2000 Riddle, S. - Traceability Structures: A Common Interchange Format, 
University of Newcastle upon TyneBAE SYSTEMS Dependable 
Computing Systems Centre Technical Report, DCSC/TR/2000/18 

Rolland & Achour, 1998 Rolland, C. & Camille Achour, B. - Guiding The Construction Of Textual 
Use Case Specifications, Data Knowledge Engineering, Vol. 25(1-2), pp. 
125-160 

Rolland, 1994a Rolland, Colette -A Contextual Approach for the Requirements 
Engineering Process, Proc. 6th Int'l Conf. on Software Engineering and 
Knowledge Engineering, Jurmala, Latvia, Jun. 

Rolland, 1994b Rolland, C. - Modeling the Evolution of Artifacts, Proc. of the Ist Int'l 
Conf. on Requirements Engineering, Colorado, USA, Apr. pp. 216-219 

Roman, 1985 Roman, Gruia-Catalin -A Taxonomy of Current Issues in Requirements 
Engineering, IEEE Computer, Apr., pp. 14-21 

Rothery, 1993 Rothery, B. - ISO 9000 (2nd Edition), Gower Press 

Rozman et al., 1997 Rozman, I., Horvat, R. V., Györkös, J. & Hericko, M. - PROCESSUS - 
Integration of SEI CMM into ISO Quality Models, Software Quality 
Journal, No. 6, pp. 37-63 

Rubin & Goldberg, 1992 Rubin, K. S. & Goldberg, A. - Object Behaviour Analysis, Communications 

of the ACM, 35(9), pp. 48-62 
Rumbaugh et al., 1991 Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F. & Lorensen, W. - 

Object-Oriented Modelling and Design, Prentice-Hall 

Rumbaugh, 1994 Rumbaugh, J. - Getting Started: Using Use Cases to Capture Requirements, 
Journal of Object-Oriented Programming, Sep., pp. 8-12 

Saced et al., 1995 Saeed, A., de Lemos, R. & Anderson, T. - Safety Analysis for Requirements 
Specifications: Methods & Techniques, Proc. 14t Int'l Conf. on Computer 
Safety, Reliability & Security (SafeComp), Italy, Oct. pp. 27-41 

Sawyer et al., 1996 Sawyer, P., Sommerville, I. & Viller, S. - PREview: Tackling the Real 
Concerns of Requirements Engineering, Lancaster University, Cooperative 

R-18 



References 

Systems Engineering Group, Technical Report CSEG/5/1996 

Scalzo & Hugue, 1996 Scalzo, R. C. & Hugue, M. M. -A Framework for Dependability 
Specification, Proc. 2nd Int'l Conf. on Engineering of Complex Computer 
Systems, Montreal, Quebec, Canada, Oct., pp. 301-304 

Schenk & Wilson, 1994 Schenk, D. & Wilson, P. - Information Modelling: The EXPRESS Way, 
Oxford University Press 

Sciortino & Dunning, 1984 Sciortino, J. & Dunning, D. - Software Traceability, Requirements 
Testability and Auditing Model, Proc. 6th Digital Avionics Systems Conf., 
MD, USA, Dec., 159-166 

SEDRES, 1999 Systems Engineering Data Representation & Exchange - Capability 2 Data 
Model, SEDRES Deliverable, available from authors 

SEI, 1995 Software Engineering Institute - Systems Engineering Capability Maturity 
Model (version 1.1), Carnegie Mellon University 

Selic et al., 1994 Selic, B., Gullekson, G. & Ward, P. T. - Real-Time Object-Oriented 
Modelling, Wiley & Sons 

Sheard, 1997 Sheard, A. - The Frameworks Quagmire, A Brief Look, Software 
Productivity Consortium; obtained from http: //www. software. org 

Shilling & Sweeney, 1989 Shilling, J. & Sweeney, P. - Three Steps To Views: Extending the Object- 
Oriented Paradigm, OOPSLA `89 Proc., Oct., pp. 353-361 

Shipman, 1981 Shipman, D. W. - The Functional Data Model and the Data Language 
DAPLEX, ACM Transactions on Database Systems, 6(1), pp. 140-173 

Silva & Agusta, 1998 Silva, Antonio & Agusta, Via G. - Across Version/Variant Requirement 
Traceability in Avionics Software Development and Testing, Proc. Conf. on 
Data Systems in Aerospace, Athens, Greece, May, pp. 215-221 

Simpson, 1986 Simpson, H. R. - The Mascot Method, Software Engineering Journal, May, 
pp. 103-120 

Simpson, 1994 Simpson, H. R. - Architecture for Computer Based Systems, Proc. IEEE 
Workshop on the Engineering of Computer Based Systems, Stockholm 

Simpson, 2000a Simpson, H. R. - Protocols for Process Interaction: Part 1: Specification and 
Rationale, MBDA Technical Report, Nov. 

Simpson, 2000b Simpson, H. R. - Protocols for Process Interaction: Part 2: Application, 
MBDA Technical Report, Nov. 

Simpson, 2000c Simpson, H. R. - Protocols for Process Interaction: Part 3: Realisation, 
MBDA Technical Report, Nov. 

Singh & Han, 1996 Singh, H. & Han, J. - Modelling Software Artifacts & Their Relationship in 
Software Engineering Environments, TR96-06, Peninsula School of 
Computing and Information Technology, Monash University, Melbourne, 
Australia, May 

Smith & Smith, 1977 Smith, J. M. & Smith, D. C. P. - Database Abstractions: Aggregation and 
Generalisation, ACM Transactions on Database Systems, March, pp. 105- 
133 

Smith et al., 1997 Smith, P. A., Newman, I. A., & Parks, L. M. - Virtual Hierarchies & Virtual 
Networks: Some Lessons from Hypermedia Usability Research Applied to 
the World Wide Web, International Journal of Human-Computer Studies, 
No. 47, pp. 67-95 

Smith, 1993 Smith, T. J. - READS: A Requirements Engineering Tool, Proc. 1st Int'l 
Symposium on Requirements Engineering, San Diego, California, USA, 
Jan., pp. 94-97 

R-19 



References 

Sodhi, 1991 Sodhi, Jag - Software Engineering: Methods, Management and CASE 
Tools, McGraw-Hill 

Sommerville & Sawyer, 1997 Sommerville, I. & Sawyer, P. - Requirements Engineering: A Good Practice 
Guide, John Wiley Ltd. 

Sommerville et al., 1993 Sommerville, I., Rodden, T., Sawyer, P., Bentley, R. & Twidale, M. - 
Integrating Ethnography into the Requirements Engineering Process, Proc. 
1st Int'l Symposium on Requirements Engineering, California, USA, Jan.. 
pp. 165-173 

Spivey, 1989 Spivey, J. M. - The Z Notation: A Reference Manual, Prentice-Hall 

Srivastava et a!. 1993 Srivastava, D., Ramakrishnan, R., Seshadri, P., & Sudarshan, S. - Coral++: 
Adding Object-Orientation to a Logic Database Language, in Proc. Int. 
Conf. on Very Large Databases, Dublin, Ireland 

Stallman & Sussman, 1977 Stallman, R. & Sussman, G. - Forward Reasoning and Dependency- 
Directed Backtracking in a System for Computer-Aided Circuit Analysis, 
Artificial Intelligence, 9(2), pp. 135-196 

Stephenson, 1997 Stephenson, P. - Study of a Deductive Database Tools to Support 
Traceability for a Safety Critical Avionics System, Final Year Project 
Dissertation, Department of Computing Science, University of Newcastle 
upon Tyne, Sep. 

Storey, 1996 Storey, Neil - Safety-Critical Computer Systems, Addison-Wesley 

Sirens, 1995 Strens, R. - Risk, Sensitivity and Impact Analysis and Their Application to 
Changing Requirements, Proteus Project Document 

Su, 1986 Su, S. Y. W. - Modeling Integrated Manufacturing Data with SAM*, IEEE 
Computer, Vol. 19, No. 1. pp. 34-49 

Sugden & Strens, 1996 Sugden, R. C. & Strens, M. R. - Strategies, Tactics & Methods For 
Handling Change, Int'l Symposium and Workshop on the Engineering of 
Computer Based Systems, Friedrichshafen, Germany, Mar. 

Sukamaran, 1999 Sukamaran, S. -A Graphical User Interface For a Traceability Tool, 
Department of Computing Science, University of Newcastle upon Tyne, 
MSc. Dissertation 

Sutcliffe et al., 1998 Sutcliffe, A., Maiden, N., Minocha., S. & Manuel, D. - Supporting 
Scenario-Based Requirements Engineering, IEEE Trans. on Software 
Engineering, 24(12), pp. 1072-1088 

Takahashi & Yamamoto, 1995 Takahashi, K. & Yamamoto, S. - An Analysis of Traceability in 
Requirements Documents, IEICE Trans. on Information and Systems, 
78(4), pp. 394-402 

Takahashi et al., 1996 Takahashi, K., Potts, C. Kumar, V., Ota, K. & Smith, J. D. - Hypermedia 
Support for Collaboration In Requirements Analysis, Proc. 2nd Int'l Conf. 

on Requirements Engineering, Orlando, Florida, USA, Apr., pp. 31-40 

Takcda et al., 1993 Takeda, N., Shiomi, A., Kawai, K. & Ohiwa, H. - Requirements Analysis 
by the KJ Editor, Proc. 1st Int'l Symposium on Requirements Engineering, 
San Diego, California, USA, Jan., pp. 98-101 

Tamanaha eta!., 1989 Tamanaha, D., Wenjen, W. C. & Patel, B. K. - The Application of CASE in 
Large Aerospace Projects, IEEE Aerospace Applications Conf. Digest, 
Feb., pp. 282-300 

Teichroew & Sayani, 1971 Teichroew, D. & Sayani, H. - Automation of System Building, Datamation, 
Aug., pp. 25-30 

Telelogic, 2001 Telelogic - DOORS Reference Manual, v5.1 

Theriault, 1991 Theriault, M. - The Requirements Traceability Tool on VSCS, Proc. 36th 

R-20 



References 

Annual Fall Conf. on Realizing the Future ATC System, Arlington, VA, 
USA, Sep., pp. 431-438 

Tiel, 1993 Tiel, Richard, F. - Using Structured Process Improvement Techniques on 
the Systems Engineering Process, Proc. Annual Int'l Symposium - National 
Council on Systems Engineering, Arlington, VA, USA, Jul., pp. 301-307 

Tilbury, 1989 Tilbury, A. J. M. - Enabling Software Traceability, IEE Colloquium on the 
Application of Computer-Aided Software Engineering Tools, Digest No. 
24, London, UK, Feb., pp. 7/1-7/4 

Toulmin, 1958 Toulmin, S. E. - The Uses of Argument, Cambridge University Press 

Tran et at., 1997 Tran, M., Sherif, J. S., Mikulski, C. & Wang, M. - My-Star: A 
Methodology and System for Tracing and Analyzing Requirements, 
Microelectronics and Reliability, 37(2), pp. 297-303 

Tryggeseth & Nytro, 1997 Tryggeseth, E. & Nytro, O. - Dynamic Traceability Links Supported By A 
System Architecture, Proc. Int'l Conf. on Software Maintenance, Bari, Italy, 

pp. 180-187 

Turton et al., 1997 Turton, R., Bailie, R. C., Whiting, W. B. & Shaeiwitz, J. A. - Analysis, 
Synthesis, and Design of Chemical Processes, Prentice-Hall 

van Lamsweerde et at., 1995 van Lamsweerde, A., Dardenne, A. & Dubisy, F. - Goal Directed 
Elaboration of Requirements for a Meeting Scheduler: Problems & Lessons 
Learnt, Proc. 2nd Int'l Symposium on Requirements Engineering, York, 
UK, Mar., 194-203 

Vesely et al., 1981 Vesely, W., Goldberg, F., Roberts, N. & Haasl, D. - Fault Tree Handbook, 
Nureg 0492, US Nuclear Regulatory Commission 

Villemeur, 1992 Villemeur, A. - Reliability, Availability, Maintainability & Safety 
Assessment, Vol. 1/ II, Wiley 

Warmer & Kleppe, 1999 Warmer, J. & Kleppe, A. - The Object Constraint Language: Precise 
Modelling with UML, Addison-Wesley 

Watkins & Neal, 1994 Watkins, Robert & Neal, Mark - Why & How of Requirements Tracing, 
IEEE Software, Jul., 104-106 

Weidenhaupt et al. (1998) Weidenhaupt, K., Pohl, K., Jarke, M. & Haumer, P. - Scenarios in System 
Development: Current Practice, IEEE Software, March/April, pp. 34-45 

Weir, 2001 Weir, A. - Concorde Crash Raises Questions Without Answers, Journal of 
System Safety, Vol. 37, No. 2, pp. 19-22 

West, 1991 West, Martin - QFD In Software Development, IBM Systems Journal, 
Nov., pp. 5/1-5/7 

Westfechtel, 1989 Westfechtel, B. - Revision Control In An Integrated Development 
Environment, Software Engineering Notes, 14(7), pp. 96-105 

White, 1993 White, Stephanie - Distributed Design of Computer-Based Systems: 
Traceability, Proc. Annual Int'l Symposium - National Council on Systems 

Engineering, Arlington, VA, USA, Jul., pp. 691-692 

White, 1994a White, Stephanie - Tracing Product and Process Information When 
Developing Complex Systems, Proc. Complex Systems Engineering 
Synthesis and Assessment Technology Workshop, USA, Jul., pp. 45-50 

White, 1994b White, Stephanie - Traceability for Complex Systems Engineering, Proc. 
4th Int'l Symposium on Systems Engineering, Sunnyvale, California, USA, 
Aug., pp. 49-55 

White, 1997 White, Stephanie - Requirements Capture and Analysis Prior to Modelling, 
Proc. of Conference and Workshop on Engineering of Computer-Based 
Systems (ECBS '97), Monterey; CA, Mar., pp. 10-17 

R-21 



References 

Whitgift, 1991 Whitgift, David - Software Configuration Management: Methods & Tools, 
John Wiley and Sons 

Wichmann, 1997 Wichmann, B. A. - High Integrity Ada, Proceedings of the 16th 
International Conference on Computer Safety, Reliability and Security 
(SafeComp '97), York, Sep. pp. 173 - 184 

Wicringa, 1995 Wieringa, R. - An Introduction To Requirements Traceability, Vrije 
University Technical Report TR-389, Nov. 

Wieringa, 1996 Wieringa, R. J. - Requirements Engineering: Frameworks for 
Understanding, Wiley 

Wieringa, 1998 Wieringa, R. - Traceability & Modularity in Software Design, Proc. 9`s Int'l 
Workshop on Software Specification & Design, Japan, pp. 87- 95 

Wilson & McDcrmid, 1995 Wilson, S. P. & McDermid, J. A. - Integrated Analysis of Complex Safety 
Critical Systems, The Computer Journal, 38(10) 

Wilson et al., 1995 Wilson, S. P., Kelly, T. P., & McDermid, J. A. - Safety Case Development: 
Current Practice, Future Prospects, Proc. 12th Annual CSR Workshop / 1st 
ENCRESS Conf., Bruges, Belgium 

Wilson et al., 1996 Wilson, S., McDermid, J., Pygott, C. & Tombs, D. - Assessing Complex 
Computer Based Systems Using the Goal Structure Notation: Proc. of 2nd 
International Conference on the Engineering of Complex Computer 
Systems, Montreal, Canada, pp. 498-505, Oct. 

Wilson et al., 1997a Wilson, S., McDermid, J., Kirkham, P., Pygott, C. & Tombs, D. - Computer 
Based Support for Standards and Processes in Safety Critical Systems, in 
Daniel, P. (ed. ), Proc. Conf. on Computer Safety, Reliability and Security 
(SafeComp), Sep., pp. 197-209 

Wilson et al., 1997b Wilson, W. M., Rosenberg, L. H. & Hyatt, L. E. - Automated Analysis of 
Requirement Specifications, Proc. 20th Int'l Conf. on Software 
Engineering, Boston, USA, May 

Wood, 1995 Wood, K. - Automated Requirements Traceability & Object-Oriented 
Analysis, Texas Instruments Technical Journal, 12(1), pp. 15-20 

Wright, 1991 Wright, Simon - Requirements Traceability - What? Why? & How?, Tools 
and Techniques For Maintaining Traceability During Design, IEE 
Colloquium, UK Digest Number: 1991/180, Dec., pp. 1/1-1/2 

Yau & Tsai, 1987 Yau, S. S. & Tsai, J. - Knowledge Representation of Software Component 
Interconnection Information for Large Scale Software Modifications, IEEE 
Trans. on Software Engineering, 13(3), pp. 335-361 

Yau et al., 1988 Yau, S., Nichol, R., Tsai, J. & Liu S. - An Integrated Life-Cycle Model For 
Software Maintenance, IEEE Trans. on Software Engineering, 14(8), pp. 
1128-1144 

Yeh & Ng, 1990 Yeh, R. T. & Ng, P. A. - Software Requirements: A Management 
Perspective, in Thayer, R. H. & Dorfman, M. (eds. ), System and Software 
Requirements Engineering, Computer Society Press Tutorial, pp. 450-461 

Yu, 1993 Yu, Eric S. K. - Modelling Organisations For Information Systems 
Requirements Engineering, Proc. Int'l Symposium on Requirements 
Engineering, San Diego, California, USA, Jan., pp. 34-41 

Yu, 1994 Yu, Weider D. - Verifying Software Requirements: A Requirement Tracing 
Methodology & Its Tool RADIX, IEEE Journal on Selected Areas of 
Communications, Feb., pp. 234-239 

Zaniolo, 1983 Zaniolo, Carlo - The Database Language GEM, SIGMOD Conference, pp. 
201-218 

R-22 



Glossary 

Glossary 

2RARE 2 Real Applications for Requirements Engineering 
ABE Aerospace Build Entity 

ADL Activity Description Language 

ADT Abstract Data Type 

AEA Aerospace Engineering Association 

AEE Aerospace Engineering Entity 

AEO Aerospace Engineering Object 

AEP Aerospace Engineering Project 

ALE Aerospace Link Entity 

AME Aerospace Management Entity 

ANSI American National Standards Institute 

API Application Programming Interface 

ARP Aerospace Recommended Practice 

ASM Activity State-Machine 

ATE Aerospace Traceability Entity 

BCET Best-Case Execution Time 

BCS BASE Control Software/British Computer Society 

BE Build Element 

BNF Backus-Naur Form 

BSCU Brake System Control Unit 

CAD Computer-Aided Design 

CAoA Corrected Angle of Attack 

CARE Common Airbus Requirements Engineering 

CAS Computed Air Speed 

CASE Computer-Aided Systems/Software Engineering 

CBQL ConceptBase Query Language 

CCA Common Cause Analysis 

CMA Common Mode Analysis 

CMM Capability Maturity Model 

COTS Commercial Of The Shelf 

CREWS Co-operative Requirements Engineering With Scenarios 

CSU Command Sensor Unit 

DCSC Dependable Computing Systems Centre 

DDS Deductive Database System 

DMS Database Management System 

DOODS Deductive Object-Oriented Database System 

DOORS Dynamic Object-Oriented Requirements System 

G-1 



Glossary 

DORIS Data-Oriented Requirements Implementation Scheme 

DRCS Design Rationale Capture System 

DRL Decision Representation Language 

DTC Data Transfer Cartridge 

DTM Data Transfer Module 

DTMIS Data Transfer Module Interface Software 

DXL DOORS eXtension Language 

ELAC ELevator and Aileron Computer 

ELH Entity Life History 
ESA European Space Agency 

EST Earliest Start Time 

EUROCAE EUROpean organisation for Civil Aviation Electronics 

FAA Federal Aviation Authority 

FBD Function Block Diagram 

FCS Flight Control System 
FHA Functional Hazard Assessment 

FMEA Failure Modes and Effects Analysis 

FPPU Feedback Position Pickoff Unit 

FTA Fault Tree Analysis 

GEM General Entity Manipulator 

gIBIS graphical Issue-Based Information System 

GSN Goal Structure Notation 

HAZOP HAZard and OPerability studies 

HTML Hypertext Markup Language 

IBIS Issue-Based Information System 

IDA Intercommunication Data Area 

IDEF ICAM (Integrated Computer Aided Manufacturing) DEFinition method 

IEEE Institute of Electrical & Electronics Engineers 

INCOSE INternational Council on Systems Engineering 

IP Information Provision 

IR Information Request 

ISO International Standards Organisation 

ISR Inhabit Slat Retraction 

ISRE Immersive Scenario-based Requirements Engineering 

JAR Joint Airworthiness Requirements 

KARE Knowledge Acquisition in Requirements Engineering 

LDL Logical Data Language 

LESD Linguistic Engineering for Software Design 

LST Latest Start Time 

G-2 



Glossary 

MASCOT Modular Approach to Software, Construction, Operation and Test 

MATrA Meta-modelling Approach to Traceability for Avionics 

MCM MATrA Configuration Model 

MMSS Modular Mission Support Software 

MNLS MATrA Natural Language Structure 

MPS Mission Planning System 

MSC Message Sequence Chart 

NATURE Novel Approaches to Theories Underlying Requirements Engineering 

OCL Object Constraint Language 

OMT Object Modelling Technique 

OODS Object-Oriented Database System 

ORM Object-Role Modelling 

pCDS populated CASE tool Data Structure 

PDS Product Data Synthesis 

PERT Programme Evaluation and Review Technique 

PIM Process Improvement Model 

pNDS populated Notation Dependent Structure 

PRA Particular Risk Analysis 

PSSA Preliminary System Safety Assessment 

QFD Quality Function Deployment 

QOC Questions, Options and Criteria 

RDD Requirements-Driven Design 

RDMS Relational Database Management System 

RE Requirements Engineering 

REALMS Requirements Engineering Adaptation for IMprovement for Safety 

RIDL Reference and IDea Language 

RTM Requirements & Traceability Management 

RTN Real-Time Network 

RTN-SL Real-Time Network Specification Language 

RTN-SLg Real-Time Network Specification Language graphical syntax 

RTT Real-Time Transaction 

SAM Safety Argument Manager 

SAM* Semantic Association Model 

SDM Semantic Database Model 

SEC Spoiler and Elevator Computer 

SECAM Systems Engineering Capability Assessment Model 

SEDRES System Engineering Data Representation & Exchange Standardisation 

SEI Software Engineering Institute 

SENLS Scenario Event Natural Language Structure 

G-3 



Glossary 

SENM Systems Engineering Notation Meta-class model 

SFCC Slat and Flap Control Computer 
SHM+ Semantic Hierarchy Model 

SLATE System Level Automation Tool for Engineers 

SML Safety Markup Language 

SP Service Provision 

SQL Structured Query Language 

SR Service Request 

SRS System/Software Requirements Specification 

SSA System Safety Assessment 

STEFFIE Systems Engineering Framework For Information and experience 
Exchange 

STEP Standard for The Exchange of Product data 

TCS Theatre Creation Software 

UCRS User Centred Requirements Structure 

UML Unified Modelling Language 

uNDS unpopulated Notation Dependent Structure 

VDM Vienna Development Method 

WBS Wheel Braking System 

WCET Worst-Case Execution Time 

WCRT Worst-Case Response Time 

ZSA Zonal Safety Analysis 

4 

G-4 



Appendix A 

Appendix -A 



Appendix A 

This page deliberately left blank 



Appendix A (Part 1) 

Appendix A (Part 1) - Additional Rules & Constraints for 
Use Case View & Models 

The following rules and constraints provide an addendum to 4.3.3.3.2. 

i. Constraint to prevent 'dangling' Actor instances (i. e., not attached to an interaction). 

Actor invariant 
self. alllnstances->forall(a I 
self. useCaseView->forafl(v I 
self. useCaseView. ucv_interaction->exists(i I 
v. ucv_interaction->includes(i) and (Linteractor 1= a or i. interactor 2= a)))) 

ii. Constraint to prevent a UseCase from extending itself. 

Extends invariant 
self. alllnstances->forall(e I e. extends_base <> e. extends_extend) 

iii. Constraint to ensure that at most one «extends» association exists between two Uses Cases. 

Extends invariant 
self. alllnstances->forall(e1, e2 I 
not ( e1 <> e2 and el. extends_base = e2 extends_base and el. extends_extend = e2. extends_extend)) 

iv. Constraint to ensure that two Uses Cases cannot extend each other; i. e. not `use case a' «extends» 
V and 'use case b' «extends» ̀ a'. 

Extends invariant 
self. alllnstances->forall(e1, e2 I 
not (el. extends_extend = e2. extends_ base and el. extends_base = e2. extends_extend)) 

v. Constraint to prevent cycles within «extends» associations. 

First, we define a rule to determine the transitive closure of «extends» associations. 

UseCase 
self. alllnstances->forall(u2, u1 I self. extends->exists(e II el. extends_extend = u2 and el. extends_base = u1) or 
self. alllnstances->exists(u3 I self. extends->exists (e2 I e2. extends_ extend = u2 and e2. extends_base = u3 and 
u3. transitive_extended_by->includes(ul)))) implies u2. transitive_extended_by->includes(u1) 

This rule allows us to specify the following constraint. 

UseCase invariant 
self. alllnstances->forall(u I not (u. transitive_extended_by->includes(u))) 

A. Rules to ensure that all elements associated with a particular model are also associated with the 

UseCaseView to which that model belongs. 

a) Rule for deriving Actors. 

UseCaseView 
self. alllnstances->forall (v I 

A-1 



Appendix A (Part 1) 

self. use_case_model. ucmactor->forall (a I 
v. use_case_model. ucm_actor->includes(a))) 
implies 
v. ucv_actor->includes(a) 

b) Rule for deriving Interactions. 

UseCaseView 
self. allinstances->forall (v I 
self. use_case model. ucm_interaction->forall (i 
v. use_case_model. ucm_interaction->includes(i))) 
implies 
v. ucv_interaction->includes(i) 

c) Rule for deriving «includes» associations. 

UseCaseView 
self. alllnstances->forall (v 
self. use_case_model. ucm_includes->forall (i I 
v. use_case_model. ucm_includes->includes(i))) 
implies 
v. ucv_includes->includes(i) 

d) Rule for deriving «extends» associations. 

UseCaseView 
self. alllnstances->forall (v 
self. use_case_model. ucm_extends->forall (e I 
v. use case_model. ucm extends->includes(e))) 
implies 
v. ucv_extends->includes(e) 

c) Rule for deriving Pre-conditions. 

UseCaseView 
self. alllnstances->forall (v I 
self. use_case_model. ucm_pre_condition->forall (p I 
v. use_case_model. ucm_pre_condition->includes(p))) 
implies 
v. ucv_pre_condition->includes(p) 

f) Rule for deriving Post-conditions. 

UseCaseView 
self. alllnstances->forall (v I 
self. use_case_model. ucm_post_condition->forall (p I 
v. use_case_model. ucm-post_condition->includes(p))) 
implies 

v. ucv_post_condition->includes(p) 

vii. Rules to derive «includes» use cases (a) and associations (b) where a UseCase appears in more than 

one model. 

a) 
UseCaseModel 
self. alllnstances->forall(m I 
self. useCaseView. ucv_includes->forall (i 

A-2 



Appendix A (Part 1) 

self. ucm_use_case->exists (u I 
i. includes_base =u and m. useCaseView. ucv_includes->includes(i) and 
m. ucm_use_case->includes(u)))) 
implies 
m. ucm_use_case->includesAll(u. transitive_includes) 

b) 
UseCaseModel 
self. alllnstances->forall(m I 
self. useCaseView. ucv_includes->forall(i I 
m. useCaseView. ucv_includes->includes(i) and 
m. ucm_use_case->includes(i. includes_base) and 
m. ucm_use_case->includes(i. includes_include))) 
implies 

m. ucm_includes->includes(i) 

viii. Rules to derive «extends» use cases (a) and associations (b) where a UseCase appears in more than 

one model. 

a) 
UseCaseModel 
self. alllnstances->forall(m I 
self. useCaseView. ucv_extends->forall (e I 
self. ucm_use_case->exists (u I 
e. extends extend =u and 
m. useCaseView. ucv_extends->includes(e) and 
m. ucm_use_case->includes(u)))) 
implies 
m. ucm_use_case->includesAll(u. transitive_extended_by) 

b) 
UseCaseModel 
self. alllnstances->forall(m I 
self. useCaseView. ucv_extends->forall(e I 
m. useCaseView. ucv_extends->includes(e) and 
m. ucm_use_case->includes(e. extends_base) and 
m. ucm_use_case->includes(e. extends_extend))) 
implies 
m. ucm_extends->includes(e) 

ix. The following rules are what we term 'spine' associations (e. g., ucm_interaction, ucm_includes, 

ucm_extends, etc. ) that anchor elements to the UseCaseModel class. 

a) Rule to populate ucm_interaction. 

UseCaseModel 
self. alllnstances->forall (m I 
self. ucm_use_case->forall(u 
self. ucm_actor->forall(a I 
self. ucm_use_case. interaction->forall(i I 
m. ucm_use_case->includes(u) and 
m. ucm_actor->includes(a) and 
(i. interactor 1->union(i. interactor 2))->includes(u) and 
(i. interactor 1->union(i. interactor 2))->includes(a))))) 
implies 
m. ucm_interaction->includes(i) 

A-3 



Appendix A (Part 1) 

b) Rule to populate ucm includes. 

UseCaseModel 
self. alIInstances->forall (m I 
self. ucm use_case->forall(ul, u2 I 
self. ucm_use_case. includes->forall(i I 
m. ucm_use case->includes(ul) and 
m. ucm_use_case->includes(u2) and 
(i. includes base->union(i. includes_include))->includes(ul) and 
(i. includes_base->union(i. includes_include))->includes(u2)))) 
implies 
m. ucm_includes->includes(i) 

c) Rule to populate ucm_extends. 

UseCaseModel 
self. alllnstances->forall (m I 
self. ucm_use_case->forall(ul, u2 I 
self. ucm_use_case. extends->forall(e I 
m. ucm_use case->includes(u1) and 
m. ucm_use case->includes(u2) and 
(e. extends_base->union(e. extendsextend))->includes(u1) and 
(e. extends_base->union(e. extends_extend))->includes(u2)))) 
implies 
m. ucm_extends->includes(e) 

A-4 



Appendix A (Part 2) 

Appendix A (Part 2) - Additional Rules & Constraints for 
Interaction View & Models 

The following rules and constraints provide an addendum to 4.3.3.4.2. 

i. Potential `style rule' (expressed over textual perspective) ensuring that Communication Event types 

are compatible with PDS InputOutput flow types; i. e., service request and service provision flows are 

not recorded as non-triggering in the PDS. Similarly information requests and information provision 

are not recorded as triggering. Note that PDS flow types (particularly at the requirements stage may 
be as yet "undetermined"). Note also that this rule requires addition of an enumerated effect 

attribute (enumerators triggering and non-triggering) to the InputOutput class in the PDS. 

Communication Event 
self. alllnstances->forall(c I 
self. tsn_communication_event. communication_description. tsn_message_node. 
bEelementAEO. build_element->not exists(be I 
c. tsn_communication_event. communication_description. tsn_message_node. message_name = be. flow_name 
and 
(be. effect="triggering" and (c. interaction_type = "IR" or c. interaction_type = "IP")) or 
(be. effect "non_triggering" and (c. interaction_type = "SR" or c. interaction_type = "SP")) 

ii. Constraint to ensure that, for Message Sequence Chart perspectives, where a link name is provided 

rather than using the default "unspecified" (a link is some form of connection between two 

instances), then there is a connection (Interface) of the same name specified in the PDS. 

MscCommunication invariant 
self. alllnstances->forall(mi 
not( 
(m. msc_message. bEelementAEO. build_element. sentTo. target. connection. interface->intersection 
(m. msc_message. bEelementAEO. build_element. receivedFrom. target. connection. interface) 
->isEmpty and m. link_name <> "unspecified") or 
(m. msc_message. bEelementAEO. build_element. sentTo. target. connection. interface->intersection 
(m. msc_message. bEelementAEO. build_element. receivedFrom. target. connection. interface) 

->notEmpty and m. link_name = "unspecified") or 
(m. ms(; _message. 

bEelementAEO. build_element. sentTo. target. connection. interface. interface_name 
<> m. link name and 
m. msc_message. bEelementAEO. build_element. receivedFrom. target. connection. interface. interface_name 
<> m. link_name))) 

iii. The following constraints ensure correct combination of Timing Event constructs. 

Timin4Event invariant 
self. alllnstances->forall(t I 
(not 
(t. tsn_timing_event. timing description. tsn_host_on_timeoutnode->size =1 and 
t. tsn_timing_event. timing_description. tsn_timerduration->size = 1) 
or 
(t. msc_timing_event. ms(: host_on_timeout_instance->size =1 and 
t. msc_timing_event. msc_timer duration->size = 1))) 

TimingEvent invariant 
self. alllnstances->forall(t I 
(not 

A-5 



Appendix A (Part 2) 

(t. tsn timing_event. timing_description. tsn_timer set_node->size =1 and 
t. tsn timing_event. timing_description. tsn_timerduration->size = 0) 
or 
(t. msc_timing_event. msc_timerset instance->size =1 and 
t. msc timing_event. msc_timer duration->size = 0))) 

TimingEvent invariant 
self. allinstances->forall(t I 
(not 
(t. tsn timing_event. timing_description. tsn_timer_reset_node->size =1 and 
t. tsn timing_event. timing_description. tsn_timerduration->size = 1) 
or 
(t. msc_timing_event. msc_timer reset_instance->size =1 and 
t. msc timing_event. msc timer duration->size = 1))) 

iv. This constraint (again expressed for the textual perspective) ensures that Instance elements in Timer 

Events correspond to the target system - i. e., are the same as the subject module (as stated by the 

User Centred Requirements Structure). 

TimingEvent invariant 
self. alllnstances->forall(t I 
t. tsn timing_event. timing_description. tsn_host_on_timeout_node. instance_name->union 
(t. tsn_timing_event. timing_description. tsn_timer_set_node. instance_name->union 
(t. tsn timing_event. timing_description. tsn timer reset_node. instance_name))->includes 
t. interactionModel. interactionView. userCentredRequirementsStructure. subject_module) 

v. The following constraints apply to sequence numbers. 

a) The set of events preceding an Event are recorded to ensure sequence numbers are correctly 
maintained (e. g., following insert operations). In order to do this, we first define a rule for 
population of transitive-follows-from. 

Scenario 
self. alllnstances->forall(s I 
self. scenario_event->union(self. included_event->union(self. extension_event))->forall(e1, e2 
s. scenario_event->union(s. included_event->union(s. extension_event))->includes(e1) and 
s. scenario_event->union(s. included_event->union(s. extension_event))->includes(e2) and 
e1 <>e2and 
e2. follows_from->includes(e1)) 
or 
self. scenario_event->union(self. included_event->union(self. extension_event))->exists(e' I 
s. scenario_event-> union (s. included-event->union (s. extension-event))->includes (e') and 
e'<> el and e'<> e2 and 
e2. follows_from->includes(e') and 
e'. follows from->includes(e1))) 
implies 
e2. transitive_follows_from->includes(e1) 

b) Constraint to ensure 'normal sequence numbers' are correct. Note that in order to prevent repetition, 
an Event may in principle appear in all scenarios belonging to a use case and must therefore be 
capable of having several sequence numbers (potentially up to the number of scenarios describing 
that use case). These must be matched to the Scenario to which they apply. 

Scenario Invariant 
self. allinstances->forall(s 
self. scenario_event->forall(e I 

A-6 



Appendix A (Part 2) 

self. scenario_event. sequence_no->intersection(self. scn_seq_no) 
->not exists(n I 
(s. scenario_event->includes(e) and 
e. sequence_no->intersection(s. scn_seq_no)->includes(n) and 
n. sequence_no <> 
(s. scenario_event->union(s. included_event->union(s. extension_event)) 
->intersection (e. transitive follows from))->size+l)))) 

c) Constraint to ensure ̀ included sequence numbers' are correct. Again these must be matched to the 
Scenario to which they apply, given that an event can be included in n>I scenarios and therefore 
has n>1 `included sequence numbers'. 

Scenario invariant 
self. alllnstances->forall(s I 
self. included_event->forall(e 
self. included-event. included-seq-no->intersection(self. scn-includecLseq-no) 
->not exists(n I 
(s. included_event->includes(e) and 
e. included_seq_no->intersection(s. scn_included_seq_no)->includes(n) and 
n. sequence_no <> 
(s. scenario_event->union(s. included_event->union(s. extension_event)) 
->intersection (e. transitive_follows_from))->size+l)))) 

d) And similarly with 'extension sequence numbers'. 

Scenario invariant 
self. alllnstances->forall(s I 
self. extension_event->forall(e I 
self. extension_event. extension_seq_no->intersection(self. scn_extension seq_no) 
->not exists(n I 
(s. extension_event->includes(e) and 
e. extension_seq_no->intersection(s. scn_extension_seq_no)->includes(n) and 
n. sequence_no <> 
(s. scenario_event->union(s. included_event->union(s. extension_event)) 
->intersection (e. transitive_follows_from))-size+l)))) 

e) The following constraint ensures that each Event has only one included or 'extension sequence 
number' per Scenario for which it is included in or extends. 

Scenario invariant 
self. alllnstances->forall(s I 
self. included_event->forall(e I 
self. extension_event->forall(x I 
not( 
(s. included_event->includes(e) and 
s. scn_included_seq_no->intersection(e. included_sec-no)->size <>1) or 
(s. extension_event->includes(x) and 
s. scn_extension_seq. no->intersection(x. extension_seq_no)->size <>1)) ))) 

vi. Constraint to ensure 'extends scenarios' are paths through different use cases. 

Interaction Model invariant 
self. alllnstances->forall(m1, m2 I 
self. inm_scenario->forall(s1, s2 I 
not (ml. inm_scenario->includes(sl) and m2. inm scenario->includes(s2) and 
si. extended_by_scenario->includes(s2) and ml = m2))) 

A-7 



Appendix A (Part 2) 

vii. The following rules populate associations for Scenario and Event elements of Interaction Models. 

They arise from the presence of «extends» associations in the Use Case Models they describe. Note 

similar rules may be defined for «includes». 

a) To derive extension scenarios of a model (inm extension_scenario), it is first necessary to define a 
rule for population of transitive-extended-by. 

Interaction Model 
self. alllnstances->forall(m1, m2 I 
self. inm_scenario->forall(s1, s2 I 
ml. inm_scenario->includes(s1) and 
m2. inm_scenario->includes(s2) and 
si. extended_by_scenario->includes(s2)) 
or 
self. alllnstances->exists(rn'I 
self. inm_secenario->exists(s' I 
m'. inm scenario->includes(s') and 
(sl. extended_by_scenario->includes(s') or sl. includes_scenario->includes(s')) and 
s'. transitive_extended_by_scenario->includes(s2)))) 
implies 
sl. transitive_extended_by_scenario->includes(s2) 

b) We can now define a rule for deriving «extends» scenarios. 

Interaction Model 
self. alllnstances->forall(m1, m2 I 
self. inm scenario->forall(si, s2 I 
mi. inm scenario->includes(s1) and 
m2. inm scenario->includes(s2) and 
sl. extended_by_scenario->includes(s2) or 
si. transitive_extended by_scenario->includes(s2))) 
implies 
ml. inm_extensionscenario->includes(s2) 

c) In addition, the following populate the extension-event association between Scenario and Event. 

Scenario 
self. alllnstances->forall(s I 
self. transitive_extended by_scenario->forall(e I 
s. transitive_extended by_scenario->includes(e))) 
implies 
s. extension_event->includesAll(e. scenario_event) 

d) Also, the following populate the extension_event_group association between Scenario and EventGroup. 

Scenario 
self. alllnstances->forall(s I 
self. transitive_extended_by_scenario->forall(e I 
s. transitive_extended by_scenario->includes(e) and 
e. event_group->size > 0)) 
implies 
s. extension_event_group->includesAll(e. event_group) 

viii. Constraint to ensure that for two Interaction Models (ml, m2) where the Use Case View contains 

an «extends* association in which the use case described in ml is the base of this association and 

A-8 



Appendix A (Part 2) 

the use case described in m2 is the extended part, then at least one Scenario forming ml should 
appear in the extended scenarios of any Scenario in m2. 

Interaction Model invariant 
self. alllnstances->forall(rn , m2 I 
self. interactionView. userCentredRequirementsStructure. useCaseView. ucv_extends 
->not exists(e I 
ml. describes_use_case = e. extends_base. use_case_name and 
m2. describes_use_case = e. extends_extend. use_case_name and 
(m2. inm_scenario. extended_by_scenario->intersection(m t . inm_scena(o))->isEmpty)) 

ix. The following constraints enforce uniqueness of Message (a), Action (b) and Timer (c) primitives 
throughout an Interaction View. 

a) 
InteractionView invariant 
self. alllnstances->forall(v I 
self. interaction_model. inm_message->forall(ml, m2 I 
not( 
v. interaction_model. inm_message->includes(ml) and v. interaction_model. inm_message->includes(m2) and ml 
<> m2 and ml. message_name = m2. message_name))) 

b) 
InteractionView invariant 
self. alllnstances->forall(v I 
self. interaction_model. inm_action->forall(al, a2 I 
not( 
v. interaction_model. inm_action->includes(al) and v. interaction_model. inmaction->includes(a2) and al <> a2 and 
al. action_name = a2. action_name))) 

C) 

Interaction View invariant 
self. alllnstances->forall(v I 
self. interaction_model. inm_timer->forall(tl, t2 I 
not( 
v. interaction_model. inm_timer->includes(t1) and v. interaction_model. inmtimer->includes(t2) and t1 <> t2 and 
tl. timer name = t2. timer name))) 

x. Rules to derive textual event representations from Message Sequence Charts (note derives 

primitives only, manual intervention is required to produce meaningful event statements). 

a) Rule to derive Communication Events. 

Communication Event 
self. alllnstances->forall(c I 
self. tsn_communication_event->exists(t I 
c. msc_communication_event->notEmpty and c. tsn_communication_event->includes(t))) 
implies 
t. communication_description. tsn_sendernode->includes (c. msc_communication_event. msc_sender_instance) 
and 
t. communication_description. tsn_receivernode->includes (c. ms(; _communication_event. 

msc_receiver instance) 
and 
t. communication_description. tsn_message_node->includes (c. msc communication_event. msc message) 

A-9 



Appendix A (Part 2) 

b) Rule to derive Internal Action Events. 

InternalActionEvent 
self. alllnstances->forall(a I 
self. tsn_action_event->exists(t I 
a. msc_action_event->notEmpty 
and 
a. tsn_action_event->includes(t))) 
implies 
t. action_description. tsn_sdr rcr_node->includes(a. msc_action_event. msc_sdr rcr instance) and 
t. action_description. tsn_action_node->includes(a. msc_action_event. msc_system_action) 

c) Rule to derive Timing Events. 

TimingEvent 
self. alllnstances->forall(e I 
self. tsn_timing_event->exists(t I 
e. msc_timing_event->notEmpty and 
e. tsn_timing_event->includes(t))) 
implies 
t. timing_description. tsn_host_on_timeout_node->union 
(t. timing_description. tsntimer r-seLnode-> union 
(t. timing_description. tsn_timer_reset_node))->includes 
(e. msc timing_event. msc_host_on_timeout_instance->union(e. msc tim ing_event. msc_timer_seLinstance-> union 
(e. msc timing_event. msc_timer_reset_instance))) and 
t. timing description. tsn_timer instance_node->includes(e. msc_timing_event. msc_timer instance) and 
t. timing_description. tsn_timer duration->includes(e. msc timing_event. msc timer_duration) 

xi. For more direct navigation, in particular between the Use Case and Interaction Views, a number of 

rules are used to populate InteractionModel 'spine' associations (e. g., inm tsn_viewpoint, 

inm tsn_action, etc. ). A selection of these are defined as follows: - 

a) Rule for population of Textual Viewpoints (a similar rule for MSC Viewpoints can also be defined). 

Interaction Model 
self. alllnstances->forall(m I 
self. inm scenario. tsn_viewpoint->forall(t I 
m. inm_scenario. tsn_viewpoint->includes(t)) 
implies 
m. inm_tsn viewpoint->includes(t) 

b) Rule for population of Textual Viewpoints for each event type. 

Interaction Model 
self. alllnstances->forall(m I 
self. inm tsn_viewpoint. tvp tsn comm->forall(c I 
m. inm_tsn viewpoint. tvp_tsn comm->includes(c))) 
implies 
m. inm tsn communication->includes(c) 

Interaction Model 
self. alllnstances->forall(m I 
self. inm tsn viewpoint. tvp tsn_act->forall(a I 
m. inm_tsn viewpoint. tvp_tsn_act->includes(a))) 
implies 
m. inm_tsn_action->includes(a) 

A-10 



Appendix A (Part 2) 

Interaction Model 
self. allinstances->forall(m I 
self. inm_tsn_viewpoint. tvp_tsn_tim->forall(t I 
m. inm_tsn_viewpoint. tvp_tsn_tim->includes(t))) 
implies 
m. inm_tsn_timing->includes(t) 

c) Rule for population of the three event types. 

Interaction Model 
self. alllnstances->forall(m I 
self. inm_scenario. scenario_event->forall(c I 
m. inm_scenario. scenario_event->includes(c) and m. oclType = CommunicationEvent)) 
implies 
m. inm_communication_event->includes(c) 

Interaction Model 
self. alllnstances->forall(m I 
self. inm_scenario. scenario_event->forall(a I 
m. inm_scenario. scenario_event->includes(a) and a. oclType = IntemalActionEvent)) 
implies 
m. inm_action_event->includes(a) 

InteractionModel 
self. alllnstances->forall(m I 
self. inm_scenario. scenario_event->forall(t I 
m. inm_scenario. scenario_event->includes(t) and t. oclType = TimingEvent)) 
implies 
m. inm_timing_event->includes(t) 

A-11 



Appendix A (Part 2) 

This page deliberately left blank 

A-12 



Appendix B 

Appendix -B 



Appendix B 

This page deliberately left blank 



Appendix B (Part 1) 

Appendix B (Part 1) 

AeroepaceBuddEnhry (abstract) 

BuiMDepanderwy (abstract) 

BuIdEkment (ebctred) 

AemepueEngkweringProjecl 

Product Data Synthesia 

Traceebdlty W orkapece 

Aerospec. ConlpurationEntity (abstract) 

Veisan 

Conhguýatan 

AorocpeceEngneemgDetle 

ConhguretmDetlr 

Aerospac. LinkEnNy (abstrxt) 

BEmodoIAEO 

BEekmantAEO 

'MATrA Framework (Revised)' 

Aemspac. TracaebbnyEnbty (abstract) 

Aemspac. EngneemyEnbty (ebslract) 

Status 

AerospaceMenagementEMly (ab. Uact) 

< Arld cn> 
A... j. aEog ., gObj. c1(abstract) 

AsmspeceEnyneemgASSOnetm (abstract) 

j BuddObpd (ab lr d) 

B-1 



Appendix B (Part 2) 

ate_source I0.. 1 
AerospaceTraceabilityEntity(abstract) 

0.. 1 I ate_source 

Appendix B (Part 2) 

o.. 1 
ate_source 

ate-target 
0.. 1 

<<Structure Element» 
MorelmportantThan 

<<Structure Element» 
Raiseslssue 

0.. 1 0.. 1 
assertion_source assertion_target 

<<Structure Element» 0 .. 1 
Element» 

Assertion 0. '1 
assertion ©assertion text : String assertion source 
source 

assertion-source assertionjarget 
11 

<<Structure Element» 
Qualifies (abstract) 

<<Structure Element» 1 
Issue 

issue_target ýissue_text : String issue target 

<<Structure Element» 
Supports 

<<Structure Element» 
Denies 

<<Structure Element» 
Presupposes 

`Argumentation Meta-model' 

B-2 



Appendix B (Part 3) 

Appendix B (Part 3) 

Complete O-Telos Representations for MATrA Configuration Model 
Worked Example 

Instantiation of elements in figure 5.12 

A320 in AerospaceEngineeringProject, 
Token with 
project-title 

projectTitle : `A320 Project' 
has_pds 

hasPDS : A320PDS 
end 

A320PDS in ProductDataSynthesis, Token 
with 
build_entity 

buildEntityl : AirbusA320; 
buildentity2 : GrossWingArea; 
buildEntity3 : LandingDistance; 
buildEntity4 : WingLoading; 
buildEntity5 : FuelCapacity; 
buildEntity6 

MaximumLiftCoefficient; 
buildEntity7 : Payload; 
buildEntity8 Range; 
buildEntity9 TouchDownSpeed; 
buildEntitylO ApproachSpeed; 
buildEntityll StallingSpeed; 
buildEntityl2 MTOW 

end 

AirbusA320 in Module, Token with 
module_name 

moduleName : "A320' 
end 

Dash100HasPropertyWingLoading in 
HasProperty, Token with 
b&source 

bdSource : DashlOO 
bd_target 

bdTarget WingLoading 
end 

WingLoading in Property, Token with 
property-name 

propertyName : "Wing Loading" 
end 

DashlOOHasPropertyFuelCapacity in 
HasProperty, Token with 
bd_source 

bdSource : DashlOO 
bd_target 

bdTarget : FuelCapacity 
end 

FuelCapacity in Property, Token with 
property name 

propertyName : `Fuel Capacity" 
end 

Dash100HasPropertyMaximumLiftCoefficient 
in HasProperty, Token with 
bd_source 

bdSource : DashlOO 
bd_target 

bdTarget : MaximumLiftCoefficient 
end 

A320HasVerlOO in HasRevision, Token with 
bd_source 

bdSource AirbusA320 
bd-target 

bdTarget DashlOO 
end 

DashlOO in Version , Token with 
version_name 

versionName : "A320-100' 
end 

Dash100HasPropertyGrossWingArea in 
HasProperty, Token with 
bd_source 

bdSource : DashlOO 
bd-target 

bdTarget : GrossWingArea 
end 

GrossWingArea in Property, Token with 
property-name 

propertyName : `Gross Wing Area' 
end 

Dash100HasPropertyLandingDistance in 
HasProperty, Token with 
bd source 

bdSource : DashlOO 
bd_target 

bdTarget : LandingDistance 
end 

LandingDistance in Property, Token with 
property-name 

propertyName : "Landing Distance' 
end 

MaximumLiftCoefficient in Property, Token 
with 
property_name 

propertyName : 'Maximum Lift 
Coefficient' 
end 

DashlOOHasPropertyPayload in HasProperty, 
Token with 
bd_source 

bdSource : DashlOO 
bd_target 

bdTarget : Payload 
end 

Payload in Property, Token with 
property-name 

propertyName : `Payload' 
end 

DashlOOHasPropertyRange in HasProperty, 
Token with 
bd., source 

bdSource : DashlOO 
bc_target 

bdTarget Range 
end 

Range in Property, Token with 
property-name 

propertyName : 'Range' 
end 

Dash100HasPropertyTouchDownSpeed in 

HasProperty, Token with 
bd_source 

bdSource : DashlOO 

B-3 



Appendix B (Part 3) 

bd_target 
bdTarget : TouchDownSpeed 

end 

TouchDownSpeed in Property, Token with 
property-name 

propertyName : "Touch Down Speed" 
end 

DashlOOHasPropertyApproachSpeed in 
HasProperty, Token with 
bd_source 

bdSource : DashlOO 
bd_target 

bdTarget ApproachSpeed 
end 

ApproachSpeed in Property, Token with 
property-name 

propertyName : "Approach Speed" 
end 

Dash100HasPropertyStallingSpeed in 
HasProperty, Token with 
bd_source 

bdSource DashlOO 
bd_target 

bdTarget : StallingSpeed 
end 

StallingSpeed in Property, Token with 
propertyjiame 

propertyName : "Stalling Speed" 
end 

Dash100HasPropertyMTOW in HasProperty, 
Token with 
bd_source 

bdSource : DashlOO 
bd_target 

bdTarget : MTOW 
end 

MTOW in Property, Token with 
property-name 

propertyName : "Maximum Takeoff 
Weight" 
end 

MTOWHasSpecificationSpecl in 
HasSpecification, Token with 
bd-source 

bdSource : MTOW 
bd.. target 

bdTarget MTOWSpeci 
end 

MTOWSpec1 in Specification, Token with 
value_specification 

valueSpecification : "75 000 kg' 
end 

MTOWHasSpecificationSpec2 in 
HasSpecification, Token with 
b&source 

bdSource : MTOW 
bd_target 

bdTarget : MTOWSpec2 
end 

MTOWSpec2 in Specification, Token with 
value-specification 

valueSpecification : 175 500 kg' 
end 

MTOWHasSpecificationSpec3 in 
HasSpecification, Token with 
bd_source 

bdSource MTOW 
bd_target 

bdTarget MTOWSpec3 

end 

MTOWSpec3 in Specification, Token with 
value_specification 

valueSpecification : 176 000 kg' 
end 

MTOWSpecSucceedsl in Succeeds, Token with 
bd_source 

bdSource MTOWSpec2 
bd_target 

bdTarget : MTOWSpecl 
end 

MTOWSpecSucceeds2 in Succeeds, Token with 
bd_source 

bdSource : MTOWSpec3 
bctarget 

bdTarget MTOWSpec2 
end 

Instantiation of elements in figure 5.13 

FlightControlSystem in Module, Token with 
module_name 

moduleName : "FCS" 
end 

FCSHasVerDash100FCS in HasRevision, Token 
with 
bd_source 

bdSource : FlightControlSystem 
bd_target 

bdTarget Dash100FCS 
end 

Dash100FCS in Version , Token with 
version_name 

versionName : "-100 FCS" 
end 

Dash100FCSHasFTsubmoduleSEC1 in 
HasFTSubmodule, Token with 
bd_source 

bdSource : Dash100FCS 
bd_target 

bdTarget : SEC1 
end 

SEC1 in Module, Token with 
module_name 

moduleName : "SEC1" 
end 

DashlOOFCSHasFTsubmoduleSEC2 in 
HasFTSubmodule, Token with 
bd_source 

bdSource : Dash100FCS 
bc_target 

bdTarget : SEC2 
end 

SEC2 in Module, Token with 
module_name 

moduleName : 'SEC2' 
end 

Dash100FCSHasFTsubmoduleELAC1 in 
HasFTSubmodule, Token with 
bd_source 

bdSource : Dash100FCS 
bd_target 

bdTarget : ELAC1 
end 

ELAC1 in Module, Token with 
module_name 

moduleName : "ELAC1" 

end 

B-4 



Appendix B (Part 3) 

DashlOOFCSHasFTsubmoduleELAC2 in 
HasFTSubmodule, Token with 
b&source 

bdSource : Dash100FCS 
bd_target 

bdTarget ELAC2 
end 

ELAC2 in Module, Token with 
module_name 

moduleName : "ELAC21 
end 

Dash100FCSHasFTsubmoduleSFCC1 in 
HasFTSubmodule, Token with 
bd_source 

bdSource : DashlOOFCS 
bd_target 

bdTarget : SFCC1 
end 

SFCC1 in Module, Token with 
module_name 

moduleName : "SFCC1' 
end 

DashlOOFCSHasFTsubmoduleSFCC2 in 
HasFTSubmodule, Token with 
bd. 

_source bdSource : Dash100FCS 
bd_target 

bdTarget SFCC2 
end 

SFCC2 in Module, Token with module-name 
moduleName : 'SFCC2' 

end 

SFCC1HasVerDash100SFCC1 in HasRevision, 
Token with 
bd_source 

bdSource SFCC1 
bc_target 

bdTarget : Dash100SFCC1 
end 

Dash100SFCC1 in Version , Token with 
versiorname 

versionName : 1-100 SFCC1' 
end 

DashlOOSFCClHasSubmoduleFlapChannel in 
HasSubmodule, Token with 
bd_source 

bdSource Dash100SFCC1 
bd_target 

bdTarget FlapChannel 
end 

FlapChannel in Module, Token with 
module name 

moduleName : `Flap Channel` 
end 

Dash100SFCC1HasSubmoduleSlatChannel in 
HasSubmodule, Token with 
bd_source 

bdSource : Dash100SFCC1 
bd_target 

bdTarget : S1atChannel 
end 

SlatChannel in Module, Token with 
module name 

moduleName : `Slat Channel' 
end 

S1atChannelHasVerSlatChanneli in 
HasRevision, Token with 
b&source 

bdSource : S1atChannel 

bd_target 
bdTarget : SlatChanneli 

end 

SlatChanneli in Version , Token with 
version_name 

versionName : "Slat Channel-i" 
end 

SlatChanneliHasFTsubmoduleSCLanel in 
HasFTSubmodule, Token with 
bd_source 

bdSource SlatChanneli 
bd, 

_target bdTarget : SlatChannelLanel 
end 

SlatChannelLanel in Module, Token with 
module_name 

moduleName : 'SCLanell 
end 

S1atChanneliHasFTsubmoduleSCLane2 in 
HasFTSubmodule, Token with 
bd_source 

bdSource : SlatChanneli 
bd_target 

bdTarget SlatChannelLane2 
end 

SlatChannelLane2 in Module, Token with 
module_name 

moduleName : "SCLane2' 
end 

S1atChannelLanelHasVerSlatChannelLaneli 
in HasRevision, Token with 
bd_source 

bdSource SlatChannelLanel 
bd_target 

bdTarget S1atChannelLaneli 
end 

S1atChannelLaneli in Version , Token with 
version name 

versionName : 'SCLanel-i' 
end 

SlatChannelLaneliEncapsulatesInhibtSlatRe 
traction in Encapsulates, Token with 
bd_source 

bdSource SlatChannelLaneli 
bd target 

bdTarget InhibitSlatRetraction 
end 

InhibitSlatRetraction in Function, Token 
with 
function_name 

functionName "inhibit Slat 
Retraction' 
end 

InhibitSlatRetractionHasVerInhibitSlatRet 
ractioni in HasRevision, Token with 
bd_source 

bdSource InhibitSlatRetraction 
bd_target 

bdTarget InhibitSlatRetractioni 
end 

InhibitSlatRetractioni in Version , Token 
with 
version-name 

versionName : `Inhibit Slat 
Retraction-i' 
end 

InhibitSlatRetractioniHasConditionDisable 
d in HasCondition, Token with 
bd_source 

B-5 



Appendix B (Part 3) 

bdSource : InhibitSlatRetractioni 
bd_target 

bdTarget : Disabled 
end 

Disabled in Condition, Token with 
condition_label 

conditionLabel : "Disabled' 
end 

InhibitSlatRetractioniHasConditionNotEnga 
ged in HasCondition, Token with 
bd_source 

bdSource : InhibitSlatRetractioni 
bd_target 

bdTarget NotEngaged 
end 

NotEngaged in Condition, Token with 
condition_label 

conditionLabel : "Not-Engaged" 
end 

InhibitSlatRetractioniHasConditionSpeedBa 
ulk in HasCondition, Token with 
bd_source 

bdSource : InhibitSlatRetractioni 
bd_target 

bdTarget : SpeedBaulk 
end 

SpeedBaulk in Condition, Token with 
condition_label 

conditionLabel : 'Speed-Baulk' 
end 

InhibitSlatRetractioniHasConditionAlphaLo 
ck in HasCondition, Token with 
bd_source 

bdSource InhibitSlatRetractioni 
bd_target 

bdTarget A1phaLock 
end 

A1phaLock in Condition, Token with 
condition_, label 

conditionLabel : "Alpha-Lock' 
end 

InhibitSlatRetractioniHasSubfunctionlSRLo 
wSpeed in HasSubfunction, Token with 
bd_source 

bdSource InhibitSlatRetractioni 
bd_target 

bdTarget ISRLowSpeed 
end 

ISRLowSpeed in Function, Token with 
function_name 

functionName : "ISR-Low Speed' 
end 

InhibitSlatRetractioniHasSubfunctionlSRHi 
ghAoA in HasSubfunction, Token with 
bd_source 

bdSource : InhibitSlatRetractioni 
bd_target 

bdTarget : ISRHighAoA 
end 

ISRHighAOA in Function, Token with 
function_name 

functionName : "ISR-High Angle of 
Attack" 
end 

Instantiation of elements in figure 5.14 

ISRHighAoAHasVerlSRHighAoAi in 
HasRevision, Token with 

bd-source 
bdSource ISRHighAOA 

bd_target 
bdTarget ISRHighAoAi 

end 

ISRHighAoAi in Version , Token with 
version name 

versionName : "ISR-High Angle of 
Attack-i" 

end 

AlphaLockHasVerAlphaLocki in HasRevision, 
Token with 
bd_source 

bdSource : A1phaLock 
bd_target 

bdTarget : A1phaLocki 
end 

A1phaLocki in Version , Token with 
vers ion_name 

versionName : `Alpha-Lock-i' 
end 

A1phaLockiHasSubconditionEngagedAlphaLock 
in HasSubcondition, Token with 
bd_source 

bdSource A1phaLocki 
bd_target 

bdTarget EngagedAlphaLock 
end 

EngagedAlphaLock in Condition, Token with 
condition_label 

conditionLabel : "Engaged Alpha-Lock' 
end 

EngagedAlphaLockHasVerEngagedAlphaLocki 
in HasRevision, Token with 
bd`source 

bdSource : EngagedAlphaLock 
bd-target 

bdTarget EngagedAlphaLocki 
end 

EngagedAlphaLocki in Version , Token with 
version_name 

versionName : 'Engaged Alpha-Lock-i' 
end 

A1phaLockiHasSubconditionReleaseAlphaLock 
in HasSubcondition, Token with 
bd_source 

bdSource : A1phaLocki 
bd_target 

bdTarget ReleaseAlphaLock 
end 

ReleaseAlphaLock in Condition, Token with 
condition. label 

conditionLabel : 'Release Alpha-Lock' 
end 

ReleaseAlphaLockHasVerReleaseAlphaLocki 
in HasRevision, Token with 
bd_source 

bdSource : ReleaseAlphaLock 
bd_target 

bdTarget ReleaseAlphaLocki 
end 

ReleaseAlphaLocki in Version , Token with 
version-name 

versionName : "Release Alpha-Lock-i' 
end 

ISRHAOAiConsumesCAOA in 
ConsumesExternal10, Token with 
bd_source 

bdSource : ISRHighAoAi 

B-6 



Appendix B (Part 3) 

bd target 
bdTarget : CAoA 

end 

CAoA in InputOutput, Token with 
flow_name 

flowName : `CAOA' 
end 

CAoAHasVerCAoAi in HasRevision, Token 
with 
bd_source 

bdSource : CAOA 
bd target 

bdTarget : CAoAi 
end 

CAOAi in Version, Token with 
version name 

versionName `CAoAi" 
end 

CAOAiCarriesConditionCAoA7Pt1 ent in 
CarriesCondition, Token 
with 
bd_source 

bdSource : CAOAi 
bd_target 

bdTarget : CAoA7PtlEvent 
end 

CAoA7Pt1Event in Condition, Token with 
condition_label 

conditionLabel : "CAoA < 7.1 
degrees' 
end 

CAoA7PtlEventOccurringInEngagedAlphaLock 
in Occurringln, Token 
with 
bd source 

bdSource : CAoA7PtlEvent 
bd target 

bdTarget : EngagedAlphaLock 
end 

CAOA7Pt1EventLeadsToReleaseAlphaLock in 
LeadsTo, Token 
with 
bd_source 

bdSource : CAoA7PtlEvent 
bd target 

bdTarget ReleaseAlphaLock 
end 

Instantiation of elements in figure 5.15 

ISRLowSpeedHasVeriSRLowSpeedi in 
HasRevision, Token with 
bd_source 

bdSource : ISRLowSpeed 
bd_target 

bdTarget ISRLowSpeedi 
end 

ISRLowSpeedi in Version , Token with 
version_name 

versionName : `ISR-Low Speed-i' 
end 

SpeedBaulkHasVerSpeedBaulki in 
HasRevision, Token with 
bd_source 

bdSource : SpeedBaulk 
bd_target 

bdTarget SpeedBaulki 
end 

SpeedBaulki in Version , Token with 
version_name 

versionName : `Speed-Baulk-i' 
end 

SpeedBaulkiHasSubconditionEngagedSpeedBau 
1k in HasSubcondition, Token with 
bd_source 

bdSource SpeedBaulki 
bd_target 

bdTarget : EngagedSpeedBaulk 
end 

EngagedSpeedBaulk in Condition, Token 
with 
condition_label 

conditionLabel : "Engaged Speed- 
Baulk' 
end 

EngagedSpeedBaulkHasVerEngagedSpeedBaulki 
in HasRevision, Token with 
bd_source 

bdSource : EngagedSpeedBaulk 
bd_target 

bdTarget : EngagedSpeedBaulki 
end 

EngagedSpeedBaulki in Version , Token 
with 
version_name 

versionName : `Engaged Speed-Baulk-i' 
end 

SpeedBaulkiHasSubconditionReleaseSpeedBau 
lk in HasSubcondition, Token with 
bd_source 

bdSource SpeedBaulki 
bd_target 

bdTarget : ReleaseSpeedBaulk 
end 

ReleaseSpeedBaulk in Condition, Token 
with 
condition_label 

conditionLabel : "Release Speed- 
Baulk 
end 

ReleaseSpeedBaulkHasVerReleaseSpeedBaulki 
in HasRevision, Token with 
bd_source 

bdSource ReleaseSpeedBaulk 
bd_target 

bdTarget : ReleaseSpeedBaulki 
end 

ReleaseSpeedBaulki in Version , Token 
with 
versionjlame 

versionName : "Release Speed-Baulk-i" 
end 

ISRLowSpeediConsumesCAS in 
ConsumesExternall0, Token with 
bd_source 

bdSource ISRLowSpeedi 
bc-target 

bdTarget CAS 
end 

CAS in InputOutput, Token with 
flow-name 

flowName : "CAS" 
end 

CASHasVerCASi in HasRevision, Token with 
bd_source 

bdSource CAS 
bc_target 

bdTarget CASs 
end 

B-7 



Appendix B (Part 3) 

bdSource InhibitSlatRetractioni 
bd_target 

bdTarget : Disabled 
end 

Disabled in Condition, Token with 
condition_label 

conditionLabel : "Disabled, 
end 

InhibitSlatRetractioniHasConditionNotEnga 
ged in HasCondition, Token with 
bd_source 

bdSource : InhibitSlatRetractioni 
bd_target 

bdTarget NotEngaged 
end 

NotEngaged in Condition, Token with 
condition label 

conditionLabel : "Not-Engaged" 
end 

InhibitSlatRetractioniHasConditionSpeedBa 
ulk in HasCondition, Token with 
bd_source 

bdSource : InhibitSlatRetractioni 
bd_target 

bdTarget : SpeedBaulk 
end 

SpeedBaulk in Condition, Token with 
condition label 

conditionLabel : 'Speed-Baulk' 
end 

InhibitSlatRetractioniHasConditionAlphaLo 
ck in HasCondition, Token with 
bd-source 

bdSource InhibitSlatRetractioni 
bc_target 

bdTarget A1phaLock 
end 

A1phaLock in Condition, Token with 
condition_label 

conditionLabel : "Alpha-Lock' 
end 

InhibitSlatRetractioniHasSubfunctionlSRLo 
wSpeed in HasSubfunction, Token with 
bd_source 

bdSource InhibitSlatRetractioni 
b&target 

bdTarget ISRLowSpeed 
end 

ISRLowSpeed in Function, Token with 
function_name 

functionName : "ISR-Low Speed" 
end 

InhibitSlatRetractioniHasSubfunctionlSRHi 
ghAOA in HasSubfunction, Token with 
bd_source 

bdSource : InhibitSlatRetractioni 
bd-target 

bdTarget ISRHighAoA 
end 

ISRHighAOA in Function, Token with 
function_name 

functionName : "ISR-High Angle of 
Attack' 
end 

Instantiation of elements in figure 5.14 

ISRHighAoAHasVerISRHighAoAi in 
HasRevision, Token with 

bd_source 
bdSource : ISRHighAoA 

bd_target 
bdTarget : ISRHighAoAi 

end 

ISRHighAoAi in Version , Token with 
version_name 

versionName : "ISR-High Angle of 
Attack-i' 

end 

A1phaLockHasVerAlphaLocki in HasRevision, 
Token with 
bd_source 

bdSource A1phaLock 
bd_target 

bdTarget A1phaLocki 
end 

A1phaLocki in Version , Token with 
version_name 

versionName : `Alpha-Lock-i' 
end 

A1phaLockiHasSubconditionEngagedAlphaLock 
in HasSubcondition, Token with 
bd_source 

bdSource A1phaLocki 
bd_target 

bdTarget : EngagedAlphaLock 
end 

EngagedAlphaLock in Condition, Token with 
condition-label 

conditionLabel : "Engaged Alpha-Lock' 
end 

EngagedAlphaLockHasVerEngagedAlphaLocki 
in HasRevision, Token with 
bd_source 

bdSource : EngagedAlphaLock 
bd_target 

bdTarget EngagedAlphaLocki 
end 

EngagedAlphaLocki in Version , Token with 
version_name 

versionName : "Engaged Alpha-Lock-i" 
end 

A1phaLockiHasSubconditionReleaseAlphaLock 
in HasSubcondition, Token with 
bd_source 

bdSource : A1phaLocki 
bd_target 

bdTarget ReleaseAlphaLock 
end 

ReleaseAlphaLock in Condition, Token with 
condition label 

conditionLabel : "Release Alpha-Lock' 

end 

ReleaseAlphaLockHasVerReleaseAlphaLocki 
in HasRevision, Token with 
bd_source 

bdSource ReleaseAlphaLock 
bd_target 

bdTarget : ReleaseAlphaLocki 
end 

ReleaseAlphaLocki in Version , Token with 
version_name 

versionName : "Release Alpha-Lock-i" 

end 

ISRHAOAiConsumesCAOA in 

ConsumesExternallO, Token with 
bd_source 

bdSource : ISRHighAoAi 

B-6 



Appendix B (Part 3) 

bd_target 
bdTarget : CAoA 

end 

CAoA in InputOutput, Token with 
flow name 

flowName : "CAoA' 
end 

CAOAHasVerCAoAi in HasRevision, Token 
with 
bci source 

bdSource : CAoA 
bd target 

bdTarget : CAOAi 
end 

CAoAi in Version, Token with 
version_name 

versionName "CAoAi" 
end 

CAoAiCarriesConditionCAoA7PtlEvent in 
CarriesCondition, Token 
with 
bd_source 

bdSource : CAoAi 
bd. 

-target bdTarget : CAoA7PtlEvent 
end 

CAoA7PtlEvent in Condition, Token with 
condition_label 

conditionLabel : "CAoA < 7.1 
degrees' 
end 

CAoA7PtlEventOccurringInEngagedAlphaLock 
in Occurringln, Token 
with 
bd_source 

bdSource : CAoA7PtlEvent 
bc' target 

bdTarget EngagedAlphaLock 
end 

CAoA7Pt1EventLeadsToReleaseAlphaLock in 
LeadsTO, Token 
with 
bd-source 

bdSource : CAoA7PtlEvent 
bd-target 

bdTarget : ReleaseAlphaLock 
end 

Instantiation of elements in figure 5.15 

ISRLowSpeedHasVerlSRLowSpeedi in 
HasRevision, Token with 
bc' source 

bdSource : ISRLow Speed 
bd_target 

bdTarget ISRLowSpeedi 
end 

ISRLowSpeedi in Version , Token with 
version_name 

versionName : `ISR-Low Speed-i' 
end 

SpeedBaulkHasVerSpeedBaulki in 
HasRevision, Token with 
bd 

. source 
bdSource : SpeedBaulk 

bd_target 
bdTarget SpeedBaulki 

end 

SpeedBaulki in Version , Token with 
version name 

versionName : "Speed-Baulk-i' 
end 

SpeedBaulkiHasSubconditionEngagedSpeedBau 
lk in HasSubcondition, Token with 
bd_source 

bdSource : SpeedBaulki 
bc_target 

bdTarget EngagedSpeedBaulk 
end 

EngagedSpeedBaulk in Condition, Token 
with 
condition_label 

conditionLabel : "Engaged Speed- 
Bau1k 
end 

EngagedSpeedBaulkHasVerEngagedSpeedBaulki 
in HasRevision, Token with 
bd source 

bdSource : EngagedSpeedBaulk 
bd_target 

bdTarget EngagedSpeedBaulki 
end 

EngagedSpeedBaulki in Version , Token 
with 
version_name 

versionName : `Engaged Speed-Baulk-i" 
end 

SpeedBaulkiHasSubconditionReleaseSpeedBau 
1k in HasSubcondition, Token with 
bd_source 

bdSource : SpeedBaulki 
bd_target 

bdTarget : ReleaseSpeedBaulk 
end 

ReleaseSpeedBaulk in Condition, Token 
with 
condition_label 

conditionLabel : `Release Speed- 
Baulk' 
end 

ReleaseSpeedBaulkHasVerReleaseSpeedBaulki 
in HasRevision, Token with 
b&source 

bdSource : ReleaseSpeedBaulk 
bd-target 

bdTarget ReleaseSpeedBaulki 
end 

ReleaseSpeedBaulki in Version , Token 
with 
version_name 

versionName : "Release Speed-Baulk-i" 
end 

ISRLowSpeediConsumesCAS in 
ConsumesExternallO, Token with 
b&source 

bdSource : ISRLowSpeedi 
bd_. target 

bdTarget : CAS 
end 

CAS in InputOutput, Token with 
flow_name 

flowName : "CAS' 
end 

CASHasVerCASi in HasRevision, Token with 
bd_source 

bdSource : CAS 
bd-target 

bdTarget CASi 
end 

B-7 



Appendix B (Part 3) 

CASi in Version, Token with 
version_name 

versionName "CASi' 
end 

CASiCarriesConditionCAS154KtsEvent in 
CarriesCondition, Token with 
bd_source 

bdSource : CASi 
bd_target 

bdTarget CAS154KtsEvent 
end 

CAS154KtsEvent in Condition, Token with 
condition_label 

conditionLabel : "CAS > 154 knots' 
end 

CAS154KtsEventOccurringlnEngagedSpeedBaulk 
in OccurringIn, Token with 
b&source 

bdSource CAS154KtsEvent 
bd_target 

bdTarget EngagedSpeedBaulk 
end 

CAS154KtsEventLeadsToReleaseSpeedBaulk in 
LeadsTo, Token with 
bd_source 

bdSource : CAS154KtsEvent 
bd_target 

bdTarget ReleaseSpeedBaulk 
end 

B-8 



Appendix B (Part 4) 

Appendix B (Part 4) 

Statechart Meta-model : UML and O-Telos Base Classes 
Event in StructureElement, SimpleClass isA AerospaceEngineeringObject with 
has-property 

event-description : String 

end 

StateVertex in StructureElement, SimpleClass isA AerospaceEngineeringObject end 

Transition in StructureElement, SimpleClass isA AerospaceEngineeringObject with 
has-part 

source : StateVertex; 
target : StateVertex; 
trigger Event 

end 

State in StructureElement, SimpleClass isA StateVertex with 
has-property 

state_name : String 
end 

InitialState in StructureElement, SimpleClass isA State end 

SubMachineState in StructureElement, SimpleClass isA State with 
has-structure 

sub_nachine : StateMachine 
end 

StateMachine in DevelopmentStructure, SimpleClass isA AerospaceEngineeringObject with 
has-property 

subject : ModelElement 
has-element 

state : State; 
transition : Transition 

end 

ModelElement in ArtifactProperty, SimpleClass isA String end 

sWjed «ArWact Property 
ModelElement 

1 
0.. 1 

1 «Devebpmerd Structwa» 1 
StateMachne 

sib_mechne 

«St=tve Elemenb> source 
StateVenez 

target 
1 

state 

transmon 

Stn ture Element. > 
Tramitlon 

t -Structure Element 
Event 

ý99ý oevent_deacriptlon : Strn 

I 

«Structwe Element. > 
State 

. state-name : Stnng 

aaStruoture Element- 
SubMadmeState 

-Structure Element- 
IttalState 

`State Machine Meta-model' 

B-9 



Appendix B (Part 4) 

This page deliberately left blank 

B-10 



Appendix C 

Appendix -C 



Appendix C 

This page deliberately left blank 



Appendix C (Part 1) 

Appendix C (Part 1) - Case Study I: A Hypothetical Mission Planning 
System for the Hawk 100 and 200 Series Aircraft (Complete O-Telos 

Representation of Artifacts from 6.2) 

0 ý Check for Cartridge 

«eýawes/ / 

rchdas» ýýý 

Pilot Erase Cartridge Check Cartridge for Data 

Cardldge 

Erase Data hom Cartridge 

`Erase Cartridge Use Case Diagram' 

Check for Cartridge 
/ 

des- 

Cartridge 

<dncludes» 
Check Cartridge for Data 

Retrieve from Cartddge-", -. 
_ dndudes>> 

Pilot 
«e>Aends» 

< 

«Yidudes» 
Retrieve Data from Cartridge 

MPS Printer 

-extends. Print Data 

Oý 
S ent n. tn to Rwhw" Dlsolav Cartddae Data 

`Retrieve From Cartridge Use Case Diagram' 

Pill 

\ 

Mission Plan 

Choose Mission and Aircraft 

W udes» 

O 

Retrieve from Mission Plan 

`Choose Mission and Aircraft Use Case Diagram' 

c-i 



Appendix C (Part 1) 

i. Instantiation of Use Case View for 
Erase Cartridge, Retrieve from 
Cartridge and Choose Mission & 
Aircraft 

Instantiation of UseCaseModel Elements 

" Actor Instances 

Pilot in Actor, Token with 
actor_name 

actorName "Pilot" 
end 

Cartridge in Actor, Token with 
actor_name 

actorName "Cartridge' 
end 

MPSPrinter in Actor, Token with 
actor-name 

actorName : "MPS Printer' 
end 

MissionPlan in Actor, Token with 
actor_name 

actorName "Mission Plan" 
end 

" Text Nodes (for specifying Pre and 
Post Conditions) 

CartridgeNode in ModuleNode, Token with 
modul e_name 

moduleName : "Cartridge' 
end 

MissionPlanningSystemNode in ModuleNode, 
Token with 
module_name 

moduleName : "MPS' 
end 

PilotNode in ModuleNode, Token with 
module_name 

moduleName : "Pilot' 
end 

MPSPrinterNode in ModuleNode, Token with 
module_name 

moduleName : "MPS Printer" 
end 

MissionPlanNode in ModuleNode, Token with 
module_name 

moduleName : "Mission Plan" 
end 

CheckforCartridgeNode in TransactionNode, 
Token with 
transaction_name 

transactionName : "Check for Cartridge" 
end 

CheckCartridgeforDataNode in 
TransactionNode, Token with 
transaction-name 

transactionName : "Check Cartridge 
for Data" 
end 

" Use Cases (including Pro & Post 
Conditions) 

Erase Cartridge 

EraseCartridge in UseCase, Token with 

use-case-name 
useCaseName : "Erase Cartridge" 

sub_case 
subCase : False 

post_condition 
postConditionl : ECPost1NLS 

end 

Post Condition for Erase Cartridge 

ECPost1NLS in 
MatraNaturalLanguageStructure, Token with 
mnls_composite 

mnlsCompositel : ECPostCl 
mnls-plain_text 

mnlsPlainTextl : ECPostPT1; 
mnlsPlainText2 : ECPostPT2 

mnls module 
mnlsModulel : CartridgeNode 

end 

ECPostC1 in MatraNLSComposite, Token with 
preceding-fragment 

precedingFragment : ECPostPT1 
subject_node 

subjectNode : CartridgeNode 
following-fragment 

followingFragment : ECPostPT2 
end 

ECPostPT1 in PlainTextNode, Token with 
mnls_text 

mnlsText : The data on the 
end 

ECPostPT2 in P1ainTextNode, Token with 
mnls_text 

mnlsText has been erased. " 
end 

Check for Cartridge 

CheckforCartridge in UseCase, Token with 
use-case-name 

useCaseName : "Check for Cartridge' 
sub_case 

subCase : True 
post_condition 

postConditionl : CfCPost1NLS 
end 

Post Condition for Check for Cartridge 

CfCPost1NLS in 
MatraNaturalLanguageStructure, Token with 
mnls_composite 

mnlsCompositel : CfCPostCl; 
mnlsComposite2 : CfCPostC2 

mnls plain_text 
mnlsPlainTextl CfCPostPT1; 
mnlsPlainText2 : CfCPostPT2; 
mnlsPlainText3 : CfCPostPT3 

mnlsjnodule 
mnlsModulel 

MissionPlanningSystemNode; 
mnlsModule2 : CartridgeNode 

end 

CfCPostC1 in MatraNLSComposite, Token 
with 
preceding_fragment 

precedingFragment : CfCPostPT1 
subject_node 

subjectNode 
Miss ionPlanningSystemNode 
following-fragment 

followingFragment : CfCPostC2 
end 

C-2 



Appendix C (Part 1) 

CfCPostPT1 in PlainTextNode, Token with 
mnls_text 

mnlsText : The 
end 

CfCPostC2 in MatraNLSComposite, Token 
with 
preceding_fragment 

precedingFragment : CfCPostPT2 
subject_node 

subjectNode : CartridgeNode 
following_fragment 

followingFragment : CfCPostPT3 
end 

CfCPostPT2 in PlainTextNode, Token with 
mnls_text 

mnlsText has been informed that 
there is a 
end 

CfCPostPT3 in PlainTextNode, Token with 
mnls_text 

mnlsText : present in the 
hardware. ' 
end 

Check Cartridge for Data 

CheckCartridgeforData in UseCase, Token 
with 
use-case-name 

useCaseName : "Check Cartridge for 
Data' 
sub_case 

subCase : True 
pre-condition 

preConditionl CCfDPre1NLS 
post-condition 

postConditionl CCfDPost1NLS 
end 

PreCondition for Check Cartridge for Data 

CCfDPre1NLS in 
MatraNaturalLanguageStructure, Token with 
mnls_composite 

mnlsCompositel CCfDPreC1 
mnls plain_text 

mnlsPlainTextl : CCfDPrePT1; 
mnlsPlainText2 : CCfDPrePT2 

mnls_jnodule 
mnlsModulel : CartridgeNode 

end 

CCfDPreC1 in MatraNLSComposite, Token 
with 
preceding-fragment 

precedingFragment : CCfDPrePT1 
subject_node 

subjectNode : CartridgeNode 
following-fragment 

followingFragment : CCfDPrePT2 
end 

CCfDPrePT1 in PlainTextNode, Token with 
mnls_text 

mnlsText : "There is a 
end 

CCfDPrePT2 in PlainTextNode, Token with 
mnls_text 

mnlsText present in the 
hardware. " 
end 

Post Condition for Check Cartridge for 
Data 

CCfDPost1NLS in 
MatraNaturalLanguageStructure, Token with 
mnls_composite 

mnlsCompositel CCfDPostC1; 
mnlsComposite2 : CCfDPostC2 

mnls plain_text 
mnlsPlainTextl CCfDPostPT1; 
mnlsPlainText2 : CCfDPostPT2; 
mnlsPlainText3 CCfDPostPT3 

mnls_module 
mnlsModulel 

MissionPlanningSystemNode; 
mnlsModule2 : CartridgeNode 

end 

CCfDPostC1 in MatraNLSComposite, Token 
with 
preceding-fragment 

precedingFragment : CCfDPostPT1 
subject-node 

subjectNode 
MissionPlanningSystemNode 
following-fragment 

followingFragment : CCfDPostC2 
end 

CCfDPostPT1 in PlainTextNode, Token with 
mnls_text 

mnlsText : "The 
end 

CCfDPOStC2 in MatraNLSComposite, Token 
with 
preceding-fragment 

precedingFragment : CCfDPostPT2 
subject_node 

subjectNode : CartridgeNode 
following-fragment 

followingFragment : CCfDPostPT3 
end 

CCfDPrePT2 in PlainTextNode, Token with 
mnls_text 

mnlsText has been informed 
whether or not there is data loaded on 
the 
end 

CartridgeNode in ModuleNode, Token with 
module_name 

moduleName : "Cartridge" 
end 

CCfDPrePT3 in P1ainTextNode, Token with 
mnls_text 

mnlsText :. 
end 

Erase Data from Cartridge 

EraseDatafromCartridge in UseCase, Token 
with 
use. -gase-name 

useCaseName : "Erase Data from 
Cartridge' 

sub_case 
subCase : True 

pre_condition 
preConditioni EDfCPre1NLS; 
preCondition2 : EDfCPre2NLS 

post-condition 
postConditionl : EDfCPost1NLS 

end 

C-3 



Appendix C (Part 1) 

Pre Conditions for Erase Data from 
Cartridge 

Pro Condition 1 

EDfCPre1NLS in 
MatraNaturalLanguageStructure, Token with 
mnls_composite 

mnlsCompositel : EDfCPre1C1; 
mnlsComposite2 EDfCPre1C2 

mnls plain text 
mnlsPlainTextl EDfCPre1PT1; 
mnlsPlainText2 EDfCPre1PT2; 
mnlsPlainText3 : EDfCPre1PT3 

mnls_module 
mnlsModulel PilotNode; 
mnlsModule2 CartridgeNode 

end 

EDfCPre1C1 in MatraNLSComposite, Token 
with 
preceding_fragment 

precedingFragment : EDfCPre1PT1 
subject-node 

subjectNode : PilotNode 
following-fragment 

followingFragment : EDfCPre1C2 
end 

EDfCPre1PT1 in PlainTextNode, Token with 
mnls_text 

mnlsText : "The 
end 

EDfCPre1C2 in MatraNLSComposite, Token 
with 
preceding_fragment 

precedingFragment : EDfCPre1PT2 
subject_node 

subjectNode : CartridgeNode 
following-fragment 

followingFragment : EDfCPre1PT3 
end 

EDfCPre1PT2 in PlainTextNode, Token with 
mnls_text 

mnlsText has confirmed that he 
wishes to erase data from the 

end 

EDfCPre1PT3 in PlainTextNode, Token with 
mnls_text 

mnisText ". " 
end 

Pre Condition 2 

EDfCPre2NLS in 
MatraNaturalLanguageStructure, Token with 
mnls_composite 

mnlsCompositel EDfCPre2C1 
mnls_plain text 

mnlsPlainTextl EDfCPre2PT1; 
mnlsPlainText2 EDfCPre2PT2 

mnls_module 
mnlsModulel : CartridgeNode 

end 

EDfCPre2C1 in MatraNLSComposite, Token 
with 
preceding-fragment 

precedingFragment : EDfCPre2PT1 
subject-node 

subjectNode : CartridgeNode 
following_fragment 

followingFragment : EDfCPre2PT2 
end 

EDfCPre2PT1 in PlainTextNode, Token with 
mnls_text 

mnlsText : "The 
end 

EDfCPre2PT2 in PlainTextNode, Token with 
mnls_text 

mnlsText : has to contain data. ' 
end 

Post Condition for Erase Data from 
Cartridge 

EDfCPost1NLS in 
MatraNaturalLanguageStructure, Token with 
mnls_composite 

mnlsCompositel EDfCPostCl 
mnls_plain_text 

mnlsPlainTextl : EDfCPostPT1; 
mnlsPlainText2 EDfCPostPT2 

mnls_module 
mnlsModulel : CartridgeNode 

end 

EDfCPostC1 in MatraNLSComposite, Token 
with 
preceding_fragment 

precedingFragment : EDfCPostPT1 
subject_node 

subjectNode : CartridgeNode 
following-fragment 

followingFragment : EDfCPostPT2 
end 

EDfCPostPT1 in PlainTextNode, Token with 
mnls_text 

mnlsText : Data has been erased from 
the 

end 

EDfCPostPT2 in PlainTextNode, Token with 
mnls_text 

mnlsText 
end 

Retrieve from Cartridge 

RetrievefromCartridge in UseCase, Token 
with 
use-case-name 

useCaseName : "Retrieve from 
Cartridge" 
sub_case 

subCase : False 
post_condition 

postConditionl : RfCPost1NLS; 
postCondition2 RfCPost2NLS 

end 

Post Conditions for Retrieve from 
Cartridge 

Post Condition 1 

RfCPost1NLS in 
MatraNaturalLanguageStructure, Token with 
mnls_composite 

mnlsCompositel : RfCPost1C1; 
mnlsComposite2 : RfCPostlC2 

mnls plain_text 
mnlsPlainTextl RfCPost1PT1; 
mnlsPlainText2 : RfCPostlPT2; 
mnlsPlainText3 RfCPost1PT3 

mnls. nodule 
mnlsModulel CartridgeNode; 
mnlsModule2 

MissionPlanningSystemNOde 
end 

RfCPost1C1 in MatraNLSComposite, Token 
with 

C-4 



Appendix C (Part 1) 

preceding_fragment 
precedingFragment : RfCPost1PT1 

subject_node 
subjectNode : CartridgeNode 

following_fragment 
followingFragment : RfCPostlC2 

end 

RfCPost1PT1 in PlainTextNode, Token with 
mnls_text 

mnlsText : The data on the 
end 

RfCPostlC2 in MatraNLSComposite, Token 
with 
preceding-fragment 

precedingFragment : RfCPostlPT2 
subject_node 

subjectNode 
MissionPlanningSystemNode 
following-fragment 

followingFragment : RfCPost1PT3 
end 

RfCPost1PT2 in PlainTextNode, Token with 
mnls_text 

mnlsText : has been copied onto the 

end 

RfCPost1PT3 in PlainTextNode, Token with 
mnls_text 

mnlsText : 
end 

Poet Condition 2 

RfCPost2NLS in 
MatraNaturalLanguageStructure, Token with 
mnls_composite 

mnlsCompositel : RfCPost2Cl 
mnls_plain_text 

mnlsPlainTextl : RfCPost2PT1; 
mnlsPlainText2 : RfCPost2PT2 

mnls_nodule 
mnlsModulel : PilotNode 

end 

RfCPost2Cl in MatraNLSComposite, Token 
with 
preceding-fragment 

precedingFragment : RfCPOSt2PT1 
subject_node 

subjectNode : PilotNode 
following_fragment 

followingFragment : RfCPost2PT2 
end 

RfCPost2PT1 in PlainTextNode, Token with 
mnls_text 

mnlsText : The data has been 
displayed to the 
end 

RfCPost2PT2 in PlainTextNode, Token with 
mnls_text 

mnlsText 
end 

Select Data to Retrieve 

SelectDatatoRetrieve in UseCase, Token 
with 
use_case_name 

useCaseName : "Select Data to 
Retrieve' 
sub_case 

subCase : True 
post-condition 

postConditionl : SDtRPost1NLS 

end 

Post Condition for Select Data to 
Retrieve 

SDtRPost1NLS in 
MatraNaturalLanguageStructure, Token with 
mnlsplain_text 

mnlsPlainTextl : SDtRPostPT1 
end 

SDtRPostPT1 in PlainTextNode, Token with 
mnls_text 

mnlsText : The data types to be 
retrieved have been defined. " 

end 

Retrieve Data from Cartridge 

RetrieveDatafromCartridge in UseCase, 
Token with 
use_case_name 

useCaseName : "Retrieve Data from 
Cartridge' 

sub_case 
subCase : True 

precondition 
preConditioni : RDfCPre1NLS 

post-condition 
postConditionl RDfCPost1NLS 

end 

Pre Condition for Retrieve Data from 

Cartridge 

RDfCPre1NLS in 
MatraNaturalLanguageStructure, Token with 
mnls_composite 

mnlsCompositel RDfCPreCl 
mnls plain_text 

mnlsPlainTextl RDfCPrePT1; 

mnlsPlainText2 RDfCPrePT2 

mnls_module 
mnlsModulel : CartridgeNode 

end 

RDfCPreC1 in MatraNLSComposite, Token 
with 
preceding-fragment 

precedingFragment : RDfCPrePT1 
subject-node 

subjectNode : CartridgeNode 
following-fragment 

followingFragment : RDfCPrePT2 
end 

RDfCPrePT1 in PlainTextNode, Token with 
mnls_text 

mnlsText : "A 
end 

RDfCPrePT2 in PlainTextNode, Token with 
mnls_text 

mnlsText containing data is 
present in the hardware. " 

end 

Post Condition for Retrieve Data from 

Cartridge 

RDfCPost1NLS in 
MatraNatura1LanguageStructure, Token with 

mnls_composite 
mnlsCompositel RDfCPOStC1; 
mnlsComposite2 : RDfCPostC2 

C-5 



Appendix C (Part 1) 

mnlsplain_text 
mnlsPlainTextl : RDfCPostPT1; 
mnlsPlainText2 : RDfCPostPT2; 
mnlsPlainText3 : RDfCPostPT3 

mnls. jnodule 
mnlsModulel : CartridgeNode; 
mnlsModule2 

Miss ionPlanningSystemNode 
end 

RDfCPOStC1 in MatraNLSComposite, Token 
with 
preceding-fragment 

precedingFragment : RDfCPOStPT1 
subject_node 

subjectNode : CartridgeNode 
following_fragment 

followingFragment : RDfCPostC2 
end 

RDfCPostPT1 in PlainTextNode, Token with 
mnls_text 

mnlsText : The data on the 
end 

RDfCPostC2 in MatraNLSComposite, Token 
with 
preceding-fragment 

precedingFragment : RDfCPostPT2 
subjecmode 

subjectNode 
Miss ionPlanningSystemNode 
following-fragment 

followingFragment : RDfCPostPT3 
end 

RDfCPostPT2 in PlainTextNode, Token with 
mnls_text 

mnlsText " has been copied onto the 

end 

RDfCPostPT3 in PlainTextNode, Token with 
mnls_text 

mnlsText ". " 
end 

Display Cartridge Data 

DisplayCartridgeData in UseCase, Token 
with 
use-case-name 

useCaseName : "Display Cartridge 
Data" 
sub_case 

subCase : True 
pre_condition 

preConditionl : DCDPre1NLS 
post-condition 

postConditionl : DCDPost1NLS 
end 

Pre Condition for Display Cartridge Data 

DCDPre1NLS in 
MatraNaturalLanguageStructure, Token with 
mnls_composite 

mnlsCompositel DCDPreC1; 
mnlsComposite2 DCDPreC2 

mnls plain_text 
mnlsPlainTextl DCDPrePT1; 
mnlsPlainText2 : DCDPrePT2; 
mnlsPlainText3 DCDPrePT3 

mnls_module 
mnlsModulel : CartridgeNode; 
mnlsModule2 

Miss ionPlanningSystemNode 
end 

DCDPreC1 in MatraNLSComposite, Token with 

preceding fragment 
precedingFragment : DCDPrePT1 

subject_node 
subjectNode : CartridgeNode 

following-fragment 
followingFragment : DCDPreC2 

end 

DCDPrePT1 in P1ainTextNode, Token with 
mnls_text 

mnlsText : Data has been retrieved 
from the 

end 

DCDPreC2 in MatraNLSComposite, Token with 
preceding_fragment 

precedingFragment : DCDPrePT2 
subject_node 

subjectNode 
MissionPlanningSystemNode 
following_fragment 

followingFragment : DCDPrePT3 
end 

DCDPrePT2 in PlainTextNode, Token with 
mnls_text 

mnlsText and stored on the 
end 

DCDPrePT31n PlainTextNode, Token with 
mnls_text 

mnlsText : 
end 

Post Condition for Display Cartridge Data 

DCDPost1NLS in 
MatraNaturalLanguageStructure, Token with 
mnls_composite 

mnlsCompositel DCDPostC1; 
mnlsComposite2 DCDPostC2 

mnls_plain_text 
mnlsPlainTextl : DCDPostPT1; 
mnlsPlainText2 DCDPostPT2; 
mnlsPlainText3 DCDPostPT3 

mnls_module 
mnlsModulel : CartridgeNode; 
mnlsModule2 PilotNode 

end 

DCDPOStC1 in MatraNLSComposite, Token 
with 
preceding_fragment 

precedingFragment : DCDPostPT1 
subject_node 

subjectNode : CartridgeNode 
following-fragment 

followingFragment : DCDPostC2 
end 

DCDPostPTl in PlainTextNode, Token with 
mnls_text 

mnlsText : The data that is 
currently loaded onto the " 

end 

DCDPostC2 in MatraNLSComposite, Token 
with 
preceding_fragment 

precedingFragment : DCDPostPT2 
subject_node 

subjectNode : PilotNode 
following_fragment 

followingFragment : DCDPostPT3 
end 

DCDPostPT2 in PlainTextNode, Token with 
mnls_text 

mnlsText : is displayed for the 

C-6 



Appendix C (Part 1) 

end 

DCDPostPT3 in PlainTextNode, Token with 
mnls_text 

wnlsText : 
end 

Print Data 

PrintData in UseCase, Token with 
use-case-name 

useCaseName : "Print Data' 
sub_case 

subCase : True 
pre_condition 

preConditionl PDPre1NLS 
post-condition 

postConditionl PDPost1NLS 
end 

Pre Condition for Print Data 

PDPre1NLS in 
MatraNaturalLanguageStructure, Token with 
mnlsplain text 

mnlsPlainTextl : PDPrePT1 
end 

PDPrePT1 in PlainTextNode, Token with 
mnls_text 

mnlsText : The data to be printed is 
being displayed. ' 

end 

Post Condition for Print Data 

PDPost1NLS in 
MatraNaturalLanguageStructure, Token with 
mnls_composite 

mnlsCompositel : PDPostC1 
mnls-plain_text 

mnlsPlainTextl PDPostPT1; 
mnlsPlainText2 : PDPostPT2 

mnls_nodule 
mnlsModulel : MPSPrinterNode 

end 

PDPOStC1 in MatraNLSComposite, Token with 
preceding-fragment 

precedingFragment : PDPostPT1 
subject_node 

subjectNode : MPSPrinterNode 
following_fragment 

followingFragment : PDPostPT2 
end 

PDPostPTl in PlainTextNode, Token with 
mnls_text 

mnlsText : The data item has been 
printed by the 

end 

PDPOStPT2 in PlainTextNode, Token with 
mnls_text 

mnlsText 
end 

Choose Mission and Aircraft 

ChooseMissionandAircraft in UseCase, 
Token with 
use_case_name 

useCaseName : "Choose Mission and 
Aircraft' 
sub_case 

subCase : False 
pre_condition 

preConditionl : CMAPre1NLS 
post_condition 

postConditionl CMAPOSt1NLS; 
postCondition2 CMAPost2NLS 

end 

Pro Condition for Choose Mission and 
Aircraft 

CMAPre1NLS in 
MatraNaturalLanguageStructure, Token with 
mnls_composite 

mnlsCompositel CMAPreC1 
mnls plain_text 

mnlsPlainTextl CMAPrePT1; 
mnlsPlainText2 : CMAPrePT2 

mnls_module 
rnnlsModulel 

MissionPlanningSystemNode 
end 

CMAPreC1 in MatraNLSComposite, Token with 
preceding-fragment 

precedingFragment : CMAPrePT1 
subject_node 

subjectNode 
MissionPlanningSystemNode 
following_fragment 

followingFragment : CMAPrePT2 
end 

CMAPrePT1 in PlainTextNode, Token with 
mnls_text 

mnlsText : "A database must be 
attached to the 
end 

CMAPrePT2 in PlainTextNode, Token with 
mnls_text 

mnlsText 
end 

Post Conditions for Choose Mission and 
Aircraft 

Post Condition 1 

CMAPost1NLS in 
MatraNaturalLanguageStructure, Token with 
mnlsplain_text 

mnlsPlainTextl : CMAPost1PT1 
end 

CMAPost1PT1 in PlainTextNode, Token with 
mnls_text 

mnlsText : "A mission and aicraft 
have been selected. - 
end 

Post Condition 2 

CMAPost2NLS in 
MatraNaturalLanguageStructure, Token with 
mnls_composite 

mnlsCompositel CMAPost2C1; 
mnlsComposite2 : CMAPost2C2 

mnls_plain_text 
mnlsPlainTexti : CMAPost2PT1; 

mnlsPlainText2 CMAPost2PT2; 
mnlsPlainText3 : CMAPost2PT3 

mnls_module 
mnisModulel : MissionPlanNode: 
mnlsModule2 

MissionPlanningSystemNode 
end 

C-7 



Appendix C (Part 1) 

CMAPost2C1 in MatraNLSComposite, Token 
with 
preceding_fragment 

precedingFragment : CMAPost2PT1 
subject_node 

subjectNode : MissionPlanNode 
following-fragment 

followingFragment : CMAPost2C2 
end 

CMAPost2PT1 in PlainTextNode, Token with 
mnls_text 

mnlsText : Data for the selected 
end - 

CMAPost2C2 in MatraNLSComposite, Token 
with 
preceding-fragment 

precedingFragment : CMAPost2PT2 
subject-node 

subjectNode 
Miss ionPlanningSystemNode 
following-fragment 

followingFragment : CMAPost2PT3 
end 

CMAPost2PT2 in PlainTextNode, Token with 
mnls_text 

mnlsText: " has been loaded onto the, 
end 

CMAPost2PT3 in PlainTextNode, Token with 
mnls_text 

mnlsText : 
end 

Retrieve from Mission Plan 

RetrievefromMissionPlan in UseCase, Token 
with 
use_case_name 

useCaseName : "Retrieve from Mission 
Plan" 
sub_case 

subCase : True 
precondition 

preConditionl : RfMPPre1NLS 
post-condition 

postConditionl RfMPPost1NLS 
end 

Pro Condition for Retrieve from Mission 
Plan 

RfMPPre1NLS in 
MatraNaturalLanguageStructure, Token with 
mnlsplain_text 

mnlsPlainTextl : RfMPPrePT1; 
end 

RfMPPrePT1 in PlainTextNode, Token with 
mnls_text 

mnlsText : "A mission and aircraft 
have been defined. ' 

end 

Post Condition for Retrieve from mission 
Plan 

RfMPPost1NLS in 
MatraNaturalLanguageStructure, Token with 
mnls_composite 

mnlsCompositel : RfMPPostCl; 

mnlsComposite2 RfMPPostC2 

mnls_plain . 
text 

mnlsPlainTextl RfMPPostPT1; 

mnlsPlainText2 RfMPPostPT2; 

mnlsPlainText3 : RfMPPOStPT3 
mnlsjnodule 

mnlsModulel MissionPlanNode; 
mnlsModule2 

MissionPlanningSystemNode 
end 

RfMPPostCl in MatraNLSComposite, Token 
with 
preceding_fragment 

precedingFragment : RfMPPostPT1 
subject_node 

subjectNode : MissionPlanNode 
following-fragment 

followingFragment : RfMPPostC2 
end 

RfMPPOStPT1 in P1ainTextNode, Token with 
mnls_text 

mnlsText : The data on the 
end 

RfMPPostC2 in MatraNLSComposite, Token 
with 
preceding-fragment 

precedingFragment : RfMPPostPT2 
subject-. node 

subjectNode 
MissionPlanningSystemNode 
following_fragment 

followingFragment : RfMPPostPT3 
end 

RfMPPOStPT2 in PlainTextNode, Token with 
mnls_text 

mnlsText : for the selected mission 
and aircraft has been copied onto the 
end 

RfMPPostPT3 in PlainTextNode, Token with 
mnls_text 

mnlsText : 
end 

0 Interaction instances 

PilotEraseCartridge in Interaction, Token 
with 
interactor_1 

interactorl : Pilot 
interactor_2 

interactor2 : EraseCartridge 
end 

CartridgeCheckforCartridge in 
Interaction, Token with 
interactor_1 

interactorl Cartridge 
interactor_2 

interactor2 CheckforCartridge 
end 

CartridgeCheckCartridgeforData in 
Interaction, Token with 
interactor_1 

interactorl Cartridge 
interactor_2 

interactor2 CheckCartridgeforData 
end 

CartridgeEraseDatafromCartridge in 
Interaction, Token with 
interactor_1 

interactorl Cartridge 
interactor_2 

interactor2 EraseDatafromCartridge 

end 

PilotRetrievefromCartridge in 
Interaction, Token with 
interactor_1 

interactorl : Pilot 

C-8 



Appendix C (Part 1) 

interactor_2 includesInclude : 
interactor2 : RetrievefromCartridge EraseDatafromCartridge 

end end 

CartridgeRetrieveDatafromCartridge in RetrievefromCartridgeCheckforCartridge in 
Interaction, Token with Includes, Token with interactor_I includes_base 

interactorl Cartridge includesBase : RetrievefromCartridge 
interactor_2 includes include 

interactor2 : - includesInclude : CheckforCartridge 
RetrieveDatafromCartridge end 
end 

PilotSelectDatatoRetrieve in Interaction, 
Token with 
interactor_1 

interactorl Pilot 
interactor_2 

interactor2 SelectDatatoRetrieve 
end 

RetrievefromCartridgeCheckCartridgeforDat 
a in Includes, Token with 
includes-base 

includesBase : RetrievefromCartridge 
includes_include 

includesInclude 
CheckCartridgeforData 
end 

MPSPrinterPrintData in Interaction, Token 
with 
interactor_1 

interactorl MPSPrinter 
interactor_2 

interactor2 : PrintData 
end 

PilotChooseMissionandAircraft in 
Interaction, Token with 
interactor_l 

interactorl : Pilot 
interactor_2 

interactor2 : 
ChooseMissionandAircraft 
end 

MissionPlanRetrievefromMissionPlan in 
Interaction, Token with 
interactor_1 

interactorl MissionPlan 
interactor_2 

interactor2 : RetrievefromMissionPlan 
end 

MissionPlanChooseMissionandAircraft in 
Interaction, Token with 
interactor_1 

interactorl : MissionPlan 
interactor_2 

interactor2 
ChooseMissionandAircraft 
end 

" Includes Instances 

EraseCartridgeCheckforCartridge in 
Includes, Token with 
includes_base 

includesBase : EraseCartridge 
includes-include 

includesInclude : CheckforCartridge 
end 

EraseCartridgeCheckCartridgeforData in 
Includes, Token with 
includes_base 

includesBase : EraseCartridge 
includes-include 

includeslnclude 
CheckCartridgeforData 
end 

EraseCartridgeEraseDatafromCartridge in 
Includes, Token with 
includes-base 

includesBase : EraseCartridge 
includes-include 

RetrievefromCartridgeRetrieveDatafromCart 
ridgein Includes, Token with 
includes_base 

includesBase : RetrievefromCartridge 
includes-include 

includesInclude 
RetrieveDatafromCartridge 
end 

RetrievefromCartridgeDisplayCartridgeData 
in Includes, Token with 
includes_base 

includesBase : RetrievefromCartridge 
includes-include 

includesInclude 
DisplayCartridgeData 
end 

ChooseMissionandAircraftRetrievefromMissi 
onPlan in Includes, Token with 
includes_base 

includesBase 
ChooseMissionandAircraft 
includes-include 

includeslnclude 
RetrievefromMissionPlan 
end 

0 Extends Instances 

PrintDataDisplayCartridgeData in Extends, 
Token with 
extends_base 

extendsBase : PrintData 
extends-extend 

extendsExtend : DisplayCartridgeData 
end 

SelectDatatoRetrieveRetrievefromCartrdige 
in Extends, Token with 
extends_base 

extendsBase : SelectDatatoRetrieve 
extends_extend 

extendsExtend : RetrievefromCartrdige 
end 

Erase Cartridge Use Case Model 

EraseCartridgeModel in UseCaseModel, 
Token with model_name 

modelName : "Erase Cartridge Model' 
ucnLcomments 

ucmComments : EraseCartridgeComments 
ucm_use_case 

ucmUseCasel : EraseCartridge; 
ucmuseCase2 : CheckforCartridge; 
ucmUseCase3 : CheckCartridgeforData; 
ucmUseCase4 EraseDatafromCartridge 

C-9 



Appendix C (Part 1) 

ucm-actor 
ucmActorl : Pilot; 
ucmACtor2 : Cartridge 

ucm interaction 
ucmInteractionl 

PilotEraseCartridge; 
ucmInteraction2 
CartridgeCheckforCartridge; 

ucmInteraction3 : 
CartridgeCheckCartridgeforData; 

ucmInteraction4 : 
CartridgeEraseDatafromCartridge 
ucm-includes 

ucmincludesl 
EraseCartridgeCheckforCartridge; 

ucmincludes2 : 
EraseCartridgeCheckCartridgeforData; 
ucmIncludes3 : 
EraseCartridgeEraseDatafromCartridge 

ucm. pre_condition 
ucmPreConditionl : CCfDPre1NLS; 
ucmPreCondition2 : EDfCPre1NLS; 
ucmPreCondition3 : EDfCPre2NLS 

ucm-post_condition 
ucmPostConditionl : ECPost1NLS; 
ucmPostCondition2 : CfCPost1NLS; 
ucmPostCondition3 : CCfDPost1NLS; 
ucmPostCondition4 EDfCPost1NLS 

end 

EraseCartridgeComments in 
MatraNaturalLanguageStructure, Token with 
mnls_composite 

mnlsCompositel : ECCC1; 
mnlsComposite2 : ECCC2; 
mnlsComposite3 ECCC3 

mnls plain_text 
mnlsPlainTextl ECCPT1; 
mnlsPlainText2 : ECCPT2; 
mnlsPlainText3 ECCPT3; 
mnlsPlainText4 : ECCPT4 

mnls_module 
mnlsModulel : CartridgeNode 

mnls_transaction 
mnlsTransactionl 

CheckforCartridgeNode; 
mnlsTransaction2 : 

CheckCartridgeforDataNode 
end 

ECCC1 in MatraNLSComposite, Token with 
preceding_fragment 

precedingFragment : ECCPTI 
subject_node 

subjectNode : CartridgeNode 
following-fragment 

followingFragment : ECCC2 
end 

ECCPTI in PlainTextNode, Token with 
mnls_text 

mnlsText : The purpose of this 
diagram is to model the erasing of data 
from a 
end 

ECCC2 in MatraNLSComposite, Token with 
preceding-fragment 

precedingFragment : ECCPT2 
subject node 

subjectNode : CheckforCartridgeNode 
following-fragment 

followingFragment : ECCC3 
end 

ECCPT2 in PlainTextNode, Token with 
mnls_text 

mnlsText :. Checks are made to 
ensure that a cartridge is physically 

present, using 
end 

ECCC3 in MatraNLSComposite, Token with 
preceding_fragment 

precedingFragment : ECCPT3 
subject-node 

subjectNode 
CheckCartridgeforDataNode 
following-fragment 

followingFragment : ECCPT4 
end 

ECCPT3 in PlainTextNode, Token with 
mnls_text 

mnlsText and also that there is 
data on the cartridge, using 
end 

ECCPT4 in PlainTextNode, Token with 
mnls_text 

mnlsText : 
end 

Retrieve from Cartridge Use Case Model 
(Partial - Derived Elements not Shown) 

RetrievefromCartridgeModel in 
UseCaseModel, Token with model_name 

modelName : "Retrieve from Cartridge 
Model' 
ucm_comments 

ucmComments 
Retrieve fromCartridgeComments 
ucm_use_case 

ucmUseCasel : RetrievefromCartridge; 
ucmUseCase2 : CheckforCartridge; 
ucmUseCase3 : CheckCartridgeforData; 

ucmUseCase4 
RetrieveDatafromCartridge; 

ucmUseCase5 : SelectDatatoRetrieve; 
ucmuseCase6 DisplayCartridgeData; 
ucmUseCase7 : PrintData 

ucm_actor 
ucmactorl : Pilot; 
ucmActor2 : MPSPrinter 

ucm_interaction 
ucminteractionl 

PilotRetrievefromCartridge; 
ucmInteraction2 : 

CartridgeRetrieveDatafromCartridge; 
ucmInteraction3 : 

PilotSelectDatatoRetrieve; 
ucmInteraction4 : 

MPSPrinterPrintData 
ucm_includes 

ucmIncludesl 
RetrievefromCartridgeCheckforCartridge; 

ucmincludes2 : 
RetrievefromCartridgeCheckCartridgeforD 

ata; 
ucmincludes3 
RetrievefromCartridgeRetrieveDatafrom 

Cartridge; 
ucmIncludes4 
RetrievefromCartridgeDisplayCartridge 

Data 
ucm_extends 

ucmExtendsl 
PrintDataDisplayCartridgeData; 
ucmExtends2 : 
SelectDatatoRetrieveRetrievefromCartr 

dige 

ucm precondition 
ucmPreConditionl : RDfCPre1NLS; 

ucmPreCondition2 : PDPre1NLS; 

ucmPreCondition3 DCDPre1NLS 

ucmPostCOndition 
ucmPostConditionl : RfCPost1NLS; 
ucmpostCondition2 : RfCPost2NLS; 
ucmPostCondition3 : RDfCPost1NLS; 

c-i0 



Appendix C (Part 1) 

ucmPostCondition4 PDPost1NLS; 
ucmPostCondition5 DCDPost1NLS; 
ucmPostCondition6 : SDtRPOSt1NLS 

end 

RetrievefromCartridgeComments in 
MatraNaturalLanguageStructure, Token with 
mnls_composite 

mnlsCompositel : RfCC1; 
mnlsComposite2 : RfCC2 

mnls plain_text 
mnlsPlainTextl RfCPT1; 
mnlsPlainText2 : RfCPT2; 
mnlsPlainText3 RfCPT3 

mnlsjnodule 
mnlsModulel : CartridgeNode; 
mnlsModule2 

MissionPlanningSystemNode 
end 

RfCC1 in MatraNLSComposite, Token with 
preceding-fragment 

precedingFragment : RfCPT1 
subject_node 

subjectNode : CartridgeNode 
following-fragment 

followingFragment : RfCC2 
end 

RfCPTl in PlainTextNode, Token with 
mnls_text 

mnlsText : The purpose of this 
diagram is to model retrieval of data 
from the 
end 

RfCC2 in MatraNLSComposite, Token with 
preceding_fragment 

precedingFragment : RfCPT2 
subject_node 

subjectNode 
MissionPlanningSystemNode 
following-fragment 

followingFragment : RfCPT3 
end 

RfCPT2 in PlainTextNode, Token with 
mnls_text 

mnlsText and its storage on the 
end 

RfCPT3 in PlainTextNode, Token with 
mnls_text 

mnlsText : 
end 

Choose Mission and Aircraft Use Case 
Model (Partial - Derived Elements not 
Shown) 

ChooseMissionandAircraftModel in 
UseCaseModel, Token with model_name 

modelName : `Choose Mission and 
Aircraft Model' 
ucm_use_case 

ucmUseCasel 
ChooseMissionandAircraft; 

ucmUseCase2 : RetrievefromMissionPlan 
ucm_actor 

ucmActorl Pilot; 
ucmActor2 : MissionPlan 

ucm_interaction 
ucmInteractionl 

PilotChooseMissionandAircraft; 
ucmInteraction2 : 

MissionPlanRetrievefromMissionPla 
n; 

ucminteraction3 
MissionPlanChooseMissionandAircraft 

ucm _includes 

ucmincludesl : 
ChooseMissionandAircraftRetrievefromM 

issionPlan 
ucmpre_condition 

ucmPreConditionl CMAPre1NLS; 
ucmPreCondition2 : RfMPPre1NLS 

ucmPostCondition 
ucmPostConditionl CMAPOSt1NLS; 
ucmPostCondition2 : CMAPOSt2NLS; 
ucmPostCondition3 RfMPPost1NLS 

end 

" Service Instances 

MissionAdministration in Service, Token 
with 
service_name 

serviceName : "Mission 
Administration' 
service_use_case 

serviceUseCasel 
RetrievefromCartridge; 

serviceUseCase2: 
ChooseMissionandAircraft 
end 

CartridgeAdministration in Service, Token 
with 
service_name 

serviceName : 'Cartridge 
Administration' 
service_use_case 

serviceUseCasel : EraseCartridge 
end 

0 Hawk MPS Use Case View (Partial) 

HawkMPSUseCaseView in UseCaseView, Token 
with 
ucv_service 

ucvServicel : MissionAdministration; 
ucvService2 CartridgeAdministration 

use_case_model 
useCaseModell : EraseCartridgeModel; 
useCaseModel2 

Retrieve fromCartridgeMode1; 

useCaseModel3 : 
ChooseMissionandAircraftModel 

end 

" Hawk MPS User Centred Requirements 
Structure 

HawkMPSUCRS in 
UserCentredRequirementsStructure, Token 
with 
subject module 

subjectModule : 'Mission Planning 
System' 
use_case_view 

useCaseView : HawkMPSUseCaseView 
interaction_view 

interactionView 
HawkMPSInteractionView 

end 

C-11 



Appendix C (Part 1) 

Scenario Name: Erase Cartridge - Normal Path 

MP ri 

1 Erase Cartridge 
C[SRJ base Cnrtrmge Rrquesi 

2: Cartridge in Hardware? 

C[IRJ Revuear Cofmn Caaidge 

3: Confrm Cartridge in Hardware 
c t, r, Cartnepe C[IP] 

4 Data on CarUidge? 
C[IRJ Re5arst Coerrm Carta eDaze 

. 
5. Con_firm Data onCartri_dge 

Confine Cartridge Dele C[IP] 

6 Confirm Data on CaIndge 

Cadlidge Daare Foood NW-lwn C[IP) 

7: OK Proceed Ease 

C[SRJ Pmreed base Canriepe 

_ 
B: Erase Current Data 

C[SRJ Fese All 

9: Cartridge Data Erased 

Cartridge Erased C(SPJ 

10: Confirm Al] Data Deleted 

Detedgo Erased NWficabon C[SP] 

11: OK: Acknovledge Erase 
C(IP] - Aekoowtedpe Ness 

12: Main Screen 
Mein Sc- 1 C[IP] 

`ti9SC: Erase Cartridge - Normal Path' 

C-12 



Appendix C (Part 1) 

Scenario Name: Erase Cartridge - No Cartridge Present 

6. C[IP] The [sdr MPS] displays to the [,,, Pilot] the [m, g Main Screen Mainscreen- ]" 

Piw 

1: Erase Cartridge 

C[SR] Ease Caeoege Repuev 
2 Cartridge in Hardware? 

C[IR] Rogoosr Condom Carnage 

.. 3: No Cartddge in Hardware 
W Canndpa- Clip] 

4'. Report Catridge 
NCoetion Clip] 

5 ON Acknowledge No Cartridge 

C[IP] Aornoeledge No Cartndpe 

6: Main Screen 

Main Screen I Cf1q 

'RISC: Erase Cartridge - No Cartridge' 

C-13 



Appendix C (Part 1) 

Scenario Name: Erase Cartridge - No Data on Cartridge 

8. C[IP] The [sir MPS] displays to the [«r Pilot] the 

I Cri 

1: Erase Cartridge 
C[SRJ Erase Cartridge Regues! 

2 Cartridge in Hardware? 
` 

C[IRJ Repuasl Confine Crhieae 

_ 
3. Conlin Cartridge in Hardware 

c, aem Cedriege CEPI 

4: Data on Cartridge? 
C[IRJ Request Confirm Cartridge Dar3 

5: No Data on Cartridge 
f 

oCartdegeýý Clip] 

6 Report No Data on Catridge 
N. Cartridge Data Nobrrsrion C[IP] 

7'. OK: Acknowledge No Data 

C[IPJ AdnorNedge NO Dols 

8: Main Screen 

Main Sweep 1 CLIP):: 

`MSC: Erase Cartridge - No Data on Cartridge' 

C-14 



Appendix C (Part 1) 

Scenario Name: Erase Cartridge - Pilot Chooses Not to Erase Data 

S. C[IP] The [, d, Cartridge] responds to the [ MPS] that [�m9 there is data on the cartridge : Confirm Cartridge Data]. 

6. C[IP] The (5,, MPS] informs the [,, ' Pilot] that [�ay there is data on the cartridge : C, r1,, de Data Found Notification] . 

7. C[IP] The [sd, Pilot] indicates to the[,,, MPS] that he wishes to[:,,, cancel the Erase Cartridge request : Cancel erase cartridge]. 

8. C[IP] The [sd MPS] displays to the [«' Pilot] the [ý9 Main Screen Mav, screen_1J. 

ME ri 

I Erase Carfitlge 
_ C[SR] E. ue Cumepe Rawv 

2 CaNiEge in Hardware? 

C[IR] Realest Canfn Cahidge 

3: Confirm Car1ndge in Handware 

Cafirm Certridpe C[IP] 

4: Data on Cartridge? 
C[I RJ Rpue9 Confirm Camidge Dare 

5: Confirm Data on Caudge 
Cmfirm CMnege Dala Cf p] 

6 Confin Data on Catndge 
4 

Cartridge Data FnrtN Naifi a6oo C[IPJ 

7: Cancel Erase 

C[IP] - Cancn'Ense Gmitlge. _ 
, 

8: Main Screen 
uain sr, an I COP] 

"1ISC: Erase Cartridge - Pilot Chooses Not to Urase vata 

C'-15 



. -.. - - jrvrr 1) 

Retrieve From Cartridge - Normal Path (Fragement) 

11T The (,,,,,,:, ,,, MPS] sets the [i ,,, , DataTimer] to 10 seconds]. 

12. C[SP] The [w, MPS] informs the [,, Pilot] that [�ýtgtype_1 data has been retrieved . Type. ) aauievedNolnicatbn]. 

13. T The [,,,,,,,,,, �; o,,, MPS] ["". DataTimer] times-out. 

14. A The [,,,,,,, MPS] [ý, stores type_1 data S lore Type. 1 Da, ]. 

Pi41 MPS Cartridge Prin er 

ýII Unta Tnnor-stO SOCOntlsý 
'. 

i. ' iylýx_I Rxlrwretl__. 
ý7 i Nxn. v. A NdArciem CISPI 

', X113 

UalaTimel 

14 Slnla Type 

oeh 

'Retrieve from Cartridge - Normal Path (Timing Fragment)' 

Choose Mission and Aircraft: New Mission From Open Missions (Fragement) 

I ITERATION: Lower Bound =1 : Upper Bound = card data types MissionPlan() 

11 C[IR] The MPS] asks the[,,, Mission Plan] to [, ', g supply a data item: Request Data Item]. 

12. C[IP] The [, a, Mission Plan] supplies the [imsdata item for the selected Mission and Aircraft Missionanc Data item] to the 

[, ý, MPS]. 

13. A The [.., i, /,,, r MPS] [., stores the data item for the selected Mission and Aircraft : Store Selected Mission&AC Da a1. 

'Choose Mission and Aircraft - New Mission From Open Missions 

(t: vcnt Group Fragment)' 

C-I6 



Appendix C (Part 1) 

f. Instantiation of Interaction View 
for Erase Cartridge Scenarios 

" Instantiation of Interaction View 

HawkMPSlnteractionView in 
InteractionView, Token with 
interaction-model 

interactionModell 
CheckforCartridgeModel; 

interactionModel2 : 
CheckCartridgeforDataModel; 

interactionModel3 : 
EraseDatafromCartridgeModel; 

interactionModel4 
EraseCartridgeModel 

end 

" Instantiation of Instance 
Definitions 

MPSlnstance in Instance, Token with 
instance_name 

instanceName : "MPS' 
end 

Cartridgelnstance in Instance, Token 
with 
instance_name 

instanceName : `Cartridge' 
end 

Pilotlnstance in Instance, Token with 
instance_name 

instanceName : `Pilot' 
end 

MissionPlanlnstance in Instance, Token 
with 
instance_name 

instanceName : "Mission Plan, 
end 

" Instantiation of Interaction View 
Elements 

Instantiation of Check For Cartridge 
Interaction Model 

CheckforCartridgeModel in 
InteractionModel, Token with 
model_name 

modelName : `Check For Cartridge 
Descriptions' 
describes_use_case 

describesUseCase : Check for 
Cartridge' 
inm scenario 

inmScenariol 
CheckforCartridge_NormalPath; 

inmScenario2 : 
CheckforCartridge_NoCartridge 

-- other elements may be derived using 
an implementation of the rules in in 

App. A, Pt. 2 (xi). 

end 

Instantiation of Check for Cartridge : 
Normal Path 

CheckforCartridge NormalPath in 
Scenario, Token with 
scenario_title 

scenarioTitle : "Check for 
Cartridge - Normal Path' 
is-exception 

isException : False 
scenario_event 

scenarioEventl 
CheckforCartridgeRequest; 

scenarioEvent2 : 
ConfirmCartridgePresent 
scn_seq_no 

scnSegNoi 
CheckforCartridgeRequest NormalPathSSN; 

scnSeqNo2 : 
ConfirmCartridgePresentSSN 
tsn_viewpoint 

tsnViewpoint 
CheckforCartridge_NormalPathTSV 
msc_viewpoint 

mscViewpoint 
CheckforCartridge_iormalPathMSV 
end 

CheckforCartridgeRequest_NormalPathSSN 
in SequenceNumber, Token with 
sequence_no 

sequenceNo 1 
end 

ConfirmCartridgePresentSSN in 
SequenceNumber, Token with 
sequence-no 

sequenceNo :2 
end 

CheckforCartridge-NOrmalPathTSV in 
TsnScenarioViewpoint, Token 
with 
tsv_tsn_comm 

tsvTsnComml 
CheckforCartridgeRequestTextDescription 

tsvTsnComm2 
ConfirmCartridgePresentTextDescription 
end 

CheckforCartridge_. NormalPathMSV in 
MscScenarioViewpoint, Token 
with 
msv_nsc_comm 

msvMscComml 
CheckforCartridgeRequestMSCDescription; 

msvMscComm2 : 
ConfirmCartridgePresentMSCDescription 
end 

Check for Cartridge Request Event 

Instantiation 

CheckforCartridgeRequest in 

CommunicationEvent, Token with 
interaction_type 

interactionType : "IR" 
sequence-no 

sequenceNol 
CheckforCartridgeRequest, NormalPathSSN; 

sequenceNo2 : 
CheckforCartridgeRequest_NoCartridgeSSN 
included_seq_no 

includedSegNol 
CheckforCartridgeRequest_EC_NP_ISN; 

includedSeqNo2 
CheckforCartridgeRequest_EC_IC_ISN; 

includedSegNo3 
CheckforCartridgeRequest_EC_ND_ISN; 

includedSeqNo4 
CheckforCartridgeRequest_EC_PCNTED_ISN 
tsn_communication_event 

tsnCommunicationEvent 
CheckforCartridgeRequestTextDescription 
msc_communication`event 

mscCommunicationEvent 
CheckforCartridgeRequestMSCDescription 
end 

C-17 



Appendix C (Part 1) 

CheckforCartridgeRequestTextDescription 
in TsnCommunication, Token with 
communication_description 

communicationDescription 
CheckforCartridgeRequestEventText 
end 

CheckforCartridgeRequestEventText in 
ScenarioEventNaturalLanguageStructure, 
Token with 
mnls_composite 

mnlsCompositel : CfCREC1; 
mnlsComposite2 : CfCREC2; 
mnlsComposite3 : CfCREC3 

mnls p1ain_text 
mnlsPlainTextl CfCREPT1; 
mnlsPlainText2 : CfCREPT2; 
mnlsPlainText3 CfCREPT3; 
mnlsPlainText4 CfCREPT4 

tsn_sender_node 
tsnSenderNode MPSlnstance 

tsn_receiver. node 
tsnReceiverNode : Cartridgelnstance 

tsnjnessage node 
tsnMessageNode 

RequestConfirmCartridge 
end 

CfCREC1 in MatraNLSComposite, Token 
with 
preceding-fragment 

precedingFragment : CfCREPTl 
subject-node 

subjectNode : MPSlnstance 
following-fragment 

followingFragment : CfCREC2 
end 

CfCREC2 in MatraNLSComposite, Token 
with 
preceding-fragment 

precedingFragment : CfCREPT2 
subject-node 

subjectNode : Cartridgelnstance 
following_fragment 

followingFragment : CfCREC3 
end 

CfCREC3 in MatraNLSComposite, Token 
with 
preceding-fragment 

precedingFragment : CfCREPT3 
subject_node 

subjectNode 
RequestConfirmCartridge 
following-fragment 

followingFragment : CfCREPT4 
end 

CfCREPTI in PlainTextNode, Token with 
mnls_text 

mnlsText : The 
end 

CfCREPT2 in PlainTextNode, Token with 
mnls_text 

mnlsText asks the 
end 

CfCREPT3 in PlainTextNode, Token with 
mnls_text 

mnlsText : whether there 
end 

CfCREPT4 in PlainTextNode, Token with 
mnls text 

mnlsText ". ` 
end 

RequestConfirmCartridge in Messag e, 
Token with 

message-name 
messageName : "Request Confirm 

Cartridge' 
tsnjnsg-Parameter 

tsnMsgParameter 
RequestConfirmCartridgeTsnParameter 
mscjnsgparameter 

mscMsgParameter 
RequestConfirmCartridgeMscParameter 
end 

RequestConfirmCartridgeTsnParameter in 
MessageDescription, Token with 
msg parameter 

msgParameter : is a cartridge 
present in the hardware? ' 
end 

RequestConfirmCartridgeMscParameter in 
MessageDescription, Token with 
msgparameter 

msgParameter : "Cartridge in 
Hardware? ' 
end 

CheckforCartridgeRequestMSCDescription 
in MscCommunication, Token with 
link_name 

linkName : "unspecified' 
synchronisation 

_Synchronisation 
'sim' 

frequency 

_Frequency : "aperiodic' 
delayed 

_Delayed : False 
msc_sender_instance 

mscSenderInstance : MPSlnstance 
msc_receiver_instance 

mscReceiverinstance 
Cartridgelnstance 
mscjnessage 

mscMessage 
RequestConfirmCartridge 
end 

Confirm Cartridge Present Event 
Instantiation 

ConfirmCartridgePresent in 
CommunicationEvent, Token with 
interaction_type 

interactionType : "IP' 
sequence-no 

sequenceNol 
ConfirmCartridgePresentSSN 
include&seq_no 

includedSeqNol 
ConfirmCartridgePresent_EC_NP_ISN; 

includedSeqNo2 : 
ConfirmCartridgePresent_EC_ND_ISN; 

includedSeqNo3 : 
ConfirmCartridgePresent_EC_PCNTED_ISN 
follows-from 

followsFrom 
CheckforCartridgeRequest 
tsn_communication_event 

tsnCommunicationEvent 
ConfirmCartridgePresentTextDescription 
msc_communication_event 

mscCommunicationEvent 
ConfirmCartridgePresentMSCDescription 
end 

ConfirmCartridgePresentTextDescription 
in TsnCommunication, Token with 
communication-description 

communicationDescription 
ConfirmCartridgePresentEventText 
end 

C-18 



Appendix C (Part 1) 

ConfirmCartridgePresentEventText in 
ScenarioEventNaturalLanguageStructure, 
Token with 
mnls_composite 

mnlsCompositel : CCPECI; 
mnlsComposite2 CCPEC2; 
mnlsComposite3 : CCPEC3 

mnls_plain_text 
mnlsPlainTextl CCPEPTI; 
mnlsPlainText2 : CCPEPT2; 
mnlsPlainText3 : CCPEPT3; 
mnlsPlainText4 CCPEPT4 

tsn_sender_node 
tsnSenderNode : Cartridgelnstance 

tsn_receiver_node 
tsnReceiverNode MPSlnstance 

tsn_message_node 
tsnMessageNode ConfirmCartridge 

end 

CCPECI in MatraNLSComposite, Token with 
preceding-fragment 

precedingFragment : CCPEPTI 
subject_node 

subjectNode : Cartridgelnstance 
following-fragment 

followingFragment : CCPEC2 
end 

CCPEC2 in MatraNLSComposite, Token with 
preceding_fragment 

precedingFragment : CCPEPT2 
subject_node 

subjectNode : MPSlnstance 
following_fragment 

followingFragment : CCPEC3 
end 

CCPEC3 in MatraNLSComposite, Token with 
preceding-fragment 

precedingFragment : CCPEPT3 
subject--node 

subjectNode : ConfirmCartridge 
following_fragment 

followingFragment : CCPEPT4 
end 

CCPEPT1 in PlainTextNode, Token with 
mnls_text 

mnlsText : The 
end 

CCPEPT2 in P1ainTextNode, Token with 
mnis_text 

mnlsText responds to the 
end 

CCPEPT3 in PlainTextNode, Token with 
mnls_text 

mnlsText that 
end 

CCPEPT4 in PlainTextNode, Token with 
mnls_text 

mnlsText : 
end 

ConfirmCartridge in Message, Token with 
message-name 

messageName : "Confirm Cartridge' 
tsn_msg_parameter 

tsnMsgParameter 
ConfirmCartridgeTsnParameter 
msc_nsg_parameter 

mscMsgParameter 
ConfirmCartridgeMscParameter 
end 

ConfirmCartridgeTsnParameter in 
MessageDescription, Token with 
msgparameter 

msgParameter : "there is a 
cartridge present in the hardware" 
end 

ConfirmCartridgeMscParameter in 
MessageDescription, Token with 
msg-parameter 

msgParameter : "Confirm Cartridge 
in Hardware' 
end 

ConfirmCartridgePresentMSCDescription 
in MscCommunication, Token with 
link_name 

linkName : "unspecified' 
synchronisation 

_Synchronisation _ "sim" 
frequency 

_Frequency : "aperiodic" 
delayed 

_Delayed : False 
msc_sender_instance 

mscSenderinstance 
Cartridgelnstance 
msc_receiver_instance 

mscReceiverInstance : MPSlnstance 
msc-inessage 

mscMessage : ConfirmCartridge 
end 

Instantiation of Check for Cartridge t 
No Cartridge (Loaded in the Hardware) 

CheckforCartridge_loCartridge in 
Scenario, Token with 
scenario-title 

scenarioTitie : "Check for 
Cartridge - No Cartridge Present' 
is_exception 

isException : True 
scenario-event 

scenarioEventl 
CheckforCartridgeRequest; 

scenarioEvent2 : NoCartridgePresent 

scn_seq_no 
scnSegNol 

CheckforCartridgeRequest_NoCartridgeSSN 

scnSegNo2 : NoCartridgePresentSSN 
tsn_viewpoint 

tsnViewpoint 
CheckforCartridge_loCartridgeTSV 
msc_viewpoint 

mscViewpoint 
CheckforCartridge_NoCartridgeMSV 
end 

CheckforCartridgeRequest-NoCartridgeSSN 
in SequenceNumber, Token with 
sequence--no 

sequenceNo 
end 

NoCartridgePresentSSN in 
SequenceNumber, Token with 
sequence-no 

sequenceNo :2 
end 

CheckforCartridge_NoCartridgeTSV in 
TsnScenarioViewpoint, Token 
with 
tsv_tsn_comm 

tsvTsnComml 
CheckforCartridgeRequestTextDescription 

tsvTsnComm2 
NoCartridgePresentTextDescription 
end 

C-19 



Appendix C (Part 1) 

CheckforCartridge-NoCartridgeMSV in 
MscScenarioViewpoint, Token 
with 
msv_nsc_comm 

msvMscComml 
CheckforCartridgeRequestMSCDescription; 

msvMscComm2 : 
NoCartridgePresentMSCDescription 
end 

No Cartridge Present Event 
Instantiation 

NoCartridgePresent in 
CommunicationEvent, Token with 
interaction-type 

interactionType : "IP, 
sequence-no 

sequenceNol : NoCartridgePresentSSN 
included_seq_no 

includedSegNo1 
NoCartridgePresent_EC_NC_ISN 
follows-from 

followsFrom 
CheckforCartridgeRequest 
tsn_communication_event 

tsnCommunicationEvent 
NoCartridgePresentTextDescription 
msc_communication_event 

mscCommunicationEvent 
NoCartridgePresentMSCDescription 
end 

NoCartridgePresentTextDescription in 
TsnCommunication, Token with 
communication-description 

communicationDescription 
NoCartridgePresentEventText 
end 

NoCartridgePresentEventText in 
ScenarioEventNaturalLanguageStructure, 
Token with 
mnls_composite 

mnlsCompositel : NCPECI; 
mnlsComposite2 NCPEC2; 
mnlsComposite3 : NCPEC3 

mnls_plain text 
mnlsPlainTextl : NCPEPT1; 
mnlsPlainText2 NCPEPT2; 
mnl8PlainText3 NCPEPT3; 
mnlsPlainText4 NCPEPT4 

tsn_sender_node 
tsnSenderNode : Cartridgelnstance 

tsn_receiver-node 
tsnReceiverNode : MPSlnstance 

tsn_message_node 
tsnMessageNode NoCartridge 

end 

NCPEC1 in MatraNLSComposite, Token with 
preceding-fragment 

precedingFragment : NCPEPT1 
subject_node 

subjectNode : Cartridgelnstance 
following_fragment 

followingFragment : NCPEC2 
end 

NCPEC2 in MatraNLSComposite, Token with 
preceding-fragment 

precedingFragment : NCPEPT2 
sub j ec tode 

subjectNode : MPSlnstance 
following-fragment 

followingFragment : NCPEC3 
end 

NCPEC3 in MatraNLSComposite, Token with 
preceding_fragment 

precedingFragment : NCPEPT3 

subject_node 
subjectNode : NoCartridge 

following-fragment 
followingFragment : NCPEPT4 

end 

NCPEPT1 in PlainTextNode, Token with 
mnls_text 

mnlsText : "The 
end 

NCPEPT2 in PlainTextNode, Token with 
mnls_text 

mnlsText : responds to the 
end 

NCPEPT3 in PlainTextNode, Token with 
mnls_text 

mnlsText : that 
end 

NCPEPT4 in PlainTextNode, Token with 
mnls_text 

mnlsText : 
end 

NoCartridge in Message, Token with 
message_name 

messageName : "No Cartridge' 
tsn_msg_parameter 

tsnMsgParameter 
NoCartridgeTsnParameter 
msc msg_parameter 

mscMsgParameter 
NoCartridgeMscParameter 
end 

NoCartridgeTsnParameter in 
MessageDescription, Token with 
msg-parameter 

msgParameter : "there is no 
cartridge present in the hardware' 
end 

NoCartridgeMscParameter in 
MessageDescription, Token with 
msg parameter 

msgParameter : "No Cartridge in 
Hardware' 
end 

NoCartridgePresentMSCDescription in 
MscCommunication, Token with 
l ink_name 

linkName : unspecified' 
synchronisation 

_Synchronisation 
'sim' 

frequency 

_Frequency : 'aperiodic' 
delayed 

_Delayed : False 
msc_sender_instance 

mscSenderInstance 
Cartridgelnstance 
msc_receiver_instance 

mscReceiverInstance : MPSlnstance 
msc_message 

mscMessage : NoCartridge 
end 

Instantiation of Check Cartridge For 
Data Interaction Model 

CheckCartridgeforDataModel in 
InteractionModel, Token with 
model_name 

modelName : "Check Cartridge for 
Data Descriptions' 
describes_use_case 

describesUseCase : `Check Cartridge 
for Data' 

C-20 



Appendix C (Part 1) 

inscenario 
inmScenariol 

CheckCartridgeforData_NormalPath; 
inmscenario2 : 

CheckCartridgeforData_NoData 

-- 
other elements may be derived using 

an implementation of the rules in in 
App. A, Pt. 2 (xi). 
end 

Instantiation of Check Cartridge for 
Data: Normal Path 

CheckCartridgeforData_NormalPath in 
Scenario, Token with 
scenario-title 

scenarioTitle : `Check Cartridge 
for Data - Normal Path' 
is_exception 

isException : False 
scenario_event 

scenarioEventl 
CheckCartridgeforDataRequest; 

scenarioEvent2 : 
ConfirmCartridgeDataPresent 
scn_seq_no 

scnSeqNol 
CheckCartridgeforDataRequest_NormalPath 
SSN; 

scnSeqNo2 
ConfirmCartridgeDataPresentSSN 
tsn_viewpoint 

tsnViewpoint 
CheckCartridgeforData_NormalPathTSV 
msc_viewpoint 

mscViewpoint 
CheckCartridgeforData_NormalPathMSV 
end 

CheckCartridgeforDataRequest_7ormalPath 
SSN in SequenceNumber, Token with 
sequence_no 

sequenceNo :1 
end 

ConfirmCartridgeDataPresentSSN in 
SequenceNumber, Token with 
sequence_no 

sequenceNo :2 
end 

CheckCartridgeforData NormalPathTSV in 
TsnScenarioViewpoint, Token 
with 
tsv_tsn_comm 

tsvTsnComml 
CheckCartridgeforDataRequestTextDescrip 
tion; 

tsvTsnComm2 
ConfirmCartridgeDataPresentTextDescript 
ion 
end 

CheckCartridgeforData_NormalPathMSV in 
MscScenarioViewpoint, Token 
with 
msv. jnsc_comm 

msvMscComml 
CheckCartridgeforDataRequestMSCDescript 
ion; 

msvMscComm2 
ConfirmCartridgeDataPresentMSCDescripti 
on 
end 

Check Cartridge for Data Request Event 
Instantiation 

CheckCartridgeforDataRequest in 
CommunicationEvent, Token with 

interaction type 
interactionType : "IR" 

sequence_no 
SequenceNol 

CheckCartridgeforDataRequest_NormalPath 
SSN; 

sequenceNo2 
CheckCartridgeforDataRequest_NoDataSSN 
included_seq-no 

includedSeqNol 
CheckCartridgeforDataRequest EC_NP_ISN; 

includedSegNo2 : 
CheckCartridgeforDataRequest_EC-NID_ISN; 

includedSegNo3 : 
CheckCartridgeforDataRequest_EC_PCNTED_ 
ISN 
tsn_communication_event 

tsnCommunicationEvent 
CheckCartridgeforDataRequestTextDescrip 
tion 
msc_communication_event 

mscCommunicationEvent 
CheckCartridgeforDataRequestMSCDescript 
ion 
end 

CheckCartridgeforDataRequestTextDescrip 
tion in TsnCommunication, Token with 
communication-description 

communicationDescription 
CheckCartridgeforDataRequestEventText 
end 

CheckCartridgeforDataRequestEventText 
in 
ScenarioEventNaturalLanguageStructure, 
Token with 
mnls_composite 

mnlsCompositel : CCfDREC1; 
mnlsComposite2 CCfDREC2; 
mnlsComposite3 : CCfDREC3 

mnls plain_text 
mnlsPlainTexti CCfDREPT1; 
mnlsPlainText2 : CCfDREPT2; 
mnlsPlainText3 CCfDREPT3; 
mnlsPlainText4 CCfDREPT4 

tsn_sender node 
tsnSenderNode MPSlnstance 

tsn receiver_node 
tsnReceiverNode : Cartridgelnstance 

tsn. jnessage node 
tsnMessageNode 

RequestConfirmCartridgeData 
end 

CCfDREC1 in MatraNLSComposite, Token 
with 
preceding_fragment 

precedingFragment : CCfDREPT1 
subject-node 

subjectNode : MPSlnstance 
following_fragment 

followingFragment : CCfDREC2 
end 

CCfDREC2 in MatraNLSComposite, Token 
with 
preceding-fragment 

precedingFragment : CCfDREPT2 
subject_node 

subjectNode : Cartridgelnstance 
following-fragment 

followingFragment : CCfDREC3 
end 

CCfDREC3 in MatraNLSComposite, Token 
with 
preceding fragment 

precedingFragment : CCfDREPT3 
subject_node 

C-21 



Appendix C (Part 1) 

subjectNode : 
RequestConfirmCartridgeData 
following-fragment 

followingFragment : CCfDREPT4 
end 

CCfDREPT1 in P1ainTextNode, Token with 
mnls_text 

mnlsText : "The 
end 

CCfDREPT2 in P1ainTextNode, Token with 
mnls_text 

mnlsText : asks the 
end 

CCfDREPT3 in PlainTextNode, Token with 
mnls_text 

mnlsText whether there 
end 

CCfDREPT4 in PlainTextNode, Token with 
mnls_text 

mnlsText ". " 
end 

RequestConfirmCartridgeData in Message, 
Token with 
message name 

messageName : "Request Confirm 
Cartridge Data, 
tsnjnsg. parameter 

tsnMsgParameter 
RequestConfirmCartridgeDataTsnParameter 
msc. Jnsg-parameter 

mscMsgParameter 
RequestConfirmCartridgeDataMscParameter 
end 

RequestConlirmCartridgeDataTsnParameter 
in MessageDescription, Token with 
msg_parameter 

msgParameter : is data on the 
cartridge? ' 
end 

RequestConfirmCartridgeDataMscParameter 
in MessageDescription, Token with 
msg. parameter 

msgParameter : Data on Cartridge? " 
end 

CheckCartridgeforDataRequestMSCDescript 
ion in MscCommunication, Token with 
linkname 

linkName : "unspecified' 
synchronisation 

_Synchronisation 
"aim" 

frequency 

_Frequency : "aperiodic' 
delayed 

_Delayed : False 
msc_sender_instance 

mscSenderInstance : MPSlnstance 
msc_receiver_instance 

mscReceiverInstance 
Cartridgelnstance 
msc_message 

mscMessage 
RequestConfirmCartridgeData 
end 

Confirm Cartridge Data Present Event 
Instantiation 

ConfirmCartridgeDataPresent in 
CommunicationEvent, Token with 
interaction_type 

interactionType : "IPI 
sequence-no 

sequenceNol : 
ConfirmCartridgeDataPresentSSN 
included_seq_no 

includedSeqNol 
ConfirmCartridgeDataPresent_EC_IP_ISN; 

includedSeqNo2 : 
ConfirmCartridgeDataPresent_EC_PCNTED_I 
SN 
follows_from 

followsFrom 
CheckCartridgeforDataRequest 
tsn_communication_event 

tsnCommunicationEvent 
ConfirmCartridgeDataPresentTextDescript 
ion 
msc_communication_event 

mscCommunicationEvent 
ConfirmCartridgeDataPresentMSCDescripti 
on 
end 

ConfirmCartridgeDataPresentTextDescript 
ion in TsnCommunication, Token with 
communication_description 

communicationDescription 
ConfirmCartridgeDataPresentEventText 
end 

ConfirmCartridgeDataPresentEventText in 
ScenarioEventNaturalLanguageStructure, 
Token with 
mnls_composite 

mnlsCompositel : CCDPECI; 
mnlsComposite2 CCDPEC2; 
mnlsComposite3 : CCDPEC3 

mnls plain_text 
mnlsPlainTextl CCDPEPT1; 
mnlsPlainText2 CCDPEPT2; 
mnlsPlainText3 CCDPEPT3; 
mnlsPlainText4 : CCDPEPT4 

tsn_sender_node 
tsnSenderNode : Cartridgelnstance 

tsn_receiver_node 
tsnReceiverNode MPSlnstance 

tsn_message_node 
tsnMessageNode 

ConfirmCartridgeData 
end 

CCDPEC1 in MatraNLSComposite, Token 
with 
preceding-fragment 

precedingFragment : CCDPEPT1 
subject-node 

subjectNode : Cartridgelnstance 
following_fragment 

followingFragment : CCDPEC2 
end 

CCDPEC2 in MatraNLSComposite, Token 
with 
preceding-fragment 

precedingFragment : CCDPEPT2 
subject_node 

subjectNode : MPSlnstance 
following_fragment 

followingFragment : CCDPEC3 
end 

CCDPEC3 in MatraNLSComposite, Token 
with 
preceding-fragment 

precedingFragment : CCDPEPT3 
subject_node 

subjectNode : ConfirmCartridgeData 
following_fragment 

followingFragment : CCDPEPT4 
end 

CCDPEPT1 in P1ainTextNode, Token with 
mnls_text 

C-22 



Appendix C (Part 1) 

mnlsText : The 
end 

CCDPEPT2 in P1ainTextNode, Token with 
mnls_text 

mnlsText responds to the 
end 

CCDPEPT3 in P1ainTextNode, Token with 
mnls_text 

mnlsText that 
end 

CCDPEPT4 in P1ainTextNode, Token with 
mnls_text 

mnlsText 
end 

ConfirmCartridgeData in Message, Token 
with 
message_name 

messageName : `Confirm Cartridge 
Data' 
tsn_msg_parameter 

tsnMsgParameter 
ConfirmCartridgeDataTsnParameter 

msc_msg_parameter 
mscMsgParameter 

ConfirmCartridgeDataMscParameter 
end 

ConfirmCartridgeDataTsnParameter in 
MessageDescription, Token with 
msg_parameter 
I msgParameter : `there is data on 
the cartridge' 
end 

ConfirmCartridgeDataMscParameter in 
MessageDescription, Token with 
msgparameter 

msgParameter : "Confirm Data on 
Cartridge' 
end 

ConfirmCartridgeDataPresentMSCDescripti 
on in MscCommunication, Token with 
link, 

_name linkName : "unspecified' 
synchronisation 
- _Synchronisation _ "sim" 
frequency 

_Frequency : "aperiodic' 
delayed 

_Delayed : False 
msc_sender_instance 

mscSenderinstance 
Cartridgelnstance 
msc_receiver_instance 

mscReceiverInstance : MPSlnstance 
msc-message 

mscMessage : ConfirmCartridgeData 
end 

Instantiation of Check Cartridge for 
Data : No Data Present (on Cartridge) 

CheckCartridgeforData_NoData in 
Scenario, Token with 
scenario_title 

scenarioTitle : "Check Cartridge 
for Data - No Data Present' 
is-exception 

isException : True 
scenario-event 

scenarioEventl 
CheckCartridgeforDataRequest; 

scenarioEvent2 : 
NoCartridgeDataPresent 
scn_seq_no 

scnSegNol : 
CheckCartridgeforDataRequest_NoCartridg 
eDataSSN; 

scnSeqNo2 
NoCartridgeDataPresentSSN 
tsn_viewpoint 

tsnViewpoint 
CheckCartridgeforData_NoCartridgeDataTS 
V 
msc_viewpoint 

mscViewpoint 
CheckCartridgeforData_NoCartridgeDataMS 
V 

end 

CheckCartridgeforDataRequest_NoCartridg 
eDataSSN in SequenceNumber, Token with 
sequence no 

sequenceNo :1 
end 

NoCartridgeDataPresentSSN in 
SequenceNumber, Token with 
sequence_no 

sequenceNo :2 
end 

CheckCartridgeforData-NoCartridgeDataTS 
V in TsnScenarioViewpoint, Token 
with 
tsv_tsn_comm 

tsvTsnComml 
CheckCartridgeforDataRequestTextDescrip 
tion; 

tsvTsnComm2 
NoCartridgeDataPresentTextDescription 
end 

CheckCartridgeforDataloCartridgeDataMS 
V in MscScenarioViewpoint, Token 
with 
msv_msc_comm 

msvMscComml 
CheckCartridgeforDataRequestMSCDescript 
ion; 

msvMscComm2 
NoCartridgeDataPresentMSCDescription 
end 

No Cartridge Data Present Event 
Instantiation 

NoCartridgeDataPresent in 
CommunicationEvent, Token with 
interaction_type 

interactionType : 'IP' 
sequence-no 

sequenceNol 
NoCartridgeDataPresentSSN 
included_seq_no 

includedSeqNol 
NoCartridgeDataPresent_EC_ND_ISN 
follows-from 

followsFrom 
CheckCartridgeforDataRequest 
tsn_communication_event 

tsnCommunicationEvent 
NoCartridgeDataPresentTextDescription 
msc_communication_event 

mscCommunicationEvent 
NoCartridgeDataPresentMSCDescription 
end 

NoCartridgeDataPresentTextDescription 
in TsnCommunication, Token with 
communication description 

communicationDescription 
NoCartridgeDataPresentEventText 
end 

C-23 



Appendix C (Part 1) 

NoCartridgeDataPresentEventText in 
ScenarioEventNaturalLanguageStructure, 
Token with 
mnls_composite 

mnlsCompositel : NCDPECl; 
mnlsComposite2 NCDPEC2; 
mnlsComposite3 : NCDPEC3 

mnls-plain_text 
mnlsPlainTextl : NCDPEPT1; 
mnlsPlainText2 : NCDPEPT2; 
mnlsPlainText3 : NCDPEPT3; 
mnlsPlainText4 : NCDPEPT4 

tsn_sender node 
tsnSenderNode Cartridgelnstance 

tsn_receiver node 
tanReceiverNode MPSlnstance 

tsn-message_node 
tsnMessageNode : NoCartridgeData 

end 

NCDPEC1 in MatraNLSComposite, Token 
with 
preceding_fragment 

precedingFragment : NCDPEPT1 
subject_node 

subjectNode : Cartridgelnstance 
foilowing_fragment 

followingFragment : NCDPEC2 
end 

NCDPEC2 in MatraNLSComposite, Token 
with 
preceding_fragment 

precedingFragment : NCDPEPT2 
subject_node 

subjectNode : MPSlnstance 
following_fragment 

followingFragment : NCDPEC3 
end 

NCDPEC3 in MatraNLSComposite, Token 
with 
preceding_fragment 

precedingFragment : NCDPEPT3 
subject_node 

subjectNode : NoCartridgeData 
following_fragment 

followingFragment : NCDPEPT4 
end 

NCDPEPT1 in PlainTextNode, Token with 
mnls_text 

mnlsText : The 
end 

NCDPEPT2 in PlainTextNode, Token with 
mnls_text 

mnlsText : responds to the 
end 

NCDPEPT3 in PlainTextNode, Token with 
mnls_text 

mnlsText that 
end 

NCDPEPT4 in PlainTextNode, Token with 
mnls_text 

mnlsText ". " 
end 

NoCartridgeData in Message, Token with 
message-name 

messageName ; No Cartridge Data' 
tsnjnsg-parameter 

tsnMsgParameter 
NoCartridgeDataTsnParameter 
msc jnsg-parameter 

mscMsgParameter 
NoCartridgeDataMscParameter 
end 

NoCartridgeDataTsnParameter in 
MessageDescription, Token with 
msg parameter 

msgParameter : "there is no data on 
the cartridge, 
end 

NoCartridgeDataMscParameter in 
MessageDescription, Token with 
msg parameter 

msgParameter : No Data on 
Cartridge" 
end 

NoCartridgeDataPresentMSCDescription in 
MscCommunication, Token with 
link-name 

linkName : "unspecified' 
synchronisation 

_Synchronisation 
"sim' 

frequency 

_Frequency : "aperiodic' 
delayed 

_Delayed : False 
msc_sender_instance 

mscSenderlnstance 
Cartridgelnstance 
msc_receiver_instance 

mscReceiverInstance : MPSlnstance 
msc_nessage 

mscMessage : NoCartridgeData 
end 

Instantiation of Erase Data from 
Cartridge Interaction Model 

EraseDatafromCartridgeModel in 
InteractionModel, Token with 
model_name 

modelName : "Erase Data from 
Cartridge Descriptions" 
describes_use_case 

describesUseCase : "Erase Data from 
Cartridge' 
inm_scenario 

inmScenariol 
EraseDatafromCartridge 

-- other elements may be derived using 
an implementation of the rules in in 
App. A, Pt. 2 (xi). 
end 

Instantiation of Erase Data from 
Cartridge 

EraseDatafromCartridge in Scenario, 
Token with 
scenario_title 

scenarioTitle : "Erase Data from 
Cartridge" 
is-exception 

isException : False 
scenario_event 

scenarioEventl 
EraseCurrentDataRequest; 

scenarioEvent2 : 
CurrentDataErasedNotification 
scn_seq_no 

scnSeqNol 
EraseCurrentDataRequestSSN; 

scnSeqNo2 : 
CurrentDataErasedNotificationSSN 
tsn_viewpoint 

tsnViewpoint 
EraseDatafromCartridgeTSV 
msc_viewpoint 

mscViewpoint 
EraseDatafromCartridgeMSV 
end 

C-24 



Appendix C (Part 1) 

EraseCurrentDataRequestSSN in 
SequenceNumber, Token with 
sequence_no 

sequenceNo 1 
end 

CurrentDataErasedNotificationSSN in 
SequenceNumber, Token with 
sequence_no 

sequenceNo :2 
end 

EraseDatafromCartridgeTSV in 
TsnScenarioViewpoint, Token 
with 
tsv_tsn_comm 

tsvTsnComml 
EraseCurrentDataRequestTextDescription; 

tsvTsnComm2 : 
CurrentDataErasedNotificationTextDescri 
ption 
end 

EraseDatafromCartridgeMSV in 
MscScenarioViewpoint, Token 
with 
msv_msc_comm 

msvMscComml 
EraseCurrentDataRequestMSCDescription; 

msvMscComm2 : 
CurrentDataErasedNotificationMSCDescrip 
tion 
end 

Erase Current Data Request Event 
Instantiation 

EraseCurrentDataRequest in 
CommunicationEvent, Token with 
interaction_type 

interactionType : "SR' 
sequence--no 

sequenceNol 
EraseCurrentDataRequestSSN 
included_seq_no 

includedSegNol 
EraseCurrentDataRequest_EC NP_ISN 
tsn_communication_event 

tsnCommunicationEvent 
EraseCurrentDataRequestTextDescription 
msc_communication_event 

mscCommunicationEvent 
EraseCurrentDataRequestMSCDescription 
end 

EraseCurrentDataRequestTextDescription 
in TsnCommunication, Token with 
communication_description 

communicationDescription 
EraseCurrentDataRequestEventText 
end 

EraseCurrentDataRequestEventText in 
ScenarioEventNaturalLanguageStructure, 
Token with 
mnls_composite 

mnlsCompositel : ECDRECI; 
mnlsComposite2 ECDREC2; 
mnlsComposite3 : ECDREC3 

mnls plain_text 
mnlsPlainTextl : ECDREPT1; 
mnlsPlainText2 ECDREPT2; 
mnlsPlainText3 : ECDREPT3; 
mnlsPlainText4 ECDREPT4 

tsn_sender_node 
tsnSenderNode MPSlnstance 

tsn_receiver_node 
tsnReceiverNode : Cartridgelnstance 

tsn_message_node 
tsnMessageNode : EraseAll 

end 

ECDRECI in MatraNLSComposite, Token 
with 
preceding fragment 

precedingFragment : ECDREPT1 
subject_node 

subjectNode : MPSlnstance 
following-fragment 

followingFragment : ECDREC2 
end 

ECDREC2 in MatraNLSComposite, Token 
with 
preceding fragment 

precedingFragment : ECDREPT2 
subject-node 

subjectNode : Cartridgelnstance 
following_fragment 

followingFragment : ECDREC3 
end 

ECDREC3 in MatraNLSComposite, Token 
with 
preceding-fragment 

precedingFragment : ECDREPT3 
subject-node 

subjectNode : EraseAll 
following-fragment 

followingFragment : ECDREPT4 
end 

ECDREPTI in PlainTextNode, Token with 
mnls_text 

mnlsText : `The 
end 

ECDREPT2 in PlainTextNode, Token with 
mnls_text 

mnlsText tells the 
end 

ECDREPT3 in PlainTextNode, Token with 
mnls_text 

mnlsText to 
end 

ECDREPT4 in PlainTextNode, Token with 
mnls_text 

mnlsText 
end 

EraseAll in Message, Token with 
message_name 

messageName : "Erase A11' 
tsn_msg_parameter 

tsnMsgParameter 
EraseAllTsnParameter 
msc_msg_parameter 

mscMsgParameter 
EraseAllMscParameter 
end 

EraseAllTsnParameter in 
MessageDescription, Token with 
msgparameter 

msgParameter : "erase the current 
data" 
end 

EraseAllMscParameter in 
MessageDescription, Token with 
msgparameter 

msgParameter : `Erase Current Data' 
end 

EraseCurrentDataRequestMSCDescription 
in MscCommunication, Token with 
1ink_name 

linkName : "unspecified' 
synchronisation 

_Synchronisation :_ "sim" 

C-25 



Appendix C (Part 1) 

frequency 

_Frequency : "aperiodic' 
delayed 

_Delayed : False 
msc_sender_instance 

mscSenderlnstance : MPSlnstance 
msc_receiver_instance 

mscReceiverInstance 
Cartridgelnstance 
mscjnessage 

mscMessage : EraseAll 
end 

Current Data Erased Notification Event 
Instantiation 

CurrentDataErasedNotification in 
CommunicationEvent, Token with 
interaction_type 

interactionType : *SP" 
sequence-no 

sequenceNol 
CurrentDataErasedNotificationSSN 
included_seq_no 

includedSegNol 
CurrentDataErasedNotification_EC-NP_ISN 
follows-from 

followsFrom 
EraseCurrentDataRequest 
tsn_communication, 

_event tsnCommunicationEvent 
CurrentDataErasedNotificationTextDescri 
ption 
msc_communication_event 

macCommunicationEvent 
CurrentDataErasedNotificationNSCDescrip 
tion 
end 

CurrentDataErasedNotificationTextDescri 
ption in TsnCommunication, Token with 
communication_description 

communicationDescription 
CurrentDataErasedNotificationEventText 
end 

CurrentDataErasedNotificationEventText 
in 
ScenarioEventNatura1LanguageStructure, 
Token with 
mnls_composite 

mnlsCompositel CDENEC1; 
mnlsComposite2 : CDENEC2; 
mnlsComposite3 : CDENEC3 

mnls-plain-text 
mnlsPlainTextl : CDENEPT1; 
mnlsPlainText2 CDENEPT2: 
mnlsPlainText3 CDENEPT3; 
mnlsPlainText4 : CDENEPT4 

tsn_sender_node 
tsnSenderNode CartridgeInstance 

tsn_receiver_node 
tsnReceiverNode MPSlnstance 

tsnL. nessage_node 
tsnMessageNode : CartridgeErased 

end 

CDENEC1 in MatraNLSComposite, Token 
with 
preceding_fragment 

precedingFragment : CDENEC2 
subject_node 

subjectNode : MPSlnstance 
following_fragment 

followingFragment : CDENEC3 
end 

CDENEC2 in MatraNLSCompoaite, Token 
with 
preceding-fragment 

precedingFragment : CDENEPT1 

subject_node 
subjectNode : Cartridgelnstance 

following_fragment 
followingFragment : CDENEPT2 

end 

CDENEC3 in MatraNLSComposite, Token 
with 
preceding-fragment 

precedingFragment : CDENEPT3 
subject_node 

subjectNode : CartridgeErased 
following-fragment 

followingFragment : CDENEPT4 
end 

CDENEPT1 in P1ainTextNode, Token with 
mnls_text 

mnlsText : The 
end 

CDENEPT2 in PlainTextNode, Token with 
mnls_text 

mnlsText : indicates to the 
end 

CDENEPT3 in PlainTextNode, Token with 
mnls_text 

mnlsText that 
end 

CDENEPT4 in PlainTextNode, Token with 
mnls_text 

mnlsText : 
end 

CartridgeErased in Message, Token with 
message_name 

messageName : "Cartridge Erased' 
tsn_msg_parameter 

tsnMsgParameter 
CartridgeErasedTsnParameter 
msc_msg_parameter 

mscMsgParameter 
CartridgeErasedMscParameter 
end 

CartridgeErasedTsnParameter in 
MessageDescription, Token with 
msg_parameter 

msgParameter : "all current data 
has been deleted' 
end 

CartridgeErasedMscParameter in 
MessageDescription, Token with 
msg_parameter 

msgParameter : "Cartridge Data 
Erased' 
end 

CurrentDataErasedNotificationMSCDescrip 
tion in MscCommunication, Token with 
1ink_name 

linkName : unspecified" 
synchronisation 

_Synchronisation 
"sim" 

frequency 
Frequency : "aperiodic' 

delayed 

_Delayed : False 
msc_sender_instance 

mscSenderInstance 
Cartridgelnstance 
msc_receiver_instance 

mscReceiverInstance : MPSlnstance 
msc-message 

mscMessage : CartridgeErased 
end 

C-26 



Appendix C (Part 1) 

Instantiation of Erase Cartridge 
Interaction Model 

EraseCartridgeModel in 
InteractionModel, Token with 
model_name 

modelName : `Erase Cartridge 
Descriptions' 
describes use_case 

describesUseCase : `Erase 
Cartridge' 
inm_scenario 

inmScenariol 
EraseCartridge_NormalPath; 

inmScenario2 
EraseCartridge_NoCartridge; 

inmScenario3 
EraseCartridge_NoDataOnCartridge; 

inmScenario4 
EraseCartridge_PilotChoosesNotToEraseDa 
to 

-- 
other elements may be derived using 

an implementation of the rules in in 
App. A, Pt. 2 (xi). 
end 

Instantiation of Erase Cartridge: Normal 
Path (Partial) 

EraseCartridge_7ormalPath in Scenario, 
Token 
with 
scenario_title 

scenarioTitle : `Erase Cartridge - 
Normal Path" 
is-exception 

isException : False 
scenario_event 

scenarioEventl 
EraseCartridgeRequest; 

scenarioEvent2 
ConfirmDataPresentonCartridge; 

scenarioEvent3 
ProceedCartridgeEraseRequest; 

scenarioEvent4 
DataErasedNotification; 

scenarioEvent5 
DataErasedAcknowledgement; 

scenarioEvent6 
MainScreenDisplay_l 
includes-scenario 

includesScenariol 
CheckforCartridge_NormalPath; 

includesScenario2 : 
CheckCartridgeforData_NormalPath; 

includesScenario3 
EraseDatafromCartridge 
included-event 

includedEventi 
CheckforCartridgeRequest; 

includedEvent2 
ConfirmCartridgePresent; 

includedEvent3 
CheckCartridgeforDataRequest; 

includedEvent4 
ConfirmCartridgeDataPresent; 

includedEvent5 
EraseCurrentDataRequest; 

includedEvent6 
CurrentDataErasedNotification 

-- 'include&event' may be instantiated 

using a variation of the rule in App. A, 
Pt. 2 (vii. c); 
scn_seq-no 

scnSeqNol 
EraseCartridgeRequest_IormalPathSSN; 

scnSeqNo2 : 
ConfirmDataPresentonCartridge_NormalPat 
hSSN; 

scnSeqNo3 
ProceedCartridgeEraseRequestSSN; 

scnSeqNo4 
DataErasedNotificationSSN; 

scnSeqNo5 
DataErasedAcknowledgementSSN; 

scnSeqNo6 
MainScreenDisplay_l NormalPathSSN 
scn_included_segjio 

scnIncludedSegNol 
CheckforCartridgeRequest_EC_NP_ISN; 

scnIncludedSegNo2 
ConfirmCartridgePresent_EC_NP_ISN; 

scnIncludedSegNo3 
CheckCartridgeforDataRequest_EC_NP_ISN; 

scnIncludedSegNo4 
ConfirmCartridgeDataPresent_EC_NP_ISN; 

scnIncludedSegNo5 
EraseCurrentDataRequest_EC_NP_ISN; 

scnIncludedSegNo6 
CurrentDataErasedNotification_ECJ P_ISN 
tsn_viewpoint 

tsnViewpoint 
EraseCartridge_NormalPathTSV 
msc_viewpoint 

mscViewpoint 
EraseCartridge-Norma1PathMSV 
end 

EraseCartridgeRequest_NormalPathSSN in 
SequenceNumber, Token with 
sequence-no 

sequenceNo 1 
end 

ConfirmDataPresentonCartridge_NormalPat 
hSSN in SequenceNumber, Token 
with 
sequence-no 

sequenceNo 6 
end 

ProceedCartridgeEraseRequestSSN in 
SequenceNumber, Token with 
sequence-no 

sequenceNo :7 
end 

DataErasedNotificationSSN in 

SequenceNumber, Token with 
sequence_no 

sequenceNo : 10 
end 

DataErasedACknowledgementSSN in 
SequenceNumber, Token with 
sequence-no 

sequenceNo il 
end 

MainScreenDisplay_l_NormalPathSSN in 
SequenceNumber, Token with 
sequence-no 

sequenceNo : 12 
end 

CheckforCartridgeRequest_EC NP_ISN in 
SequenceNumber, Token with 
sequence-no 

sequenceNo :2 
end 

ConfirmCartridgePresent_EC-NP_ISN in 
SequenceNumber, Token with 
sequence-no 

sequenceNo :3 
end 

CheckCartridgeforDataRequest EC_NP_ISN 
in SequenceNumber, Token with 
sequence-no 

C-27 



Appendix C (Part 1) 

sequenceNo :4 
end 

ConfirmCartridgeDataPresent_EC_NP_ISN 
in SequenceNumber, Token with 
sequence_no 

sequenceNo :5 
end 

EraseCurrentDataRequest_EC_NP_ISN in 
SequenceNumber, Token with 
sequence_no 

sequenceNo :8 
end 

CurrentDataErasedNotification_EC NP_ISN 
in SequenceNumber, Token with 
sequence_no 

sequenceNO :9 
end 

EraseCartridge_, MormalPathTSV in 
TsnScenarioViewpoint, Token 
with 
tsv_tsn_comm 

tsvTsnComml 
EraseCartridgeRequestTextDescription; 

tsvTsnComm2 : 
ConfirmDataPresentonCartridgeTextDescri 
ption; 

tsvTsnComm3 
ProceedCartridgeEraseRequestTextDescrip 
tion; 

tsvTsnComm4 
DataErasedNotificationTextDescription; 

tsvTsnComm5 : 
DataErasedAcknowledgementTextDescriptio 
n; 

tsvTsnComm6 
MainScreenDisplay_1TextDescription 
end 

EraseCartridge_Norma1PathMSV in 
MscScenarioViewpoint, Token 
with 
msv_msc_comm 

msvMscComml 
EraseCartridgeRequestMSCDescription; 

msvMscComm2 : 
ConfirmDataPresentonCartridgeMSCDescrip 
tion: 

msvMscComm3 
ProceedCartridgeEraseRequestMSCDescript 
ion: 

msvMscComm4 
DataErasedNotificationMSCDescription; 

msvMscComm5 : 
DataErasedAcknowledgementMSCDescription 

mscMscComm6 
MainScreenDisplay_1MSCDescription 
end 

Erase Cartridge Request Event 
Instantiation 

EraseCartridgeRequest in 
CommunicationEvent, Token with 
interaction_type 

interactionType : "SR' 
sequence_no 

sequenceNol 
EraseCartridgeRequest_NormalPathSSN; 

sequenceNo2 : 
EraseCartridgeRequest_NoCartridgeSSN; 

sequenceNo3 : 
EraseCartridgeRequest_NoDataOnCartridge 
SSN; 

sequenceNo4 
EraseCartridgeRequest_PilotChoosesNotTo 
EraseDataSSN 

tsn. communication_event 
tsnCommunicationEvent 

EraseCartridgeRequestTextDescription 
msc_communication_event 

mscCommunicationEvent 
EraseCartridgeRequestMSCDescription 
end 

EraseCartridgeRequestTextDescription in 
TsnCommunication, Token with 
communication_description 

communicationDescription 
EraseCartridgeRequestEventText 
end 

EraseCartridgeRequestEventText in 
ScenarioEventNaturalLanguageStructure, 
Token with 
mnls_composite 

mnlsCompositel ECREC1; 
mnlsComposite2 ECREC2; 
mnlsComposite3 : ECREC3 

mnls_plain_text 
mnlsPlainTexti ECREPT1; 
mnlsPlainText2 : ECREPT2; 
mnlsPlainText3 : ECREPT3; 

mnlsPlainText4 ECREPT4 
tsn_sender_node 

tsnSenderNode : Pilotlnstance 
tsn_receiver_node 

tsnReceiverNode MPSlnstance 
tsn_message_node 

tsnMessageNode 
EraseCartridgeRequest 
end 

ECREC1 in MatraNLSComposite, Token with 
preceding_fragment 

precedingFragment : ECREPT1 
subject-node 

subjectNode : Pilotlnstance 
following_fragment 

followingFragment : ECREC2 
end 

ECREC2 in MatraNLSComposite, Token with 
preceding-fragment 

precedingFragment : ECREPT2 

subject_node 
subjectNode : EraseCartridgeRequest 

following_fragment 
followingFragment : ECREC3 

end 

ECREC3 in MatraNLSComposite, Token with 
preceding-fragment 

precedingFragment : ECREPT3 

subject-node 
subjectNode : MPSlnstance 

following-fragment 
followingFragment : ECREPT4 

end 

ECREPTI in PlainTextNode, Token with 
mnls_text 

mnlsText : The 
end 

ECREPT2 in PlainTextNode, Token with 
mnls_text 

mnlsText : selects the 
end 

ECREPT3 in PlainTextNode, Token with 

mnls_text 
mnlsText : on the 

end 

ECREPT4 in PlainTextNode, Token with 
mnls_text 

mnlsText : Main Screen. " 

C-28 



Appendix C (Part 1) 

end 

EraseCartridgeRequest in Message, Token 
with 
message_name 

messageName : "Erase Cartridge 
Request' 
tsn_nsg. parameter 

tsnMsgParameter 
EraseCartridgeRequestTsnParameter 
msc_msg_parameter 

mscMsgParameter 
EraseCartridgeRequestMscParameter 
end 

EraseCartridgeRequestTsnParameter in 
MessageDescription, Token with 
msg parameter 

msgParameter : "Erase Cartridge 
option' 
end 

EraseCartridgeRequestMscParameter in 
MessageDescription, Token with 
msg parameter 

msgParameter : "Erase Cartridge' 
end 

EraseCartridgeRequestMSCDescription in 
MscCommunication, Token with 
link_name 

linkName : `unspecified' 
synchronisation 

_Synchronisation _ `sim' 
frequency 

_Frequency : "aperiodic' 
delayed 

_Delayed : False 
msc_sender_instance 

mscSenderlnstance : Pilotlnstance 
msc_receiver_instance 

mscReceiverInstance : MPSlnstance 
msc, Jnessage 

mscMessage : EraseCartridgeRequest 
end 

Confirm Data Present on Cartridge Event 
Instantiation 
ConfirmDataPresentonCartridge in 
CommunicationEvent, Token with 
interaction_type 

interactionType : 'IP" 
sequence_no 

sequenceNol 
ConfirmDataPresentonCartridge_TormalPat 
hSSN: 

sequenceNo2 
ConfirmDataPresentonCartridge_PilotChoo 
sesNotToEraseDataSSN 
follows-from 

followsFrom 
ConfirmCartridgeDataPresent 
tsn communication_event 

tsnCommunicationEvent 
ConfirmDataPresentonCartridgeTextDescri 
ption 
msc_communication_event 

mscCommunicationEvent 
ConfirmDataPresentonCartridgeMSCDescrip 
tion 
end 

ConfirmDataPresentonCartridgeTextDescri 
ption in TsnCommunication, Token with 
communication_description 

communicationDescription 
ConfirmDataPresentonCartridgeEventText 
end 

ConfirmDataPresentonCartridgeEventText 
in 

ScenarioEventNaturalLanguageStructure, 
Token with 
mnls_composite 

mnlsCompositel : CDPoCEC1; 
mnlsComposite2 : CDPoCEC2; 
mnlsComposite3 CDPoCEC3 

mnlsplain_text 
mnlsPlainTextl : CDPoCEPT1; 
mnlsPlainText2 : CDPoCEPT2; 
mnlsPlainText3 : CDPOCEPT3; 
mnlsPlainText4 : CDPOCEPT4 

tsn_sender node 
tsnSenderNode : MPSlnstance 

tsn_receiver_node 
tsnReceiverNode : Pilotlnstance 

tsnjnessage node 
tsnNessageNode 

CartridgeDataFoundNotification 
end 

CDPOCECI in MatraNLSComposite, Token 
with 
preceding-fragment 

precedingFragment : CDPoCEPT1 
subject-node 

subjectNode : MPSlnstance 
following-fragment 

followingFragment : CDPoCEC2 
end 

CDPoCEC2 in MatraNLSComposite, Token 
with 
preceding-fragment 

precedingFragment : CDPOCEPT2 
subject_node 

subjectNode : Pilotlnstance 
following-fragment 

followingFragment : CDPOCEC3 
end 

CDPOCEC3 in MatraNLSComposite, Token 
with 
preceding-fragment 

precedingFragment : CDPOCEPT3 
subject_node 

subjectNode 
CartridgeDataFoundNOtification 
following-fragment 

followingFragment : CDPoCEPT4 
end 

CDPOCEPT1 in PlainTextNode, Token with 

mnls_text 
mnlsText : The 

end 

CDPoCEPT2 in PlainTextNode, Token with 
mnls_text 

mnlsText indicates to the 
end 

CDPoCEPT3 in PlainTextNode, Token with 
mnls_text 

mnisText that 
end 

CDPoCEPT4 in PlainTextNode, Token with 
mnls_text 

mnlsText : 
end 

CartridgeDataFoundNotification in 
Message, Token with 
message_name 

messageName : "Cartridge Data Found 
Notification' 
tsn_nsg_parameter 

tsnMsgParameter 
CartridgeDataFoundNotificationTsnParame 
ter 
msc_nsg_parameter 

C-29 



Appendix C (Part 1) 

mscMsgParameter : 
CartridgeDataFoundNotificationMscParame 
ter 
end 

CartridgeDataFoundNotificationTsnParame 
ter in MessageDescription, Token with 
msg parameter 

msgParameter : "there is data on 
the cartridge, 
end 

CartridgeDataFoundNotificationxscParame 
ter in MessageDescription, Token with 
msg-parameter 

msgParameter : "Confirm Data on 
Cartridge' 
end 

ConfirmDataPresentonCartridgeMSCDescrip 
tion in MscCommunication, Token with 
1 ink_name 

linkName : "unspecified' 
synchronisation 

_Synchronisation "sim" 
frequency 

_Frequency : "aperiodic" 
delayed 

_Delayed : False 
msc_sender_instance 

mscSenderInstance : MPSlnstance 
msc_receiver_instance 

mscReceiverInstance : Pilotlnstance 
msc. message 

mscMessage 
CartridgeDataFoundNotification 
end 

Proceed Cartridge Erase Request Event 
Instantiation 

ProceedCartridgeEraseRequest in 
CommunicationEvent, Token with 
interaction-type 

interactionType : "SRI 
sequence-no 

sequenceNol 
ProceedCartridgeEraseRequestSSN 
follows-from 

followsFrom 
ConfirmDataPresentonCartridge 
tsn_communication_event 

tsnCommunicationEvent 
ProceedCartridgeEraseRequestTextDescrip 
tion 
msc_communication_event 

mscCommunicationEvent 
ProceedCartridgeEraseRequestMSCDescript 
ion 
end 

ProceedCartridgeEraseRequestTextDescrip 
tion in TsnCommunication, Token with 
communication-description 

communicationDescription 
ProceedCartridgeEraseRequestEventText 
end 

ProceedCartridgeEraseRequestEventText 
in 
ScenarioEventNaturalLanguageStructure, 
Token with 
mnls_composite 

mnlsCompositel PCEREC1; 
mnlsComposite2 PCEREC2; 
mnlsComposite3 : PCEREC3 

mnls_plain_text 
mnl8PlainTextl PCEREPT1; 
mnlsPlainText2 : PCEREPT2t 
mnlsPlainText3 PCEREPT3; 

mnlsPlainText4 PCEREPT4 
tsn_sender_node 

tsnSenderNode : Pilotlnstance 
tsn_receiverode 

tsnReceiverNode : MPSlnstance 
tsnjnessage_node 

tsnMessageNode 
ProceedEraseCartridge 
end 

PCERECI in MatraNLSComposite, Token 
with 
preceding-fragment 

precedingFragment : PCEREPTI 
subject_node 

subjectNode : Pilotlnstance 
following-fragment 

followingFragment : PCEREC2 
end 

PCEREC2 in MatraNLSComposite, Token 
with 
preceding-fragment 

precedingFragment : PCEREPT2 
subject_node 

subjectNode : MPSinstance 
following-fragment 

followingFragment : PCEREC3 
end 

PCEREC3 in MatraNLSComposite, Token 
with 
preceding_fragment 

precedingFragment : PCEREPT3 
subject_node 

subjectNode : ProceedEraseCartridge 
following-fragment 

followingFragment : PCEREPT4 
end 

PCEREPTI in P1ainTextNode, Token with 
mnls_text 

mnlsText : The 
end 

PCEREPT2 in PlainTextNode, Token with 
mnls_text 

mnlsText indicates to the 
end 

PCEREPT3 in PlainTextNode, Token with 
mnls_text 

mnlsText : that it is 
end 

PCEREPT4 in PlainTextNode, Token with 
mnls_text 

mnlsText : 
end 

ProceedEraseCartridge in Message, Token 
with 
message_name 

messageName : "Proceed Erase 
Cartridge" 
tsn_msg. parameter 

tsnMsgParameter 
ProceedEraseCartridgeTSnParameter 
mscjnsgparameter 

mscMsgParameter 
ProceedEraseCartridgeMscParameter 
end 

ProceedEraseCartridgeTsnParameter in 
MessageDescription, Token with 
msg parameter 

msgParameter : "OK to proceed with 
Cartridge Erase' 
end 

C-30 



Appendix C (Part 1) 

ProceedEraseCartridgeMscParameter in 
MessageDescription, Token with 
msg parameter 

msgParameter : "OK: Proceed Erase' 
end 

ProceedCartridgeEraseRequestMSCDescript 
ion in MscCommunication, Token with 
link name 

linkName : "unspecified' 
synchronisation 

_Synchronisation `sim' 
frequency 

-Frequency : "aperiodic" 
delayed 

-Delayed : False 
ms c_sender_instance 

mscSenderlnstance : Pilotlnstance 
msc_receiver_instance 

mscReceiverlnstance : MPSlnstance 
msc_message 

mscMessage : ProceedEraseCartridge 
end - 

Data Erased Notification Event 
Instantiation 

DataErasedNotification in 
CommunicationEvent, Token with 
interaction_type 

interactionType : `SP' 
sequence_no 

sequenceNol 
DataErasedNotificationSSN 
follows-from 

followsFrom 
CurrentDataErasedNotification 
tsn_communication_event 

tsnCommunicationEvent 
DataErasedNotificationTextDescription 
ms c_communication_event 

mscCommunicationvent 
DataErasedNotificationMSCDescription 
end 

DataErasedNotificationTextDescription 
in TsnCommunication, Token with 
communication description 

communicationDescription 
DataErasedNotificationEventText 
end 

DataErasedNotificationEventText in 
ScenarioEventNaturalLanguageStructure, 
Token with 
mnls_composite 

mnlsCompositel : DENEC1; 
mnlsComposite2 DENEC2; 
mnlsComposite3 DENEC3 

mnls plain_text 
mnlsPlainTextl : DENEPT1; 
mnlsPlainText2 DENEPT2; 
mnlsPlainText3 DENEPT3; 
mnlsPlainText4 DENEPT4 

tsn_sender_node 
tsnSenderNode MPSlnstance 

tsn receiver_node 
tsnReceiverNode : Pilotlnstance 

tsnjnessage_jiode 
' tsnMessageNode 

CartridgeErasedNotification 
end 

DENEC1 in MatraNLSComposite, Token with 
preceding_fragment 

precedingFragment : DENEPTI 
subject-node 

subjectNode : MPSlnstance 
following_fragment 

followingFragment : DENEC2 
end 

DENEC2 in MatraNLSComposite, Token with 
preceding_fragment 

precedingFragment : DENEPT2 
subject--node 

subjectNode : Pilotlnstance 
following_fragment 

followingFragment : DENEC3 
end 

DENEC3 in MatraNLSComposite, Token with 
preceding_fragment 

precedingFragment : DENEPT3 
subject_node 

subjectNode 
CartridgeErasedNotification 
following_fragment 

followingFragment : DENEPT4 

end 

DENEPT1 in PlainTextNode, Token with 
mnls_text 

mnlsText : "The 
end 

DENEPT2 in PlainTextNode, Token with 
mnls_text 

mnlsText : indicates to the 
end 

DENEPT3 in PlainTextNode, Token with 
mnls_text 

mnlsText that 
end 

DENEPT4 in PlainTextNode, Token with 
mnls_text 

mnlsText 
end 

CartridgeErasedNotification in Message, 
Token with 
message-name 

messageName : "Cartridge Erased 
Notification' 
tsn_nsg_parameter 

tsnMsgParameter 
CartridgeErasedNotificationTsnParameter 
msc_msg_parameter 

mscMsgParameter 
CartridgeErasedNotificationNSCParameter 

end 

CartridgeErasedNotificationTsnParameter 
in MessageDescription, Token with 
msg parameter 

msgParameter : "all current data 
has been deleted' 
end 

CartridgeErasedNotificatiofMscParameter 
in MessageDescription, Token with 
msg parameter 

msgParameter : 'Confirm All Data 
Deleted' 
end 

DataErasedNotificationMSCDescription in 
MscCommunication, Token with 
link-name 

linkName : "unspecified" 
synchronisation 

_Synchronisation 
"Sim' 

frequency 

_Frequency 
: "aperiodic' 

delayed 

_Delayed : False 
msc_sender_instance 

mscSenderInstance : MPSInstance 
msc_receiver_instance 

mscReceiverlnstance : Pilotlnstance 

C-31 



Appendix C (Part 1) 

mscjnessage 
mscMessage 

CartridgeErasedNotification 
end 

Data Erased Acknowledgement Event 
Instantiation 

DataErasedAcknowledgement in 
CommunicationEvent, Token with 
interaction_type 

interactionType : *IPI 
sequence-no 

sequenceNoi 
DataErasedAcknowledgementSSN 
follows-from 

followsFrom 
DataErasedNotification 
tsn_communication_event 

tsnCommunicationEvent 
DataErasedAcknowledgementTextDescriptio 
n 
msc_communication_event 

mscCommunicationEvent 
Da taErasedAcknowledgementMSCDescription 
end 

DataErasedAcknowledgementTextDescriptio 
n in TsnCommunication, Token with 
communication_description 

communicationDescription 
DataErasedAcknowledgementEventText 
end 

DataErasedAcknowledgementEventText in 
ScenarioEventNaturalLanguageStructure, 
Token with 
mnis_composite 

mnlsCompositel DEAEC1r 
mnlsComposite2 : DEAEC2i 
mnlsComposite3 DEAEC3 

mnls_plain_text 
mnlsPlainTextl : DEAEPTlt 
mnlsPlainText2 : DEAEPT2t 
mnlsPlainText3 DEAEPT3; 
mnlaPlainText4 : DEAEPT4 

tsn_sender_node 
tsnSenderNode Pilotlnstance 

tan-receiver-node 
tsnReceiverNode MPSlnstance 

tsn_nessage_node 
tsnMessageNode AcknowledgeErase 

end 

DEAEC1 in MatraNLSComposite, Token with 
preceding-fragment 

precedingFragment : DEAEPT1 
subject_node 

subjectNode : Pilotlnstance 
following_fragment 

followingFragment : DEAEC2 
end 

DEAEC2 in MatraNLSComposite, Token with 
preceding_fragment 

precedingFragment : DEAEPT2 
subject_node 

subjectNode : AcknowledgeErase 
following_fragment 

followingFragment : DEAEC3 
end 

DEAEC3 in MatraNLSComposite, Token with 
preceding_fragment 

precedingFragment : DEAEPT3 
subject node 

subjectNode : MPSlnstance 
following_fragment 

followingFragment : DEAEPT4 
end 

DEAEPT1 in PlainTextNode, Token with 
mnls_text 

mnlsText : "The 
end 

DEAEPT2 in PlainTextNode, Token with 
mnls_text 

mnlsText : sends an 
end 

DEAEPT3 in PlainTextNode, Token with 
mnls_text 

mnlsText : to the 
end 

DEAEPT4 in PlainTextNode, Token with 
mnls_text 

mnlsText 
end 

AcknowledgeErase in Message, Token with 
message_name 

messageName : "Acknowledge Erase' 
tsn. jnsg_parameter 

tsnMsgParameter 
AcknowledgeEraseTsnParameter 
msc_msg_parameter 

mscMsgParameter 
AcknowledgeEraseMscParameter 
end 

AcknowledgeEraseTsnParameter in 
MessageDescription, Token with 
msg parameter 

msgParameter : "acknowledgement" 
end 

AcknowledgeEraseMscParameter in 
MessageDescription, Token with 
msg parameter 

msgParameter : "OK: Acknowledge 
Erase" 
end 

DataErasedAcknowledgementMSCDescription 
in MscCommunication, Token with 
1Ink_name 

linkName : unspecified' 
synchronisation 

_Synchronisation 
`sim" 

frequency 

_Frequency : `aperiodic' 
delayed 

_Delayed : False 
msc_sender_instance 

mscSenderInstance : Pilotlnstance 
msc_receiver_instance 

mscReceiverInstance : MPSlnstance 
msc_nessage 

mscMessage : AcknowledgeErase 
end 

Main Screen Display (from Erase 
Cartridge) Event Instantiation 

MainScreenDisplay_1 in 
CommunicationEvent, Token with 
interaction_type 

interactionType : "IP" 
sequence-no 

sequenceNoi 
MainScreenDisplay_1_7ormalPathSSN; 

sequenceNo2 : 
MainScreenDisplay_1-NoCartridgeSSN; 

sequenceNo3 : 
MainScreenDisplay_1_NoDataOnCartridgeSS 
N; 

sequenceNo4 
MainScreenDisplay_1_PilotChoosesNotToEr 
aseDataSSN 
follows-from 

C-32 



Appendix C (Part 1) 

followsFroml 
DataErasedAcknowledgement; 

followsFrom2 
NoCartridgeAcknowledgement; 

followsFrom3 
NoCartridgeDataPresentAcknowledgement; 

followsFrom4 CancelEraseRequest 
tsn_communication_event 

tsnCommunicationEvent 
MainScreenDisplay_1TextDescription 
msc_communication_event 

. mscCommunicationEvent 
MainScreenDisplay_1MSCDescription 
end 

MainScreenDisplay_lTextDescription in 
TsnCommunication, Token with 
communication_description 

communicationDescription 
MainScreenDisplay_lEventText 
end 

MainScreenDisplay_lEventText in 
ScenarioEventNaturalLanguageStructure, 
Token with 
mnls_composite 

mnlsCompositel : MSD 1EC1; 
mnlsComposite2 : MSD 1EC2; 
mnlsComposite3 : MSD_1EC3 

mnls_plain_text 
mnlsPlainTextl : MSD_1EPT1; 
mnlsPlainText2 : MSD_1EPT2; 
mnlsPlainText3 : MSD 1EPT3; 
mnlsPlainText4 : MSD 1EPT4 

tsn_sender_node 
tsnSenderNode : MPSlnstance 

tsn_receiver_node 
tsnReceiverNode Pilotlnstance 

tsn_nessage_node 
tsnMessageNode : MainScreen_l 

end 

MSD_1EC1 in MatraNLSComposite, Token 
with 
preceding-fragment 

precedingFragment : MSD_1EPT1 
subject_node 

subjectNode : MPSlnstance 
following-fragment 

followingFragment : MSD_1EC2 
end 

MSD_1EC2 in MatraNLSComposite, Token 
with 
preceding-fragment 

precedingFragment : MSD_1EPT2 
subject_node 

subjectNode : Pilotlnstance 
following-fragment 

followingFragment : MSD_1EC3 
end 

MSD 1EC3 in MatraNLSComposite, Token 
with 
preceding-fragment 

precedingFragment : MSD_1EPT3 
subject-node 

subjectNode : MainScreen l 
following-fragment 

followingFragment : MSD_1EPT4 
end 

MSD_1EPT1 in PlainTextNode, Token with 
mnls_text 

mnlsText : The 
end 

MSD 1EPT2 in PlainTextNode, Token with 
mnls_text 

mnlsText : displays to the 
end 

MSD_1EPT3 in PlainTextNode, Token with 
mnls_text 

mnlsText the 
end 

MSD_1EPT4 in PlainTextNode, Token with 
mnls_text 

mnlsText : 
end 

MainScreen_l in Message, Token with 
message-name 

messageName : `Main Screen' 

end 

MainScreenDisplay_1MSCDescription in 
MscCommunication, Token 
with 
link-name 

linkName : "unspecified' 
synchronisation 

_Synchronisation 
"sim" 

frequency 

_Frequency : "aperiodic" 
delayed 

_Delayed : False 
msc_sender_instance 

mscSenderInstance : MPSlnstance 
msc_receiver_instance 

mscReceiverinstance : Pilotlnstance 
msc. Jnessage 

mscMessage : MainScreen-l 
end 

Instantiation of Erase Cartridge: No 

Cartridge Present 

EraseCartridge_NoCartridge in Scenario, 
Token 
with 
scenario-title 

scenarioTitle : `Erase Cartridge - 
No Cartridge Present' 
is_exception 

isException : True 

scenario_event 
scenarioEventl 

EraseCartridgeRequest; 
scenarioEvent2 : 

NoCartridgePresentNotification; 
scenarioEvent3 : 

NoCartridgeAcknowledgement; 
scenarioEvent4 

MainScreenDisplay_1 
includes-scenario 

includesScenariol 
CheckforCartridge_NOCartridge 
included_event 

includedEventl 
CheckforCartridgeRequest; 

includedEvent2 : NoCartridgePresent 

-- again, 'included_event' may be 
instantiated using a variation of the 

rule in App. A, Pt. 2 (vii. c) 
scn_seq_no 

scnSeqNol 
ErasecartridgeRequest_NoCartridgeSSN; 

scnSegNo2 
NoCartridgePresentNOtificationSSN; 

scnSeqNo3 
NoCartridgeAcknowledgementSSN; 

scnSeqNo4 
MainScreenDisplay_l_NoCartridgeSSN 
scn_included_seq_no 

scnIncludedSegNol 
CheckforCartridgeRequest_EC_X'C_ISN; 

scnIncludedSegNo2 : 
NoCartridgePresent_EC-NC_ISN 
tsn_viewpoint 

C-33 



Appendix C (Part 1) 

tanViewpoint : 
EraseCartridge-NoCartridgeTSV 
msc_viewpoint 

mscViewpoint 
EraseCartridge_NoCartridgeMSV 
end 

EraseCartridgeRequest NoCartridgeSSN in 
SequenceNumber, Token with 
sequence_no 

sequenceNo :1 
end 

NoCartridgePresentNotificationSSN in 
SequenceNumber, Token with 
eequencejio 

sequenceNo :4 
end 

NoCartridgeAcknowledgementSSN in 
SequenceNumber, Token with 
sequence-no 

sequenceNo :5 
end 

MainScreenDisplay_l_NoCartridgeSSN in 
SequenceNumber, Token with 
sequence-no 

sequenceNo s6 
end 

CheckforCartridgeRequest_EC_NC_ISN in 
SequenceNumbor, Token with 
sequence-no 

sequenceNo :2 
end 

NoCartridgePresent_EC_NC_ISN in 
SequenceNumber, Token with 
sequence-no 

sequenceNo :3 
and 

EraseCartridge_NoCartridgeTSV in 
TanScenarioViewpoint, Token 
with 
tsv_tsn_comm 

tsvTsnComml 
EraseCartridgeRequestTextDescription; 

tsvTsnComm2 : 
NoCartridgePresentNotificationTextDescr 
iption, 

tsvTsnComm3 
NoCartridgeAcknowledgementTextDescripti 
on, 

tsvTsnComm4 
MainScreenDisplay_1TextDeecription 
and 

EraseCartridge_NoCartridgeMSV in 
MacScenarioViewpoint, Token 
with 
msv_msc_comm 

msvMacComml 
EraseCartridgeRequestMSCDescriptiont 

msvMscComm2 s 
NoCartridgePresentNotificationMSCDescri 
pt ion; 

msvMscComm3 
NoCartridgeAcknowledgementMSCDescriptio 
nj 

msvMscComm4 
MainScreenDisplay_lMSCDescription 
end 

No Cartridge Pr. a. at Notification Event 
Instantiation 

NoCartridgePresentNotification in 
CommunicationEvent, Token with 
interaction type 

interactionType : IIP" 
sequence_no 

sequenceNol 
NoCartridgePresentNotificationSSN 
follows-from 

followsFrom : NoCartridgePresent 
tsn_communication_event 

tsnCommunicationEvent 
NoCartridgePresentNotificationTextDescr 
iption 
msc_communication_event 

mscCommunicationEvent 
NoCartridgePresentNotificationMSCDescri 
ption 
end 

NoCartridgePresentNotificationTextDescr 
iption in TsnCommunication, Token with 
communication_description 

communicationDescription 
NoCartridgePresentNotificationEventText 
end 

NoCartridgePresentNotificationEventText 
in 
ScenarioEventNaturalLanguageStructure, 
Token with 
mnls_composite 

mnlsCompositel : NCPNEC1; 
mnlsComposite2 : NCPNEC2; 
mnlsComposite3 : NCPNEC3 

mnls plain_text ' 
mnlsPlainTextl NCPNEPTI; 
mnlsPlainText2 NCPNEPT2; 
mnlsPlainText3 NCPNEPT3; 
mnlsPlainText4 : NCPNEPT4 

tsn sender_node 
tsnSenderNode : MPSlnstance 

tsn_receiver_node 
tsnReceiverNode : Pilotlnstance 

tsn_message node 
tsnMessageNode 

NoCartridgeNotification 
end 

NCPNEC1 in MatraNLSComposite, Token 
with 
preceding_fragment 

precedingFragment : NCPNEPT1 
subject_node 

subjectNode : MPSlnstance 
following_fragment 

followingFragment : NCPNEC2 
end 

NCPNEC2 in MatraNLSComposite, Token 
with 
preceding_fragment 

precedingFragment : NCPNEPT2 
subject_node 

subjectNode : Pilotlnstance 
following_fragment 

followingFragment : NCPNEC3 
end 

NCPNEC3 in MatraNLSComposite, Token 
with 
preceding_fragment 

precedingFragment : NCPNEPT3 
subject node 

subjectNode 
NoCartridgeNotification 
following_fragment 

followingFragment : NCPNEPT4 
end 

NCPNEPT1 in PlainTextNode, Token with 
mnls_text 

mnlsText : The 
end 

C-34 



Appendix C (Part 1) 

NCPNEPT2 in PlainTextNode, Token with 
mnls_text 

mnlsText : informs the 
end 

NCPNEPT3 in PlainTextNode, Token with 
mnls_text 

mnlsText that there is 
end 

NCPNEPT4 in PlainTextNode, Token with 
mnls_text 

mnlsText : 
end 

NoCartridgeNotification in Message, 
Token with 
message--name 

messageName : No Cartridge 
Notification' 
tsn_Fnsg_parameter 

tsnMsgParameter 
NoCartridgeNotificationTsnParameter 
msc_msg_parameter 

mscMsgParameter 
NoCartridgeNotificationMscParameter 

end . 

NoCartridgeNotificationTsnParameter in 
MessageDescription, Token with 
msg parameter 

msgParameter : no cartridge 
present in the hardware' 
end 

NoCartridgeNotificationMscParameter in 
MessageDescription, Token with 
msg parameter 

msgParameter : 'Report No 
Cartridge' 
end 

NoCartridgePresentNotificationMSCDescri 
ption in MscCommunication, Token with 
linLname 

linkName : `unspecified' 
synchronisation 

-Synchronisation _ "sim' 
frequency 

_Frequency : "aperiodic' 
delayed 

-Delayed : False 
msc_sender_instance 

mscSenderlnstance : MPSlnstance 
msc_receiver_instance 

mscReceiverInstance : Pilotlnstance 
msc. jnessage 

mscMessage 
NoCartridgeNotification 
end 

No Cartridge Acknowledgement Event 
instantiation 

NoCartridgeAcknowledgement in 
CommunicationEvent, Token with 
interaction type 

interactionType : IIP" 
sequence--no 

sequenceNoi 
NoCartridgeAcknowledgementSSN 
follows-from 

followsFrom 
NoCartridgePresentNotification 
tsn_communication 

_event tsnCommunicationEvent 
NoCartridgeAcknowledgementTextDescripti 
on 
msc_communication_event 

mscCommunicationEvent : 
NoCartridgeAcknowledgementMSCDescriptio 
n 
end 

NoCartridgeAcknowledgementTextDescripti 
on in TsnCommunication, Token with 
communication_description 

communicationDescription 
NoCartridgeAcknowledgementEventText 
end 

NoCartridgeAcknowledgementEventText in 
ScenarioEventNaturalLanguageStructure, 
Token with 
mnls_composite 

mnlsCompositel : NCAEC1; 
mnlsComposite2 : NCAEC2; 
mnlsComposite3 NCAEC3 

mnls plain text 
mnlsPlainTextl NCAEPT1; 
mnlsPlainText2 NCAEPT2; 
mnlsPlainText3 : NCAEPT3; 
mnlsPlainText4 : NCAEPT4 

tsn_sender_node 
tsnSenderNode : Pilotlnstance 

tsn_. receiver_node 
tsnReceiverNode MPSlnstance 

tsn. jnessage_node 
tsnMessageNode 

AcknowledgeNoCartridge 
end 

NCAECI in MatraNLSComposite, Token with 
preceding-fragment 

precedingFragment : NCAEPT1 
subject_node 

subjectNode : Pilotlnstance 
following-fragment 

followingFragment : NCAEC2 
end 

NCAEC2 in MatraNLSComposite, Token with 
preceding-fragment 

precedingFragment : NCAEPT2 
subject_node 

subjectNode 
AcknowledgeNoCartridge 
following-fragment 

followingFragment : NCAEC3 
end 

NCAEC3 in MatraNLSComposite, Token with 
preceding-fragment 

precedingFragment : NCAEPT3 
subject-node 

subjectNode : MPSlnstance 
following-fragment 

followingFragment : NCAEPT4 

end 

NCAEPT1 in PlainTextNode, Token with 
mnls_text 

mnlsText : The 
end 

NCAEPT2 in PlainTextNode, Token with 
mnls_text 

mnlsText : sends an 
end 

NCAEPT3 in PlainTextNode, Token with 
mnls_text 

mnlsText : to the 
end 

NCAEPT4 in PlainTextNode, Token with 
mnls_text 

mnlsText : 
end 

C-35 



Appendix C (Part 1) 

AcknowledgeNoCartridge in Message, 
Token 
with 
message-name 

messageName : "Acknowledge No 
Cartridge' 
tsn_msg_parameter 

tsnMsgParameter 
AcknowledgeNoCartridgeTsnParameter 
mac., msg-parameter 

mscMsgParameter 
AcknowledgeNoCartridgeMscParameter 

end 

AcknowledgeNoCartridgeTsnParameter in 
MossageDescription, Token with 
meq parameter 

msgParameter : "acknowledgement" 
end 

AcknowledgeNoCartridgeMscParameter in 
MessageDescription, Token with 
mag-parameter 

msgParameter : IOK: Acknowlege No 
Cartridge" 
end 

NoCartridgeAcknowledgementMSCDescriptlo 
n in MscCommunication, Token with 
link-name 

linkName : "unspecified' 
synchronisation 

_Synchronisation   "aim, 
frequency 

_Frequency : "aperiodic" 
delayed 

_Delayed : False 
mac_sender_instance 

mscSendorinstance : Pilotlnstance 
mac-receiver-instance 

macReceiverInstance : MPSlnstance 
msc_nessage 

macMessage : AcknowledgeNoCartridge 
end 

Instantiation of sraa" Cartridge: No 
Data on Cartridge 

EraaeCartridge_NoDataOnCartridge in 
Scenario, Token with 
scenario-title 

scenarioTitle : "Erase Cartridge - 
No Data on Cartridge' 
is-exception 

isException : True 
scenario_event 

scenarioEventi 
EraseCartridgeRequest; 

scenarioEvent2 s 
NoCartridgeDataPresentNotificationr 

sconarioEvent3 
NoCartridgeDataPresentAcknowledgement; 

scenarioEvent4 
MainScreenDisplay_1 
includes-scenario 

includesScenariol 
CheckforCartridge_NormalPaths 

includesScenario2 
CheckCartridgeforData_NoData 
included_event 

includedEventl 
CheckforCartridgeRequest; 

includedEvent2 
ConfirmCartridgePresent: 

includedEvent3 
CheckCartridgeforDataRequests 

includedEvent4 
NoCartridgeDataPresent 

-- again 'included_event' may be 
instantiated using a variation of the 
rule in App. A, Pt. 2 (vii. c) 
scn_seq-no 

scnSegNol 
EraseCartridgeRequest_NoDataOnCartridge 
SSN; 

scnSeqNo2 
NoCartridgeDataPresentNotificationSSN; 

scnSeqNo3 : 
NoCartridgeDataPresentAcknowledgementSS 
N; 

scnSeqNo4 
MainScreenDisplay_1J'oDataOnCartridgeSS 
N 
scn_included_seq no 

scnIncludedSegNol 
CheckforCartridgeRequest EC ND_ISN; 

scnIncludedSegNo2 
ConfirmCartridgePresent_EC_NID_ISN; 

scnIncludedSegNo3 
CheckCartridgeforDataRequest EC_NID_ISN; 

scnIncludedSegNo4 
NoCartridgeDataPresent_EC_ND_ISN 
tsn_viewpoint 

tsnViewpoint 
EraseCartridge NoDataOnCartridgeTSV 
msc_viewpoint 

mscViewpoint 
EraseCartridge_NoDataOnCartridgeMSV 
end 

EraseCartridgeRequest_NoDataOnCartridge 
SSN in SequenceNumber, Token 
with 
sequence no 

sequenceNo 
end 

NoCartridgeDataPresentNotificationSSN 
in SequenceNumber, Token with 
sequencejio 

sequenceNo :6 
end 

NoCartridgeDataPresentACknowledgementSS 
N in SequenceNumber, Token with 
seguencejio 

sequenceNo :7 
end 

MainScreenDisplay_1_NoDataOnCartridgeSS 
N in SequenceNumber, Token with 
sequence_no 

sequenceNo :8 
end 

CheckforCartridgeRequest_EC, ND_ISN in 
SequenceNumber, Token with 
sequence_no 

sequenceNo :2 
end 

ConfirmCartridgePresent_EC_NID_ISN in 
SequenceNumber, Token with 
sequence-no 

sequenceNo :3 
end 

CheckCartridgeforDataRequest_EC_ND_ISN 
in SequenceNumber, Token with 
sequence_no 

sequenceNo :4 
end 

NoCartridgeDataPresent_EC_ND_ISN in 
SequenceNumber, Token with 
sequence_no 

sequenceNO 5 
end 

C-36 



Appendix C (Part 1) 

EraseCartridge NoDataOnCartridgeTSV in 
TsnScenarioViewpoint, Token 
with 
tsv_tsn_comm 

tsvTsnComml 
EraseCartridgeRequestTextDescription; 

tsvTsnComm2 : 
NoCartridgeDataPresentNotificationTextD 
escription; 

tsvTsnComm3 
NoCartridgeDataPresentAcknowledgementTe 
xtDescription; 

tsvTsnComm4 
MainScreenDisplay lTextDescription 
end 

EraseCartridge-NoDataOnCartridgeMSV in 
MscScenarioViewpoint, Token 
with , 
msv_msc_comm 

msvMscComml 
EraseCartridgeRequestMSCDescription; 

msvMscComm2 : 
NoCartridgeDataPresentNotificationMSCDe 
scription; 

msvMscComm3 
NoCartridgeDataPresentAcknowledgementMS 
CDescription; 

msvMscComm4 
MainScreenDisplay_SMSCDescription 
end < 

No Cartridge Data Present Notification 
Event Instantiation 

NoCartridgeDataPresentNotification in 
CommunicationEvent, Token with 
interaction_type 

interactionType : `IP" 
sequence_no 

' SequenceNol 
NoCartridgeDataPresentNotificationSSN 
follows-from 

followsFrom 
NoCartridgeDataPresent 
tsn_communication_event 

tsnCommunicationEvent 
NoCartridgeDataPresentNotificationTextD 
escription 
msc_communication_event 

mscCommunicationEvent 
NoCartridgeDataPresentNotificationMSCDe 
scription 
end 

NoCartridgeDataPresentNotificationTextD 
escription in TsnCommunication, Token 
with 
communication_description 

communicationDescription 
NoCartridgeDataPresentNotificationEvent 
Text 
end 

NoCartridgeDataPresentNotificationEvent 
Text in 
ScenarioEventNaturalLanguageStructure, 
Token with 
mnls_composite 

mnlsCompositel NCDPNECI; 
mnlsComposite2 NCDPNEC2; 
mnlsComposite3 : NCDPNEC3 

mnls plain_text 
mnlsPlainTextl NCDPNEPT1; 
mnlsPlainText2 NCDPNEPT2; 
mnlsPlainText3 : NCDPNEPT3; 
mnlsPlainText4 NCDPNEPT4 

tsn_sender. node 
tsnSenderNode MPSlnstance 

tsn_receiver_node 
tsnReceiverNode : Pilotlnstance 

tsn_message_node 
tsriMessageNode 

NoCartridgeDataNotification 
end 

NCDPNEC1 in MatraNLSComposite, Token 
with 
preceding_fragment 

precedingFragment : NCDPNEPTI 
subject_node 

subjectNode : MPSlnstance 
following_fragment 

followingFragment : NCDPNEC2 
end 

NCDPNEC2 in MatraNLSComposite, Token 
with 
preceding_fragment 

precedingFragment : NCDPNEPT2 
subject_node 

subjectNode : Pilotlnstance 
following_fragment 

followingFragment : NCDPNEC3 
end 

NCDPNEC3 in MatraNLSComposite, Token 

with 
preceding_fragment 

precedingFragment : NCDPNEPT3 
subject_node 

subjectNode 
NoCartridgeDataNotification 
following_fragment 

followingFragment : NCDPNEPT4 
end 

NCDPNEPT1 in PlainTextNode, Token with 
mnls_text 

mnlsText : "The 
end 

NCDPNEPT2 in PlainTextNode, Token with 
mnls_text 

mnlsText informs the 
end 

NCDPNEPT3 in PlainTextNode, Token with 
mnls_text 

mnlsText that there is 
end 

NCDPNEPT4 in PlainTextNode, Token with 
mnls_text 

mnlsText : 
end 

NoCartridgeDataNotification in Message, 
Token with 
message_name 

messageName : "No Cartridge Data 
Notification" 
tsn_msg_parameter 

tsnMsgParameter 
NoCartridgeDataNotificationTsnParameter 
msc_mnsg_parameter 

mscMsgParameter 
NoCartridgeDataNotificationNSCParameter 
end 

NoCartridgeDataNotificationTsnParameter 
in MessageDescription, Token with 
msg parameter 

msgParameter : no data on the 
cartridge' 
end 

NoCartridgeDataNotificationMscParameter 
in MessageDescription, Token with 
msg parameter 

msgParameter : "Report No Data on 
Cartridge' 

C-37 



Appendix C (Part 1) 

end 

NoCartridgeDataPresentNotificationMSCDe 
scription in MscCommunication, Token 
with 
link-name 

linkName : "unspecified' 
synchronisation 

_Synchronisation "sim" 
frequency 

_Frequency : "aperiodic" 
delayed 

_Delayed : False 
msc_sender_instance 

mscSenderInstance : MPSInstance 
msc_receiver_instance 

mscReceiverInstance : Pilotlnstance 
msc. jnessage 

mscMessage 
NoCartridgeDataNotification 
end 

No Cartridge Data Acknowledgment Event 
Instantiation 

NoCartridgeDataPresentAcknowledgement 
in CommunicationEvent, Token with 
interaction_type 

interactionType : "IP" 
sequence_no 

sequenceNol 
NoCartridgeDataPresentAcknowledgementSS 
N 
follows-from 

followsFrom 
NoCartridgeDataPresentNotification 
tsn_communication_event 

tsnCommunicationEvent 
NOCartridgeDataPresentAcknowledgementTe 
xtDescription 
msc_communication_event 

mscCommunicationEvent 
NoCartridgeDataPresentAcknowledgementMS 
CDescription 
end 

NoCartridgeDataPresentAcknowledgementTe 
xtDescription in TsnCommunication, 
Token with 
communication_description 

communicationDescription 
NoCartridgeDataPresentAcknowledgementEv 
entText 
end 

NoCartridgeDataPresentAcknowledgementEv 
entText in 
ScenarioEventNaturalLanguageStructure, 
Token with 
mnls_composite 

mnlsCompositel : NCDPAECI; 
mnlsComposite2 NCDPAEC2; 
mnlsComposite3 NCDPAEC3 

mnls-plain text 
mnlsPlainTextl NCDPAEPT1; 
mnlsPlainText2 : NCDPAEPT2; 
mnlsPlainText3 : NCDPAEPT3; 
mnlsPlainText4 : NCDPAEPT4 

tsn_sender_node 
tenSenderNode : Pilotlnstance 

tsn_receiver node 
tsnReceiverNode : MPSlnstance 

tsn 
. message_node 
tsnMessageNode : AcknowledgeNoData 

end 

NCDPAEC1 in MatraNLSComposite, Token 
with 
preceding-fragment 

precedingFragment : NCDPAEPT1 
sub j ec t_node 

subjectNode : Pilotlnstance 
following-fragment 

followingFragment : NCDPAEC2 
end 

NCDPAEC2 in MatraNLSComposite, Token 
with 
preceding-fragment 

precedingFragment : NCDPAEPT2 
subject_node 

subjectNode : AcknowledgeNoData 
following-fragment 

followingFragment : NCDPAEC3 
end 

NCDPAEC3 in MatraNLSComposite, Token 
with 
preceding-fragment 

precedingFragment : NCDPAEPT3 
subject_node 

subjectNode : MPSlnstance 
following-fragment 

followingFragment : NCDPAEPT4 
end 

NCDPAEPT1 in PlainTextNode, Token with 
mnls_text 

mnlsText : The 
end 

NCDPAEPT2 in PlainTextNode, Token with 
mnls_text 

mnlsText : sends an 
end 

NCDPAEPT3 in PlainTextNode, Token with 
mnls_text 

mnlsText : to the 
end 

NCDPAEPT4 in PlainTextNode, Token with 
mnls_text 

mnlsText 
end 

AcknowledgeNoData in Message, Token 
with 
message_name 

messageName : "Acknowledge No Data' 
tsn_msg_parameter 

tsnMsgParameter 
AcknowledgeNoDataTsnParameter 
msc_msg_parameter 

mscMsgParameter 
AcknowledgeNoDataMscParameter 
end 

AcknowledgeNoDataTsnParameter in 
MessageDescription, Token with 
msg-parameter 

msgParameter : "acknowledgement' 
end 

AcknowledgeNoDataMscParameter in 
MessageDescription, Token with 
msg parameter 

msgParameter : "OK: Acknowledge No 
Data' 
end 

NoCartridgeDataPresentAcknowledgementMS 
CDescription in MscCommunication, Token 
with 
link_name 

linkName : "unspecified' 
synchronisation 

_Synchronisation 
"sim' 

frequency 

_Frequency : "aperiodic' 
delayed 

_Delayed : False 

C-38 



Appendix C (Part 1) 

-c-sender-instance 
mscSenderInstance : Pilotlnstance 

msc_receiver_instance 
mscReceiverInstance : MPSlnstance 

msC message 
mscMessage : AcknowledgeNoData 

end 

Instantiation of Erase Cartridges Pilot 
Chooses Not to Erase Data 

EraseCartridge_PilotChoosesNotToEraseDa 
to in Scenario, Token 
with 
scenario-title 

scenarioTitle : "Erase Cartridge - Pilot Chooses Not to Erase Data' 
is_exception 

isException : True 
scenario_event 

scenarioEventl 
EraseCartridgeRequest; 

scenarioEvent2 
ConfirmDataPresentonCartridge; 

scenarioEvent3 
CancelEraseRequest; 

scenarioEvent4 
MainScreenDisplay_l 
includes-scenario 

includesScenariol 
CheckforCartridge_7ormalPath; 

includesScenario2 : 
CheckCartridgeforData_NormalPath 
included_event 

includedEventl 
CheckforCartridgeRequest; 

includedEvent2 
ConfirmCartridgePresent; 

includedEvent3 
CheckCartridgeforDataRequest; 

includedEvent4 : 
ConfirmCartridgeDataPresent 

-- again 'includec&event' may be 
instantiated using a variation of the 
rule in App. A, Pt. 2 (vii. c) 
scn_seq-no 

scnSeqNol 
EraseCartridgeRequest_PilotChoosesNotTo 
EraseDataSSN; 

scnSeqNo2 
ConfirmDataPresentonCartridge_PilotChoo 
sesNotToEraseDataSSN; 

scnSeqNo3 : CancelEraseRequestSSN; 
scnSegNo4 

MainScreenDisplay_l_PilotChoosesNotToEr 
aseDataSSN 
scn_included_seq_no 

scnIncludedSegNol 
CheckforCartridgeRequest_EC_PCNTED_ISN; 

scnIncludedSegNo2 : 
ConfirmCartridgePresent_EC_PCNTED_ISN; 

scnIncludedSegNo3 : 
CheckCartridgeforDataRequest_EC_PCNTED_ 
ISN; 

scnIncludedSegNo4 
ConfirmCartridgeDataPresent_EC_PCNTED_I 
SN 
tsn_viewpoint 

tsnViewpoint 
EraseCartridge_PilotChoosesNotToEraseDa 
taTSV 
msc_viewpoint 

mscViewpoint 
EraseCartridge_PilotChoosesNotToEraseDa 
taMSV 
end 

EraseCartridgeRequest_PilotChoosesNotTo 
EraseDataSSN in SequenceNumber, Token 
with 
sequence--no 

sequenceNO :1 
end 

ConfirmDataPresentonCartridge_PilotChoo 
sesNotToEraseDataSSN in SequenceNumber, 
Token with 
sequence-no 

sequenceNo :6 
end 

CancelEraseRequestSSN in 
SequenceNumber, Token 
with 
sequence_no 

sequenceNo :7 
end 

MainScreenDisplay_1_PilotChoosesNotToEr 
aseDataSSN in SequenceNumber, Token 
with 
sequence-no 

sequenceNo :8 
end 

CheckforCartridgeRequest_EC_PCNTED_ISN 
in SequenceNumber, Token with 
sequence--no 

sequenceNo :2 
end 

ConfirmCartridgePresent EC_PCNTED_ISN 
in SequenceNumber, Token with 
sequence-no 

sequenceNo :3 
end 

CheckCartridgeforDataRequest_EC_PCNTED_ 
ISN in SequenceNumber, Token with 
sequence-no 

sequenceNo :4 
end 

ConfirmCartridgeDataPresent EC_PCNTED_I 
SN in SequenceNumber, Token with 
sequence-no 

sequenceNo 5 
end 

EraseCartridge_PilotChoosesNotToEraseDa 
taTSV in TsnScenarioViewpoint, Token 
with 
tsv_tsn_comm 

tsvTsnComml 
EraseCartridgeRequestTextDescription; 

tsvTsnComm2 : 
ConfirmDataPresentonCartridgeTextDescri 
ption; 

tsvTsnComm3 
CancelEraseRequestTextDescription; 

tsvTsnComm4 : 
MainScreenDisplay_1TextDescription 
end 

EraseCartridge_PilotChooseSNotToEraseDa 
taNSV in MscScenarioViewpoint, Token 
with 
msv msc_comm 

msvMscComml 
EraseCartridgeRequestMSCDescription; 

msvMscComm2 : 
ConfirmDataPresentonCartridgeMSCDescrip 
tion; 

msvMscComm3 
CancelEraseRequestMSCDescription; 

msvMscComm4 : 
MainScreenDisplay_1MSCDescription 
end 

Cancel Erase Request Event 
Instantiation 

C-39 



Appendix C (Part 1) 

CancelEraseRequest in 
CommunicationEvent, Token with 
interaction_type 

interactionType : *IF' 
sequence-no 

sequenceNol CancelEraseRequestSSN 
follows-from 

followsFrom 
ConfirmDataPresentonCartridge 
tsn_communication_event 

tsnCommunicationEvent 
CancelEraseRequestTextDescription 
mac_communication_event 

mscCommunicationEvent 
CancelEraseRequestMSCDescription 
end 

CancelEraseRequeatTextDeacription in 
TanCommunication, Token with 
communication_description 

communicationDescription 
CancelEraseRequestEventText 
end 

CancelEraseRequestEventText in 
ScenarioEventNaturalLanguageStructure, 
Token with 
mnls_composite 

mnlsCompositel CEREC11 
mnlsComposite2 : CEREC2j 
mnlsComposite3 s CEREC3 

mnls,.. plain_text 
mnlsPlainTextl CEREPT1: 
mnlsPlainText2 CEREPT2t 
mnlsPlainText3 CEREPT3: 
mnl. PlainText4 CEREPT4 

ton-mender-node 
tanSenderNode : Pilotlnstance 

tsn_receiverode 
tanReceiverNode MPSlnstance 

tsnUnessage_node 
tanMessageNode : 

CancelEraseCartridge 
and 

CERECI in MatreNLSComposite, Token with 
proceding_tragment 

procedingFragment : CEREPT1 
subjoct_node 

subjoctNoda : Pilotlnstance 
following-fragment 

lollowingFragment : CEREC2 
end 

CEREC2 in MatraNLSComposite, Token with 
preceding-fragment 

precedingFragment : CEREPT2 
subject-node 

subjectNode : MPSlnatance 
following-fragment 

followingFragment : CEREC3 
end 

CEREC3 in MatraNLSComposite, Token with 
preceding fragment 

precedingFragment t CEREPT3 
subject. node 

subjectNode c CancelEraseCartridge 

following-fragment 
followingFragment : CEREPT4 

end 

CEREPT1 in PlainTextNode, Token with 
mnls_text 

mnlsText : "The 
end 

CEREPT2 in PlainTextNode, Token with 
mnls_text 

mnlsText : indicates to the 
end 

CEREPT3 in PlainTextNode, Token with 
mnls_text 

mnlsText that he wishes to 
end 

CEREPT4 in PlainTextNode, Token with 
mnls_text 

mnlsText 
end 

CancelEraseCartridge in Message, Token 
with 
message-name 

messageName : "Cancel Erase 
Cartridge' 
tsn-msg_parameter 

tsnMsgParameter 
CancelEraseCartridgeTsnParameter 
msc_msg_parameter 

mscMsgParameter 
CancelEraseCartridgeMscParameter 
end 

CancelEraseCartridgeTsnParameter in 
MessageDescription, Token with 
msg parameter 

msgParameter : "cancel the Erase 
Cartridge request" 
end 

CancelEraseCartridgeMscParameter in 
MessageDescription, Token with 
msg parameter 

msgParameter : 'Cancel Erase' 
end 

CancelEraseRequestMSCDescription in 
MscCommunication, Token with 
1ink_name 

linkName : "unspecified' 
synchronisation 

Synchronisation 'Sim' 
frequency 

_Frequency :. "aperiodic' 
delayed 

_Delayed : False 
msc_sender_instance 

mscSenderInstance : Pilotlnstance 
msc_receiver_instance 

mscReceiverInstance : MPSlnstance 
msc. jnessage 

mscMessage : CancelEraseCartridge 
end 

C40 



Appendix C (Part 1) 

ii. Instantiation of Retrieve From 
Cartridge (Timing Fragment) 

Set Data Timer (Event # 11) 
Instantiation 

SetDataTimerl in TimingEvent, Token 
with 

tsn_timing_event 
tsnTimingEvent 

SetDataTimerlTextDescription 

msc_timing_event 
mscTimingEvent 

SetDataTimerlMSCDescription 
end 

SetDataTimerlTextDescription in 
TsnTiming, Token with 
timing-description 

timingDescription 
SetDataTimerlEventText 
end 

SetDataTimerlEventText in 
ScenarioEventNaturalLanguageStructure, 
Token with 
mnls_composite 

mnlsCompositel : SDTIECI; 
mnlsComposite2 SDTIEC2; 
mnlsComposite3 SDTIEC3 

mnls plain_text 
mnlsPlainTextl : SDTIEPTI; 
mn1SPlainText2 SDTIEPT2; 
mnlsPlainText3 SDTIEPT3; 
mnlsPlainText4 SDTIEPT4 

tsn_timer_set_node 
tsnTimerSetNode : MPSlnstance 

tsn_timer_instance_node 
tsnTimerInstanceNode : DataTimer 

tsn timer_duration 
tsnTimerDuration 

SetDataTimerlDuration 
end 

SDTIECI in MatraNLSComposite, Token 
with 
preceding-fragment 

precedingFragment : SDTIEPTI 
subject_node 

subjectNode : MPSlnstance 
following-fragment 

followingFragment : SDTIEC2 
end 

SDTIEC2 in MatraNLSComposite, Token 
with 
preceding_fragment 

precedingFragment : SDTIEPT2 
subject-node 

subjectNode : DataTimer 
following_fragment 

followingFragment : SDTIEC3 
end 

SDTIEC3 in MatraNLSComposite, Token 
with 
preceding-fragment 

precedingFragment : SDTIEPT3 
subject--node 

subjectNode : SetDataTimerlDuration 
following-fragment 

followingFragment : SDTIEPT4 
end 

SDTIEPT1 in PlainTextNode, Token with 
mnls_text 

mnlsText : The 
end 

SDTIEPT2 in PlainTextNode, Token with 
mnls_text 

mnlsText sets the 
end 

SDTIEPT3 in PlainTextNode, Token with 
mnls_text 

mnlsText : to 
end 

SDTIEPT4 in PlainTextNode, Token with 
mnls_text 

mnlsText : 
end 

DataTimer in Timer, Token with 
timer_name 

timerName : "DataTimer' 
timer_duration 

timerDurationl 
SetDataTimerlDuration 
end 

SetDataTimerlDuration in TimerDuration, 
Token with 
duration 

_Duration : `10 Seconds, 
end 

SetDataTimerlMSCDescription in 
MscTiming, Token with 
msc_timer_set_instance 

mscTimerSetlnstance : MPSlnstance 
msc_timer_instance 

mscTimerinstance DataTimer 
msc_timer_duration 

mscTimerDuration 
SetDataTimerlDuration 
end 

Type_1 (Data) Retrieved Notification 
(Event * 12) Instantiation 

RetrievedTypelNotification in 
CommunicationEvent, Token with 
interaction_type 

interactionType : "SP' 

tsn_communication_event 
tsnCommunicationEvent 

RetrievedTypelNOtificationTextDescripti 

on 
msc_communication_event 

mscCommunicationEvent 
RetrievedType1NotificationMSCDescriptio 
n 

end 

RetrievedTypelNotificationTextDescripti 
on in TsnCommunication, Token with 
communication-description 

communicationDescription 
RetrievedTypelNotificationEventText 
end 

RetrievedTypelNOtificationEventText in 
ScenarioEventNaturaitanguageStructure, 
Token with 
mnls_composite 

mnlsCompositel RTINECI; 
mnlsComposite2 : RTINEC2; 
mnlsComposite3 : RTINEC3 

mnls_plain_text 
mnlsPlainTextl RTINEPT1; 
mnlsPlainText2 : RTINEPT2; 
mnlsPlainText3 : RTINEPT3; 
mnlsPlainText4 RTINEPT4 

tsn_sender_node 

c-4i 



Appendix C (Part 1) 

tanSenderNode : MPSlnstance 
tsn_receiver_node 

tsnReceiverNode : Pilotlnstance 
tan-nessage_node 

tanMessageNode 
Type_1RetrievedNotification 
end 

RTINEC1 in MatraNLSComposite, Token 
with 
preceding_fragment 

precedingFragment : RTINEPT1 
subject-node 

subjectNode : MPSlnstance 
following_fragment 

followingFragment : RTINEC2 
end 

RTINEC2 in MatraNLSComposite, Token 
with 
preceding_fragment 

precedingFragment : RTINEPT2 
subject_node 

subjectNode : Pilotlnstance 
following_fragment 

followingFragment : RTINEC3 
end 

RTINEC3 in MatraNLSComposite, Token 
with 
preceding_fragment 

precedingFragment : RTINEPT3 
sub j ect_node 

subjectNode 
Type_lRetrievedNotification 
following_fragment 

followingFragment : RTINEPT4 
end 

RTINEPTI in PlainTextNode, Token with 
mnls_text 

mnlsText : The 
end 

RTINEPT2 in PlainTextNode, Token with 
mnle_text 

mnl8Text informs the 
end 

RTINEPT3 in PlainTextNode, Token with 
mnls_text 

mnlsText : that 
end 

RTINEPT4 in PlainTextNode, Token with 
mnls_text 

mnlsText 
end 

Type_1RetrievedNotification in Message, 
Token with 
message_name 

messageName s "Type_1 Retrieved 
Notification' 
tsn_msgparameter 

tsnMsgParameter 
RetrievedTypelNotificationTsnParameter 
msc_msg_parameter 

macMsgParameter 
RetrievedTypelNotificationMscParameter 
end 

RetrievedTypelNotificationTsnParameter 
in MessageDescription, Token with 
msg-parameter 

msgParameter : "type-1 data has 
been retrieved" 
end 

RetrievedType1NotificationrscParameter 
in MeseageDescription, Token with 

msgparameter 
msgParameter : "Type_1 Retrieved" 

end 

RetrievedTypelNotificationMSCDescriptio 
n in MscCommunication, Token with 
link_name 

linkName : "unspecified' 
synchronisation 

_Synchronisation "sim' 
frequency 

_Frequency : "aperiodic' 
delayed 

-Delayed : False 
msc_sender_instance 

mscSenderlnstance : MPSInstance 
msc_receiver_instance 

mscReceiverInstance : Pilotlnstance 
msc_nessage 

mscMessage 
Type_lRetrievedNotification 
end 

Time-out Data Timer (Event # 13) 
Instantiation 

TimeoutDataTimerl in TimingEvent, Token 
with 

tsn_timing_event 
tsnTimingEvent 

TimeoutDataTimerlTextDescription 
msc_timing_event 

mscTimingEvent 
TimeoutDataTimerlMSCDescription 
end 

TimeoutDataTimerlTextDescription in 
TsnTiming, Token with 
timing-description 

timingDescription 
TimeoutDataTimerlEventText 
end 

TimeoutDataTimerlEventText in 
ScenarioEventNaturalLanguageStructure, 
Token with 
mnls_composite 

mnlsCompositel : TODTIEC1; 
mnlsComposite2 : TODTIEC2 

mnls_plain_text 
mnlsPlainTextl : TODTIEPT1; 
mnlsPlainText2 : TODTIEPT2 

mnls_null 
mnlsNull : TODT1ENu111 

tsn. host_on_timeout_node 
tsnHostOnTimeoutNode : MPSlnstance 

tsn timer_instance_node 
tsnTimerInstanceNode : DataTimer 

end 

TODTIEC1 in MatraNLSComposite, Token 
with 
preceding-fragment 

precedingFragment : TODTIEPT1 
subject-node 

subjectNode : MPSlnstance 
following_fragment 

followingFragment : TODTIEC2 
end 

TODTIEC2 in MatraNLSComposite, Token 
with 
preceding-fragment 

precedingFragment : TODT1ENu111 
subject_node 

subjectNode : DataTimer 
following-fragment 

followingFragment : TODTIEPT2 
end 

C-42 



Appendix C (Part 1) 

TODTIEPT1 in PlainTextNode, Token with 
mnls_text 

mnlsText : The 
end 

TODTIEPT2 in P1ainTextNode, Token with 
mnls_text 

mnlsText times-out. ` 
end 

TimeoutDataTimerlMSCDescription in 
MscTiming, Token with 
msc_host_on_timeout_instance 

mscHostOnTimeoutInstance 
MPSlnstance 

msc_timer_instance 
mscTimerInstance : DataTimer 

end 

Storage Type_1 Data (Event # 14) 
Instantiation 

StorageTypel in InternalActionEvent, 
Token with 

tsn_action_event 
tsnActionEvent 

StorageTypelTextDescription 

msc_action_event 
mscActionEvent 

StorageTypelMSCDescription 
end 

StorageTypelTextDescription in TsnAction, 
Token with 
action_description 

actionDescription 
StorageTypelEventText 
end 

StorageTypelEventText in 
ScenarioEventNaturalLanguageStructure, 
Token with 
mnls_composite 

mnlsCompositel STiECl; 
mnlsComposite2 ST1EC2 

mnls_plain_text 
mnlsPlainTextl : STIEPT1; 
mnlsPlainText2 : STIEPT2 

mnls_nul l 
mnlsNull : ST1ENu111 

tsn_sdr_rcr_node 
tsnSdrRcrNode : MPSinstance 

tsn_action_node 

tsnActionNode : StoreType_1Data 
end 

ST1EC1 in MatraNLSComposite, Token with 
preceding_fragment 

precedingFragment : STIEPTI 
subject_node 

subjectNode : MPSlnstance 
following-fragment 

followingFragment : ST1EC2 
end 

ST1EC2 in MatraNLSComposite, Token with 
preceding-fragment 

precedingFragment : ST1ENu111 
subject_node 

subjectNode : StoreType_1Data 
following_fragment 

followingFragment : STIEPT2 
end 

STIEPT1 in PlainTextNode, Token with 
mnls_text 

mnlsText : 'The 
end 

STIEPT2 in PlainTextNode, Token with 
mnls_text 

mnlsText 
end 

StoreType_1Data in Action, Token with 
action_name 

actionName : "Store Type_l Data' 
tsn_act_parameter 

tsnActParameter 
StoreTypelTsnParameter 
end 

StoreTypelTsnParameter in 
MessageDescription, Token with 
action-parameter 

actionParameter : `stores type_l 
data" 
end 

StorageTypelMSCDescription in MscAction, 
Token with 
msc_sdr_rcr_instance 

mscSdrRcrInstance : MPSlnstance 
msc_systeaction 

mscSystemAction : StoreType_1Data 
end 

C-43 



Appendix C (Part 1) 

(11. Instantiation of Choose Mission 
and Aircraft (Event Group 
Fragment) 

Data Item Request (Event M 11) 
Instantiation 

DataltemRequest in CommunicationEvent, 
Token with 
interaction_type 

interactionType : "IR" 

tsn. communication_event 
tsnCommunicationEvent 

DataltemRequestTextDescription 
msc_communication_event 

mscCommunicationEvent 
DataltemRequestMSCDescription 
end 

DataltemRequestTextDescription in 
TsnCommunication, Token with 
communication_description 

communicationDescription 
DataltemRequestEventText 
end 

DetaItemRequestEventText in 
ScenarioEventNaturalLanguageStructure, 
Token with 
mnls_composite 

mnlsCompositel : DIREC1f 
mnlsComposite2 DIREC2t 
mnlsComposite3 DIREC3 

mnls_plain_text 
mnlsPlainTextl : DIREPT1; 
mnlsPlainText2 DIREPT2; 
mnlsPlainText3 : DIREPT3j 
mnlsPlainText4 DIREPT4 

tan_sender_node 
tsnSenderNode MPSlnstance 

ton-receiver_node 
tsnReceiverNode MissionPlanlnstance 

tsn_message_node 
tsnMeseageNode RequestDataltem 

end 

DIREC1 in MatraNLSComposite, Token with 
preceding-fragment 

precedingFragment : DIREPT1 
subject_node 

subjectNode : MPSlnstance 
following-fragment 

followingFragment : DIREC2 
end 

DIREC2 in MatraNLSComposite, Token with 
preceding_fragment 

precedingFragment : DIREPT2 
subject node 

subjectNode : MissionPlanlnstance 
following-fragment 

tollowingFragment : DIREC3 
end 

DIREC3 in MatraNLSComposite, Token with 
preceding-fragment 

precedingFragment : DIREPT3 
subject_node 

subjectNode : RequestDataltem 
following-fragment 

followingFragment : DIREPT4 
end 

DIREPTI in PlainTextNode, Token with 
mnl®_text 

mnlsText : The 
end 

DIREPT2 in PlainTextNode, Token with 

mnls_text 
mnlsText asks the 

end 

DIREPT3 in PlainTextNode, Token with 
mnls_text 

mnlsText to 
end 

DIREPT4 in PlainTextNode, Token with 
mnls_text 

mnlsText 
end 

RequestDataltem in Message, Token with 
message-name 

messageName : "Request Data Item" 
tsn_msg_parameter 

tsnMsgParameter 
RequestDataltemTsnParameter 
end 

RequestDataltemTsnParameter in 
MessageDescription, Token with 
msg-parameter 

msgParameter : "supply a data item' 
end 

DataltemRequestMSCDescription in 
MscCommunication, Token with 
1ink_name 

linkName : "unspecified" 
synchronisation 

_Synchronisation 
`sim' 

frequency 

-Frequency : "aperiodic" 
delayed 

_Delayed : False 
msc_sender_instance 

mscSenderlnstance : MPSlnstance 
msc_receiver_instance 

mscReceiverlnstance 
MissionPlanlnstance 
mscjmessage 

mscMessage : RequestDataltem 
end 

Mission And Aircraft Data Item Provision 
(Event #12) Instantiation 

MACDataItemProvision in 
CommunicationEvent, Token with 
interaction_type 

interactionType : "IP" 

tsn_communication_event 
tsnCommunicationEvent 

MACDataItemProvisionTextDescription 
msc_communication_event 

mscCommunicationEvent 
MACDataItemProvisionMSCDescription 
end 

MACDataItemProvisionTextDescription in 
TsnCommunication, Token with 
communication description 

communicationDescription 
MACDataItemProvisionEventText 
end 

MACDataItemProvisionEventText in 
ScenarioEventNaturalLanguageStructure, 
Token with 
mnls_composite 

mnlsCompositel MACDIPEC1; 

mnlsComposite2 : MACDIPEC2; 

mnlsComposite3 MACDIPEC3 

mnls-plain text 

mnlsPlainTextl : MACDIPEPT1; 
mnlsPlainText2 : MACDIPEPT2; 

C-44 



Appendix C (Part 1) 

mnlsPlainText3 : MACDIPEPT3; 
mnlsPlainText4 : MACDIPEPT4 

tsn_sender_node 
tsnSenderNode : MissionPlanInstance 

tsn_receiver_node 
tsnReceiverNode MPSlnstance 

tsn messagejlode 
tsnMessageNode : Mission&ACDataltem 

end 

MACDIPECI in MatraNLSComposite, Token 
with 
preceding_fragment 

precedingFragment : MACDIPEPTI 
subject_node 

subjectNode : MissionPlanlnstance 
following-fragment 

followingFragment : MACDIPEC2 
end 

MACDIPEC2 in MatraNLSComposite, Token 
with 
preceding_fragment 

precedingFragment : MACDIPEPT2 
subject-node 

subjectNode : Mission&ACDataItem 
following_fragment 

followingFragment : MACDIPEC3 
end 

MACDIPEC3 in MatraNLSComposite, Token 
with 
preceding_fragment 

precedingFragment : MACDIPEPT3 
subject_node 

subjectNode : MPSlnstance 
following_fragment 

followingFragment : MACDIPEPT4 
end 

MACDIPEPT1 in PlainTextNode, Token with 
mnls_text 

mnlsText : `The 
end, 

MACDIPEPT2 in PlainTextNode, Token with 
mnls_text 

mnlsText :" supplies the 
end 

MACDIPEPT3 in PlainTextNode, Token with 
mnls_text 

mnlsText : to the 
end 

MACDIPEPT4 in PlainTextNode, Token with 
mnls_text 

mnlsText : 
end 

Mission&ACDataltem in Message, Token with 
message-name 

messageName : "Mission&AC Data Item' 
tsn_msg_parameter 

tsnMsgParameter 
Mission&ACDataItemTsnParameter 
msc_msg_parameter 

mscMsgParameter 
Mission&ACDataItemMscParameter 
end 

Mission&ACDataltemTsnParameter in 
MessageDescription, Token with 
msg_parameter 

msgParameter : data item for the 
selected Mission and Aircraft' 
end 

Mission&ACDataltemMscParameter in 
MessageDescription, Token with 
msg parameter 

msgParameter : Data Item for 
Selection' 
end 

MACDataItemProvisionMSCDescription in 
MscCommunication, Token with 
link_name 

linkName : "unspecified" 
synchronisation 

_Synchronisation "sim" 
frequency 

_Frequency : "aperiodic' 
delayed 

_Delayed : False 
msc_sender_instance 

mscSenderInstance 
MissionPlanlnstance 
msc_receiver_instance 

mscReceiverInstance : MPSInstance 
msc_message 

mscMessage : Mission&ACDataltem 
end 

Storage Mission and Aircraft Data (Event 
*13) Instantiation 

StorageMAC in InternalActionEvent, Token 
with 

tsn action_event 
tsnActionEvent 

StorageMACTextDescription 
msc_action_event 

mscActionEvent 
StorageMACMSCDescription 
end 

StorageMACTextDescription in TsnAction, 
Token with 
action_description 

actionDescription 
StorageMACEventText 
end 

StorageMACEventText in 
ScenarioEventNaturalLanguageStructure, 
Token with 
mnls_composite 

mnlsCompositel SMACEC1; 
mnlsComposite2 SMACEC2 

mnls plain text 
mnlsPlainTextl : SMACEPT1; 
mnisPlainText2 : SMACEPT2 

mnls_null 
mnlsNull : SMACENu111 

tsrk_sdr_rcr_node 
tsnSdrRcrNode : MPSlnstance 

tsn_action_node 
tsnActionNode 

StoreSelectedMission&ACData 
end 

SMACEC1 in MatraNLSComposite, Token with 
preceding-fragment 

precedingFragment : SMACEPT1 
subject_node 

subjectNode : MPSlnstance 
following_fragment 

followingFragment : SMACEC2 
end 

SMACEC2 in MatraNLSComposite, Token with 
preceding-fragment 

precedingFragment : SMACENulll 
subject_node 

subjectNode 
StoreSelectedMission&ACData 
following_fragment 

followingFragment : SMACEPT2 
end 

C45 



Appendix C (Part 1) 

SMACEPT1 in P1ainTextNode, Token with 
mnla_text 

mnlsText : The 
end 

SMACEPT2 in P1ainTextNode, Token with 
mnls_text 

mnlaText w. " 
end 

StoreSelectedMission&ACData in Action, 
Token with 
action_name 

actionName : "Store Selected 
Mission&AC Data' 
ten_act_parameter 

tenActParameter 
StoreSelectedMission&ACDataTsnParameter 
msc_act_parameter 

mocActParameter 
StoreSelectedMission&ACDataMscParameter 
end 

StoreSelectedMission&ACDataTsnParameter 
in MessageDescription, Token with 
action-parameter 

actionParameter : "stores the data 
item for the selected Mission and 
Aircraft' 
end 

StoreSelectedMission&ACDataMscParameter 
in MessageDescription, Token with 
action-parameter 

actionParameter : "Store Selected 
Mission and Aircraft Data* 
end 

StorageMACMSCDescription in MscAction, 
Token with 
msc_sdr_rcr_instance 

mscSdrRcrInstance : MPSlnstance 
msc_system_action 

mscSystemAction 
StoreSelectedMission&ACData 
end 

Grouping for Events 11-13 

EventsllTo13Group in EventGroup, Token 
with 
group_event 

groupEventl : DataltemRequest; 
groupEvent2 MACDataltemProvision; 
groupEvent3 StorageMAC 

grp_lb 
grpLb : EventsllTol3CroupLB 

grp_ub 
grpUb : EventsllTol3GroupUB 

end 

EventsllTol3GroupLB in LowerBound, Token 
with 
lower_bound 

lowerBound : "1" 
end 

Events11To13GroupUB in UpperBound, Token 
with 
upper_bound 

upperBound : "card data types Mission 
Plano) 
end 

C-46 



Appendix C (Part 2) 

Appendix C (Part 2) - Additional Scenarios For Hawk Mission Planning System 

Use Case : Retrieve from Cartridge 

Scenario Name: Retrieve from Cartridge - Normal Path 

1. C[SR] The (, d,, Pilot] selects the [m<<, Retrieve Data from Cartridge option ne, neve Data Request] on the (,,, MPS] Main Screen. 

2 C[IR] The [, -� MPS] asks the [,,, Cartridge] whether there [,,, is a cartridge present in the hardware? 
. r, �q,,., tcon,, mcanr ge]. 

3. C[IP] The [,,,, Cartridge] responds to the [, c, MPS] that [,,, g there is a cartridge present in the hardware 
. co f mcamao, ]. 

4. C[IR] The [,, j, MPS] asks the [,,, Cartridge] whether there [is data on the cartridge? Reques, ca, gym, canes, DelaJ. 

5. C[IPJ The [s, ir Cartridge] responds to the [� MPS] that [,, ý, j there is data on the Cartridge. contemcarodoe Data). 

6. A The [wo,:, MPS] [ýo deletes any previously retrieved data Dew. c , re t Mssq�oota]. 

7 C[IP] The [5d, MPS] displays a [-g list of retrievable data M�5a�Dataust] available to the [,, Pilot]. 

8 C[IP] The [SO, Pilot] sends and [�m9 acknowledgment Ack�oW edge D: OL it] to the [., MPS]. 

9. C[IR] The [stir MPSJ requests that the [,,:, Cartridge] [v�y supply type--1 data Rotu,, st Type I Data]. 

10 C[IP] The Cartridge] supplies [, 2t, type-1 data] to the [,,, MPS]. 

11. T The ,, MPS] sets the [, r, e, DataTimer) to [dear., 10 seconds]. 

12. C[SP] The [se, MPS] informs the [,,, Pilot] that [,,. 9type_1 data has been retrieved : TyVe_I Autievednotdaalon). 

13 T The MPS] [, ýý, kr DataTimer] times-out. 

14. A The (sari,,:, MPS] [ ., stores type-1 data Store rype, Data]. 

15. C[IR] The [st, MPS] requests that the [,., Cartridge] [�rs, supply type-2 data] Request Type 2 Daia] 

16. C[IP] The [Sd, Cartridge] supplies [nný)type_2 data] to the [,., MPS]. 

17. T The [,, n0,.,, -IMPS] sets the [we, DataTimer] to 10 seconds]. 

18. C[SP] The [, d1 MPS] informs the [,,;, Pilot] that [q type-2 data has been retrieved Type 2 Retrieved Nowicaua, ]. 

19. T The [�o,,. o,., Kuß MPSJ [Irrer DataTimer] times-out. 

20. A The MPSJ [er stores type-2 data store Type .2 Data]. 

21. C[IR] The [5m MPS] displays the [list of available data types Available Data Types] for the [,,, Pilot] to select from. 

22. C[IP] The [5(i, Pilot) selects a [nag data type to display Request Data Type] from the [«, MPS] screen. 

23. C[IP] The [5r, MPS] displays the selected data type Requested Data Type] to the Pilot]. 

24. C[SR] The [5d, Pilot) selects the Print Data Pint Request] on [,,., MPS) screen. 

25. A The [sm/, c, MPSJ [au creates a print object : Create Print obtec] from the displayed data. 

26. C[SP] The [, dr MPS] sends the [,,,, 9 print object] to the (_ Printer]. 

27. C[IP] The [, e, MPS] informs the[,:, Pilot] indicating [-, the data is being printed . pn nng message]. 

28. C[IP] The [5i Pilot] sends an [-,, acknowledgment Pmt Acknowledge] to the [�AMPS]. 

29 C[IP] The[,,,, Pilot) informs the[,,,, MPS] that he wishes to [exit this function and return to the Main Screen indwn, io MAu ]. 

30. C[IP] The [sd, MPS] displays to the [, c, Pilot] the [�., u Main Screen). 

C 47 



Appendix C (Part 2) 

t: Raw" Data 1 0 R. MNN De4R/pwtl C(6RJ 
2: Canldge In Hardware? 

RNUk Ce*m CalndP 

3: Confirm CeMdge H Herdware 
C«A. CrH r. CDPJ 

4 Data on Ca e? 
CPR] Rw1. "r Carmen Genaa. nre 

Confirm Data on CarSid e 
C Cab. Daw CLIP) 

e: DAft Cwmd 
MIS" Data 

T. R.. Mbl. Deb 

hkasim 00 LAW COP) 

e: 0K: DaaLIqAduwwledgemerd 
º - ' r AdiwAgw Ow W clip 

?. Type_I Data Request 
CuIRJ Rpuwa Tv Ll D. u 

10: Type_1 Data 
CLIP 

11: DataThrw"(10 aeoonde) 

ix TYw_1 ReVMwd 
Tp _l R *ad MrMaonýý 19: DataTYeer 

11: Senn Type_1 
Data 

16: _2 Dela Request 
I. 

I 

CfIRJ R. p. r Typ_2Dw 

16: INT*j Data 
C[I 

17: DataTtm. r" (10 aemeda) 

16: 14w Reblied 
ppJRwrweNOMe. " PiM. DataTYnr 

lzýý, 

LDI! i 

21: Aval able Data 
C[IRJ 

(continued over page) 

`AMSC: Retrieve from Cartridge - Normal Path' 

C-48 



Appendix C (Part 2) 

Pik MPS 

_ 
22: Data to Display 

_ C[IP] Repm90aia Type 

23: Selected Data 

Pnnt 

25 Create Print 
Object 

C[SPJ 

27 Print Message 

'9 W C[IP] 

28OK_ Print Acknowledge 
C(IPJ PnMACMno (edge 

29: Exit and Return 

C(IPJ- ßMwnro Alan 

4 
30: Main Screen 

C[IP] 

II 

ai 
FE 

1 :1 

'DISC: Ruti iu, ti" Irvin (artridgc -No rina I I'a1I, Icuntinucdl' 

('4() 
I 



/1/); , mJ, x C (r'alr 2) 

Scenario Name: Retrieve from Cartridge - No Cartridge Present 

I C[SR] I Iw [,.,. Pilot] selects the [ G,, Retrieve Data from Cartridge option R., N. eData Reqýesý] on the [,,,, MPS] Main Screen. 

C[IRJ I lie MPS) asks the [r. Cartridge] whether there , is a cartridge present in the hardware? raoqu05, conrancanrbge]. 

i C[IP] Ihn Cartridge] responds to the j- MPS] that there is no cartridge present in the hardware No Data). 

I C[IPJ the MPS] informs the [«, Pilot] that there is [ý,, q no cartridge is present in the hardware No cagr eNmaicaro�]. 

C[1P] the [�u Pilot] sends an [, r acknowledgment Acknowledge No eanridya] to the [,,, MPS]. 

r. C[IP] The [�* MPS) displays to the [,,, Pilot] the [. �q Main Screen]. 

Pi)ý ri e 

I Nn Irurvo u. iI. r ` 
Ifslrsw Iblr NNýnI CISRI 

I (:: rrviAyc in 1lardwarc'1 

C(IRJ krr eal Grdnm C. vmnua 

3: No Cartridge in Hardware 

No carne j CLIPI', 

1 Inert Nu l: atrut{In 

Mi (: aýInilyo MtrM1. dnri Clip) 
''. 

'. t N( khnr 4. aIg Nu Crllido 

Clip) Aeoa., *w pNuC Indo 

.6 
Main Scnw 

C(IPJ 

'N1S(': I' (ricve from Cartridge - No Cm Iiidgc 

('-5O 



Appendix C (Part 2) 

Scenario Name: Retrieve from Cartridge - No Data on Cartridge 

1. C[SR] The [5d, Pilot] selects the [-�, Retrieve Data from Cartridge option Retrieve Data Request) on the [,,, MPS] Main Screen. 

2. C[IR] The [5d, MPS] asks the [,,, Cartridge] whether there [rs9 is a cartridge present in the hardware? Request Confirm Genrage]. 

3. C[IP] The [5� Cartridge] responds to the [,,, MPS] that [g there is a cartridge present in the hardware : Conti" cartridge]. 

4. C[IR] The [,,,, MPS) asks the [, ý, Cartridge) whether there [is data on the cartridge? : Request confirm cartridge Data]. 

5. C[IP] The [5,, Cartridge] responds to the [, c, MPS] that [Rca there is no data on the Cartridge rbcan Dana]. 

6. C[IP] The [5,,, MPS] informs the [, c, Pilot] that there is [, 9 no data on the Cartridge: No Data Notification]. 

7. C[IP] The [5d, Pilot] sends an [rn, 9 acknowledgment: Acknowledge No Data] to the [, 5, MPS]. 

8. C[IP] The [5a, MPS] displays to the [ic, Pilot] the [,,, s9 Main Screen]. 

eifit 

1 Remeve Data 
C[SR] uenýeve D. I. Revues! 

7 Canridge in Hardware 

C[IRJ RW. sI ConlmifwroWe 

3 Confirm Cartridge in Hardware 
Conerm CsmMpa C[IP] 

C[IR] RpueY Confirm CeN, dge Oers 

5 No Data on Ca ndge 
Noanpegn C[IP[ 

6 Report No Data on Catndge 
No DON Nanc, 

wn C[IP] 

7. OK: Acknowledge No Data 
C[IPJ Acknoe4oope No Den 

8. Main Samen 
CPPI 

ýýý 
': 11S(, ': Retrieve from Cartridge - No Data on Cartridge' 

('51 



Aj pi�id, x C (F .,,! : ") 

Scenario Name: Retrieve from Cartridge - Pilot Retrieves Subset of Data 

1 C(SRJ the J., Pilot) selects the (-v Retrieve Data from Cartridge option Retrieve Data Request] on the [,,, MPS] Main Screen. 

2 C[IR) the (,,. MPS) asks the [r,, Cartridge] whether there ]. is a cartridge present in the hardware? Request conlurriCallridge) 

3 C(IPJ 1 he (,,. Cartridge] responds to the (� MPS] that [n�U there is a cartridge present in the hardware crnrrrncenrdge]. 

4 C(IR) Ttie (�a MPS) asks the (rc, Cartridge) whether there [is data on the cartridge? Request canrrrn, Cnnrpe Der. ]. 

S Clip] The (,, e Cartridge) responds to the (�", MPS) that [nCg there is data on the Cartridge confurncenr* Data). 

6AI he MPS] (xr deletes any previously retrieved data Delete Current M esbnDma). 

Clip] The (,, M MPS) displays it (,., list of retrievable data MwKK, a, mL, u) available to the [rcr Pilot]. 

H C(SRJ T It( (,,,, Pilot] chooses the [rr. g Select Data to Retrieve option Data Seaaan Request] from the (,,:, MPS) screen. 

9 C(IR) the (�b MPS] displays a (..,, list of available data types Available Dais List) for the [Cr , Pilot) to select from. 

10 C(IPJ the (�� Pilot] selects a [,,. g subset of the available types Selected Mile Subset] from the [,, c, MPS] screen. 

1I Clip] The (wr Pilot] (,.., confirms this choice of data D, ria s, As« c ntonuNan] via the [,,, MPS] display screen. 

1? C(IR) the (�N MPS) requests that the (v Cartridge] (�. w supply type_1 data] : Request Type., Dole]. 

I: i C(IP) 1 he (,,,, Cartridge] supplies (.,. q type_. 1 data] to the (,, r MPS]. 

1.1 TI he (, ý..... MPS) sets the (r.. DataTimer) to 10 seconds]. 

15 C(SPJ lie (., � MPS) nforms the ( Pilot) that I�. 9 type_ 1 data has been retrieved Type I Reur. vedNare , , ). 

16 T1 hu MPS] (wer DataTimer) times-out. 

1IAI he MPS) (rr stores type-1 data Store Type. I Deal 

I ll C[IR] the (, e, MPS) requests that the [�, Cartridge] supply type-2 data] Request Type. 2 Dais] 

1! I Clip] I lie [,, w Cartridge] supplies (... j type-2 data] to the (, r, MPSJ. 

20 TI he MPS) sets the (r. �� DataTimer) to (r,,., 10 seconds]. 

2t CISPI The (. a MPS( informs the (2r Pilot) that 1,,. Utype_2 data has been retrieved Type. 2 R«r. v d Nuldararr]. 

: r: ' T Ilit, ( .............. -, MPS) (r. �.. DalaTimer) times-out. 

aA IheM{'SJ (sr stores type 2 data star. type 2 Dal. ], 

: '4 C(IR) Hill (�x MPS] displays the [list of available data types Au. uLd N tale Typs ] for the j,,, Pilot] to select from. 

; 'r C(IPJ Ihr, [. *Pilot] selects a (, reqdata type to display n. queer Data Type) from the[,,, MPS) screen. 

: 'r, Clip] I hu (.,, r MPS) displays the (��,, selected data type n. qu. aw Data Typo) to the (�r Pilot] 

21 C(IPI II it! (, M Pilot) ndnnns the ]n. MPS] that ho wishes to (exit this function and return to the Main Screen . Return to main). 

? ti C(IP) I h(! (�, MI-'S1 dc, plays to the (rar Pilot) the It,., Main Screen). 

C-52 



Appendix C (Part 2) 

s 

1: Retrieve Data 
CISRI Reb . Data Request 

( 2: CaNäge In Hardware? 
CUR) Request commaCathdo. 

3: Confirm Cartridge In Hardware 
ConfemCaro* CLIPII 

4" Data on Cartridge? 
CURD Request confine Cwmao. Data 

t 
5: Confirm Data on Carbt 

CwftCweldpeDetn C(PJ 

6: Delete Current 
Mission Data 

7" Reedvable Deh 
MsesDatalut C[IPII 

8: Request Select Data to Retrieve 
C[SR] LWO Requad Is 

i 

9: List of Types Avafiabb 
Avieaeb Data T. List C[IRJ; 

10: Selected Data Subset 
C)IP] 

11: Conlrtnation of Choice 
c)PJ Daa& at Co nn 

12. Type-1 Data Request 
! C[IR] Request Typs_t DWe 

13: T1 Data 
C[IP 

14: DalaTimer-(10 seconds) 

15: Type_7 Retrieved 
Typet Rammed o6Tianan C[SPJ: 16: DataTimer 

iI 

17: Store Type_t 
Data 

IS : Type_2 Data Request 
__ ; C(IRJ Request Type-2 Date 

19: Type-2 Data 
CLIP 

L 20: DataTaner-(10 secaods) 

(continued over page) 

[SC: Retrieve from Cartridge - Pilot Retrieves Subset of Data' 

C-53 



(' (i', iii 2) 

Pi1Qt artrid e 

7 lylu_1 Niliu"viýA 

hi. ý : ie, iýron. ( Nona, C)SP) 22 D, Tuner 

*X :: 

23 Store TYPe 2 
Data 

7e Available Data Types 
C[IRj 

25 Unla V, Display 
CHIP) Nryun. vl(3W typ. 

l 

,,!;, -Oiled UaIa 
t n,, j-, W Uera lYPa CHIP) 

27 Call and RaWrn 
Clip) NCI- t. U i 

7n M 0n Sneen 
CHIP): 

', NIti(': Rt"Irit vt from Cartridge - Pilot Retrieves Subsct of Data (continued)' 

ý' 5. F 



Appendix C (Part 2) 

Use Case : Choose Mission and Aircraft 

Scenario Name: New Mission From Open Missions 

11. C[IR] The [, d, MPS] asks the [«< Mission Plan] to [ýsq supply a data item Request Data Item]. 

12. C[IP] The [5,, r Mission Plan] supplies the [, ýgdata item forth e selected Mission and Aircraft Mi55ron&AC Data Item) to the 

(-" MPS]. 

13. A The MPS] [,,, stores the data item for the selected Mission and Aircraft Store selected Mrn: ionanc Data]. 

14. C[SP] The [Id, MPS] indicates to the [«, Pilot] that [ms9 all data has been retrieved from the Mission Plan M; ssio�&AC aeineva 
Complete]. 

15. C[IP] The [sd, Pilot] sends an [msg acknowledgment Acknowledge Mission&AC Retneval) to the [rct MPS]. 

16. C[IP] The [5d, MPS] displays to the [, ý, Pilot] the [mag Main Screen]. 

C-55 



fpp(v)(lix [; (l'ru12) 

Not M Mission Plan 

t. Create New Mission 
. C[SRJ Nuw Ueroor HUprnr, ý! 

2 Delete Current 
I 

'. 
Mission Data 

3: Request Open Mission/Aircraft 

C[IRJ Request Open 66svnr&AC 

4: Open Missions and Aircraft 
Open Mevono&AC C[IPJ 

S Open Missions 
C[IRf 

6 Choice of Mission 
c(IP( Mý.,, xn nawý. 

Aircraft I Ist 
n-a UM C(IP] 

N Choice of Aircraft 
C(3P( Amree CMxv 

!1 1K Confirm Mission & Aircra ft 
C(IP( A4.. vnnR41 fnrndxnnbýui 

ý, 

10 Request Data on Selected Mission /Aircraft 

CDRI Ncgircxl SclcUrd Misalon&AC 

li Ir -I .... 
im -.. <ýd rmia rn xýr M i'fonllj 11: kequesl Data Item 

_. 
r 

CDR( 

12: Data Item for Selection 
Missioo&AC (analem CfIPI 

13 Store Selected 
eil 

I 

Mission and Aircraft 
Data 

14 Ho, tnnvel Complete 
I; ýýrix, ýnl C,. VM. N nnr tun C[SPJ 

I5 OK Hetrlevnl Acknowlodryr 

ClIP] Ai lrxýwio ijo Mi. wvi6AC knhirýý1 

lb M11111 Semen 
4 C[IP) 

'NIti(': (Iioo, t Miss ion & Aircraft - New Mission From Open Missions' 

C'-56 



Appendix C (Part 2) 

Scenario Name: New Mission From All Missions 

1. C[SR] The [, d, Pilot] selects the [i,, 9 Create A New Mission : New Mission Request) option from the [,,:, MPS) Main Screen. 

2. A The [5d, 'rcr MPS] [act deletes data for existing Missions Delete Current Mission Data]. 

7. C[IP] The [sd, Mission Plan] supplies [,,,, g all Missions and Aircraft All Mss i Banc ] to the [, c, MPS]. 

8. C[IR] The [5d, MPS] displays [n,, 9 all Missions All Missions] for the [, u Pilot] to select from. 

9. C[IP] The [sd, Pilot] selects a [-. g Mission of interest Mission choice] from the [, C, MPS] screen. 

10. C[IP] The [5dr MPS] displays the 

11. C[IP] The [5ar Pilot] selects an [m 

t List] for the [, c, Pilot) to select from. 

from the [, 5 MPS] screen . 

12, C[IP] The [so, Pilot] [msgconfirms the selected combination of Mission and Aircraft MissousAcCombination] to the[,,., MPS]. 

13. C[IR] The [sd, MPS] requests that the [,,, Mission Plan] supply [ýgdata for the selected Mission and Aircraft. RetImi saleded 
Mission&AC]. 

ITERATION; Lower Bound =I: Upper Bound = card data types MissionPlant) 

14. C[IR] The [5d, MPS] asks the [, c, Mission Plan) to [,, sy supply a data item . Request Data Item]. 

15. C[IP] The [sdr Mission Plan] supplies the [ 9data item for the selected Mission and Aircraft : Miss �&Ac Data Item] to the 

[, c, MPS]. 

16. A The [Sd / C, MPS] [,, t stores the data item for the selected Mission and Aircraft : sore selected fts AC Dana]. 

17. C[SP] The [sd, MPS] indicates to the [,,, Pilot] that (mg all data has been retrieved from the Mission Plan Mission&AC Retrieval 
Complete]. 

18. C[IP] The [sdr Pilot] sends an [, nsg acknowledgment Acknowledge Mission&AC Retrieval] to the [m, MPS]. 

19. C[IP] The [sd, MPS] displays to the (, c, Pilot) the [, nsg Main Screen]. 

C'-57 



A; rp'nclix C (I'. ut : ') 

MPS Mission Plan 

ClS14l 

Mission (lalaa 

:1 Ilequesl Open MissioNAircr; ifi 
-r C1IR) na iosr(rywrn4rssronsnc ', 

4 Open Missions and Aircraft 
St-. AC CHIP] 

Iprn Minsnoi 
Clip) 

10-o b, iu�nt A11Mrsslans 
111. 

ClII') 411 , 

', 7 All Missions and Aircraft 
. 

AiiA4aa n&AC ClIP], 

.I Mi, n rund is 

. 114111-11 CJIRI, 

rýll'ý 

Mission 

.. �Itx. lo 

.4 
1 Aw: raft List 

I:,, rna(ul ClIPI 

of M,,. iu b e 
CIPl a:,. in i55sa 

17 OK Confirm Mrsslal h A, o- ., n 
Clip] f -AACGmtwntx., 

I. III, . pn nt 1LtI. ft Si 1 r. IinI Mmauu'Aucr. tlt 

ClIRl ': xl,,:!. I:; r: lex M1nl A4ý.. r sui 1. 
P. 

14. Request Dala ivn 
I: ýu , U+rJIWa O'WýMs: rull'Wlülll ___ _ ýI 

CJlRl 

IS Dana ltumtor Scd1 kw, 

1 fi. Sloru Selected 
Mission and Ancrall 

____ 
Ilala 

.1 
.1 IYgr aal Conirlrrle 

carlr+n55M, nn . sin CISPI 

I! I 1 Mkncsi k l , " 1N RMrxrvnl 

Clip) a"A( 1�I,. n l A4. . r 

II Win Screen 

cjlplý 

'\IS(': Choose Mission & Aircraft - New Mission From All Missions' 

C-5 S 



Appendix C (Part 2) 

Scenario Name: Pilot Does Not Initially Select an Aircraft or Mission 

15, C[IP] The [sdr Pilot] [n, 59 confirms the selected combination of Mission and Aircraft : MissionsAC Combination] to the [,, MPS]. 

16. C[IR] The [5a, MPS] requests that the [,., Mission Plan] supply [, 9data for the selected Mission and Aircraft Request Selected 
Mission&AC]. 

ITERATION: Lower Bound =1: Upper Bound = card data types MissionPlan() 

17. C[IR] The [5m MPS] asks the [«, Mission Plan] to [Rnsgsupply a data item : Request Data Item]. 

18. C[IP] The [su, Mission Plan] supplies the [u,; 9 data item forth e selected Mission and Aircraft : Miss n&AC Data hem] to the 

k' MPS]. 

19. A The [5d, 4e, MPS] [., stores the data item for the selected Mission and Aircraft. Store seleCoa Mi55io, anc Dana]. 

20. C[SP] The [sdr MPS] indicates to the [c , Pilot] that [m59 all data has been retrieved from the Mission Plan M; ssqn&AC aehevaI 

Complele]. 

21. C[IP] The [, d, Pilot] sends an [, 9 acknowledgment : Acknowledge Mi sionsnc aetneval ] to the [«i MPS]. 

22, C[IP] The [Id, MPS] displays to the [«r Pilot] the [ý9 Main Screen]. 

('-5O 



1j)f' fix C (Rut, ") 

Mission Plan 

1 Create New Misalm 
CISR) ?w W- Rogwtl 

2 060 0 Current 
Mission Data 

.4 
e H,,.,. ni A Aktren choke - No 

Cp]PI L-Abka o, 

.4 
M OK Ackrk, Medae Misskin Error 

C)IP) AuroMSdi. PA-n9 M-- 

9 Choice of Mission 
CLIP) 54n oCOn . 

4 1(1 Aln:,. f List 
i. n Id CHIP) 

II 1. -ß". ", nýn &An,. Mlt(: (o ý" N,, A ,, , ll 
CHIP) lair h, ýAý, ý1 

I. Emg- lin, l 0.1 Alai r., fl 1 
-I borne l, -AL....,,; n C(IRl 

II (K Acknowlodge Aircmfl I- o ur 
C(IP) Mb, uNwlys YSwy A, -nn 

11. 

14 Choke of Nrcrell 
CHIP) A-11Cho . 

3 Request Open MissionlAircratl 
CuIRI apuen ova PA.,. -&AC 

4: Open Missions and Aircraft 
Open M, smns6AC C(IPI 

14 OK Confirm MIrnl oAA "no ,. It 

Clip] Muun&AC Günt n 
11- 

pu 1 
llll wil ilnLý IYlwv IY: I ()j! 

19 Seme 
Missen an 

Del 

16 Request Data on Selected MissiorvAircre t 
C[IRI Nepuev sdecrea MooonMC 

17: Request Dale Item 
CjIRI 

18 Data Item for Selection 
M-A. ACOere Iren C(IP) 

S. i a araan 

IU Retrieval Complete 

Il, rhavd C,., W. NUn; Nirn CISPI 

I OK Retrieval Ad, wI, lo 

Clip] A, 4x, wMAp' NumMCNsim, r, d 

22 Mom `cioen 

\Lti(': Choose [Mission i Aircrall - 
Pilot Does Not Initially Select Aircraft or 'Mission' 

C-00 



Appendix C (Part 2) 

Scenario Name: No Data for Selected Mission in Mission Plan 

C'-61 



Apt, onchx C (Part 2) 

ý Cu91 I 
ýMP$ý 

Mission Plan 
L----1 

1, Create New Mission 
CISRI , wow Miasrcn Hequeal 

2: [). late Current 
Mission Data 

3: Request Open Mission/Aircraft 

ClIRl Roquooi Open Mlsoon&AC 

4: Open Missions and Aircraft 
Open Maoons&AC Clip]: 

b upon Missions 

C[IRI 

6 CHnýrn nl Miss¢m ' 
C[IPI Uo. ioi Charts ý 

7 Ancrxfl List 
M-ft 1.1 C[IPI, 

H CI1111C0 of Amon 

C(IP) A, arnn Ch- P P. . 

f1: OK Confirm Mlsslon & Aircraft 
C(tPJ "i-VICCoe9. oators 

liiý 

10 Request Data on Selected Mission/Aircraft 

C[IRJ Requests toclneM uou OC 

J 11: No Data Item Found For Selection 

6rw Na Deis Fnr Mrsson&AC C[IPJ': 

1; No Data Ile. Frnmd Nntifinatnm 
Nn"-, &AC Emv Moss: yu CjlPJ 

17 OK Acknowledge No D, ri rI ound 
C[IPJ Ac 4n, wlndgNoMssuu�Snf 

14 Main Screen 
ClIPJ 

ýIti(': ('hoos(" Missinn & Aircraft - No Data for Selected Mission in Mission f'lan' 

C'-62 



Appendix -D 



This page deliberately left blank 



Appendix D 

Appendix D- ARP 4761 Case Study : Updated Fault Trees 

'BSCU Commands Braking in Absence of Brakc Input Causing Inadvertent Braking 

Updated Fault Tree (page 1)' 

BSCU1 Delectable 
Failure Causes Bad Data 

[BSCU1J 

ýýý 

, asýý, i ýomýý, ýýýý�ýý ýýuý�aý. iihirdEriýn Cruises H: ýA 
i liýýý'iýtt. I ýIrJI!. 

_ __ 
ý1 

... i i. ý, i. ý uni ou 

IBSCUI Power Supply I(BSCU I )AMnnor Channel 
Failure Causes Bad D. I. Al. - Rß, 1 0110 VaI d 

H1 OLI f'sF i M0IIV 

'901 AK 

j©SCUIjValiJily Munnor Ili 
Failed Valid due m 

I 

[BSCU 1 design r ChannelI 
Design Error 

Hardware F;,, lure_^ J aý 

ýýý, i F. ýdýn�týýýýý 

- -ixt cli. m1I ýHSCUIý( nI clýeý 
J 

11"ýCPU 
"1 I/O I/O F. kf 0 

'. uses Bad 
_ 

Causes 11ail Data 

`BSCU Commands Braking in Absence of Brake Input Causing Ina(I crlent Braking 

- Updated Fault 'Free (page 2)' 

1) 1 



nplrrnd, x 1) 

5.00(. 10 

! "OL 01 
.. Blut 2 00E. 09 plan% 

,l ul. l r, .. r., r ". wm 1, 
I i 

lII;. i: I . ewer Sly 
' 

l 

'i lrx V sl Ihr. ilx nr . 

I 
' 

1 .w ýýil ýl ply 1 ni irr 
II,., I 0, 

x 
r 

W IAii 
.' 

tl 

li! ý r., 

ý ý 

I�r. l I: IM. n 
niýr 

.nl ýr 
Irtit: l l: II'rrwar `, liyly 

ý 
ýIfSt; 112ýMrnnlor Channel 

M. +rnýýr '. Iw VnWI 
I ýarl+n 

Csuaaa IinA ()ale 
I 

AIwoYs Nepone VxIN 
It ,. r,,, mcrV i: "MIv 

ýý 

r.. ..., 
.I.. 

w 

Ilnrilr, n1 2.001 u. 

III M., tttt ýr 

rr 

ýIiSt 
nilnrl V: rlnl ruin In off S(: 112 Mrrrnlrn ....... 
l: rrýlw.. rrr 1 nilrnn 

I 

1)nniýln Lrr rf 

ýnilur 

tl 
Ilr� iý ýI c. 

Failure Cnu sera Hrd D. Ia 

', OOE 0e 

CP 
aý., ýýý ýnscAll, ' "I I ch. ", 

irn t ný: r/ .i nr 

Ant- 

I .,, IIllI. 1-1 oPPl. Ok) 

'U. S( 1 l'oinin: ºnds Braking in Absence of' Brake Input Causing Inadvertent Braking - Updated 

Fault 'I'nr (page 3)" 

Instantiation of Fault Analysis Tree Meta-model - Updated Fault Tree 

Updated Event Definition `BSCUINADD' 

" iý ii: IA-111 "I'ýýN. ý"n wi1 

u1ýýLýiý"ýI lýiýýl ilý" 
upd. il I, - : 1? v. "nt AtJ1 t, tto<If't nt i lo 

I'l 

I": v. "nI Atlp, Int . ", IIIi s, I I lv in 
III.. Ltt". 11": vý"ntIt., l ih-, '1"., ki"n wit h 

yln, 
"1"yl,.. "l ul, 

. "v., nl r., ntt. ". "I Iv'. 

t"v. lit (11111 "i"l iv. " : utl itt"111 
; t, "I lint I't. sl, "tl, l 111 y 

nß"1 11.11111 �I, nl, l lit y 
Ev. -ti AAcIslat IIIt ,, 1,. its iIity 

I, tý"1 tu innty I'' l. t. "I 
i, t. "I imin, ttyltu l. t "I 

I": v, ýntAlt. '1 (min tt yHutlult"t 
nu"tu; tl I"tl,. "1 

, tut iiIt . l�"l : 1": vt"ntAirt"limin. )ryLabe1 
4+n. 1 

1": V-'n! AA, "tu, ill'tul)nlbilily in 
Aiu, i I Ißt , I,. I, i l it y, '1',, kon wit It 

l ail ility 
iI' 01) 

Oats definitions 

''i'"ii 1ý1U in or ýSale, Tuke_zi wit_Ii 
nput_ 

[nputl EventBUpdatedProfile; 
input2 EventCUpdatedProfile 

ý"n<I 

Updated Event Definition `SSCUUNDF' 

I'. v-, nt I+ in I": v, ait, 9', ký"ii wit li 

up'I'll "(f III II i le 

uIulatedProtile : EventBUpdatedProtilc 
end 

EventBUpdatedProfile in 
UpdatedEventProfile, Token with 
type 

Type : "bas" 
actual-probability 

actual Probability 
EventBActualProbability 
preIiminarybudget 

proliminaryBudget 
Iý. v, vit liPreeliminaryludget 
ac"t 101_label 

octualLabel : EventBActual Label 

end 

hvvautliACLualProbability in 
Artu,, lI'roI>nbiliCy, Tukcn with 

I) 



Appendix D 

probability 

_Probability : 0.00E+00 
end 

EventBActualLabel in SimpleLabel, Token 
with 
simple_description 

simpleDescription 
EventBActualSimpleEventDescription 
end 

EventBActualSimpleEventDescription in 
SimpleEventDescription, Token 
with 
entity 

-Entity : "BSCU" 
condition 

_Condition : "Single Undetectable 
Failure Causing Inadvertent Braking` 
end 

Updated Event Definition `BSCUDETFD' 

EventC in Event, Token with 
updated-profile 

updatedProfile : EventCUpdatedProfile 
end 

EventCUpdatedProfile in 
UpdatedEventProfile, Token with 
type 

_Type : `int' 
event_connective 

eventConnective : OrGate2U 
actual-probability 

actualProbability 
EventCActualProbability 
preliminary-budget 

preliminaryBudget 
EventCPreliminaryBudget 
actual-label 

actualLabel : EventCPreliminaryLabel 
end 

EventCActualProbability in 
ActualProbability, Token 
with 
probability 

_Probability : 1.23E-09 
end 

Gate definitions 

OrGate2U in OrGate, Token with 
input 

_Inputl : EventDUpdatedProfile; 

_input2 EventEUpdatedProfile 
end 

Updated Event Definition `BSCU1DETD' 

EventD in Event, Token with 
updated-profile 

updatedProfile : EventDUpdatedProfile 
end 

EventDUpdatedProfile in 
UpdatedEventProfile, Token with 
type 

_Type : "int' 
event_connective 

EventConnective : OrGate3U 
actual-probability 

actualProbability 
EventDActualProbability 
preliminary_budget 

preliminaryBudget 
EventDPreliminaryBudget 
actual-label 

actualLabe1 : EventDPreliminaryLabel 
end 

EventDActualProbability in 
ActualProbability, Token 
with 
probability 

_Probability : 1.23E-09 
end 

Updated Event Definition `BSCU2DETD' 

EventE in Event, Token with 
updated-profile 

updatedProfile : EventEUpdatedProfile 
end 

EventEUpdatedProfile in 
UpdatedEventProfile, Token with 
type 

_Type : "int" 
event-connective 

EventConnective : AndGate3U 
actual-probability 

actualProbability 
EventEActualProbabiiity 
preliminary-budget 

preliminaryBudget 
EventEPreliminaryBudget 
actual-label 

actualLabel : EventEPreliminaryLabel 
end 

EventEActualProbability in 
ActualProbability, Token 
with 
probability 

_Probability : 2.84E-13 
end 

Gate definitions 

OrGate3U in OrGate, Token with 
input 

_Inputl : EventFUpdatedProfilet 

_Input2 
EventGUpdatedProfile 

end 

Updated Event Definition `BSCU1PSIND' 

EventF in Event, Token with 
updated-profile 

updatedProfile : EventFUpdatedProflie 
end 

EventFUpdatedProfile in 
UpdatedEventProfile, Token with 
type 

_Type : `int" 
event_connective 

EventConnective : AndOatelU 

actual-probability 
actualProbability 

EventFActualProbability 
preliminary-budget 

preliminaryBUdget 
EventFPreliminaryBudget 
actual-label 

actualLabel : EventFPreliminaryLabel 
end 

EventFActualProbability in 
ActualProbability, Token with 
probability 

_Probability : 6.32E-10 
end 

Updated Event Definition 'BSCU1CDIND' 

EventG in Event, Token with 
updated-profile 

updatedProfile : EventGUpdatedProfile 
end 

D-3 



Appendix D 

EventCUpdatedProfile in 
UpdatedEventProfile, Token with 
type 

_Type : "int' 
event-connective 

EventConnective : AndGate2U 
actual-probability 

actualProbability 
EventCActualProbability 
preliminary budget 

preliminaryeudget 
EventGPreliminaryBudget 
actual-label 

actualLabel : EventGPreliminaryLabel 
end 

EventCActualProbability in 
ActualProbebility, Token with 
probability 

_Probability : 6.00E-10 
end 

Gate dofinitioaa 

AndGatelU in AndGate, Token with 
input 

_Input : HIEventSetU 
end 

AndGate2U in AndGate, Token with 
input 

_Input : JKEventSetU 
end 

HlEventSetU in EventSet, Token with 
event-prof ile 

eventProfilel s EventHUpdatedProfiles 
eventProfile2 EventlUpdatedProfile 

and 

JKEventSetU in EventSet, Token with 
event-profile 

eventProfilel : EventJUpdatedProfile, 
eventProfile2 EventKUpdatedProfile 

end 

Updated lv. nt D. finition `891PSMOTV' 

EventH in Event, Token with 
updated_profile 

updatedProfile : EventHUpdatedProfile 
end 

EventfUpdatedProlile in 
UpdatedEventProfile, Token with 
type 

_Type : *bas' 
actual-probability 

actualProbability 
EventHActualProbability 
preliminary-budget 

preliminaryBudget 
EventfPreliminaryDudget 
actual-rate 

actualRate : EventHActualRate 
actual_expoeure 

actualExposure 
EventfPreliminaryExpoeure 
actual-label 

actualLabel s EventHPreliminaryLabel 
end 

EventHACtualProbability in 
Actua1Probabi1ity, Token with 
probability 

_Probability : 1.43E-02 
end 

EventllActualRate in Rate, Token with 
failure-rate 

failureRate : 1.43E-07 

end 

Updated Event Definition `ESCU1YSF' 

Eventl in Event, Token with 
updated_profile 

updatedProfile : EventlUpdatedProfile 
end 

EventiUpdatedProfile in 
UpdatedEventProfile, Token with 
type 

_Type : "bas 
actual-probability 

actualProbability 
EventlActualProbability 
preliminary-budget 

preliminaryBudget 
EventlPreliminaryBudget 
actual-rate 

actualRate : EventlActualRate 
actual-exposure 

actualExposure 
EventlPreliminaryExposure 
actual-label 

actualLabel : EventlPreliminaryLabel 
end 

EventlActualProbability in 
ActualProbability, Token with 
probability 

-Probability : 4.42E-08 
end 

EventlACtualRate in Rate, Token with 
failure-rate 

failureRate : 1.06E-05 
end 

Updated Event Definition `SSCUIMORV' 

EventJ in Event, Token with 
updated-profile 

updatedProfile : EventjUpdatedProfile 
end 

EventJUpdatedProfile in 
UpdatedEventProfile, Token with 
type 

_Type : "int' 
event-connective 

eventConnective : OrGate4U 
actual-probability 

actualProbability 
EventJActualProbability 
preliminary-budget 

preliminaryBudget 
EventJPreliminaryBudget 
actual-label 

actualLabel : EventJPreliminaryLabel 
end 

EventJActualProbability in 
ActualProbability, Token with 
probability 

_Probability : 1.63E-02 
end 

Updated Event Definition `SSCUICDF" 

EventK in Event, Token with 
updated-, profile 

updatedProfile : EventKUpdatedProfile 
end 

EventKUpdatedProfile in 
UpdatedEventProfile, Token with 
type 

_Type : lint' 
event-connective 

eventConnective : OrGate5U 

D-4 



Appendix D 

actual-probability 
actualProbability 

EventKActualProbability 
preliminary-budget 

preliminaryBudget 
EventKPreliminaryBudget 
actual_label 

actualLabel : EventKPreliminaryLabel 
end 

EventKActualProbability in 
ActualProbability, Token with 
probability 

_Probability : 3.68E-08 
end 

Gate definitions 

OrGate4U in OrGate, Token with 
input 

_Inputl : EventLUpdatedProfile; 

_Input2 : EventMUpdatedProfile 
end - 

OrGate5U in OrGate, Token with 
input 

_Inputl EventNUpdatedProfile; 

_Input2 EventOUpdatedProfile 
end 

Updated Event Definition `BsculmoFV' 

EventL in Event, Token with 
updated_profile 

updatedProfile : EventLUpdatedProfile 
end 

EventLUpdatedProfile in 
UpdatedEventProfile, Token with 
type 

_Type : "base 
actual-probability 

actualProbability 
EventLActualProbability 
preliminary-budget 

preliminaryBudget 
EventLPreliminaryBudget 
actual-rate 

actualRate : EventLActualRate 
actual-exposure 

actualExposure 
EventLPreliminaryExposure 
actual-label 

actualLabel : EventLPreliminaryLabel 
end 

EventLActualProbability in 
ActualProbability, Token with 
probability 

Probability : 1.63E-02 
end 

EventLActualRate in Rate, Token with 
failure_rate 

failureRate : 1.63E-07 
end 

Updated Event Definition 'BSCUICMDE' 

EventM in Event, Token with 
updated-profile 

updatedProfile : EventMUpdatedProfile 
end - 

EventMUpdatedProfile in 
UpdatedEventProfile, Token with 
type 

_Type : 'und' 
actualprobability 

actualProbability 
EventMActualProbability 

preliminary-budget 
preliminaryBudget 

EventMPreliminaryBudget 
actual_label 

actualLabel : EventMPreliminaryLabel 
end 

EventMActualProbability in 
ActualProbability, Token with 
probability 

_Probability : 0.00E+00 
end 

Updated Event Definition `BSCU1CPUBD' 

EventN in Event, Token with 
updated-profile 

updatedProfile : EventNUpdatedProfile 
end 

EventNUpdatedProfile in 
UpdatedEventProfile, Token with 
type 

_Type : "int' 
event_connective 

eventConnective : OrGate6U 
actual-probability 

actualProbability 
EventNActualProbability 
preliminary_budget 

preliminaryBudget 
EventNPreliminaryBudget 
actual-label 

actualLabel : EventNPreliminaryLabel 
end 

EventNActualProbability in 
ActualProbability, Token with 
probability 

_Probability : 3.17E-08 
end 

Updated Event Definition `BSCII1I/OFO 

EventO in Event, Token with 
updated_profile 

updatedProfile : EventOUpdatedProfile 
end 

EventOUpdatedProfile in 
UpdatedEventProflie, Token with 
type 

_Type : 'bas' 
actual-probability 

actualProbability 
EventOActualProbability 
preliminarybudget 

preliminaryBudget 
EventOPreliminaryBudget 
actual_rate 

actualRate : EventOActualRate 
actual-exposure 

actualExposure 
EventOPreliminaryExposure 
actual-label 

actualLabel : EventOPreliminaryLabel 
end 

EventOActualProbability in 
ActualProbability, Token with 
probability 

_Probability : 5.17E-09 
end 

EventOActualRate in Rate, Token with 
failure-rate 

failureRate : 1.24E-06 
end 

Gate definitions 

D-5 



Appendix D 

OrGate6U in OrGate, Token with 
input 

_Inputl EventPUpdatedProfile; 
_Input2 EventQUpdatedProfile 

end 

Updated Event D. fiaition 'BSCU1CPUF' 

EventP in Event, Token with 
updated-profile 

updatedProfile : EventPUpdatedProfile 
end 

EventPUpdatedProtile in 
UpdatedEventProfile, Token with 
type 

-Type : "bas" 
actual-probability 

actualProbability 
EventPACtualProbabiiity 
preliminary budget 

preliminaryeudget 
EventPPreliminaryBudget 
actual-rate 

actualRate : EventPActualRate 
actual-exposure 

actualExposure 
EventPPreliminaryExposure 
actual-label 

actualLabel : EventPPreliminaryLabel 
end 

EventPActualProbability in 
ActualProbability, Token with 
probability 

_Probability : 3.17E-08 
end 

EventPActualRate in Rate, Token with 
failure-rate 

failureRate : 7.60E-06 
end 

Updated Event D. linition 'BSCUICPIIDE' 

EventQ in Event, Token with 
updated-profile 

updatedProfile : EventQUpdatedProfile 
end 

EventQUpdatedProlile in 
UpdatedEventProfile, Token with 
type 

-Type : "und' 
actual-probability 

actualProbability 
EventQActualProbability 
preliminary budget 

preliminaryBudget 
EventQPreliminaryßudget 
actual-label 

actualLabel : EventQPreliminaryLabel 
end 

EventQActualProbability in 
ActualProbability, Token with 
probability 

-Probability s 0.00E+00 
end 

aale definitions 

AndCate3U in AndOate, Token with 
input 

_Input : RSEventSetU 
and 

RSEventSetU in EventSet, Token with 
event-profile 

eventProfilel EventRUpdatedProfile; 
eventProfile2 : EventSUpdatedProfile 

end 

Updated Event Definition 'SWITCH2' 

EventR in Event, Token with 
updated-profile 

updatedProfile : EventRUpdatedProfile 
end 

EventRUpdatedProfile in 
UpdatedEventProfile, Token with 
type 

_Type : "int" 
event_connective 

EventConnective : OrGate7U 
actual-probability 

actualProbability 
EventRActualProbability 
preliminary_budget 

preliminaryBudget 
EventRPreliminaryBudget 
actual-label 

actualLabel : EventRPreliminaryLabel 
end 

EventRActualProbability in 
ActualProbability, Token with 
probability 

Probability : 2.31E-4 
end 

Updated Event Definition 'BSCÜ2INADCM' 

Events in Event, Token with 
updated profile 

updatedProfile : EventSupdatedProfile 
end 

EventSUpdatedProfile in 
UpdatedEventProfile, Token with 
type 

_Type : "int" 
event_connective 

EventConnective : OrGate8U 
actual-probability 

actualProbability 
EventSACtualProbability 
preliminary-. budget 

preliminaryBudget 
EventSPreliminaryBudget 
actual-label 

actualLabel : EventSPreliminaryLabel 
end 

EventSActualProbability in 
ActualProbability, Token with 
probability 

_Probability : 1.23E-9 
end 

Gate definitions 

OrGate7U in OrGate, Token with 
input 

_Inputl 
EventTUpdatedProfile; 

_Input2 
EventUUpdatedProfile 

end 

OrGate8U in OrGate, Token with 
input 

_Inputl : EventWpdatedProfile; 

_Input2 
EventWUpdatedProfile 

end 

Updated Event Definition `BSCUITF' 

EventT in Event, Token with 
updated-profile 

updatedProfile : EventTUpdatedProfile 
end 

D-6 



Appendix D 

EventTUpdatedProfile in 
UpdatedEventProfile, Token with 
type 

_Type : "bas' 
actual-probability 

actualProbability 
EventTActualProbability 
preliminary_budget 

preliminaryBudget 
EventTPreliminaryBudget 
actual-rate 

actualRate : EventTACtualRate 
actual-exposure 

actualExposure 
EventTPreliminaryExposure 
actual-label 

actualLabel : EventTPreliminaryLabel 
end 

EventTActualProbability in 
ActualProbability, Token with 
probability 

_Probability : 2.18E-04 
end 

EventTActualRate in Rate, Token with 
failure-rate 

failureRate : 4.36E-05 
end 

Updated Event Definition `SWIFAIL2' 

EventU in Event, Token with 
updated-profile 

updatedProfile : EventUUpdatedProfile 
end 

EventuUpdatedProfile in 
UpdatedEventProfile, Token with 
type 

-Type : "bas' 
actual-probability 

actualProbability 
EventUActualProbability 
preliminary_budget 

preliminaryBudget 
EventUPreliminaryBudget 
actual-rate 

actualRate : EventUActualRate 
actual-exposure 

actualExposure : EventUActualExposure 
actual-label 

actualLabel : EventUPreliminaryLabel 
end 

EventUActualProbability in 
ActualProbability, Token with 
probability 

_Probability : 1.30E-05 
end 

EventUActualRate in Rate, Token with 
failure-rate 

- failureRate : 1.30E-07 
end - 

EventUActualExposure in Exposure, Token 
with 
period 

_Period : 100.00 
end 

Updated Event Definition `BSCU2PSIND' 

EventV in Event, Token with 
updated-profile 

- updatedProfile : EventvupdatedProfile 
end 

EventVUpdatedProfile in 
UpdatedEventProfile, Token with 

type 

_Type : `int' 
event-connective 

EventConnective : AndGate4U 
actual-probability 

actualProbability 
EventVActualProbability 
preliminary-budget 

preliminaryBudget 
EventVPreliminaryBudget 
actual-label 

actualLabel : EventVPreliminaryLabel 
end 

EventVActualProbability in 
ActualProbability, Token with 
probability 

_Probability : 6.32E-10 
end 

Updated Event Definition `BSCU2CDIND' 

EventW in Event, Token with 
updated profile 

updatedProfile : EventWUpdatedProfile 
end 

EventWUpdatedProfile in 
UpdatedEventProflie, Token with 
type 

_Type : "int" 
event-connective 

EventConnective : AndGate5U 
actual-probability 

actualProbability 
EventWActualProbability 
preliminary-budget 

preliminaryBudget 
EventWPreliminaryBudget 
actual-label 

actualLabel : EventWPreliminaryLabel 
end 

EventWACtualProbability in 

ActualProbability, Token with 
probability 

_Probability : 6.00E-10 
end 

Gate definitions 

AndGate4U in AndGate, Token with 
input 

-Input : XYEventSetU 
end 

XYEventSetU in EventSet, Token with 
event-profile 

eventProfilel : EventXUpdatedProfile; 
eventProfile2 EventYUpdatedProfile 

end 

AndGate5U in AndGate, Token with 
input 

_Input : ZAAEventSetU 
end 

ZAAEventSetU in EventSet, Token with 
event_profile 

eventProfilel : EventZUpdatedProfile: 
eventProfile2 EventAAUpdatedProfile 

end 

Updated Event Definition `BSZPSMOFV' 

EventX in Event, Token with 
updated-profile 

updatedProfile : EventXLTpdatedProfile 
end 

Event%UpdatedProfile in 

D-7 



Appendix D 

UpdatedEventProfile, Token with 
type 

_Type : "bas 
actual-probability 

actualProbability 
EventXActualProbability 
preliminary budget 

preliminaryDudget : 
EventXPreliminaryBudget 
actual-rate 

actualRate : EventXActualRate 
actual-exposure 

actualExposure 
EventXPreliminaryExposure 
actual-label 

actualLabel : EventXPreliminaryLabel 
end 

EventXActualProbability in 
ActualProbability, Token with 
probability 

-Probability : 1.43E-02 
end 

EventXActualRate in Rate, Token with 
failure-rate 

failureRate : 1.43E-07 
end 

Updated Event Definition `BSCÜ2PSF' 

EventY in Event, Token with 
updatedprofile 

updatedProfile : EventYUpdatedProfile 
end 

EventYUpdatedProfile in 
UpdatedEventProlile, Token with 
type 

_Type : `bas' 
actual-probability 

actualProbability 
EventYActualProbability 
preliminary budget 

preliminaryeudget 
EventYPreliminaryDudget 
actual_rate 

aCtualRate : EventYActualRate 
actual-exposure 

actualExposure 
EventYPreliminaryExposure 
actual-label 

actualLabel : EventYPreliminaryLabel 
and 

EventYActua1Probability in 
ActualProbability, Token with 
probability 

_Probability s 4.42E-08 
end 

EventYACtualRate in Rate, Token with 
failure-rate 

failureRate : 1.06E-05 
end 

Updated Event D. linition `BSCU2MORV' 

EventZ in Event, Token with 
updated-profile 

updetedProfile : EventZUpdatedProfile 
end 

EventZUpdatedProtile in 
UpdatedEVentProtile, Token with 
type 

_Type : mint' 
vent-connective 

EventConnective : OrCate9U 
actual_probability 

actualProbability 

EventZActualProbability 
preliminary_budget 

preliminaryBudget 
EventZPreliminaryBudget 
actual-label 

actualLabel : EventZPreliminaryLabel 
end 

Event2ACtualProbability in 
ActualProbability, Token with 
probability 

_Probability : 1.63E-02 
end 

Updated Event Definition `BSCU2CDF' 

EventAA in Event, Token with 
updated-profile 

updatedProfile 
EventAAUpdatedProfile 
end 

EventAAUpdatedProfile in 
UpdatedEventProfile, Token with 
type 

_Type : "int" 
event_connective 

EventConnective : OrGatelOU 
actual-probability 

actualProbability 
EventAAActualProbability 
preliminary-budget 

preliminaryBudget 
EventAAPreliminaryBudget 
actual-label 

actualLabel : EventAAPreliminaryLabel 
end 

EventAAActualProbability in 
ActualProbability, Token with 
probability 

_Probability : 3.68E-08 
end 

Gate definitions 

OrGate9U in OrGate, Token with 
input 

_Inputl : EventBBUpdatedProfile; 

_Input2 
EventCCUpdatedProfile 

end 

OrGatelOU in OrGate, Token with 
input 

_Inputl : EventDDUpdatedProfile; 

_Input2 : EventEEUpdatedProfile 
end 

Updated Event Definition `BSCU2MOFV' 

EventBB in Event, Token with 
updated_profile 

updatedProfile 
EventBBUpdatedProfile 
end 

EventBBUpdatedProfile in 
UpdatedEventProfile, Token with 
type 

_Type : "bas" 
actual_probability 

actualProbability 
EventBBActualProbability 
preliminary-budget 

preliminaryBudget 
EventBBPreliminaryBudget 
actual_rate 

actualRate : EventBBActualRate 
actual_exposure 

actualExposure 
EventBBPreliminaryExposure 

D-8 



Appendix D, 

actual-label 
actualLabe1 : EventBBPre1iminaryLabel 

end 

EventBBACtualProbability in 
ActualProbability, Token with 
probability 

_Probability : 1.63E-02 
end 

EventBBActualRate in Rate, Token with 
failure_rate 

failureRate : 1.63E-07 
end ' 

Updated Event Definition `BSCU2CMDE" 

EventCC in Event, Token with 
updated-profile 

updatedProfile 
EventCCUpdatedProfile 
end 

EventCCUpdatedProfile in 
UpdatedEventProfile, Token with 
type 

_Type : "und' 
actual-probability 

actualProbability 
EventCCActualProbabiiity 
preliminary-budget 

pre1iminaryBudget 
EventCCPreliminaryBudget 
actual-label 

actualLabel : EventCCPreliminaryLabel 
end " 

EventCCActualProbability in 
ActualProbability, Token with 
probability 

-Probability : 0.00E+00 
end 

Updated Event Definition `BSCU2CPUBD' 

EventDD in Event, Token with 
updated-profile 

updatedProfile 
EventDDUpdatedProfile 
end 

EventDDUpdatedProfile in 
UpdatedEventProfile, Token with 
type 

_Type : `int" 
event-connective 

-EventConnective : OrGatellU 
actual-probability 

actualProbability 
EventDDActualProbability 
preliminary-budget 

preliminaryBudget 
EventDDPreliminaryBudget 
actual-label 

actualLabel : EventDDPreliminaryLabel 
end 

EventDDActualProbability in 
ActualProbability, Token with 
probability 

_Probability : 3.17E-08 
end 

Updated Event Definition `BSCII2I/OF' 

EventEE in Event, Token with 
updated-profile 

updatedProfile 
EventEEUpdatedProfile 
end 

EventEEUpdatedProfile in 
UpdatedEventProfile, Token with 
type 

_Type : `bas' 
actual-probability 

actualProbability 
EventEEActualProbability 
preliminary-budget 

preliminaryBudget 
EventEEPreliminaryBudget 
actual_rate 

actualRate : EventEEActualRate 
actual_exposure 

actualExposure 
EventEEPreliminaryExposure 
actual-label 

actualLabel : EventEEPreliminaryLabel 
end 

EventEEActualProbability in 
ActualProbability, Token with 
probability 

_Probability : 5.17E-09 
end 

EventEEActua1Rate in Rate, Token with 
failure_rate 

failureRate . 1.24E-06 
end 

Gate definitions 

OrGatellU in OrGate, Token with 
input 

_Inputl : EventFFUpdatedProfile; 

_Input2 
EventGGUpdatedProfile 

end 

Updated Event Definition %BSCU2CPUT' 

EventFF in Event, Token with 
updated-profile 

updatedProfile 
EventFFUpdatedProfile 
end 

EventFFUpdatedProfile in 
UpdatedEventProfile, Token with 
type 

_Type : 'bas' 
actual-probability 

actualProbability 
EventFFActualProbability 
preliminary-budget 

preliminaryBudget 
EventFFPreliminaryBudget 
actual_rate 

actualRate : EventFFActualRate 
actual_exposure 

actualExposure 
EventFFPreliminaryExposure 
actual-label 

actualLabel : EventFFPreliminaryLabel 
end 

EventFFActualProbability in 
ActualProbability, Token with 
probability 

_Probability s 3.17E-08 
end 

EventFFActualRate in Rate, Token with 
failure_rate 

failureRate : 7.60E-06 
end 

Updated Event Definition 'BSCU2CPUD8' 

EventGG in Event, Token with 
updated-profile 

updatedProfile 

D-9 



Appendix D 

Even tGGUpdatedProiila 
end 

EventGGUpdatedProtile in 
UpdatedEventProtile, Token with 
type 

_Type : *und« 
actual-probability 

actualProbability : 
EventCGActualProbability 
preliminary. budget 

preliminaryaudget : 
EventCGPreliminary3udget 
actual-label 

actualLabel i EventGGPreliminaryLabel 
end 

EventGGActualProbability in 
ActualProbability, Token with 
probability 

-Probability : 0.00E+00 
end 

Instantiation of Updated Fault Tree 

BecuSsaUpdatedFT in UpdatedFaultTree, 
Token with 

ttAndCatel : AndGatelU, 
ftAndCate2 Andcate2U; 
ttAndGate3 : AndGate3U; 
ftAndGate4 s AndCate4Ut 
ftAndGat. S AndGate5U 

ft-or-gate 
ftOrCatei : OrCatelU: 
ttOrcate2 : OrGate2U: 
ftOrcate3 : OrGate3U; 
ftOrcate4 : OrCate4U; 
ftOrcate5 OrCateSU; 
ftOr0ate6 : OrGate6U; 
ftOrCate7 : OrCate7Ut 
ttOrGate8 : OrGate8Ut 
ttOrCate9 s OrCate9Uj 
ftOrGatelO : OrCatelOU; 
ftOrGatell : OrGatellU 

ft-event-set 
ftEventSetl : HlEventSetU: 
ftEventSet2 JKEventSetUi 
ftEventSet3 : RSEventSetu: 
ftEventSet4 : XYEventSetU; 
ftEventSetS : ZAAEventSetU 

ft-event-profile 
ftEventProfilei : 

EventAUpdatedProfile; 
ftEvontProfile2 : 

EventtiUpdatedProfilet 
ftEventProfile3 s 

EventCUpdatedProfile; 
ftEventProfile4 : 

EventDUpdatedProfile; 
ftEventprotile5 : 

EvontEUpdatedProfilej 
ftEventProfile6 : 

EventFUpdatadProfilel 
ftEventProfile7 : 

EventCUpdatedProfilet 
ftEventProfile8 c 

EventfUpdatedProfile; 
ftEventProfile9 : 

EventIUpdatedProfile; 
ftEventProfilel0 : 

EventJUpdatedProfii.; 
ftEventProtileil : 

EventKUpdatedProfill: 
ftEventProfilei2 : 

EventLUpdatedProfill; 
ttEventProfilel3 : 

EventMUpdatedProtilei 
ftEventProtilel4 : 

EventNUpdatedProfile: 
ftEventProfilel5 : 

EventOupdatedProtilet 

ftEventProfilel6 
EventPUpdatedProfile; 

ftEventProfilel7 
EventQUpdatedProfile; 

ftEventProfilel8 
EventRUpdatedProfile; 

ftEventProfilel9 
EventSUpdatedProfile; 

ftEventProfile20 
EventTUpdatedProfile; 

ftEventProfile2l 
EventUUpdatedProfile; 

ftEventProfile22 
EventVUpdatedProfile; 

ftEventProfile23 
EventWUpdatedProfile; 

ftEventProfile24 
EventXUpdatedProfile; 

ftEventProfile25 
EventYUpdatedProfile; 

ftEventProfile26 
EventZUpdatedProfile; 

ftEventProfile27 
EventAAUpdatedProfile; 

ftEventProfile28 
EventBBUpdatedProfile; 

ftEventProfile29 
EventCCUpdatedProfile; 

ftEventProfile3O 
EventDDUpdatedProfile; 

ftEventProfile3l 
EventEEUpdatedProfile; 

ftEventProfile32 
EventFFUpdatedProfile; 

ftEventProfile33 
EventGGUpdatedProfile 
ft_budget 

ftBudgetl EventAPreliminaryBudget; 
ftBudget2 EventBPreliminaryHudget; 
ftBudget3 EventCPreliminaryBudget; 
ftBudget4 : EventDPreliminaryBUdget; 
ftBudget5 EventEPreliminaryBudget; 
ftBudget6 : EventFPreliminaryBudget; 
ftBudget7 EventGPreliminaryBudget; 
ftBudget8 EventHPreliminaryBudget; 
ftBudget9 : EventlPreliminaryBudget; 
ftBudgetlO EventJPreliminaryBudget; 
ftBudgetll EventKPreliminaryBudget; 
ftBudgetl2 EventLPreliminaryBudget; 
ftBudgetl3 EventMPreliminaryBudget; 
ftBudgetl4 : EventNPreliminaryBUdget; 
ftBudgetl5 EventOPreliminaryBudget; 
ftBudgetl6 : EventPPreliminaryBudget; 
ftBudgetl7 : EventQPreliminaryBudget; 
ftBudgetl8 EventRPreliminaryBudget; 
ftBudgetl9 : EventSPreliminaryBudget; 
ftBudget20 EventTPreliminaryBUdget; 
ftBudget21 EventUPreliminaryBudget; 
ftBudget22 : EventVPreliminaryBudget; 
ftBudget23 : EventWPreliminaryBudget; 
ftBudget24 : EventXPreliminaryHudget; 
ftBudget25 : EventYPreliminaryBudget; 
ftBudget26 EventZPreliminaryBudget; 
ftBudget27: EventAAPreliminaryBudget; 
ftBudget28: EventBBPreliminaryBudget; 
ftBudget29: EventCCPreliminaryBudget; 
ftBudget30: EventDDPreliminaryBUdget; 
ftBudget3l: EventEEPreliminaryBudget; 
ftBudget32: EventFFPreliminaryBudget; 
ftsudget33: EventGGPreliminaryBudget 

ft-actual 
ftActuall : EventAACtualProbability; 
ftActual2 : EventBActualProbability; 
ftACtual3 EventCActualProbability; 
ftActual4 : EventDActualProbability; 
ftACtual5 EventEActualProbability; 
ftActual6 EventFActualProbability; 
ftACtual7 EventGActualProbability; 
ftActual8 : EventHActualProbability; 
ftActual9 : EventiActualProbability; 
ftActuall0 EventJActualProbability; 

D-10 



Appendix D 

ftActualll : EventKActualProbability; 
ftActuall2 EventLActualProbability; 
ftActual13 EventMActualProbability; 
ftACtuall4 EventNActualProbability; 
ftActuall5 EventOActualProbability; 
ftActuall6 : EventPActualProbability; 
ftActuall7 : EventQActualProbability; 
ftActual18 : EventRActualProbability; 
ftActuall9 : EventSActualProbability; 
ftActual20 : EventTActualProbability; 
ftActual2l : EventUActualProbability; 
ftActual22 EventVActualProbability; 
ftActual23 : EventWActualProbability; 
ftActual24 EventXActualProbability; 
ftActual25 : EventYActualProbability; 
ftActual26 EventZActualProbability; 
ftActual27: EventAAActualProbability; 
ftActual28: EventBBActualProbability; 
ftActual29: EventCCActualProbability; 
ftActual30: EventDDACtualProbability; 
ftActual31: EventEEActualProbability; 
ftActual32: EventFFActualProbability; 
ftActual33: EventGGActualProbability 

ft_rate 
ftRatel 
ftRate2 
ftRate3 
ftRate4 
ftRate5 
ftRate6 
ftRate7 
ftRate8 
ftRate9 
ftRatel0 
ftRatell 
ftRatel2 

EventHActualRate; 
EventlActualRate; 
EventLActualRate; 
EventOActualRate; 
EventPActualRate; 
EventTActualRate; 
EventUActualRate; 
EventXActualRate; 
EventYActualRate; 

EventBBActualRate; 
EventEEActualRate; 
EventFFActualRate 

ft-exposure 
ftExposurel 

EventHPreliminaryExposure 
ftExposure2 

EventlPreliminaryExposure; 
ftExposure3 

EventLPreliminaryExposure; 
ftExposure4 

EventOPreliminaryExposure; 
ftExposure5 

EventPPreliminaryExposure; 
ftExposure6 

EventTPreliminaryExposure; 
ftExposure7 : EventUActualExposure; 
ftExposure8 

EventXPreliminaryExposure; 
ftExposure9 

EventYPreliminaryExposure; 
ftExposurelO 

EventBBPre1iminaryExposure; 
ftExposurell 

EventEEPreliminaryExposure; 
ftExposurel2 

EventFFPreliminaryExposure 
ft_simple 

ftSimplel : EventAPreliminaryLabel; 
ftSimple2 : EventBActualLabel; 
ftSimple3 EventCPreliminaryLabel; 
ftSimple4 : EventDPreliminaryLabel; 
ftSimple5 EventEPreliminaryLabel; 
ftSimple6 : EventFPreliminaryLabel; 
ftSimple7 EventGPreliminaryLabel; 
ftSimple8 EventHPreliminaryLabel; 
ftSimple9 : EventlPreliminaryLabel; 
ftSimplelO EventJPreliminaryLabel; 
ftSimplell : EventKPreliminaryLabel; 
ftSimplel2 EventLPreliminaryLabel; 
ftSimplel3 EventMPreliminaryLabel; 
ftSimplel4 EventNPreliminaryLabel; 
ftSimplel5 : EventOPreliminaryLabel; 
ftSimplel6 : EventPPreliminaryLabel; 
ftSimplel7 EventQPreliminaryLabel; 
ftSimplel8 : EventRPreliminaryLabel; 
ftSimplel9 EventSPreliminaryLabel; 
ftSimple2O : EventTPreliminaryLabel; 

ftSimple2l EventUPreliminaryLabel; 
ftSimple22 : EventVPreliminaryLabel; 
ftSimple23 EventWPreliminaryLabel; 
ftSimple24 : EventXPreliminaryLabel; 
ftSimple25 : EventYPreliminaryLabel; 
ftSimple26 : EventZPreliminaryLabel; 
ftSimple27 : EventAAPreliminaryLabel; 
ftSimple28 : EventBBPreliminaryLabel; 
ftSimple29 : EventCCPreliminaryLabel: 
ftSimple30 EventDDPreliminaryLabel; 
ftSimple3l : EventEEPreliminaryLabel; 
ftSimple32 : EventFFPreliminaryLabel; 
ftSimple33 : EventGGPreliminaryLabel 

ft_simple_desc 
ftSimpleDescl 

EventASimpleEventDescription; 
ftSimpleDesc2 

EventBActualSimpleEventDescription; 
ftSimpleDesc3 

EventCSimpleEventDescription; 
ftSimpleDesc4 

EventDSimpleEventDescription; 
ftSimpleDesc5 

EventESimpleEventDescription; 
ftSimpleDesc6 

EventFSimpleEventDescription; 
ftSimpleDesc7 

EventGSimpleEventDescription; 
ftSimpleDesc8 

EventHSimpleEventDescription; 
ftSimpleDesc9 

EventlSimpleEventDescription; 
ftSimpleDesclO 

EventJSimpleEventDescription; 
ftSimpleDescll 

EventKSimpleEventDescription; 
ftSimpleDescl2 

EventLSimpleEventDescription; 
ftSimpleDescl3 

EventMSimpleEventDescription; 
ftSimpleDescl4 

EventNSimpleEVentDescription; 
ftSimpleDescl5 

EventOSimpleEventDescription; 
ftSimpleDescl6 

EventPSimpleEventDescription; 
ftSimpleDescl7 

EventQSimpleEventDescription; 
ftSimpleDescl8 

EventRSimpleEventDescription; 
ftSimpleDescl9 

EventSSimpleEventDescription; 
ftSimpleDesc20 

EventTSimpleEventDescription; 
ftSimpleDesc2l 

EventUSimpleEventDescription; 
ftSimpleDesc22 

EventVSimpleEventDescription; 
ftSimpleDesc23 

EventWSimpleEventDescription; 
ftSimpleDesc24 

EventXSimpleEventDescription; 
ftSimpleDesc25 

EventYSimpleEventDescription; 
ftSimpleDesc26 

EventZSimpleEventDescription; 
ftSimpleDesc27 

EventAASimpleEventDescription; 
ftSimpleDesc28 

EventBBSimpleEventDescription; 
ftSimpleDesc29 

EventCCSimpleEventDescription; 
ftSimpleDesc30 

EventDDSimpleEventDescription; 
ftSimpleDesc3l 

EventEESimpleEventDescription; 
ftSimpleDesc32 

EventFFSimpleEventDescription; 
ftSimpleDesc33 

EventGGSimpleEventDescription 
end 

D-11 



Appendix D 

(Partial) Instantiation of Fault Tree 
Analysis 

IIscuFTA in FaultTreeAnalysis, Token with 

fta_updated_tree 
ftaUpdatedTree : BscuSsaUpdatedFT 

end 

�I 

D-12 



Appendix E 

Appendix -E 



Appendix E 

This page deliberately left blank 



Appendix E 

Contains 

Supports 

Anchors 

Holds 

Surrounds 

Guides 

Appendix E- Spatial Build Associations 

BuildAssociation Module 
source 

IsParallelTo 

IsPerpendicularTo 

IsCollinearWith 

IsConcentricWith 

IsCoplanarWith 

IsAlignedWith 

IsSkewedFrom 

IsAdjoinedTo 

IsSeparatedFrom 

IsSegregatedFrom 

`Catalogue of Spatial Relations' 

G1 

1ý 

f 

{ 


