347 research outputs found

    A Single-Stage LED Driver Based on ZCDS Class-E Current-Driven Rectifier as a PFC for Street-Lighting Applications

    Get PDF
    This paper presents a light-emitting diode (LED) driver for street-lighting applications that uses a resonant rectifier as a power-factor corrector (PFC). The PFC semistage is based on a zero-current and zero-derivative-switching (ZCDS) Class-E current-driven rectifier, and the LED driver semistage is based on a zero-voltage-switching (ZVS) Class-D LLC resonant converter that is integrated into a single-stage topology. To increase the conduction angle of the bridge-rectifier diodes current and to decrease the current harmonics that are injected in the utility line, the ZCDS Class-E rectifier is placed between the bridge-rectifier and a dc-link capacitor. The ZCDS Class-E rectifieris driven by a high-frequency current source, which is obtained from a square-wave output voltage of the ZVS Class-D LLC resonant converter using a matching network. Additionally, the proposed converter has a soft-switching characteristic that reduces switching losses and switching noise. A prototype for a 150-W LED street light has been developed and tested to evaluate the performance of the proposed approach. The proposed LED driver had a high efficiency (>91%), a high PF (>0.99), and a low total harmonic distortion (THD i <; 8%) under variation of the utility-line input voltage from 180 to 250 V rms . These experimental results demonstrate the feasibility of the proposed LED scheme

    A Survey, Classification and Critical Review of Light-Emitting Diode Drivers

    Get PDF
    Based on a survey on over 1400 commercial LED drivers and a literature review, a range of LED driver topologies are classified according to their applications, power ratings, performance and their energy storage and regulatory requirements. Both passive and active LED drivers are included in the review and their advantages and disadvantages are discussed. This paper also presents an overall view on the technical and cost aspects of the LED technology, which is useful to both researchers and engineers in the lighting industry. Some general guidelines for selecting driver topologies are included to aid design engineers to make appropriate choices.published_or_final_versio

    A review and classification of LED ballasts

    Get PDF
    This paper presents a review on existing ballasts for light-emitting diodes (LED) with considerations to their compliance to regulations, technological challenges, and on meeting various application requirements. All existing LED ballasts, including those proposed in recent literature, have been appropriately classified and systematically organized for the discussion. The dissemination of this information and its understanding is helpful for future R&D pursuits in this area. © 2013 IEEE.published_or_final_versio

    Overview of Passive Light Emitting Diode Driver Circuits for Street Lighting

    Get PDF
    This paper describes the overview and comparison of various passive Light Emitting Diode (LED) driver circuits employed for street lighting applications. Passive LED driver circuits are constructed with diodes and capacitors without using any power electronic semiconductor switches which in turn eliminates the secondary supply unit for control circuits and controllers. Passive LED driver circuits are simple in construction, low cost, less maintenance and control free. 50 W LED driver circuit is identified for performance comparison and simulations are performed in matlab- simulink to get an overview of different passive LED driver circuits. The most predominant parameters such as efficiency and total harmonic distortion are compared to identify the suitiblity of the driver circuits for various applications

    Overview of Passive Light Emitting Diode Driver Circuits for Street Lighting

    Full text link
    This paper describes the overview and comparison of various passive Light Emitting Diode (LED) driver circuits employed for street lighting applications. Passive LED driver circuits are constructed with diodes and capacitors without using any power electronic semiconductor switches which in turn eliminates the secondary supply unit for control circuits and controllers. Passive LED driver circuits are simple in construction, low cost, less maintenance and control free. 50 W LED driver circuit is identified for performance comparison and simulations are performed in matlab- simulink to get an overview of different passive LED driver circuits. The most predominant parameters such as efficiency and total harmonic distortion are compared to identify the suitiblity of the driver circuits for various applications

    Direct AC/DC Rectifier With Mitigated Low-Frequency Ripple Through Inductor-Current Waveform Control

    Get PDF
    In a rectification system with unity power factor, the input power consists of a dc and a double-line frequency power component. Traditionally, an electrolytic capacitor (E-Cap) is used to buffer the double-line frequency power such that the dc output presents a small voltage ripple. The use of E-Cap significantly limits the lifetime of the rectifier system. In this paper, a differential ac/dc rectifier based on the use of an inductor-current waveform control methodology is proposed such that a single-stage direct ac/dc rectification without the need of an E-Cap for buffering the double-line frequency power, and a front-stage diode rectifier circuit can be achieved. The feasibility of the proposal has been practically confirmed in an experimental prototype.published_or_final_versio

    Three-Port dc-dc Conversion in Light-to-Light Systems

    Get PDF

    Novel Offline Switched Mode Power Supplies for Solid State Lighting Applications

    Get PDF
    In recent years, high brightness light emitting diodes (HBLEDs) have increasingly attracted the interest of both industrial manufacturers and academic research community. Among the several aspects that make LED technology so attractive, the most appreciated characteristics are related to their robustness, high efficiency, small size, easy dimming capability, long lifetime, very short switch-on/switch-off times and mercury free manufacturing. Even if all such qualities would seem to give to solid state lighting a clear advantage over all the other kinds of competing technologies, the issues deriving from the need of LED technology improvement, on one hand, and of the development of suitable electronic ballasts to properly drive such solid state light sources, on the other, have so far hindered the expected practical applications. The latter problem, in particular, is nowadays considered the main bottleneck in view of a widespread diffusion of solid state technology in the general lighting market, as a suitable replacement of the still dominant solutions, namely halogen and fluorescent lamps. In fact, if it is true that some aspects of the devices’ technology (e.g. temperature dependent performance, light quality, efficiency droop, high price per lumen, etc
) still need further improvements, it is now generally recognized that one of the key requirements, for a large scale spread of solid state lighting, is the optimization of the driver. In particular, the most important specifications for a LED lamp ballast are: high reliability and efficiency, high power factor, output current regulation, dimming capability, low cost and volume minimization (especially in domestic general lighting applications). From this standpoint, the main goal is, therefore, to find out simple switched mode power converter topologies, characterized by reduced component count and low current/voltage stresses, that avoid the use of short lifetime devices like electrolytic capacitors. Moreover, if compactness is a major issue, also soft switching capability becomes mandatory, in order to enable volume minimization of the reactive components by increasing the switching frequency in the range of the hundreds of kHz without significantly affecting converter’s efficiency. It is worth mentioning that, in order to optimize HBLED operation, also other matters, like the lamp thermal management concern, should be properly addressed in order to minimize the stress suffered by the light emitting devices and, consequently, the deterioration of the light quality and of the expected lamp lifetime. However, being this work focused on the issues related to the research of innovative driving solutions, the aforementioned thermal management problems, as also all the topics related to the improvement of solid state devices’ technology, will be left aside. The main goal of the work presented in this thesis is, indeed, to find out, analyze and optimize new suitable topologies, capable of matching the previously described specifications and also of successfully facing the many challenges dictated by the future of general lighting. First of all, a general overview of solid state lighting features, of the state of the art of lighting market and of the main LED driving issues will be provided. After this first introduction, the offline driving concern will be extensively discussed and different ways of approaching the problem, depending on the specific application considered, will be described. The first kind of approach investigated is based on the use of a simple structure relying on a single power conversion stage, capable of concurrently ensuring: compliance with the standards limiting the input current harmonics, regulation of the load current and also galvanic isolation. The constraints deriving from the need to fulfil the EN 61000-3-2 harmonics standard requirements, when using such kind of solution for low power (<15W) LED driving purposes, will be extensively discussed. A low cost, low component count, high switching frequency converter, based on the asymmetrical half bridge flyback topology, has been studied, developed and optimized. The simplicity and high compactness, characterizing this solution, make it a very good option for CFL and bulb replacement applications, in which volume minimization is mandatory in order to reach the goal of placing the whole driving circuitry in the standard E27 sockets. The analysis performed will be presented, together with the design procedure, the simulation outcomes and the different control and optimization techniques that were studied, implemented and tested on the converter's laboratory prototype. Another interesting approach, that will be considered, is based on the use of integrated topologies in which two different power conversion stages are merged by sharing the same power switch and control circuitry. In the resulting converter, power factor correction and LED current regulation are thus performed by two combined semi-stages in which both the input power and the output current have to be managed by the same shared switch. Compared with a conventional two-stages configuration, lower circuit complexity and cost, reduced component count and higher compactness can be achieved through integration, at cost of increased stress levels on the power switch and of losing a degree of freedom in converter design. Galvanic isolation can be provided or not depending on the topologies selected for integration. If non-isolated topologies are considered for both semi-stages, the user safety has to be guaranteed by assuring mechanical isolation throughout the LED lamp case. The issue, deriving from the need of smoothing the pulsating power absorbed from the line while avoiding the use of short lifetime electrolytic capacitors, will be addressed. A set of integrated topologies, used as HBLED lamp power supplies, will be investigated and a generalized analysis will be presented. Their input line voltage ripple attenuation capability will be examined and a general design procedure will be described. Moreover, a novel integrated solution, based on the use of a double buck converter, for an about 15W rated down-lighting application will be presented. The analysis performed, together with converter design and power factor correction concerns will be carefully discussed and the main outcomes of the tests performed at simulation level will be provided. The last kind of approach to be discussed is based on a multi-stage structure that results to be a suitable option for medium power applications, like street lighting, in which compactness is not a major concern. By adopting such kind of solution it is, indeed, possible to optimize converter’s behavior both on line and on load side, thereby guaranteeing both an effective power factor correction at the input and proper current regulation and dimming capability at the output. Galvanic isolation can be provided either by the input or the output stage, resulting in a standard two stage configuration, or by an additional intermediate isolated DC-DC stage (operating in open loop with a constant input/output voltage conversion ratio) that namely turns the AC/DC converter topology into a three stage configuration. The efficiency issue, deriving from the need of multiple energy processing along the path between the utility grid and the LED load, can be effectively addressed thanks to the high flexibility guaranteed by this structure that, relaxing the design constraint, allows to easily optimize each stage. A 150W nominal power rated ballast for street solid state lighting applications, based on the latter (three stage) topology, has been investigated. The analysis performed, the design procedure and the simulations outcomes will be carefully described, as well as the experimental results of the tests made on the implemented laboratory prototype

    A design of LED driver circuit for reducing production cost in Thailand industry

    Get PDF
    In this paper, the designing of a modified flyback converter circuit for 100 Watts LED lighting has been demonstrated. Some important factors, i.e. efficiency (ɛ), power factor (PF), and total harmonic current distortion (THDi), are considered for interpreting the performance of the proposed circuit. A commercial driver circuit which an efficiency of 94% and price of ∌2,000 THB has, consequently, been employed as a reference circuit. Two experimental setups, performance investigation and cost analysis, have been demonstrated for confirming the concept designed. However, the experimental results shown that an efficiency of the developed driver is 93.93%, while the implementation cost is 1,257 THB respectively. Compared with the reference circuit, we found that the performance of modified flyback circuit is almost equivalent in any parameters, while the cost is cheaper than the reference of 37.15%. This implies that there is a possibility to transfer the knowledge of designing concept to mass production for Thailand industry. In addition, it would thus be reduced the investment cost by the importation driver circuits from other countries and also to support Thailand industry for producing the high quality goods for exporting aboard

    Passive and Active Topologies Investigation for LED Driver Circuits

    Get PDF
    In this chapter, a survey of LED driver circuits is presented. The driver circuit is a crucial component in the LED light system. It provides the correct voltage and current values for the best brightness and long life. Furthermore, the driver circuits contribute to obtaining high efficiency and reliability light system. Several lighting applications need different driver topologies that meet the use requirement and the energy sources available. In actual applications, passive and active circuits are implemented to satisfy the LED driver electrical requirements and cost-effective demands. The LED driver circuits investigation evaluate the issues and the solutions in the LED lighting systems connected to a DC source such as a battery or AC line. The AC line connection requisites such as the power factor correction and the harmonic distortion are dealt with both the driver topology and control optimization. Also, the volume reduction need is examined in the circuitry choice. Moreover, the different topologies of the power converters isolated and not isolated used in the driver circuits based on both the power request and supply source are described and critically evaluated
    • 

    corecore