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Abstract

Abstract

Traceabulity 1s the common term for mechanisms to record and navigate relationships between artifacts
produced by development and assessment processes. Effective management of these relationships is

critical to the success of projects involving the development of complex aerospace products.

Practitioners use a range of notations to model aerospace products (often as part of a defined technique
or methodology). Those appropriate to electrical and electronic systems (avionics) include Use Cases
for requirements, Ada for development and Fault Trees for assessment (others such as PERT networks
support product management). Most notations used within the industry have tool support, although a

lack of well-defined approaches to integration leads to inconsistencies and limits traceability between

their respective data sets (internal models).

Conceptually, the artifacts produced using such notations populate four traceability dimensions. Of
these, three record links between project artifacts (describing the same product), while the fourth relates

artifacts across different projects (and hence products), and across product families within the same

project.

The scope of this thesis is to define a meta-framework that characterises traceability dimensions for
aerospace projects, and then to propose a concrete framework capturing the syntax and semantics of
notations used in developing avionics for such projects which enables traceability across the four
dimensions. The concrete framework 1s achieved by exporting information from the internal models of
tools supporting these notations to an integrated environment consisting of: i) a Workspace comprising
a set of structures or meta-models (models describing models) expressed in a common modelling
language representing selected notations (including appropriate extensions reflecting the application
domain); ii) well-formedness constraints over these structures capturing properties of the notations (and
again, reflecting the domain); and ii1) associations between the structures. To maintain consistency and
identify conflicts, elements of the structures are verified against a system model that defines common

building blocks underlying the various notations.

The approach is evaluated by (partial) tool implementation of the structures which are populated using

case study material derived from actual commercial specifications and industry standards.
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An Introduction to Traceability

Chapter 1 An Introduction to Traceability

1.1  Introduction

As systems complexity has increased, so too has the complexity of their development processes. In
effect, this usually implies a greater number of sub-processes and hence more intermediate artifacts.
Consequently, interest has grown in the study of relationships between these artifacts'. Traceability is

the common term for mechanisms used to record and navigate such relationships.

In the remainder of Chapter One, we provide a context for work in this thesis. Specifically, the next
section describes our domain of interest, namely the aerospace industry. We then introduce the thesis
argument to be maintained throughout. Next, we consider traceability as a topic of interest among the
wider software and systems engineering communities. This includes a brief history of the subject,
defining terminology and forces ‘driving’ recent growth. Finally, we provide a synopsis of the overall
thesis structure. The chapter is based on an extensive review of existing traceability literature which we

underpin with views of practitioners from several business units within BAE SYSTEMS.

1.2 Aerospace Industry Characteristics: The Need for Traceability
This thesis considers traceability for acrospace systems engineering, in particular, traceability of
artifacts describing systems in which (often safety-critical) functions are allocated to avionics (i.e.
electrical and electronic equipment, such as communications and datalink systems, flight control
systems, instruments, navigation systems, radar, mission planning systems and weapons). Certain
characteristics make traceability an issue for most aerospace projects; this section considers five key

characteristics influencing the need for traceability within that domain.

C1. Product Life-cycle

A major difference between projects in the aerospace sector and those in other industries is ‘time-to-
market’. Civil aircraft may be a decade or more in development, whilst military systems can be planned
around twenty years hence. During this time, strategic and mission needs (and hence requirements) may
be revised, sometimes instigated by sudden and unforeseen events (like the end of the cold war or the
terrorist attacks of September 11, 2001). Moreover, total product life-cycles, particularly those for civil
aircraft, can exceed thirty years. Inevitably over such a long period, manufacturers revise their designs
to incorporate the likes of new technologies and changes in safety regulations. They may also develop
variants of aircraft to accommodate specific market needs. Managing the ‘evolving product’ is therefore

a significant problem on projects with protracted life-cycles.

Because few engineers are involved throughout the duration of such projects, a further and often

overlooked problem 1s retention of knowledge capturing what is best described as ‘engineering

'In keeping with the literature, we use the terms (trace) relation(ship), association and linkage interchangeably and
synonymously throughout to describe any mechanism for linking artifacts produced by an engineering process.
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judgement’, i.e., the rationale for key development and assessment decisions. This is especially
important when engineers must revisit the design of an in-service aircraft (normally following an
accident) that has remained static for many years - an obvious example being Concorde which first flew

in 1969, but which required a number of modifications following the Paris crash in July 20007

Traceability may be viewed as the common denominator in managing these and other time related
problems, both by structuring the relationships between multiple versions of artifacts, and by providing

means to capture rationale relating to options, argumentation and intent.

Ca. Process Characteristics

The development context for acrospace systems containing safety-critical functions or components can
be described in terms of two concurrent processes (yielding two sets of artifacts) - development and
assessment - each comprising a number of tightly coupled sub-processes. Development proceeds top-
down through several iterations of requirements and design, gradually refining abstract aircraft level
requirements, into systems or sub-systems and eventually detailed hardware and software component

designs?’.

For each iteration, safety analysis determines whether the mission requirements contain any inherent
hazards and what safeguards (safety requirements) are required to exclude them. Design proposals are
also analysed to ensure they themselves do not introduce any hazards, that they satisfy the safety
requirements and that they preserve the original intent (i.e., mission requirements). Following
implementation and further safety analysis to ensure no new hazards have been introduced, assessment
proceeds bottom up with the integration of components and verification that safety requirements have

been satisfied at each level of abstraction.

A major problem with complex processes such as this is lack of visibility, especially where enactment
extends over a protracted period (as described in C1). However, process visibility can be enhanced by

effective traceability. In simplistic terms, if we consider all artifacts as inputs (J) to, and outputs (O)
from the various sub-processes, then a traceability association between two artifacts, fromie Itoo €

O, may be regarded as an abstraction of the activity involved in producing o from (where i and o

denote requirements and designs, for example).

C3. Complex Integrated Systems
Aircraft functions such as automatic landing, auto-stabilisation and stall-protection are implemented by

systems that are not only individually complex, but which involve a considerable number of interfaces

between systems; €.g., a relatively simple automatic rudder control function with a yaw-damper to

correct “Dutch-roll” characteristics will interconnect sensors, actuators, hydraulics, mechanical systems

2 In particular, engineers needed to consider rationale for location of the wheel assembly, relative to the engines and engine

intakes. Interested readers are referred to Weir (2001) for more information. _ _ _
3 Note the process we describe is simplified and takes no account, for example, of the complex interaction between technical

definition and procurement activities.
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power plant and cockpit display units®. Artifacts describing such systems are often similarly large and
complex, as are the relationships between them. Therefore practitioners require means to support
traceability not only within descriptions of individual systems, but also between these descriptions, in
particular for impact analysis and change control purposes. Traceability can also help maintain

consistency across such complex, high-volume data sets.

CA4. Fault Tolerant Architectures
Aircraft systems having a direct bearing on safety employ fault tolerant architectures to guard against
the risk of faults with the potential to cause a system failure. As the name suggests, these architectures

allow continued and correct functioning in the presence of faults, where a fault is defined as some

defect within a system (Storey, 1996)".

Fault tolerance is achieved through redundancy, i.e., multiple modules that replicate means of achieving
the same function. Fault tolerant architectures include those employing majority voting mechanisms
which compare outputs from N modules based on identical inputs. Where a single fault means the
output from one module differs, voter output corresponds to the majority view. Simple configurations
use triple modular redundancy (capable of tolerating a single fault), whilst greater use of redundant
modules affords increased protection - termed N-modular redundancy (hardware) and N-version
programming (software). Dynamic hardware redundancy schemes and software recovery blocks are

further, comparable techniques where fault detection mechanisms switch operation to stand-by modules

when a unit fails®.

A corollary of using fault tolerant architectures is that multiple redundant modules yield an increase in
development and assessment artifacts describing them, and hence even greater need for effective
traceability so that these descriptions may be related back to their original requirement(s). In addition,

traceability can provide means of managing assumptions made to justify claims associated with fault

tolerant architectures (Popov et al., 2001).

C5. Certification

Finally, certification is normally a legal requirement before new aircraft or aircraft systems can enter
operational use. Certification is undertaken by an appropriate regulatory body, with different authorities
governing projects within particular aerospace sectors; e.g., in the UK, all civil aircraft require approval
by the Civil Aviation Authority. One of the most important documents submitted in support of an
application for certification is the safety case, a rigorous argument and supporting evidence stating why
the system is safe for its intended use. A safety case may run to several volumes and so maintaining this

body of evidence is often extremely difficult. Again, traceability can help practitioners alleviate such

problems.

* Dutch roll occurs when the aircraft has relatively strong lateral stability and weak directional stability, Readers are referred to

Mair & Birdsall (1992) for more information.

3 Readers are referred to works by Laprie (1989), Leveson (1995) and Storey (1996) for definitions of the safety-critical
vocabulary used in this thesis.

§ For more information on these and other approaches, the reader is referred to Anderson & Lee (1991).
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However, since certification often requires conformance to a particular standard, and since many
standards demand traceability, then traceability can itself be a requirement for certification: e.g., DO-
178b (EUROCAE, 1992), an international standard covering certification of software in airborne
systems, requires that safety requirements should be traceable through various stages of development to

specific elements of the low-level implementation.

This combination of factors demonstrate why traceability is of major significance to the aerospace
industry and also why the traceability concerns of practitioners differ markedly from those in other

sectors. We are unaware of any further work considering traceability from such a specialised and

domain specific perspective.

1.3. Thesis Argument
Issue - We assert that characteristic properties of aerospace systems cause several distinct traceability

problems, whilst magnifying those of a more ‘traditional’ nature’. The aim is to propose a theoretical

basis for a practical solution to these problems.

Position - Practitioners use a range of notations to model aerospace systems (often in conjunction with
a process as part of a technique or methodology). For avionics, notations fall into two broad categories:
those with a well-defined syntax and semantics (for example Circuit Diagrams and Ada) and those that
are less rigorously defined but which offer flexibility as a result (such as Use Cases and Scenarios).
Practitioners also require the ability to conduct safety assessment over these models using established
techniques for hazard analysis (e.g., Fault Tree and Failure Modes and Effects Analyses) and to manage
operations using further techniques for planning and control (notably Critical Path Analysis and PERT).
Most of the above have tool support (normally bespoke or a commercial CASE tool), however a lack of

well-defined approaches to integration limits traceability between their respective data sets.

We argue that traceability across tools can be achieved by exporting these data sets to an integrated
environment consisting of: i) a Workspace comprising a set of structures or meta-models (literally,
models describing models) capturing data elements for a representative set of development, assessment
and product management notations; ii) a further structure capturing fundamental elements of the
emerging product that maintains consistency within the Workspace (where ‘fundamental elements’
refers to system components, their functions and behaviour, etc.): 111) well-formedness constraints over

these structures; and iv) associations and consistency constraints between the structures.

We also argue that development and assessment information populates four traceability dimensions, of
which three record links between project artifacts (conceptualised as a cube), while the fourth relates
artifacts across different projects (i.e., cubes) and across product families within the same project.

Hence, the structures must provide coverage across four dimensions.

7 “Traditional® traceability problems concern the following: what kind of information and relationships to record?; how to

organise the information into coherent structures reflecting stakeholder viewpoints?; how to populate the structures with
information from development and assessment activities?; and how to analyse the populated structures? (Pohl, 1996)




An Introduction to Traceability

Conceptual data modelling techniques have been used previously to define traceability structures
(including meta-models) to represent and trace between semiformal notations for IS development; first
their syntactic structure is expressed in an appropriate notation or modelling language and then well-
formedness constraints are added to give these constructs a semantics. Some requirements management
tools (e.g., DOORS) already adopt this approach to an extent, although failure to capture both syntax

and semantics undermines their potential use in developing safety or mission critical systems.

Our position is that capturing the syntax and semantics of appropriate notations as traceability structures
embedded in a conceptual modelling language (along with means to verify and create linkages between

these structures) provides the theoretical basis for a practical traceability environment for avionics

engineering.

Evidence - To substantiate our argument, we do the following:-

e Develop an approach towards tackling practitioner concerns stated by our position using

traceability structures. The approach known as MATTA (Meta-modelling Approach to Traceability

for Avionics) provides:

1. custom representations that define the syntax and well-formedness cor}straints for flexible
notations (applicable to the aerospace domain);

2. meta-models capturing the syntactic elements and well-formedness constraints of well
defined notations and custom representations;

3. aseamless environment (afforded by 1 and 2) that enables traceability between these

meta-models;

4. amechanism for ensuring consistency across the meta-models;

coverage of the traceability dimensions.

¢ Demonstrate the approach using material supplied by aerospace practitioners, including actual

commercial specifications and industry standards.

1.4 Survey of Traceability Literature
This subsection provides a survey of traceability literature. Among the areas considered are key

traceability concepts and factors motivating interest in the subject, both generally and throughout the

aerospace industry.

1.4.1 A Brief History of Traceability

Clearly, any engineering endeavour requires an orderly means of tracking between its initial set of

objectives and the overall finished product. Hence traceability is nothing new! Even in software

engineering, primitive traceability mechanisms were evident as far back as the early seventies

(Teichroew & Sayani, 1971).
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Alford (1994) observes that traceability’s emergence as a topic of concern coincided with the ‘birth’ of
systems engineering in late fifties America where it was used as a means of demonstrating compliance
with requirements under Contract Law. The term itself is thought to originate from the US military who
subsequently introduced it as a requirement for all defence contracts. However, it was the mid-seventies
before explicit references began to appear in published literature (Alford & Burns, 1976: Belford &
Taylor, 1976; Boehm, 1976; Dreyfus & Karacsony, 1976; Stallman & Sussman, 1977), so clearly the
concepts significantly pre-date the actual term. Calls for improvement (Alford, 1977) were initially
realised as languages with inherent support for traceability (Bell et al., 1977; Davis & Vick, 1977),
followed by the first purpose built tools (Pierce, 1978; Johnson & Merrithew, 1978).

The eighties were marked by further calls for improved traceability (Distaso et al., 1980; Hoffnagle &
Beregi, 1985; Roman, 1985; Tamanaha et al., 1989), as well as a succession of proprietary and research
tools (cf. Bigelow, 1988; Dorfman & Flynn, 1984; Garg & Scacchi, 1989; Horrowitz & Williamson,
1986; Lueders, 1984, Nejmeh et al., 1989; Pirnia & Hayek, 1981; and Sciortino & Dunning, 1984).

However, for reasons to be discussed in subsection 1.4.6, the 1990s saw an (ongoing) surge in the
popularity of traceability, with further calls for improvement (Fickas & Finkelstein, 1993; IEEE, 1993b;
Morris et al., 1995; Plant & Tsoumpas, 1995) and growing academic interest, e.g. the AMES, CREWS,
NATURE, 2RARE and LESD projects. It is worth noting that whereas with some techniques, say

formal methods, where the ‘push’ has generally been from academia into industry, traceability has

moved in the other direction - i.e., from industry to academia.

1.4.2 Literature Definitions
Greenspan & McGowan (1978) were among the first to propose a definition of traceability. It offers a
useful early perspective before the scope of definitions widened and different types of traceability
became a feature (as will become evident).

“Traceability is a property of a system description technique that allows changes in one of

the three system descriptions - requirements, specifications, implementation - to be traced to
the corresponding portions of the other descriptions” Greenspan & McGowan (1978).

Until recently, the most commonly cited ‘definition’ of traceability featured in the ANSI/IEEE Guide to
Software Specifications (ANSI/IEEE Std. 830, 1984):-

“A SRS (software requirements specification) is traceable if the origin of each of its
requirements is clear and it facilitates the referencing of each requirement in future
development and enhancement documentation” ANSI/IEEE Std. 830 (1984).

This is actually not so much a definition as a statement of the conditions necessary to establish
traceability. However, it is notable for prescribing traceability of artifacts leading to production of the
SRS. This contrasts with early definitions (including Greenspan & McGowan) which view the
specification as a ‘black-box’. Equally significant is the fact that it explicitly recommends backward
traceability to previous development stages and forward traceability to all documents spawned by the

SRS, thereby introducing the notion of direction which features prominently in later work.
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However, Davis arguably shaped current attitudes towards traceability with the following definition:-

“traceability can be defined as the ability to describe and follow the life of an artifact, in
both a forward and backward direction, i.e. from its origin to development and vice versa”
Dayvis (1990).

The influence of this definition can be clearly seen in later interpretations (notably that of Gotel, 1995).
More significant is that Davis distinguishes between different types of traceability in two further sub-
definitions, pre-traceability and post-traceability. These recognise the fact that producing an SRS
involves tasks, problems and information which differ in content and structure from those that follow (a
point affirmed by Feather, 1991 and Goguen, 1996a). This distinction i1s supported in studies by
Ramesh & Edwards (1993) and Gotel (1995) who proposed the following definitions:-

“pre-requirements traceability refers to the ability to describe and follow those aspects of a
requirement’s life prior to its inclusion in the requirements specification in both a forwards

and backwards direction” Gotel (1995).

“post-requirements traceability refers to the ability to describe and follow those aspects of a
requirement’s life that result from its inclusion in the requirements specification in both a
forwards and backwards direction” Gotel (1995).

Davis (1990) also reinforced the notion of direction by specifying a need for 1) backward traceability
(from requirements); ii) forward traceability (from requirements); 1ii) backward traceability (to
requirements); and iv) forward traceability (to requirements). This has greater scope than ANSI/IEEE
Std. 830-1984 (which merely recommends tracing backwards and forwards from the SRS), Ince et al.,
1993 (whose definitions of forward and ‘reverse’ traceability disregard pre-traceability) and Ramesh &

Edwards, 1993 (who confine their interpretation to traceability between requirements and design).

Pearson (1996) extended the existing divisions with definitions of Pre-Formal-RS and Post-Formal-RS
traceability which take into account the production of a formal requirements specification document.
Pohl (1996) meanwhile further emphasises the need to maintain traceability between requirements

expressed using natural language and their corresponding formal representation.

Some authors also use the terms horizontal and vertical traceability (e.g., Bersoff & Davis, 1991;
Boldyreff et al., 1996; Gotel, 1995; Nejmeh, 1989; Ramesh & Edwards, 1993) in referring to
associations between life-cycle objects of the same type, i.e., same development (or assessment) phase
(e.g., a parent and its child requirement(s)) and different types (e.g. a requirement and its corresponding
design element(s)). Although usage of these terms is fairly standard, it is worth noting that Bohner
(1995) applies them visa versa, as does Lindvall (1997), whereas Choi & Scacchi (1989), Fiksel &
Hayes-Roth (1993) and Lanubile & Visaggio (1995) use the designations internal and external
traceability in preference to horizontal and vertical. Corriveau’s (1996) interpretation of horizontal
traceability is different again. Based on an incremental, object-oriented approach, he uses it to describe
the tracking of artifact versions through various macro-iterations, where each iteration represents a

‘complete’ development life-cycle.
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Consultation with practitioners revealed a further distinction in which horizontal traceability refers to
artifacts related within a tool and vertical traceability refers to artifacts related between tools (though
the original intent is often preserved since a separate tool is typically associated with each development
stage). Similarly, Kalinsky et al. (1989) and Lindvall (1997) view traceability as relating dependent
items within a model and corresponding items between models. Finally, in a document-centric approach
based on syntax-trees, Han (1995, 1996 and 1997b) differentiates between inter-document relationships
and intra-document relationships. Again, as he considers a separate document to be produced by each

stage in development, Han also preserves the usual intent implied by horizontal and vertical traceability.

Apart from the early interpretation by Greenspan & McGowan, all definitions considered to date are
what Gotel (1995) termed direction-driven. Other direction-driven definitions were proposed by
Corniveau (1996), ESA (1991), Gieszl (1992), Ince et al. (1993), Johnson et al. (1991), Nejmeh et al.
(1989) and Shilling & Sweeney (1989).

Most definitions of traceability fit into this category. However, Gotel (1995) proposes some additional

groupings as part of a simple taxonomy which also describes definitions as:-
Purpose-driven - defined in terms of what traceability should do, for example:-

“Traceability provides software developers with facilities to track the history of every
Jeature of a system and the impact of changes to these features on the system design, cost

and schedule” Tran et al. (1997).

Other purpose-driven definitions include those proposed by Kelley (1990), Wright (1991),
Jackson (1991) and Hughes & Martin (1998). The main weakness of such definitions is their

tendency to define usage rather than meaning.
Solution-driven - defined in terms of how traceability should be done, for example:-

“Traceability refers to the ability of tracing from one entity to another based on given
semantic relations” Ramamoorthy et al. (1986).

Other solution-driven definitions include those proposed by Ecklund jr. et al. (1996),
Gardner (1994) and Roman (1985). The main weakness of these definitions is their tendency

to be overly prescriptive.
Information-driven - emphasising the information to be traced between, for example:-

“The characteristic of a software system that allows identification and control of
relationships between requirements, software components, data and documentation at
different levels in the system hierarchy” NASA-Std-2202 (1993).

Other information-driven definitions include those by Bergstein (1993), Castell et al. (1993),
DO-178b (EUROCAE, 1992) and IEEE (1993a). The main weakness of such definitions is

their tendency to over state (and hence restrict) what artifacts should be traced.
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1.4.3 Author’s Definitions

Most definitions of traceability (including those featured above) originate from software engineering
literature and are couched in terms that prohibit their wider application to systems engineering.
Moreover, they normally imply a single level of decomposition and single system perspective, while
showing bias towards software life-cycle models. Also, the notion of traceability between artifact
revisions (i.e., the maturation of an artifact) and between ‘base’ artifacts and their variants
(modifications developed for use on different products) - we collectively term these different forms of

evolution versions - is either not considered or else is captured by overloading definitions for horizontal

traceability (i.e. between artifacts of the same type).

Clearly therefore significant aspects are lost when the intent of software based definitions is ‘stretched
to fit’ a systems engineering context. We therefore provide our own taxonomy which, to keep as general
as possible:- i) states meaning not usage; ii) is free of bias towards particular methods of realisation;
and iii) avoids excessively delimiting the artifacts to trace®. The taxonomy itself comprises definitions
of horizontal and vertical, revision and variant, pre and post requirements and forward and backward

traceability. These are then used to provide a definition of traceability itself.

Note: vertical/horizontal traceability is adequate for ‘normal’ systems engineering, but for avionics (and
acrospace systems generally), characteristics C2 and C3 (subsection 1.2) imply more complex products
and hence more complex processes. Therefore richer definitions of traceability are required. The terms
micro and macro are introduced to differentiate traceability within and across decomposition levels
(e.g., system, sub-system, component). Similarly, the terms intra and inter distinguish traceability

within and across system descriptions (i.e., systems that interact with one another).

® Inter-Macro-Vertical Traceability - the ability to describe and navigate relationships across

system descriptions, across levels of decomposition, between development or assessment artifacts

of different types.

¢ Inter-Macro-Horizontal Traceability - the ability to describe and navigate relationships across

system descriptions, across levels of decomposition, between development or assessment artifacts

of the same type.

¢ Inter-Micro-Vertical Traceability - the ability to describe and navigate relationships across

system descriptions, within a decomposition level, between development or assessment artifacts of

different types.

® Inter-Micro-Horizontal Traceability - the ability to describe and navigate relationships across

system descriptions, within a decomposition level, between development or assessment artifacts of

the same type.

¢ Intra-Macro-Vertical Traceability - the ability to describe and navigate relationships within a

system description, across levels of decomposition, between development or assessment artifacts of

8 Following Gotel's classification, these properties imply a direction driven approach.
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Intra-Macro-Horizontal Traceability - the ability to describe and navigate relationships within a

system description, across levels of decomposition, between development or assessment artifacts of

Intra-Micro-Vertical Traceability - the ability to describe and navigate relationships within a

system description, within a decomposition level, between development or assessment artifacts of

different types.
@

the same type.
@

different types.
@

Intra-Micro-Horizontal Traceability - the ability to describe and navigate relationships within a

system description, within a decomposition level, between development or assessment artifacts of

the same type.

These definitions are shown graphically in figure 1.1 and summarised in table 1.1.
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Table 1.1 - ‘Summary of Inter/Intra, Macro/Micro Vertical/Horizontal Traceability Types’
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® Revision Traceability - the ability to describe and navigate relationships between instances of the

same artifact at different stages of maturity”.

¢ Variant Traceability - the ability to describe and navigate relationships across different projects

(and across product families within the same project), between base artifacts and their derivatives.

¢ Pre-Requirements Traceability - the ability to describe and navigate relationships between a

requirement and 1ts originating artifacts.

® Post-Requirements Traceability - the ability to describe and navigate relationships between a

requirement and any artifacts relating to its development, assessment or evolution.

¢ Forward Traceability - the ability to describe and navigate relationships between 1) artifacts
originating a requirement and (verification of) its realisation; ii) revision; and revision, of an

artifact; and i11) base artifacts and their variants.

¢ DBackward Traceability - the ability to describe and navigate relationships between 1) (verification
of) some hardware or software feature and the artifacts originating its requirement(s); ii) revision,

and revision; of an artifact and 111) a vartant artifact and its base.

¢ Traceability - the ability to describe and navigate relationships, forwards and backwards, within
and across system descriptions, within and across decomposition levels, between artifacts of the

same or different types, thetr revisions and variants, pre and post requirements specification.

1.4.4 On Formal Definitions of Traceability

At present, no formal definition of traceability exists. However, we can formally conceptualise what is

meant by claims that a project 1s traceable (where a project refers to a completed product and all its

documentation) based on the above definitions.

For the following types of traceability, inter (ir), intra (ia), macro (ma), micro (mi), horizontal (ht),
vertical (vt), revision (re), variant (va), forward (fw), backward (bw), pre-RS (pr) and post-RS (ps), we
introduce the predicates, ir_ma_vt, ir_ma_ht, ir_mi_vt, ir_mi_ht, ia_ma_vt, ia_ma_ht, ia_mi_vt,
ia_mi_ht, re, va, pr, ps, fw and bw. These are of the form type: P — IB, where P represents the
hypothetical set of all projects. Each predicate holds for a project P, iff the project complies with the

predicated type of traceability, We also introduce a predicate T, which holds when the project complies

with our definition of traceability. We now assert the following relations:-

TP)=ir_ma_vt (P)Air_ma_ht (P) A ir_mi_vt (P) A ir_mi_ht (P) A
ia_ma_vt (P) A ia_ma_ht (P) A ia_mi_vt (P) Aia_mi_ht (P) A

re (P) A va (P)
T(P) = pr (P) » ps (P)

T(P) =fw (P) » bw (P)

? Note the intersection of ideas with Configuration Management literature. Ramesh & Jarke (1999) suggest the main difference
is one of granularity such that CM mainly concerns coarse-grained relationships, whereas traceability can be finer-grained.
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1.4.5 Dimensions For Traceability

Figure 1.2 illustrates the concepts of pre-requirements and post-requirements traceability and
horizontal, vertical and revision traceability'’. Henceforth, the latter three are referred to as traceability
dimensions; we therefore speak of the horizontal, vertical and revision dimensions. To aid readability,
traccability 1s considered between just four basic artifact types (Requirement) Source, Requirement,

Design and Implementation.
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Figure 1.2 - *Horizontal, Vertical and Revision Traceability Dimensions’

Figure 1.3 illustrates (one aspect of) variant traceability (i.e. the variant dimension), namely traceability
across projects, using a subset of the Airbus ‘family’ of aircraft. It depicts hypothetical relationships
between requirements and design artifacts for the A300 and A320, which together derive inputs for the
A340. Note, where a project 1s composed of a ‘family’ of (e.g., A319, A320 and A321) rather than

| -

individual arrcraft, then variant associations can exist within as well as between cubes.
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‘igure 1.3 - ‘Variant Traceability’

""'In order to simplify figures 1.2 and 1.3, we only illustrate the intra-micro forms of horizontal and vertical traceability.
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1.4.6 Drivers For Traceability

The introduction referred to a growing interest in traceability, with several authors (including Gotel,
1995; Kenny, 1996; Palmer, 1997; Ramesh et al., 1995; Watkins & Neal, 1994; White, 1994a; and
Wieringa, 1995) highlighting some general motivations for its increased use.

That said, traceability remains something of a paradox. Many still regard it as time-consuming, tedious
and labour-intensive (as reported in Kotonya & Sommerville, 1998; Ramesh, 1993; Cockram et al.,
1998; and White, 1994a), with perceived ‘benefits’ such as reduction in rework (Palmer, 1997) and the
ability to manage costs (Domges & Pohl, 1998; Watkins & Neal, 1994), planning and scheduling
(Ramesh & Edwards, 1993; Booth, 1993; Lindvall, 1997), performance (Hodge, 1994) and risk (Cross,
1996; Wilson et al., 1997b) often seen as speculative. This is because while direct traceability costs are
relatively easy to calculate, the return on investment is far more difficult to measure'’. And yet, we

estimate around ninety percent of published work on traceability has emerged during the last ten years.

The literature suggests two ‘key drivers’ have contributed to this growing interest. These are as

follows:-

¢ The Emergence of Requirements Engineering

e Increased use of Quality Management & Compliance Frameworks

1.4.6.1 The Emergence of Requirements Engineering (RE)
The contribution of sub-standard requirements to systems that are delivered late, over budget and which
don’t fulfil the needs of users is well-known (Boehm, 1981). Traditionally, the requirements phase of a

project was seen as little more than a front-end to development and as a result was not accorded the

same degree of precision as down-stream activities.

Requirements Engineering (RE) is a relatively recent term encapsulating all of the activities involved in
eliciting, understanding, analysing, documenting and managing requirements. The term engineering is
intended to convey the impression that this is accomplished through a practical, systematic and

repeatable process, even in areas with more philosophical and social underpinnings (e.g., ethnography;

Sommerville et al., 1993).

Though the idea of applying an engineering orientation to systems analysis dates back to the mid-
seventies (IEEE, 1977), the last few years have seen an escalation of interest. The literature provides a
useful barometer of this growth. Before 1990 material was both sparse and disjoint, whilst nowadays, in
addition to being the subject of conferences, symposia and books (Kotonya & Sommerville, 1998; Pohl,
1996; Sommerville & Sawyer, 1997; Wieringa, 1996),-RE now has its own journal, newsletter and BCS
specialist group.

Moves to improve Requirements Engineering within the aerospace sector are evident from its

'! Return on traceability investment has been estimated at four per cent of total expenditure on US DoD projects Ramesh (1994).
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collaboration with academia. In Europe alone, recent or ongoing involvement includes such projects as
2RARE (Alcatel Espace), CREWS (GEC-Marconi), DCSC (BAE SYSTEMS), ISRE (GEC-Marconi),
KARE (BAE SYSTEMS), REAIMS (Aerospatiale) and STEFFIE (Lucas Acrospace and GEC-
Marconi). This is additional to a number of in-house initiatives also taking place (e.g., the Airbus
Industrie CARE project; Airbus, 2001).

The emergence of RE and efforts to improve its attendant areas for eliciting, understanding, analysing,
and documenting software requirements has had an indirect bearing on traceability. For example, the
transition from analysis to design in object-oriented approaches is claimed to naturally enhance
traceability by removing the ‘air gaps’ in disparate notations across the two sets of artifacts (Barbier,
1994; Jacobson et al., 1993). Though beyond the scope of this thesis, a growing corpus of work reflects
the issues (and problems) relevant to traceability for object-oriented development (cf, Borstler, 1996;
Bosch, 1998; Buhr, 1995; Corriveau & Hayashi, 1994; Diagne & Kordon, 1996; Ecklund et al., 1996;
Galle, 1996); Gossain, 1995; Ihme et al., 1995; Lindvall, 1997; Premerlani, 1994; Scalzo & Hugue,
1996; Wieringa, 1998; Wood, 1995).

However, the aspect of RE that has influenced growth in traceability more than any other is
requirements management. It is widely acknowledged that requirements change is a major source of risk
in terms of cost, schedule and quality (Strens, 1995), while with safety-critical systems, failure to
properly manage its effects can pose a threat to human life (de Lemos et al., 1995). To minimise these

difficulties, such changes must be managed effectively and for that, traceability is required.

The first thing to say about requirements change is that it is unavoidable and while especially prevalent
in the early phases of a project, normally occurs throughout. Indeed as Lehman & Belady (1985)
maintain, systems must continually respond to their environment or become progressively less effective.
Practitioners consulted during this study estimate that following the initial volatility, requirements
typically change on average around three per-cent per month during the lifetime of a project; this is
corroborated by published figures in Gries (1997). It is worth noting, as Chudge & Fulton (1994) and
Harker & Eason (1993) point out, that early life-cycle based approaches had naively assumed a

complete and sratic set of requirements were attainable prior to design. However, several alternative
models have since emerged which accommodate change (Gladden, 1982; Lee & Yen; 1993; Rolland,
1994a), some with explicit traceability mechanisms (Brouse [1992], Martin et al. [1993], Tiel [1993]

and Hugge & Lang [19935)).

The other key point to make is that requirements change need not necessarily reflect poor practice, such
as basing requirements on erroneous assumptions (Ramesh & Jarke, 1999), failure to resolve conflicting
viewpoints (Easterbrook et al., 1994; Hughes et al., 1995) or failure to identify missing information
(Takahashi & Yamamoto, 1995). It can actually result from a combination of other factors, many of
which are beyond a requirements engineer’s control. For instance, customer’s evolving knowledge of

the target system is often a major source of instability whereby expectations grow (and their
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requirements change) as the product emerges and they see new possibilities (Pohl & Jacobs, 1994); this
1s especially true for interface requirements (Lubars ez al., 1993). External or environmental factors can
force further unforeseen change on both customer and developer, especially for systems with protracted
life-cycles. Finally, technical problems encountered when implementing a requirement may also lead to
change. This may be due for example, to timing issues discovered during systems integration, or the
emergence of additional safety evidence (Kelly & McDermid, 1999). Interested readers are referred to

Kotonya & Sommerville (1998) for other factors causing requirements change.

The main problem in change management lies in tracking the so-called ripple-effect (Collofello &
Vennergrund, 1987; Yau & Tsai, 1987) where changes to one artifact can have an unforeseen impact
elsewhere in the system. As Bohner (1995) observes, ripple-effects can be either direct (where
connectivity between affected artifacts is immediate) or residual (where connectivity is transitive and
the impact more difficult to detect). To a certain extent developers can minimise the problem by using
modular development techniques. With software this often implies an object-oriented approach based
on encapsulation, high cohesion and low coupling, etc. (Corriveau, 1996; Hoffman, 1990; Sugden &
Strens, 1996). However, whilst such methods can localise the impact of change, developers still require

means of making the ripple-effect more visible in order to address potential ‘side-effects’ of proposed

changes (Freedman & Weinberg, 1981).

Horizontal and vertical traceability provide such means and are therefore pre-requisites for effective
impact assessment (Escudie et al., 1994; Sugden & Strens 1996; Tryggeseth & Nytro, 1997). From a
(intra-micro) horizontal standpoint, suppose ultimate fuel pressure (UP) is defined as a function of a
separate requirement for normal fuel pressure (NP); if NP were to change, then so too must the
requirement for UP. Similarly, from a (inter-macro) horizontal perspective, changes to the specification
of sensors calculating measured aircraft state may propagate to navigation system requirements and
thence requirements for the flight control system; clearly intra/inter and micro/macro vertical
traceability will also be needed to track any design changes arising. In addition, revision traceability is
also useful for change management as it allows practitioners to re-construct the evolutionary history of
an artifact which 1n turn, permits the point where errors were introduced to be identified, as well as
providing useful volatility data for future projects. Finally, variant traceability is necessary for tracking
the effects of change propagation between products. It is especially useful for changes instigated by

requirements errors where one replicated error can potentially ‘contaminate’ an entire product family.

Besides dependencies among artifacts, the rationale underlying development decisions (i.e., decision
rationale) provides important supplementary trace information to aid change management (Sugden &
Strens, 1996)'%. Most approaches to representing decision rationale are based on the argumentation
structuring principles pioneered by Toulmin (1958); their underlying models are typically constructed
from nodes (such as issue, alternative and claim) which are linked to form networked structures by
relationships (such as achieves, denies and pre-supposes). Prominent examples of the form include

12 Readers are referred to Bailin et al. (1990), Monk et al. (1995) Arango et al. (1991), Chandrasekaran et al. [(1993), Fischer
(1991) and Pena-Mora, et al. (1995) for further examples of its potential application.
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IBIS (Kunz & Rittel, 1970) and gIBIS (Conklin & Yakemovic, 1991), DRL (Lee, 1991) and QOC
(MacLean et al. (1991). However, these early models have been widely criticised for representing
decisions out of context. Therefore, more recent examples attempt to link the rationale to a model of
development artifacts; ¢f. Monk et al. (1995), Potts (1994), Han (1997a) and Ramesh & Dhar (1992),
as well as the DRCS proposed by Klein (1993a) which we consider further in relation to this work in
Chapter Three.

It is important to remember that traceability is not about preventing change (Card, 1988). Ratheritis a
communication and control mechanism to be used, typically as part of a change control process, in
managing its realisation (¢f. Chudge & Fulton, 1994; Coyne, 1993; Kotonya & Sommerville, 1998; and
Gries, 1997). With the trend towards larger and more complex systems, change control and impact
analysis have become even more significant. Consequently, they rate among the more mature
traceability sub-topics (cf. Bohner, 1995; Canfora et al., 1995; Cimitile et al., 1992; Fyson & Boldyreft,
1998; Han, 1996; Kelly & McDermid, 1999; Lanubile & Visaggio, 1995; Lindvall, 1997; Liu et al,,
1993; Madhaviji, 1992; Ramamoorthy et al., 1990; Westfechtel, 1989; Whitgift, 1991 and Yau et al.,
1988).

Historically, the traceability information most commonly maintained for requirements management
purposes is requirements-requirements and requirements-design traceability. However, work within the
RE community has succeeded in evolving the practice of tracing requirements back to their source (i.e.,
pre-requirements traceability) and hence potential change provocateurs. Examples include Brouse
(1992), Curran et al. (1994), Gotel (1995), Johnson et al. (1991, 1992), Laubengayer & Spearman
(1994), Leite et al. (1997), Moores & Champion, 1994, Morris et al. (1994), Pohl (1996), Ramesh
(1994) and Sawyer et al. (1996).

It can be seen therefore that the emergence of Requirements Engineering has provided a focus for work
on traceability and a forum for the exchange of views. Improvements in traceability-practice have come
both indirectly as a by-product of methods for the elicitation, understanding, analysis and

documentation of requirements, and directly through better techniques for their management.

1.4.6.2 Increased use of Quality Management & Compliance Frameworks

Evaluative frameworks are increasingly used as arbiters of acceptability with respect to quality, safety
and other hallmark attributes. Where quality and safety often differ is that with the former, framework
compliance may be desirable for commercial reasons (i.e., a recognised stamp of approval can help gild

the corporate image), whereas with the latter, it is usually necessary to achieve certification.

The growing popularity of evaluative frameworks is largely attributable to two factors. First, the
prevailing ‘quality culture’ that places great emphasis on achieving quality within all fields of
endeavour; as Storey (1996) observes, it often seems our goals in life may be encompassed by driving a

quality car, attaining a quality home and spending quality time with our family! And second, increased
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use of safety-critical systems; growth in using computers instead of electromechanical or other
components to control safety-critical applications is largely due to their processing power', physical
size and weight, and flexibility'* - all of which can lead to cost savings across a project (Storey, 1996:
Leveson, 199)5).

According to Sheard (1997), the two main forms of evaluative framework are process improvement
models and standards and guidelines. We now briefly consider examples of each from a traceability
standpoint, before considering one particular set of guidelines for the aerospace domain (subsection

1.4.6.2.1) which we refer to regularly throughout this thesis.

Process Improvement Models (PIM) are founded on established links between the quality of a product
and the quality of process used to create it. Though PIMs have no formal ratification (unlike standards
which are subject to industry approval), they provide a way in which to assess the capabilities of an
organisation based on its key processes. Perhaps the most widely known PIM is the Software
Engineering Institute’s (SEI) Capability Maturity Model (CMM). Originally proposed by Humphrey
(1988), but later revised by Paulk et al. (1993), it was devised to help the US Department of Defense
assess the capabilities of software contractors. CMM provides a five-layer stratum which classifies
software processes as: i) initial, ii) repeatable, iii) defined, iv) managed and v) optimising; traceability
is necessary to achieve level two status (and above). The model itself provides only general guidance,

although the need to support a minimum of post-requirements traceability may be assumed.

The systems engineering Capability Maturity Model (SE-CMM) and the systems engineering Capability
Assessment Model (SECAM) are further examples of PIMs. SE-CMM (SEI, 1995) was again
developed by the Software Engineering Institute and so has the advantage of association with the
organisation that devised the original (software) CMM. As a minimum, traceability is necessary to
support ‘Process Area’ Two of the model. Similarly, SECAM (INCOSE, 1996) - the product of an
INCOSE working group - divides process capability into nineteen ‘Key Focus Areas’, with traceability
influential in those on ‘Tracking’ (1.2) and ‘Configuration Management’ (1.5). The main difference

between SE-CMM and SECAM is that the former includes non process characteristics.

Standards and guidelines meanwhile establish contractual and regulatory requirements for development
and assessment. Notable examples include the ISO 9000 series which can be used to develop quality
management systems across a range of organisations, from manufacturing to service based industries
(Rothery, 1993). The most general of these standards is ISO 9001 which applies to systems and
software inasmuch as it concerns the quality process of any organisations that design, develop and
maintain products. A supporting document, ISO 9003 (implemented in the UK through TickIT),
provides a further interpretation of ISO 9000 appropriate to the software industry. Traceability is

necessary for accreditation to the ISO 9000 series; in particular, it is an explicit requirement for

13 This enables complex control functions, as well as sophisticated safety mechanisms such as self diagnostics and interlocks.
14 By flexibility, we mean system characteristics can be changed through software upgrades, without need for hardware

alterations.
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realising clause 4.8 of ISO 9001, whilst Ince (1994) further notes the implicit relevance of clauses 4.3,
4.4 and 4.16, as well as 5.3 and 6.1 from ISO 9003. Moreover, the generic language used to express

these standards makes them applicable across the range of traceability dimensions'”,

Traceability is also evident in the requirements management sections of UK Def-Std. 00-55 (MoD,
1997), for example 31.2.3 to 31.2.6 (inclusive), as well as US Mil-Std-498 (DoD, 1994), notably 4.2.6,
5.4.2 and 5.9.3. ARP 4754 (EUROCAE, 1996a) meanwhile provides guidance on traceability for the
development of highly integrated or complex aircraft systems, while DO 178b does likewise for the
production of software for airborne systems and equipment; respectively, parts 7.3 and 5.12b (pre-RS),
8.43 and 6.2c (post-RS), 7.6.1 and 5.5a (horizontal), 5.2.1 and 5.5¢ (vertical), 9 and 7 (revision), and
11.3.3 and 12.1.5 (variant) demonstrate that traceability across all four dimensions is recommended by

both documents. ARP 4754 is discussed further in the following subsection.

Clearly, the above-mentioned frameworks are proving to be a key driver for growth in traceability.
From a quality perspective, organisations are increasingly obliged to tackle the issue in establishing
processes that conform to the requirements of their industry. For instance, ISO 9000 accreditation is
already mandatory for contractors to many European governments, while the US government normally
favours a minimum of CMM level 2 or level 3 status when awarding defence contracts. From a safety
perspective, standards such as DO 178b have been even more influential as conformance is normally a
requirement for legal reasons. Note that ARP 4754 is defined in the context of Joint Aviation

Regulations and Federal Aviation Regulations (JARs & FARs) which effectively makes it a de facto

standard.

Accordingly, tools and approaches are now emerging which help manage and/or demonstrate
framework and more especially, standards compliance (cf, Dawkins, 1998; Emmerich et al., 1999; and
Wilson et al., 1997a). Other works with potential application to framework compliance include those
addressing traceability of safety properties. In particular, the Safety Argument Manager (SAM) which
supports construction and analysis of safety arguments, as well as managing the inter-relationships
between assessment techniques. SAM provides traceability at two levels:- i) an underlying data model
underpinning the analysis techniques (Wilson & McDermid, 1995); and ii) a goal structuring notation
(GSN)' for tracing safety arguments (Wilson et al., 1995; Wilson et al., 1996; Kelly & McDermid,
1997). Further examples include Jenkins ez al. (1997), Mason & Saeed (1998), Pearson et al. (1998),
Leveson & Reese (1998) and with respect to tracing safety properties of COTS (commercial-of-the-

shelf) components, Dawkins & Riddle (2000).

In the following subsections we introduce ARP 4754, together with accompanying guidelines for its
realisation, ARP 4761, and provide a brief overview of the traceability requirements they ‘impose’.

This will serve as an aid to reader orientation for work in Chapters Five and Six.

13 1t should be noted that despite their common purpose (see Coallier, 1994 or Paulk, 1995 for a comparison), ISO 9000 and

CMM are very different in approach as efforts to integrate them demonstrate (Rozman et al., 1997).
18 GSN is conceptually similar to a number of other goal oriented methods (¢f. Landes & Studer, 1995; Alvarez & Castell, 1996;

Dardenne et al., 1993; van Lamsweerde et al., 1995; Yu, 1993 and Mylopoulos et al., 1992)
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1.4.6.2.1

Aerospace Recommended Practice (ARP) 4754 & 4761

ARP 4754 and ARP 4761 (EUROCAE, 1996b) describe safety assessment guidelines and methods for

the certification of civil aircraft'’. Assessment runs parallel to development and comprises four primary

sub-processes (see figure 1.4): Functional Hazard Assessment (FHA), Preliminary System Safety

Assessment (PSSA), Common Cause Analysis (CCA) and System Safety Assessment (SSA): we briefly

discuss these below. A number of interdependent analysis techniques are used to support assessment,
cach providing a different insight into failure behaviour of the target system. Those used with ARP

4754/4761 are Fault-Tree Analysis - FTA (Vesely er al., 1981) and Failure Mode and Effects Analysis -

FMEA (IEC, 1985).
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Figure 1.4 - ‘Overview of ARP 4754/4761 Safety Assessment Process’

From ARP 4761, the primary assessment sub-process shown in figure 1.4 are summarised as follows:-

Functional Hazard Assessment is conducted at the beginning of the aircraft/system development life-
cycle. It aims to identify and classify the failure conditions'® associated with aircraft functions and

combinations of aircraft functions and to establish the rationale for such classifications. Once aircraft

functions have been allocated to systems, each system which integrates multiple aircraft functions is re-

examined. The FHA 1s then updated to consider failure of single or combinations of aircraft functions

allocated to a system. The output of FHA provides a starting point for conducting the PSSA.

Preliminary System Safety Assessment 1s a systematic examination of proposed system architectures

—

'" Strictly, the former deals with the assessment process at a ‘conceptual’ level, whereas the latter considers application of

specific assessment techniques in the context of that process.

'® Classifications used with ARP 4754 and 4761 are catastrophic, hazardous, major, minor and no safety effect.
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with the aim to identify failures that can lead to functional hazards identified by the FHA. The objective
of PSSA is to establish safety requirements and to determine whether the proposed architecture can
reasonably be expected to satisfy safety objectives identified by the FHA. PSSA is also an interactive
process associated with design definition and is conducted at the system and item"’ stages of
development. At the lowest level, PSSA determines the safety related design requirements of hardware
and software’. The PSSA will usually take the form of a Fault Tree Analysis, and should also include

Common Cause Analyses.

Common Cause Analysis supports development of system architectures by evaluating their sensitivity to
common cause events. It is therefore largely conducted as part of PSSA, but may also form part of the
SSA and to a lesser extent, FHA. Common Cause Analyses can comprise three sub-processes:- 1)
Particular Risk Analysis (PRA) considers threats from outside the system(s) and item(s) concerned, e.g.
bird-strike, fire, leaking fluids, etc.; ii) Zonal Safety Analysis (ZSA) considers each aircraft zone to
establish whether applicable safety requirements have been met; and iii) Common Mode Analysis

(CMA) provides evidence that failures assumed to be independent, are independent.

System Safety Assessment involves detailed examination of the implemented system to show
compliance with all relevant safety requirements. The process is similar to PSSA, except that instead of
evaluating proposed architectures and deriving safety requirements, SSA aims to demonstrate that all
requirements established by the FHA and PSSA have been satisfied. For each PSSA carried out at a
different level, there should be a corresponding SSA (the highest level being the system SSA). The SSA
is usually based on the PSSA FTA and uses quantitative values obtained through Failure Modes and
Effects Analysis. Note, the case study in subsection 6.3 of this thesis is based on fragments from

Appendix L. of ARP 4761 that focus on the System Safety Assessment,

1.4.6.2.2 On Traceability Requirements for ARP 4754 & 4761

Traceability among artifacts produced by the above sub-processes is necessary to comply with various
validation checks described in ARP 4754 (including those in the sections previously mentioned in
1.4.6.2). The checks themselves are phrased in broad terms and should be tailored to specific projects.

For instance subsection 7.3 states the following check list item among an example set of questions for

assessing requirements completeness at each hierarchical level:-

Do requirements trace to identified sources?

- functions, hazards and failure condition classifications identified in the FHA.

Figure 1.5 illustrates one interpretation of this check. It depicts traceability to a fragment of the aircraft
FHA - featuring a single function, hazard and failure classification - from the safety requirement
excluding this particular condition. Fault Tree Analysis is then used to derive lower level requirements

from those identified by the aircraft FHAs; figure 1.5 summarises the overall relationship between FHA

19 An ‘item’ is defined as one or more hardware and/or software components treated as a unit (ARP 4761).
20 ARP 4754 and 4761 exclude detailed coverage of software and hardware issues which are considered respectively by DO-

178B and the working document “Design Assurance Guidance for Airborne Electronic Hardware™.
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and FTA whereby aircraft FHAs generate top level events in the aircraft FTAs; likewise, catastrophic or
hazardous basic events from the latter provide inputs to system FHAs. As section 3.2 of ARP 4761

indicates, these paths should also be traceable.

Figure 1.6 shows the global flow of information among the FHA, PSSA CCA, and SSA sub-
processes’'. However, it also provides a general indication of traceability requirements. Recall from
subsection 1.2 (C2) that we may regard the activity that transforms an input to an output as an
abstraction of a traceability association between the two. For instance, architectural requirements form
inputs to the preliminary FTA/CCA during item requirements identification which in turn, derives
hardware level requirements (figure 1.7A). A derives traceability association between these artifact

types may therefore be considered an abstraction of this process (figure 1.7B).

— ——— - e
System ltem ftern

Requirement Requirement Design
Identification Identification impilementation

L

Architactural Rqts.

input l
\ A
Prelim

FTA |

L

CCA

Figure 1.7 - ‘Information Flow and Traceability (context ARP 4761)’

In the absence of clear guidance from the standards themselves, such an approach could be used (in

conjunction with figure 1.6) as a basis to determine traceability needs for the ARP 4754/4761 process.

1.5 Chapter Summary

This chapter has provided a context for the thesis by considering from a user viewpoint our domain and
focus of interest, namely traceability for the aerospace industry. A number of characteristics were
introduced to highlight traceability issues relevant to this domain; perhaps only the nuclear and rail

industries offer similar challenges in the provision of effective support for traceability.

The literature distinguishes different types of traceability according to factors such as scope (e.g., pre-
requirements, post-requirements) and direction (e.g., horizontal and vertical, forward and backward).
However most existing work (including attempts to define the term) concentrates on traceability for
software (rather than system) development and as such, fails to address issues pertinent to the industry
characteristics referred to above. We therefore proposed our own definitions, in particular, refining the

notion of horizontal and vertical traceability to accommodate aspects of these characteristics.

S
2! Not every step will be needed for assessment, but each must be considered for applicability,
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A further visual conceptualisation was proposed by representing horizontal, vertical and revision
traceability as dimensions of a cube, with variant traceability (i.e., the variant dimension) similarly

depicted as traceability between cubes.

The dimensions concept can be viewed as a ‘meta framework’ relating abstractions from the different
stages of development or assessment (e.g., requirements and design), whereas the Workspace concept
(alluded to in subsection 1.3) can be viewed as (part of) a ‘concrete framework’ relating selected
notations used in the different stages by aerospace practitioners. The Workspace is one actualisation of
the dimensions with the artifact nodes being realised as meta-models representing selected notations,
and the traceability dimensions realised through associations between elements of the meta-models. The

relationship between these two frameworks is illustrated in figure 1.8; for the concrete framework, the

meta-models are depicted by actual notations rather than their corresponding meta-models.

- Meta Framework (Dimensions) -

1 :
/ : : L ;I--LF | //I | TI | L—: E;_r:f: !
R 5. Concrete Framework (Workspace) LY, oz d s -

Figure 1.8 - ‘Relationship Between Meta (Dimensions) and Concrete (Workspace) Frameworks’

Finally, this chapter asserted that recent growth in both interest and application of traceability has been

driven by two factors. Firstly, the emergence of requirements engineering which has provided a direct

focus for traceability research, while ensuring it is not overlooked in the development of new notations
and techniques. And secondly, growth in use of compliance frameworks as arbiters of quality (e.g., ISO

9001), safety (e.g., ARP 4754/4761) and other non-functional attributes.

1.6 Thesis Structure

The remainder of this thesis 1s structured as follows:-
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Chapter Two provides an overview of current traceability techniques, together with a basis for their

classification. For reader orientation, we demonstrate means used in this thesis to represent and
implement the traceability structures introduced in our thesis argument. Chapter Two also considers

means of realising traceability using a variety of proprietary and commercial tools.

Chapter Three provides an introduction to the Meta-modelling Approach to Traceability for Avionics
(MATrA) proposed by this thesis. The main works that have influenced its development are considered
(foundations), together with the nature of their influence and/or perceived weaknesses. The chapter

goes on to introduce the key principles of MATTA (fundamentals), their purpose and composition.

Chapter Four presents a number of novel meta-models (traceability structures) capturing development
notations used by avionics engineers in a format amenable to traceability. Specifically:- i) a Natural
Language structure; 11) a User Centred Requirements Structure (featuring Use Case Models, Scenarios

and Message Sequence Charts); ii1) a structure for the representation of Real-Time Networks; and iv) a

structure for the representation of SPARK Ada program code.

Chapter Five presents novel meta-models capturing safety assessment and product management
notations used by avionics engineers, again in a format amenable to traceability. Specifically:- i) a Fault
Tree Analysis structure; i1) a Failure Modes & Effects Analysis structure; and iii) a Programme
Evaluation & Review Technique structure. In addition, we extend MATTA to include support for

traceability of artifacts across the revision and variant dimensions.

Chapter Six features two case studies that illustrate a subset of the structures from Chapters Four and
Five. The first demonstrates aspects of the User Centred Requirements Structure (from Chapter Four)
using an actual commercial specification supplied by BAE SYSTEMS. The second demonstrates the

Fault Tree and Failure Modes and Effects Analysis structures (from Chapter Five) using extracts from a

contiguous example featured in aerospace industry guidelines (ARP 4761).

Chapter Seven presents conclusions drawn from the thesis and the extent to which work in the

previous chapters supports our thesis argument. A number of areas for possible future work are also

highlighted.

Appendix A provides some additional constraints and rules over the User Centred Requirements

Structure from Chapter Four.

Appendix B presents material supplementary to the work on revisions and variants in Chapter Five.

Appendix C and Appendix D include further data for the two case studies featured in Chapter Six.

Appendix E contains material relevant to proposals for further work discussed in Chapter Seven.
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Chapter 2 Techniques and Tools for Traceability

2.1 Introduction

At a reductionist level, traceability is simply a means of managing relations (or functions) on sets of
artifacts; in other words, set theory provides the mathematical foundation for all traceability techniques.
Therefore the level of sophistication afforded by a particular technique depends on what additional
concepts it adds to basic set theoretic constructs. Working from such a premise, this chapter provides an
overview of current traceability techniques, before considering the support provided for them by

various proprictary and commercial tools. The aim of the survey is to establish a firm technical basis for

MATTA.

2.2 Traceability Techniques

Traceability techniques broadly divide into two categories, namely cross-referencing and conceptual
data modelling (or simply data modelling). Cross-referencing can be further partitioned into higher and
lower-order techniques, both of which are founded on the set-oriented principles of graphs and
matrices; the main difference being that higher-order approaches build on these underlying
mathematical principles by introducing features which make them more amenable to practical
application. In contrast, conceptual data modelling has its origins in software engineering which has
spawned a number of rich semantic notations suited to the development of more sophisticated
traceability techniques. We note that these notations can employ either a graphical or lexical

representation, although as we shall demonstrate, some include both.

The basis of our classification considers three aspects:- i) structure (in particular, support for the typing
of data elements and relationships); i) constraints (the ability to specify restrictions on the way in

which data elements are related); and 1i1) operators (means of manipulating data elements).

2.2.1 Cross-Referegncing

This subsection introduces the cross-referencing technique and the support it provides for traceability.

2.2.1.1 Foundations

In describing the foundations of cross-referencing techniques, we distinguish higher-order cross-

referencing from basic lower-order approaches.

2.2.1.1.1 Lower-Order Cross-Referencing

The simplest of all traceability techniques comprise a single set of ‘traces-to’ associations between a
single set of ‘artifact’ types. This assertion may seem overly reductionist given the range of entities used
in some data-modelling approaches (¢f. Herzog & Torne, 1999; Oliver, 1994; Pyle et al., 1993).
However, if we regard the pairing as traceability super-classes of which all other types are simply
specialisations (a view supported by Ramesh & Jarke, 1999 and Riddle & Saeed, 2000), then the
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assertion becomes more credible. It is simply that the restriction of types within lower-order graph and

matrix based schemes forces the extremes of abstraction.

Graph theory and directed graphs (digraphs) in particular are an intuitive and popular means of
representing traceability relationships (cf. Attipoe, 1996; Bohner, 1995; Cimitile et al., 1992; Fyson &
Boldyreff, 1998; Lanubile & Visaggio, 1995; Luqi, 1990; Yau et al., 1988). Formally, a digraph is an
ordered triple (N, A, g) where N is a set of vertices or nodes, A is a set of edges or arcs and g is a
bijective function associating with each arc a, an ordered pair (x, y) of nodes; i.e., the function is both

surjective as all arcs in A are assigned, and injective because arcs have only one (x, y) pair.

As an example, consider the following function defined as:- traces-to : (N x N) — A where the set of 2-
tuples in the domain {<x, y>} correspond to section numbers in a document text. As such, the nodes are
carriers of information and therefore any graph of the function is said to be labelled. One possible graph
is shown in figure 2.1 (centre). It should be stressed that such functions are likely to be partial since we
would not expect an association between every section pair. A case in point is that of instances of 2-
tuples where x = y, a feature which manifests as loops in the resultant graph and which makes little

sense in a cross-reference context.

S 1
0O 1 0 1 1 0 0O al a3 o 1 1 1 1 1 1
0 01 0 0 0 O N N 0 01 0 0 O 1
0 0 0 0 0 0 1 g9 a2 S 0 0 0 0 0 0 1
0 0 0 0 0 O 1 0 0 0 0 0 0 1
0 0 0 0 0 1 O L, v ) 0 0 0 0 0 1 1
0 0 0 0 0 O 1 §57 ° 0 0 0 0 0 0 1
0 0 0 0 0 0 O v v 0 0 0 0 0 0 O
a S 8.1 Reachability Matrix R

Adjacency Matrix A S24
\
SO

Figure 2.1 - ‘Directed Graph, with Adjacency and Reachability Matrix Representations’

Further utility can be gained by making arcs (as well as nodes) carriers of information, specifically
some numerical value or weight describing the ‘strength’ of association. We can therefore extend the
digraph definition to accommodate these weightings which now reads (V, A, g, W, w), where Wis the
set of possible degrees of strength (e.g., {3, 6, 9} indicating low, medium and high) and w is a function
from A into W (defined as w: A — W) that associates a weighting with each arc a; w is neither surjective

nor injective since a set of arcs may be assigned to a subset of W, whilst each weighting w may be

assigned to n > 1 arcs in A.

We note that pure directed graphs of the form shown in figure 2.1 are generally limited to support for

horizontal traceability (i.e., among artifacts of the same type) by virtue of their restriction to single node
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types (i.c., from a single set)'. The exceptions are bipartite graphs which partition nodes into two
(disjoint non-empty) subsets N; and NN,, such that each arc connects a node of N; to a node of N, (i.e., x
€ N; Ay € N;). Hence bipartite graphs allow the possibility of associating, for example, artifact nodes
of type requirements and design, thereby supporting a form of limited vertical traceability (a separate

graph would be required for horizontal traceability).

As an alternative to the digraph representation shown in figure 2.1, the set of n nodes may be ordered

? matrix (or n; X n, for a bipartite graph), termed the adjacency matrix A (see

and formed into an n
figure 2.1 - left). Cell entries in A either indicate the presence or absence of an arc between nodes
(using a 1 or a 0), or show the appropriate arc weighting. Thus, an adjacency matrix A describes
reachability via paths of length:1. The property of reachability for a digraph is defined in terms of
reachable nodes, such that a node n; is reachable from node n; if there is a path from n; to n;. Paths
greater than length:1 are computed using boolean matrix multiplication of the adjacency matrix A; e.g.,
A¥ gives reachability via length:2 paths and A™ reachability via length:n paths. Hence the reachability
matrix R (figure 2.1 - right), which is computed as the boolean sum of A, AY, ... A™ indicates the
presence of any path of length 7 to n between nodes. Furthermore, entries in R belong to the transitive
closure of the relation p, the adjacency relation of a directed graph; i.e., for the set of nodes N, if (n;, n))

is an ordered pair of nodes, then the binary relation on the set N is n; p n; € there is an arc from n; to n,.

The graphs and matrices considered thus far adhere to basic mathematical principles and are what we
term lower-order cross-referencing techniques. As such, any traceability approach utilising them
represents a single function and therefore permits associations of one or at best, two artifact (node)
types over one relationship (arc) type. In contrast, higher-order cross-referencing techniques relax some
of the mathematical restrictions, whilst building on these techniques towards a more practical
application. For traceability, this means being able to represent multiple node types corresponding to
different development and assessment artifacts (e.g., requirements, designs, test-cases, etc.) and also
multiple arc types between these nodes capturing the various semantic relationships that exist between
artifact types (allocated-to, derives, supersedes, etc.). Therefore in the following paragraphs, we

consider the additional facilities provided by higher-order techniques.

2.2.1.1.2 Higher-Order: Multiple Relations

The first extension permits representation of multiple functions over a single set of nodes. Formally we
define this structure as an ordered pair (N, G) where N is a set of nodes (or optionally, the union of two
disjoint subsets N; and N;) and G is a set of digraphs defined as 4-tuples of the form {<A, g, W, w>}. As
previously described, A is a set of arcs and g is a bijective function associating with each arc a, an
ordered pair (x, y) of nodes. Also as described, W is a set of possible weightings, whilst w is a function
associating a weighting with each arc a. We note that IGl = 1 corresponds to a single conventional graph

structure, whereas |Gl > 1 can be thought of as a set of graphs overlaid on top of one another; a matrix

! A single digraph node type can be overloaded to impart greater utility to lower-order cross-referencing; i.e., it may be regarded
as an abstraction of n > I subtypes. For instance, the section number nodes in figure 2.1 may actually represent paragraphs,

figures, tables and appendices, etc.
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structure (modified to accommodate multiple cell entries) can again be used as an alternative

representation.

Consider an example (N, G = {<A,, a, W, w>, <A, ¢, W, w>, <A,, 5, W,,w>}) where Nis a
partitioned set of artifact node subsets N; {r,, ra, r3} and N, {r,, 15, rs} and G is a set of graphs based on
three functions a, ¢ and s (denoting alternative, conflicts and similar respectively), each with its own set
of arcs and strength weightings (again {3, 6, 9}). Here, the weightings are the same for each graph,
though that need not necessarily be the case (indeed null weightings may be used where appropriate). It
is therefore necessary to distinguish which weighting belongs to which particular function; hence we
define the sets W, ={\, a, ©t}, W, = {2, P, O} and W, ={e, G, & }. The matrix in figure 2.2A integrates
possible graphs of the functions a, ¢ and s shown in figures 2.2B, 2.2C and 2.2D respectively.
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Figure 2.2 - ‘Example Matrix Representation of Multiple Weighted Directed Graphs’

2.2.1.1.3 Higher-Order: Multiple Artifacts

Whilst the higher-order: multiple relation configuration improves on lower-order representations by
allowing specification of n > I relationships, the restriction of (at most) two artifact (node) types still
remains. In contrast, the final cross-reference based approach (higher-order: multiple artifact) supports
both multiple association and multiple node types by effectively collocating the previous higher-order
graphs (or their equivalent matrices) ‘end-to- end’. Formally, this can be stated as {(N, G)} where for
each pair in the set, N is a set of nodes (or optionally, the union of two disjoint subsets N, and N;) as

before and G is again a set of digraphs defined as 4-tuples of the form <A, g, W, w>; end-to-end
connections exist where 3 g5, g2 € {(N, G)} : g;#£2:AN(g2) < N(g)).

Two further augmentations worthy of note build on this last approach. The first uses symbols to
annotate sets of node pairs that share a common domain; e.g., a requirement may relate to two design
strategies as represented by the pairs (7, d,) and (r, d3). Such associations could be described as being
either @ (exclusive) or ® (complementary). The second extension in which arcs are annotated with
function names takes us into the area of semantic networks (Quillian, 1968), a classical knowledge

representational technique used to state propositional information. An example of a semantic network
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associating requirements (r), design (d), implementation (i), test (t) and test-result () elements is shown in

figure 2.3; note weightings could have been used to further enhance expressiveness of the conflicts-with

function.
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Figure 2.3 - ‘Example Semantic Network’

2.2.1.2 Traceability Enhancements

From a traceability perspective, the means by which both lower and higher-order cross-referencing
builds on the basic concepts of sets and relations can be seen to be largely structural; i.e., through the
visual representation of underlying mathematical concepts. We note that predicate logic and standard
set operations may be used to define implementation independent integrity constraints (e.g., preventing
loops or cycles), and that the literature features a number of established graph algorithms, including
those for traversal and computation of reachability matrices. However, since graph theory per se
includes neither a constraint sub-language nor pre-defined operators for standard analyses (i.e., a graph
calculus), it (and by implication, lower-order traceability approaches) can only be judged on the
structural properties of links and nodes. Furthermore, (and as previously indicated) these properties are
relatively weak when compared to such failings as the inability to represent elements from multiple sets,

to describe these elements in terms of attributes and to capture the semantics (in a data modelling sense)

of their associations.

The full extent of support for traceability afforded by lower-order approaches can therefore be said to
come from combining labelled (bipartite) nodes with arcs enriched by weighting attributes. For this
reason we assert that ‘pure’ graph-based approaches are the least sophisticated of all traceability
techniques. In contrast, higher-order techniques that build on such basic approaches, and in particular
semantic networks, enable representation of unlimited node and relationship types and hence support
more detailed modelling of real world concepts. However, like lower-order approaches, the nodes
themselves are atomic and so have no descriptive capabilities. In other words, both forms of technique

tell us what elements are related, and how, but having navigated to a relevant node, we have to look

elsewhere for the actual detail.

2.2.1.3 Traceability Applications
The principles of cross-reference based traceability are a feature of most development and assessment

documents. Outwardly, footnotes and phrases like ‘see section x’ are merely navigational aids directing
readers to a particular section, glossary or appendix. However, their underlying structures form graphs

similar to those described above. Indeed, the use of such ‘stock-phrases’ implies a lower-order
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approach based on a single function with either common or bipartite node types connected over a single

set of (implicit) arcs.

In principle, the approach can be extended to support higher-order cross-referencing procedures by
using multiple node and statement types; e.g., in figure 2.4, Requirement A, Requirement B,
Design Decision Xand Text Case Y (together with their respective section and paragraph
numbers) are all (3-tuple) nodes, while the associations ‘determines (strong)’ and ‘determined-by
(strong)’, etc. are labels with strength weightings on implicit (forward and backward) arcs?.
Enumeration of different node and link types such as these, together with specific formats and
guidelines on usage can be stipulated as part of an organisational traceability policy (Sommerville &
Sawyer, 1997). However, without enforced typing it may be difficult to ensure all cross-references are

rigorously maintained by project personnel.

[Requirement A | section i, paragraph 5]

The Fuel System pipes and equipment shall be designed to a maximum
normal working pressure of <V> psi (including surge). [determines

(strong) Requirement B, section x, para. y]; [fulfilled-by Design
Decision X, section n, para. m]; [verified-by Test Case Y, section £,

para. gl

[Requirement B | section x, paragraph y]

The Fuel System pipes and equipment shall be designed such that the
ultimate pressure equals 2.5 times the normal working pressure.

[determined-by (strong) Requirement A, section i, para. j]; [fulfilled-
by Design Decision X, section n, para. m]; ]; [verified-by Test Case

Y, section f, para. gl.

[Design Decision X | section n, paragraph m]

Use <X> to maintain Fuel System pipes and equipment within pressure
tolerances ... fulfills Requirement A, section i, para. j]; [fulfills
Requirement B, section x, para. y].

[Test Case Y | section £, paragraph g]

Test rig simulation of refuel, defuel (suction and pressure), and
transfer operations ... [verifies Requirement A, section i, para. jl;
verifies Requirement B, section x, para. y].

Figure 2.4 - ‘Example of a Defined Text Based Cross-Reference Format’

In representing different perspectives on the target system, practitioners typically employ a range of
modelling techniques, each of which introduces sets of named entities, processes, behaviours and so
forth. To ensure the view the models provide is a coherent one, adequate mechanisms must exist to
manage such data. For development artifacts this is normally accomplished through the data dictionary,

a centralised (higher or lower-order) cross-reference base listing the name, format and usage of all

2 The juxtaposition of the artifacts (nodes) shown in figure 2.4 and the inclusion of both forward and backward traceability
links, suggests some redundancy. However, in reality these elements may be diffused across several hundred pages of a
document, whereupon the links would become essential for navigational purposes.
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elements employed across the set of system descriptions. The data dictionary also maintains constraints
governing consistency of the data set and flows between the various models; e.g., all DFD (Data Flow
Diagram) data stores and ELH (Entity Life History) entity types are traceable to the Entity-Relationship
model, and all ELH events are referenced in DFDs. Likewise, for assessment artifacts, most regulated
industries use a Hazard Log as the centralised safety document to cross-reference and track the results
of analysis (Hansford et al., 2000). Its main purpose is to enumerate the hazards identified at each
stage, together with their severities, probabilities, risk, causes, consequences and intended measures for
exclusion or mitigation. Also referenced are the actual models and analyses that derived this
information, such as fault trees and FMEA. Again, the level of detail (i.e. whether the cross-references

are maintained in higher or lower-order form) should be stated in either project specific procedures, or

as part of general organisational traceability policy.

Explicit graphical traceability structures (where the visual representation is preserved, instead of being
implicit to the underlying structure of some document or text) are also common. For instance, lower-
order approaches based on single node and arc types lend themselves naturally to the representation of
artifacts linked by some form of forward or backward chaining. Examples include the Dependency
Structure (Riddle & Saeed, 1998) featuring an influenced-by function over a set of Module nodes, and
the Impact Structure’ (Saeed ez al., 1995) which is effectively a graph-based equivalent of traditional
NXxN charts (Lano, 1979). Meanwhile structurally at least, fault trees can be thought of as a basic form
of higher-order approach which, despite representing a single set of arc types (causality) over a single
set of node types (faults), include higher-order augmentations supporting disjunction and conjunction®.
Goal-graphs (Mylopoulos et al., 1992 and Chung et al., 1995) are a further example of a higher-order
approach; these structures relate a set of system development goals over satisficing and correlation link
types with augmentations that include use of link correlation weightings and argument annotations to
further enrich the arcs. Finally, examples of higher-order approaches based on n > 1 node and arc types
include Safety-Specification Graphs (de Lemos et al., 1995) and the Design Rationale Capture System
referred to in Chapter One (and described further in Chapter Three).

Traceability applications of matrices are just as prominent in the literature. In particular, they form the
basis of the Quality Function Deployment (QFD) methodology (Brown, 1991; Maier, 1993; West,
1991), a product realisation strategy developed in the motor industry, but since applied across a range
of applications (cf. Bellagamba et al., 1993, Jacobs & Kethers, 1994). As figure 2.5 indicates, the basic
tenet of QFD (also known as ‘House of Quality’ or HoQ) is to ensure that each customer requirement is
addressed by a design element and, that no design forms part of the final specification unless relevant to
some customer requirement. Hence, analysis of the main relationship matrix seeks to identify empty
rows (i.e., unfulfilled requirements) and empty columns (spurious design components). Figure 2.5 also
shows how the correlation matrix (or roof) establishes complementary and conflicting strategies for in

this case, designs parameters; e.g., Built-In-Test-Equipment can be seen to have a positive impact on

3 We note that Impact Structures can support two types of impacts relationships, those derived from information in a

specification document and those based on domain knowledge.
* In Mason & Saeed (1998), we represent disjunction and conjunction as two distinct forms of causality relation which strictly

places FTA among the higher-order/multiple-relation cross-reference classification.
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Mean Time To Repair, but a negative impact on Mean Time Between Failure (owing to the increased

number of components).

The relationship matrix shown in figure 2.5 essentially captures the level of information in a labelled,
weighted, bipartite graph (but with symbols instead of numbers to denote strength weightings). This
particular example 1s therefore strictly a lower-order application of a potentially higher-order technique.
In practice, 1t would normally be extended to include other artifact types (test cases, implementation
clements, etc.) by combining matrices end-to-end to form so-called “cities™ of quality and by capturing

different functions using multiple cell entries.

In addition to QFD, Fischer & Walker (1979), Davis (1990), Ince er al. (1993) and Moore (1993)
provide further (mostly lower-order) examples of matrix based traceability. Matrices are also an integral

feature of the Hatley & Pirbhai (1987) methodology for real-time systems development, as well as

popular documentation standards such as ESA-PSS-05 (ESA, 1991).
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Figure 2.5 - ‘An Example Quality Function Deployment (QFD) Matrix’

Most applications of cross-referencing trace artifacts in the horizontal and vertical dimensions.
However, Dick (1999) uses matrices to manage revisions and variants using an extended lower-order
approach. A Project/Features Index (PFI) lists past and current projects (x-axis), together with the
features, or alternatively modules they incorporate (y-axis); alpha-numeric cell entries denote the
variant (alpha) and revision (numeric) of modules used on each particular project. Figure 2.6 shows a
hypothetical example cross-referencing component modules against aircraft projects; i.e., it captures the
partial function incorporates : (Module X Variant X Revision) X Project — A (where A is an implicit set

of arcs). The main aim of PFI is to promote and help manage reuse. Where analysis shows sufficient
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commonality exists, a previous requirements configuration can be simply copied as the baseline for a

new project and then modified accordingly.
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Figure 2.6 - ‘An Example Project/Features Index (PFKI)’

We note that the terms traceability marrix and traceability table are often used interchangeably (cf.
Sommerville & Sawyer, 1997; Polack, 1990). However, whereas matrix cell entries may only indicate
associations between up to two entity types, each row of a table is capable of representing relationships
among n > | types (which 1s consistent with higher-order techniques). Furthermore, while matrices are

essentially just collections of ‘pointers™ among identifiers, table entries normally contain actual

information. Therefore, structurally at least, tables exhibit basic data modelling capabilities as is evident

from the Relational Model considered in subsection 2.2.2.2.1.

A table can be said to comprise (in database terminology), an intension (column headings naming the
entity sets concerned) and an extension (a set of occurrences consistent with the intension). Typically,
the left-most column 1n a traceability table is used as an identifier on which the other column types are
functionally dependent; if we adhere to the basic representation of cross-references used throughout
(i.e., a set of (x, y) node pairings into a set of arcs), then that column becomes the first element of pairs
in the domain of each function. Examples and variations of tabular traceability approaches are
described by Armstrong (1993), Hermens (1991), Jackson & Renton (1993), Mejzak (1990) and Polack
(1990). Note also the concept of a traceability-list (Sommerville & Sawyer, 1997), a two column table

in which the first column 1s an identifier (typically a requirement) and the second, a set of identifiers of

related artifacts.
Tables are also the staple means of representing safety information, be it the results of a particular

analysis technique (¢f. FMEA and HAZOP), or summaries of assessment sub-processes. Indeed tabular

structures dominate the range of admissible certification data listed in ARP 4754, This includes FHA,
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PSSA and SSA summary tables, validation and verification ‘matrices’ (again, strictly tables) and the
configuration index (detailing all physical elements of a system and their interconnections). Table 2.1
features an example PSSA table showing (intra-micro) vertical traceability between requirements and
designs (together with a remarks column that itself includes cross-references to supporting documents).
Another standard advocating use of tabular structures is Def. Std. 00-55 (Annex E) which proposes
them as a means of representing safety arguments (with columns for claims, arguments and

evidence/assumptions).

Safety Requirement Design Decisions | ~ Remarks |

1. The probability of “BSCU Dual channel BSCU design. The overall BSCU system can
Fault Causes Loss of Braking reasonably satisfy this
Commands” shall be less requirement - See FTA page
than 3.3E-5 per flight. ‘X'

The probability of Each BSCU system contains BSCU integrity can achieve
“Inadvertent Braking due to | independent command and this requirement - See FTA

BSCU” shall be less than monitor channels

2.5E-9 per flight.

The BSCU shall be designed
to Development Assurance
Level A.

page ‘X’

Development of the Command
Channel to Development
Assurance Level A and the
Monitor Channel to Level B

Development Assurance
Levels assigned according to
guidance in Section 5.4 of
ARP 4754

Table 2.1 - ‘PSSA Safety Requirements & Design Decisions Table’ (source, ARP 4761)

Finally, we note that graphical and formal modelling techniques often provide their own built-in cross-
referencing support. For instance, UML (Unified Modelling Language) includes the <<t race>>
stereotype’ indicating dependencies among elements of different models (figure 2.7A). The fault tree
transfer symbol is a further example (figure 2.7B); each transfer is bound to a particular event and
composed of two types (comparable to forward and backward traceability): a triangle with a vertical
line from its top shows ‘transfer-in’ of a fault tree section from another branch of the tree, whereas a
triangle with a horizontal line from its top indicates the event is ‘transferred-out’. Similar to this are
EXPRESS-G cross page symbols (figure 2.7C); relationships on separate pages terminate with a
rounded box containing page and reference numbers. Page numbers indicate the location of the ‘to’
definition, whilst reference numbers distinguish multiple references onto a page. The ‘to page’ also
contains page numbers of ‘from pages’ referring to a reference, whilst the ‘from page’ contains the
name of the ‘to definition’. Other approaches include DFD numbering schemes (enabling navigation
between process decomposition levels), the ELH ‘quit/resume’ formalism (which relates an abnormal
event termination to a resumption event elsewhere in the hierarchy) and the Z A (delta) symbol (which
indicates where an operation in one schema definition causes a change to occur in the state space of

another) - figures 2.7D, 2.7E and 2.7F respectively. \

All the techniques in figure 2.7 differ slightly from previous higher and lower-order approaches.
Specifically, they have fixed parameters in terms of purpose, and the association and node types they

connect. They also carry varying degrees of semantic force; e.g., whilst the EXPRESS and FTA

3 Stereotypes are an extensibility mechanism for defining new classes on top of the pre-defined UML kernel (Muller, 1997).
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notations mean simply ‘see page x’, ELH ‘quit and resumes’ (analogous to GoTo statements) and Z
deltas (similar to #include in C++, meaning ‘look here’ for schema variables, etc.) are actually control

statements with inherent cross-referencing.

Tracing across
UML models using

<<trace>> stereotype semantics is
'Loss of BSCU1' \ roqens
basic event (page M) B
A —_— l traces to top
event (page N) _
M
Loss of
A BSCU'Y
page N @
e -I
page N

scmantics is: definition

attribute from page 6, defined
on page 7 as ref. 4] of

type requirement_definition

Numbering convention
supports traceability of
process decomposition

_Fuel_Tank . F

< fuel_on_board: |

tank_capacity:

low_fuel_isvel:

low_fuel_alarm; {off, on}

fuel_on_board: <= tank_capacty

low_fuel_alarm = on <==» fugl_on_board: <= tank_capacry

tank_capacity = 50000 |

Refuel —

A Fuel_Tank
refuel_amount

fuel_on_board + refuel_amount <a tank_capacity
fuel_on_board = fuel_on_board + refuel_amount |

'‘Q1’ cross-references
‘R1'- semantics is that rejected
sensor data is cleared from buffer
with no write to OUT port

semantics is that
'Refuel’ operation schema
references (and updates)
fuel_on_board in
Fuel_Tank schema

Figure 2.7 - ‘Cross-Referencing Techniques of Modelling Notations’

Other applications of cross-reference based traceability schemes include those maintaining some form
of explicit requirements labelling, numbering or indexing (Evans, 1989, Jenkins, 1994; Mays et al.,
1985; Ramsay & Bernsen, 1995; and Yu, 1994), as well as those expressing and maintaining specified
relationships between keyphrase dependencies (Jackson, 1991).

2.2.1.4 Evaluation

In evaluating cross-reference based traceability we consider its potential from two perspectives:- 1) as a
framework for representing and navigating the underlying structure of relationships between project |
artifacts; and i1) as a means for reader orientation within complex, integrated texts. The first perspective

concerns a basic practitioner need - to identify relationships among project artifacts. Such analysis is

potentially an end in itself (e.g., where the goal is to verify non-existence of circular dependencies); else
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it is the means of achieving an end such that consideration of artifact detail follows the traceability
analysis (e.g., determining which design nodes relate to a particular requirement and then acting to
modify them as a result)®, Practitioners of the second perspective meanwhile are again concerned with
navigation, but only in a ‘reader’ sense and only of final deliverables (or interim baselines). Hence they
use cross-references as embedded pointers to navigate within and between artifacts along paths pre-
defined by the writer (developer)’. Together, the two perspectives provide an insight into the role of
cross-referencing in the context of a development project. Further consideration should be given to the

level of support for horizontal, vertical, revision and variant traceability

On the first perspective, directed graphs give a succinct visual representation of dependencies between
nodes (artifacts) and are of practical benefit irrespective of whether the traceability activity is a means
to an end, or an end in 1tself. They are however especially useful for highlighting instances of circular
dependencies and general over use of cross-references. At a coarse granularity, graphs can also be used
to aid reader orientation; e.g., the preface c;f a text with sections aimed at specific subsets of its
readership may include a graphical steer showing suggested reading paths for analysts, designers, safety
engineers, etc. Matrices derived from graphs offer an informationally equivalent though more concise
abstraction of dependencies and are also amenable to automated analysis. Reachability matrices are
particularly beneficial when preparing or checking artifacts containing multiple cross-references as they
can help identify instances of poor structuring or unreachable nodes. They can also support change

management by helping to highlight nodes along affected paths and to reaffirm their continued

reachability once the changes have been made.

On the second perspective, we regard actual ‘in-document’ cross-references as a feature used mainly 1n
presenting results to end-readers engaged in content analysis, rather than for the analysis of either
artifact-relationships or document structures. Besides being vital to document navigation, cross-
references are compatible with human thought processes. Indeed, readings from the social sciences
suggest a purely linear exposition actually conflicts with the brain’s non-linear character (Buzan, 1989).
However, multiple cross-references (either high or low level) can disrupt the flow of a document and
prevent transfer of ideas from writer to reader. The problem lies in maintaining awareness of

navigational paths, whilst understanding the information in course. As a result, errors may be concealed
which with safety related material (notably safety cases), can compromise the integrity of a system. We
note that recent work on web-based technologies indicates the need to base document structures on

conceptual models that take into account why and by whom they will be used (Smith ez al., 1997).

In principle (and despite the inability to describe properties of nodes), cross-referencing is capable of
supporting traceability across all the dimensions discussed in Chapter One. Inevitably, restrictions on
type mean lower-order approaches struggle to go beyond simple horizontal traceability, or at best,

vertical traceability using bipartite nodes (without that is, recourse to overloading and the information

loss that occurs when disjoint node types are treated as a single supertype). However, the multiple node

6 Exponents of this perspective might include requirements engineers and designers.
7 This perspective is appropriate to requirements review and safety assessor roles.
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and relationship types of semantic networks do allow for representation of complex vertical traceability

paths, as well as (potentially) supporting revision and variant traceability.

2.2.2 Conceptual Data Modelling

This subsection provides an introduction to conceptual data modelling and the support it provides for

traceability.

2.2.2.1 Foundations

Relative to cross-referencing techniques, conceptual data models offer practitioners a greater range of
‘tools’ (or concepts) for developing an effective traceability approach. Structural modelling constructs
include entity types (or classes), relationships, attributes and domains, whilst many data models also
support the established abstraction principles of classification and aggregation; note that in moving
from a cross-reference based to a data-modelling approach, we are effectively replacing nodes with
entities and arcs with relationships. Most conceptual data models further include means for stating
constraints and manipulating the data sets of populated models. Indeed strictly, a data model is defined
by this trio of components - structural aspects, means to express constraints and manipulative operators
(Date, 1995). Recall that these form the basis of criteria used to evaluate traceability techniques
discussed in this chapter and as such, biasing the evaluation in this way may appear somewhat unjust.
However, the literature suggests that data modelling and traceability have now become inexorably
linked in that data modelling features map readily to the requirements for effective traceability tools

(Riddle & Saeed, 1999b). In the following paragraphs, we briefly introduce key structural constructs,

constraints and operators.

2.2.2.1.1 Structural Constructs

o Entities
Entities capture real-world concepts, whether they be physical (e.g., a fuel tank), or abstract (e.g., a
requirement for a fuel tank). All entities with similar properties are assigned to a particular entity type

or class (in object-based terminology). Note, entity types, classes and indeed ‘relations’ (as described in

the original data model by Codd, 1970) are analogous to mathematical sets.

e Attributes and Domains
Entities (and relationships) may be described in terms of their characteristic features, variously referred

to in the literature as attributes or properties. For instance, possible characteristics of requirements
could include a unique identifier, author and specification. Individual values for these attributes are
termed scalars, the smallest semantic unit of data (Date, 1995), while a named set of scalar values is
termed a domain (also known as a value-set). Most of the models in the paragraphs that follow include
primitive domains for integer, string , boolean, etc. From these, we may wish to define more specific
value-sets; e.g. the domain of integrity levels according to ARP 4754 is precisely {a, b, ¢, d, ¢}. Thus,

domains are simply pools of values from which attribute values are drawn.
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* Relationships

The data modelling literature lacks a clear consensus on relationships, what they are and how best to
represent them. Peckham & Maryanski (1988) contend they can be modelled as entities, attributes,
independent connections or even as functions. A relationship is modelled as an entity if it is a distinct
concept whose properties describe the actual association, rather than one of the entities being related -
e.g., an Interface type between instances of a Module entity. Alternatively, relationships may be
represented as attributes if the attribute of one entity points to or is derived from another; e.g., a Module
entity with an attribute condition relating to the Condition type. Relationships can also be expressed as
simple connections described using a verb phrase or ‘claim’, e.g., a realised_by relationship between
Requirement and Design entities. Similarly, connections may be labelled with rolenames indicating the
purpose of each entity participating in a relationship. Rolenames are especially useful in clarifying
reflexive relationships, or in situations where two entities participate in multiple relationships.
Connections can also be expressed as entities if we have cause to describe them using attributes, or else
wish to relate them to other connections; e.g., where a Requirement is realised_by a Module and where
this claim is itself related to a TestCase entity via a validated_by connection. Finally, and though less

common, we note that some textual modelling languages specify relationships through function

definitions.

o Classification and Aggregation

Classification and aggregation are both abstractions originating from research in Cognitive Psychology,
with Smith & Smith (1977) being the first to apply them to conceptual data modelling. Classification
has two attendant viewpoints, namely generalisation and specialisation. Generalisation describes the
factoring of common features among related entities to form a generic high level type, while
specialisation (often seen as the basis of reuse) relates to the capture of features not already
distinguished in existing types; e.g., Systems and Components may both be classified as specialisations
of a generic Module entity. The generalised type is often termed a supertype or superclass and the
specialised type or class, its subtype or subclass. Given that entity types and subtypes can be said to
correspond to sets and subsets, then generalisation can be said to equate with the inclusion relationship.
Similarly, multiple generalisation (where a subtype incorporates features from n > 1 supertypes) may be

thought of as the intersection of two sets that are not subsets of the same superset.

Aggregation is simply a special and stronger (in the sense of coupling) form of relationship. Such
relationships are transitive, bi-directional, asymmetric and possibly reflexive and are used to show that
one kind of entity (the whole) is composed-of (i.e., contains), one or more other entities (the parts); e.g.,
in the context of ARP 4754, an aircraft can be said to comprise several system modules, each made-up
of many item modules that in turn contain multiple hardware and software modules. In other words,

aggregation expresses the semantics of ‘has-part/part-of® or ‘has-component/component-of
associations. It is also worth noting that while seldom treated as such in the literature, relationships

between entity types and their attributes are merely a particular form of aggregation.
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2.2.2.1.2  Constraints

Most conceptual data modelling techniques support means for expressing constraints over model
constructs (a feature largely absent from cross-referencing approaches). Notwithstanding domains
(discussed previously), the most basic form of constraints are those reflecting ‘real-world’ restrictions
on relationships between entities. Such constraints are said to specify cardinality and participation.
Cardinality describes the number of possible relationships for each participating entity; e.g., a single
requirement statement may produce (and therefore relate to) several design artifacts. This is usually
expressed as a ratio, in this case one-to-many. A more precise constraint may lirit entities to some
lower or upper bound; e.g., ‘good practice’ may restrict the number of derived requirements spawned
by a source requirement to thirty®. Conversely, participation constraints describe whether the existence
of some entity depends on it being related to another entity through a relationship. Such participation 1s

referred to as either total or partial, or more commonly, mandatory or optional.

The other type of restriction of interest to traceability practitioners can be broadly categorised as
integrity constraints (or static dependencies) which typically verify consistency and completeness of a
data set. Consistency checks are necessary, for example, to maintain uniqueness among elements of sets
(such as requirement identifiers), or to ensure referential integrity where models are related via a
common entity (cf. Klein, 1993a; and Pearson et al., 1998). Conversely, completeness checks are
necessary to verify ‘required data’; e.g., in the structure for recording failure behaviours by Pearson et
al. (ibid.), a constraint ensures that for each Failure, there is at least one Error leading to that Failure, and
at least one Fault stated as a consequence. A proviso of integrity checks for completeness is that they
should not inhibit partial population since the nature of the aerospace domain for example, means
engineers often have to work with incomplete information. Support for specification of integrity
constraints is widespread (though by no means universal) among conceptual data models. The most

leverage comes from those enabling formal definition of invariants using predicate logic, set and

boolean constructs.

2.2.2.1.3 Operators

The final issue of concern to traceability practitioners and again a deficiency of cross-reference based
approaches, is support for manipulating the data set of a populated model; i.e., the ability to produce
‘new’ information from existing elements. The first form of manipulation relates to means of specifying
queries over a data set, to select and retrieve a subset of elements according to specified criteria using
either standard or user defined query expressions. Another form of manipulation describes means of
specifying expressions projecting views on the data model and which typically evaluate to the complete
data set for a subset of elements reflecting (for instance) the information needs of particular stakeholder
groups. In both cases, manipulation merely implies packaging (or re-packaging) of existing information.
A further basis for manipulation (and a more authentic ‘take’ on newness) relates to the use of
deductive logic to infer new propositions; i.e., rules operating over a subset of elements within a model
(or group of models) that derive information populating other elements. It should be noted that in each

case, the ability to traverse complex hierarchical structures is of paramount importance. Moreover,

® More may suggest the original requirement is either vague or trying to state too much.
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while most conceptual data models include some basic operators, they tend to be less well developed

than means of specifying constraints and structural features.

2.2.2.2 Representative Conceptual Data Models

Having introduced the foundations of conceptual data modelling approaches, we now consider a
number of actual models embracing some or all of the constructs discussed (i.e., entities, relationships, .
constraints, etc.). The ordering is arbitrary, although we begin with the Relational Model since it is
widely regarded as being the very first data model, and conclude with O-Telos and UML/OCL which
together provide a basis for developing the MATrA framework.

It will be shown that conceptual data models may be represented using a graphical and/or a lexical
formalism; graphical representations are effectively higher-order graph-theoretic approaches (i.c.,
multiple-overlaid graphs capable of capturing n > 1 node and relationship types), but with a range of
additional capabilities. Both employ a finite set of pre-defined symbols (graphical icons and words

respectively), with rules on how they may be composed.

2.2.2.2.1 Relational Data Model
Based on set theory and predicate logic, the relational model (Codd, 1970) supports data structuring,

integrity constraints and manipulation operators. The data are structured as tables of records (one table
per entity type), with each row or tuple (horizontal subset) corresponding to an instance of a record and
each column (vertical subset), an attribute (whose value is drawn from a domain) describing a particular
facet of the tuples. However, neither classification nor aggregation (other than entities being composed

of attributes) are a feature.

The relational model enforces constraints on data integrity through keys. Specifically, the primary key 1s
the (minimum) combination of columns (attributes) within a table necessary to ensure uniqueness of
each tuple. Mappings between tables are handled through foreign keys, such that the value of a set of
attributes in one table matches those of the primary key in another. The latter is a major limitation of the
model; handling logical relations implicitly through shared values means associations can neither be
named nor given attributes. It also means the semantics of relationships are embodied in query

operations and that users of tools implementing the model must know which attributes define inter-

relational connections 1n order to extract instances of such mappings.

Further, the leanness that comes from expressing data in ‘third normal form’ (a desirable model
property that removes repetition and hence scope for inconsistencies) results in fragmentation of the
tables. This is especially true where the multiplicity of association is M..N, or when relating objects of
the same type (e.g., to support horizontal traceability). As a result, there is likely to be some divergence
between the entities and relations as they exist at the conceptual level and the collection of tables
representing them. However, despite these limitations, manipulative aspects of the model are strong,
supported as they are through a relational algebra which defines a range of operators over the data.

These comprise traditional set operations for union, intersect, difference and Cartesian product, as well

40




Techniques and Tools for Traceability

as unique relational operations for projection, join and divide.

2.2.2.2.2 Entity-Relationship Model

As its name suggests, founding constructs of the Entity-Relationship (E-R) model (Chen, 1976) are
entity and relationship types. The former are denoted as rectangles and the latter as rhombi (both name
bearing) on relationship arcs connecting entities. Attributes are represented as annotations on both
entities and relationships, although the model lacks a convention for denoting either unique identifiers
or domains. Existence dependencies (termed weak entities) are enclosed within a double rectangle, but
in Chen’s original work at least, neither classification nor aggregation (save for entities and their
attributes) is supported. Cardinalities of the form one-to-one, one-to-many and many-to-many can be
specified, while optional and mandatory relationships are denoted using single and double relationship
lines respectively. On the 1ssue of integrity constraints, the E-R model includes a set of in-built rules
corresponding to those for foreign keys in the relational model; in-built because a pure relational system
requires formulation of explicit foreign key rules, whereas E-R demands only that users state the kind of
relationship involved. Finally, in terms of operators, the model basically provides a subset of those in
Codd’s work (subset in the sense that there is no explicit join, for example). However, this aspect is

generally less clearly defined than structural aspects.

A number of enhanced or extended E-R models (EE-R) have emerged, including those by Czejdo et al.
(1992) and Gogolla (1994), while Gogolla & Hohenstein (1991) and Parent et al. (1989) are among
those seeking to give the model a formal semantics. Additional concepts proposed by EE-R models
include classification (normally denoted by a rectangle within a rectangle), as well as the notion of table
types - preliminary text listings of attributes for each entity. Table types may be optimised through
normalisation and thus map intuitively onto the relational model (with some loss of subtypes and weak
entities). Figure 2.8A shows a simple example of the ER approach illustrating a subset of the principles
found in Chen’s original model. Elements from this example will be used to demonstrate all the

techniques in the subsections that follow.

2.2.2.2.3 Object-Role Modelling (ORM)

Object-Role Modelling (Halpin, 1998) also known as the Natural language Information Analysis
Method (NIAM) is a graphical modelling technique in which ‘facts’ or predicates are described as
combinations of objects (entities), attributes and roles (relationships). Objects are represented using
ellipse icons and attributes as circles (both name bearing); object identifiers (te;'med labels in ORM) are
shown as dashed circles, while a plus sign (+) within an attribute circle indicates a calculable sequence
number (typically system generated). Roles are analogous to relational tables, or columns within tables
to be precise; i.e., they are the foreign keys to the entities being related. They are represented by
adjacent (name bearing) rectangles and connect objects to objects and objects to attributes via solid
lines (no separate notation exists for aggregation), allowing the relationship of an attribute to its object

to be precisely defined. Finally, classification is represented using a ‘heavy’ arrow pointing from the

supertype.
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ORM provides a number of symbols for capturing constraints. For instance, domain constraints can be
listed and attached to attributes in braces (if values are ordered, the range may be declared by
separating first and last values with “..”; e.g. {a, .. a,}). Cardinality meanwhile is denoted using double-
headed arrows; with one-to-many relationships the arrow is on the ‘many’ side, whereas for one-to-one
relationships, it appears on both sides. If the relationship is many-to-many, arrows span both halves of
the role rectangle (i.e., both halves are required to identify each occurrence in the relationship). A
circled ‘U’ symbol denotes instances where two or more attributes or relationships are required to
establish uniqueness, while mandatory role (participation) constraints are designated by placing a solid
circle adjacent to the appropriate object or attribute. Many further symbols exist for the specification of
additional constraint types, including frequency constraints (imposed over roles, meaning instances
must ‘play’ a role n times) and ring constraints (indicating that binary relations formed by the role

population must be irreflexive, intransitive, acyclic, asymmetric, antisymmetric, or symmetric).

ORM has evolved through several iterations, including a number of extensions supporting query
operators. Of note are RIDL (Reference and IDea Language), a hybrid declarative and procedural
language and ConQuer (Conceptual Query) which enables ORM models to be queried without
knowledge of the underlying schema (unlike the relational model).

It can be seen that ORM is a highly expressive language, although the corollary is that diagrams can
often appear cluttered. Figure 2.8B shows a simple example illustrating a subset of the principles

discussed.

2.2.2.2.4 GEM

The General Entity Manipulator (Zaniolo, 1983) is a textual modelling language that extends Codd’s
relational model. GEM is based on the elements entity and attribute; entities are made up of attributes
which may be atomic, set-valued (i.e., elements from a domain), a generalisation list (means for
classification allowing definition of sub-entities), or a reference relating to another entity (providing
support for aggregation). GEM has some similaritiecs with object-based approaches in the sense that
entities can conceptually contain other entities (as opposed to having foreign keys that are pointers to
those objects). The dot notation 1s used as a means of referring to the ‘join’ paths necessary to access
contained entities. Participation of reference attributes is mandatory (i.e., a value must be supplied)
unless explicitly defined as ‘null allowed’. GEM also includes the notion of alternative attributes
allowing for example, instances of a Module type to populate either a weight attribute or a language

attribute depending on whether they represent a physical or logical entity.

Like the relational model, designated key attributes enforce uniqueness, while domain rules restrict set-
valued attributes. Essentially, these along with the treatment of null values constitute the extent of
support for constraints in GEM. However, a simple but powerful sub-language (based on QUEL)
provides a range of operators for specifying queries and updates over the data model. Again, figure

2.8C presents a basic example illustrating a subset of GEM constructs.
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Figure 2.8 - ‘Examples of Conceptual Data Modelling Techniques - A (ER Model); B (ORM); C (GEM);
D (IDEF1X); E (DAPLEX); F/G (EXPRESS); H (O-Telos)’
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2.2.2.2.5 IDEF1X

IDEF1X (FIPSP, 1993) is a graphical, quasi-relational modelling approach developed by the United
States Air Force. Basic constructs are the entity, attribute and relationship; entities are denoted by
round-cornered or square-cornered rectangles (with names appearing above). The former indicate
dependent entities whose unique identifier includes at least one relationship to another entity, whereas
the latter signify independent entities whose identifiers are not derived from other entities. In both cases

a dividing line separates identifier attributes (above the divide) and non-identifier attributes.

Relationship lines (bearing an appropriate name) associate entities. In addition, the foreign key (fk)
‘implementing’ that line features as an attribute of the corresponding entity. Contrary to most modelling
notations, different line styles and symbols are used to describe different combinations of participation
and cardinality. For instance, a dashed line between two entities A and B, with a solid circle adjacent to
entity B has the semantics ‘one to zero or more’. Conversely, a solid line between two entities A and B,
with a solid circle and a ‘P' symbol adjacent to entity B (where B is dependent) has the semantics ‘one
to one or many dependent’. All told, IDEF1X specifies no less than twenty four symbol combinations
and we therefore refer readers to (FIPSP, 1993) for further details.

IDEF1X also supports supertype (generic entity) and subtype (category entity) classification through
the notion of ‘categorisation relationships’. However, neither aggregation (except through attributes),
nor operators are a feature. Moreover, semantic anomalies mean certain situations may be represented
by more than one set of symbols, while the same symbol can mean different things according to context.
This both reduces readability and makes the notation difficult to learn. It is also worth noting that
IDEF1X effectively imposes third normal form and therefore assumes all attendant dis-benefits of the
Relational Model. Again, figure 2.8D shows a simple example of the approach illustrating a subset of

these principles.

2.2.2.2.6 DAPLEX
DAPLEX forms the data definition component of the Functional Data Model (Shipman, 1981).

Although arguably the best known example, it is nevertheless just one of several attempts to construct a
modelling approach based on functions rather than relations. In general, it can be said of such models
that the basic navigational (‘path-following’) style is similar to that of object-based approaches in terms
of addressing objects that are functionally related to other objects, that are functionally related to other

objects and so on (Date, 1995).

The most striking features of DAPLEX are its simplicity and syntactic leanness. Whereas most
conceptual data models feature a range of modelling constructs, DAPLEX relies on just two, the
function and the entity (i.e., no relationships, attributes or value-sets). A function declaration can take
one or more parameters and return a set of entities of a given type. Entities are specified using functions
that take no parameters, whilst attributes are defined as functions taking the entity to which they belong
as a parameter. Relationships are also represented as functions. A number of built-in types are provided

including entity, and simple types such as integer and string. No explicit means are provided for
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representing either classification or aggregation, although users can define their own functions for such

purposes.

Constraints are specified using the model’s functional programming language, though even basic
restrictions are far from straightforward to impose. Finally, a powerful query sub-language enables
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