2,368 research outputs found

    Wind turbine condition assessment through power curve copula modeling

    Get PDF
    Power curves constructed from wind speed and active power output measurements provide an established method of analyzing wind turbine performance. In this paper it is proposed that operational data from wind turbines are used to estimate bivariate probability distribution functions representing the power curve of existing turbines so that deviations from expected behavior can be detected. Owing to the complex form of dependency between active power and wind speed, which no classical parameterized distribution can approximate, the application of empirical copulas is proposed; the statistical theory of copulas allows the distribution form of marginal distributions of wind speed and power to be expressed separately from information about the dependency between them. Copula analysis is discussed in terms of its likely usefulness in wind turbine condition monitoring, particularly in early recognition of incipient faults such as blade degradation, yaw and pitch errors

    Aeronautical Engineering: A continuing bibliography, supplement 120

    Get PDF
    This bibliography contains abstracts for 297 reports, articles, and other documents introduced into the NASA scientific and technical information system in February 1980

    A Review of Control Techniques Future Trends in Wind Energy Turbine Systems with Doubly Fed Induction Generators (DFIG)

    Get PDF
    تعتبر طاقة الرياح حاليا واحدة من أكثر مصادر الطاقة الخضراء النظيفة الملاءمة على نطاق واسع في العالم. تم تطوير العديد من مبادئ توربينات الرياح بستخدام  المولدات المختلفة لتحويل طاقة الرياح المتاحة إلى طاقة كهربائية. يعد نظام المولد الحثي ذي التغذية المزدوجة DFIG لتوربينات الرياح ذات السرعة المتغيرة نسبيا (VSWT) هو الأكثر ملاءمة لطاقة توربينات الرياح بسبب فوائده العديدة مقارنة بتوربينات الرياح ذات السرعة الثابتة نسبيا (FSWT). تقدم هذه الورقة مراجعة و مقارنة عن طاقة توربينات الرياح المختلفة وملخصًا قيمًا للعمل الأخير المتعلقة بأنظمة طاقة الرياح المختلفة (WECS) لنمذجة DFIG وأقصى نقطة طاقة MPP وأحدث نظام تحكم للتشغيل. ومن ناحية أخرى تم في الدراسة الحالية تقديم مقارنات ومناقشات بين توربينات الرياح المختلفة لتكون مفيدة للدراسات البحثية.Wind energy is currently widely regarded as one of the most favorable green clean sources of energy. Several wind turbine principles with various generator architectures have been evolved to exchange the available wind energy into electric power. The DFIG partial Variable-Speed Wind Turbine (VSWT) system is most proper for wind turbine energy because of its numerous benefits over Fixed-Speed Wind Turbines (FSWT). This paper introduces a comparative review of the different wind turbine conversion energy and a valuable summary of the recent work in the literature on different Wind Energy Conversion Systems (WECS) of a DFIG modeling, Maximum Power Point (MPP), and the latest control system for operation. On the other side, comparisons and discussions between different wind turbines have been presented in the current study to be beneficial for research studies

    POWER CONDITIONING UNIT FOR SMALL SCALE HYBRID PV-WIND GENERATION SYSTEM

    Get PDF
    Small-scale renewable energy systems are becoming increasingly popular due to soaring fuel prices and due to technological advancements which reduce the cost of manufacturing. Solar and wind energies, among other renewable energy sources, are the most available ones globally. The hybrid photovoltaic (PV) and wind power system has a higher capability to deliver continuous power with reduced energy storage requirements and therefore results in better utilization of power conversion and control equipment than either of the individual sources. Power conditioning units (p.c.u.) for such small-scale hybrid PV-wind generation systems have been proposed in this study. The system was connected to the grid, but it could also operate in standalone mode if the grid was unavailable. The system contains a local controller for every energy source and the grid inverter. Besides, it contains the supervisory controller. For the wind generator side, small-scale vertical axis wind turbines (VAWTs) are attractive due to their ability to capture wind from different directions without using a yaw. One difficulty with VAWTs is to prevent over-speeding and component over-loading at excessive wind velocities. The proposed local controller for the wind generator is based on the current and voltage measured on the dc side of the rectifier connected to the permanent magnet synchronous generator (PMSG). Maximum power point tracking (MPPT) control is provided in normal operation under the rated speed using a dc/dc boost converter. For high wind velocities, the suggested local controller controls the electric power in order to operate the turbine in the stall region. This high wind velocity control strategy attenuates the stress in the system while it smoothes the power generated. It is shown that the controller is able to stabilize the nonlinear system using an adaptive current feedback loop. Simulation and experimental results are presented. The PV generator side controller is designed to work in systems with multiple energy sources, such as those studied in this thesis. One of the most widely used methods to maximize the output PV power is the hill climbing technique. This study gives guidelines for designing both the perturbation magnitude and the time interval between consecutive perturbations for such a technique. These guidelines would improve the maximum power point tracking efficiency. According to these guidelines, a variable step MPPT algorithm with reduced power mode is designed and applied to the system. The algorithm is validated by simulation and experimental results. A single phase H-bridge inverter is proposed to supply the load and to connect the grid. Generally, a current controller injects active power with a controlled power factor and constant dc link voltage in the grid connected mode. However, in the standalone mode, it injects active power with constant ac output voltage and a power factor which depends on the load. The current controller for both modes is based on a newly developed peak current control (p.c.c.) with selective harmonic elimination. A design procedure has been proposed for the controller. Then, the method was demonstrated by simulation. The problem of the dc current injection to the grid has been investigated for such inverters. The causes of dc current injection are analyzed, and a measurement circuit is then proposed to control the inverter for dc current injection elimination. Characteristics of the proposed method are demonstrated, using simulation and experimental results. At the final stage of the study, a supervisory controller is demonstrated, which manages the different operating states of the system during starting, grid-connected and standalone modes. The operating states, designed for every mode, have been defined in such a hybrid model to allow stability and smooth transition between these states. The supervisory controller switches the system between the different modes and states according to the availability of the utility grid, renewable energy generators, the state of charge (SOC) of energy storage batteries, and the load. The p.c.u. including the supervisory controller has been verified in the different modes and states by simulation

    Small-Signal Modelling and Analysis of Doubly-Fed Induction Generators in Wind Power Applications

    Get PDF
    The worldwide demand for more diverse and greener energy supply has had a significant impact on the development of wind energy in the last decades. From 2 GW in 1990, the global installed capacity has now reached about 100 GW and is estimated to grow to 1000 GW by 2025. As wind power penetration increases, it is important to investigate its effect on the power system. Among the various technologies available for wind energy conversion, the doubly-fed induction generator (DFIG) is one of the preferred solutions because it offers the advantages of reduced mechanical stress and optimised power capture thanks to variable speed operation. This work presents the small-signal modelling and analysis of the DFIG for power system stability studies. This thesis starts by reviewing the mathematical models of wind turbines with DFIG convenient for power system studies. Different approaches proposed in the literature for the modelling of the turbine, drive-train, generator, rotor converter and external power system are discussed. It is shown that the flexibility of the drive train should be represented by a two-mass model in the presence of a gearbox. In the analysis part, the steady-state behaviour of the DFIG is examined. Comparison is made with the conventional synchronous generators (SG) and squirrel-cage induction generators to highlight the differences between the machines. The initialisation of the DFIG dynamic variables and other operating quantities is then discussed. Various methods are briefly reviewed and a step-by-step procedure is suggested to avoid the iterative computations in initial condition mentioned in the literature. The dynamical behaviour of the DFIG is studied with eigenvalue analysis. Modal analysis is performed for both open-loop and closed-loop situations. The effect of parameters and operating point variations on small signal stability is observed. For the open-loop DFIG, conditions on machine parameters are obtained to ensure stability of the system. For the closed-loop DFIG, it is shown that the generator electrical transients may be neglected once the converter controls are properly tuned. A tuning procedure is proposed and conditions on proportional gains are obtained for stable electrical dynamics. Finally, small-signal analysis of a multi-machine system with both SG and DFIG is performed. It is shown that there is no common mode to the two types of generators. The result confirms that the DFIG does not introduce negative damping to the system, however it is also shown that the overall effect of the DFIG on the power system stability depends on several structural factors and a general statement as to whether it improves or detriorates the oscillatory stability of a system can not be made

    Study of Novel Power Electronic Converters for Small Scale Wind Energy Conversion Systems

    Get PDF
    This chapter proposes a study of novel power electronic converters for small scale wind energy conversion systems. In this chapter major topologies of power electronic converters that used in wind energy converter systems have been analysed. Various topologies of DC/AC single stage converters such as high boost Z-source inverters (ZSI) have been investigated. New proposed schemes for inverters such as multilevel and Z-source inverters have been studied in this proposed chapter. Multilevel converters are categorized into three major groups according to their topologies which are diode clamped multilevel converters (DCM), cascade multilevel converters (CMC) with multiple isolated dc voltage sources and flying capacitor based multilevel converters (FCMC). Z-source inverters are divided to ZSI, qZSI and trans-ZSI types. Trans-ZSI is mostly used for high step-up single stage conversions

    Generators of Modern Wind Turbines

    Get PDF

    Power Electronics and Controls for Wind Turbine Systems

    Get PDF
    corecore