399 research outputs found

    A novel single-phase five-level active rectifier for on-board EV battery chargers

    Get PDF
    This paper presents a novel single-phase active rectifier for applications of on-board EV battery chargers. The proposed active rectifier, with reduced number of semiconductors, is constituted by four MOSFETs and four diodes, and can produce five distinct voltage levels, allowing to reduce the passive filters used to interface with the electrical power grid. An almost sinusoidal grid current with unitary power factor is achieved in the grid side for all the operating power range, contributing to preserve the power quality. The principle of operation, the current control strategy and the modulation technique are presented in detail. Simulation results in different conditions of operation are presented to highlight the feasibility and advantages of the proposed active rectifier.FCT -Fundação para a Ciência e a Tecnologia(UID/CEC/00319/2013)info:eu-repo/semantics/publishedVersio

    Bidirectional power converters for EV battery chargers

    Get PDF
    [Excerpt] The introduction of electric mobility into the transport sector has significantly contributed to the mitigation of environmental issues [...]This work has been supported by FCT—Fundação para a Ciência e Tecnologia within the R&D Units Project Scope: UIDB/00319/2020. This work has been supported by the MEGASOLAR Project POCI-01-0247-FEDER-047220

    Review of Electric Vehicle Charging Technologies, Configurations, and Architectures

    Full text link
    Electric Vehicles (EVs) are projected to be one of the major contributors to energy transition in the global transportation due to their rapid expansion. The EVs will play a vital role in achieving a sustainable transportation system by reducing fossil fuel dependency and greenhouse gas (GHG) emissions. However, high level of EVs integration into the distribution grid has introduced many challenges for the power grid operation, safety, and network planning due to the increase in load demand, power quality impacts and power losses. An increasing fleet of electric mobility requires the advanced charging systems to enhance charging efficiency and utility grid support. Innovative EV charging technologies are obtaining much attention in recent research studies aimed at strengthening EV adoption while providing ancillary services. Therefore, analysis of the status of EV charging technologies is significant to accelerate EV adoption with advanced control strategies to discover a remedial solution for negative grid impacts, enhance desired charging efficiency and grid support. This paper presents a comprehensive review of the current deployment of EV charging systems, international standards, charging configurations, EV battery technologies, architecture of EV charging stations, and emerging technical challenges. The charging systems require a dedicated converter topology, a control strategy and international standards for charging and grid interconnection to ensure optimum operation and enhance grid support. An overview of different charging systems in terms of onboard and off-board chargers, AC-DC and DC-DC converter topologies, and AC and DC-based charging station architectures are evaluated

    Comprehensive analysis and experimental validation of five-level converters for ev battery chargers framed in smart grids

    Get PDF
    The electric vehicle (EV) is the foremost element for spreading electric mobility in smart grids. Its integration into the electrical power grid involves the use of battery chargers with improved power quality aspects, and therefore, the topology of the front-end power converter represents a vital role in the EV battery charger (EVBC). Since multilevel topologies offer a set of advantages to accomplish with the power grid interface, a comprehensive investigation of two five-level topologies for EVBCs is presented in this paper. An accurate computational validation and a meticulous explanation of the hardware and software required for the five-level topologies under study is presented and explained considering realistic operating conditions. The obtained results show the pros and cons of each topology targeting EVBC applications for smart grids.This work has been supported by FCT – Fundação para a Ciência e Tecnologia within the Project Scope: UID/CEC/00319/2019. This work has been supported by FCT Project newERA4GRIDs – New Generation of Unified Power Conditioner with Advanced Control, Integrating Electric Mobility, Renewables, and Active Filtering Capabilities for the Power Grid Improvement: POCI-01-0145-FEDER-030283. Mr. Tiago Sousa is supported by the doctoral scholarship SFRH/BD/134353/2017 granted by the Portuguese FCT agency

    Electric Vehicles Charging Technology Review and Optimal Size Estimation

    Get PDF
    AbstractMany different types of electric vehicle (EV) charging technologies are described in literature and implemented in practical applications. This paper presents an overview of the existing and proposed EV charging technologies in terms of converter topologies, power levels, power flow directions and charging control strategies. An overview of the main charging methods is presented as well, particularly the goal is to highlight an effective and fast charging technique for lithium ions batteries concerning prolonging cell cycle life and retaining high charging efficiency. Once presented the main important aspects of charging technologies and strategies, in the last part of this paper, through the use of genetic algorithm, the optimal size of the charging systems is estimated and, on the base of a sensitive analysis, the possible future trends in this field are finally valued

    Model predictive current control of a proposed single-switch three-level active rectifier applied to EV battery chargers

    Get PDF
    This paper presents a model predictive current control applied to a proposed new topology of single-switch three-level (SSTL) active rectifier, which is exemplified in an application of single-phase battery charger for electric vehicles (EVs). During each sampling period, this current control scheme selects the state of the SSTL active rectifier that minimizes the error between the grid current and its reference. Using this strategy it is possible to obtain sinusoidal grid currents with low total harmonic distortion and unitary power factor, which is one of the main requirements for EVs chargers. The paper presents in detail the principle of operation of the SSTL active rectifier, the digital control algorithm and the EV battery charger (where is incorporated the SSTL active rectifier) that was used in the experimental verification. The obtained experimental results confirm the correct application of the model predictive current control applied to the proposed SSTL active rectifier.This work was supported in part by the FCT–Fundação para a Ciência e Tecnologia in the scope of the project: PEst UID/CEC/00319/2013. Vítor Monteiro was supported by the scholarship SFRH/BD/80155/2011 granted by the FCT agency

    Isolated Wired and Wireless Battery Charger with Integrated Boost Converter for PHEV and EV Applications

    Get PDF
    Vehicle charging and vehicle traction drive components can be integrated for multi-functional operations, as these functions are currently operating independently. While the vehicle is parked, the hardware that is available from the traction drive can be used for charging. The only exception to this would be the dynamic vehicle-charging concept on roadways. WPT can be viewed as a revolutionary step in PEV charging because it fits the paradigm of vehicle to infrastructure (V2I) wirelessly. WPT charging is convenient and flexible not only because it has no cables and connectors that are necessary, but due more to the fact that charging becomes fully independent. This is possibly the most convenient attribute of WPT as PEV charging can be fully autonomous and may eventually eclipse conductive charging. This technology also provides an opportunity to develop an integrated charger technology that will allow for both wired and wireless charging methods. Also the integrated approach allows for higher charging power while reducing the weight and volume of the charger components in the vehicle. The main objective of this work is to design, develop, and demonstrate integrated wired and wireless chargers with boost functionality for traction drive to provide flexibility to the EV customers

    High-Voltage Stations for Electric Vehicle Fast-Charging: Trends, Standards, Charging Modes and Comparison of Unity Power-Factor Rectifiers

    Get PDF
    Emission of greenhouse gases and scarcity of fossil fuels have put the focus of the scientific community, industry and society on the electric vehicle (EV). In order to reduce CO2 emissions, cutting-edge policies and regulations are being imposed worldwide, where the use of EVs is being encouraged. In the best of scenarios reaching 245 million EVs by 2030 is expected. Extensive use of EV-s requires the installation of a wide grid of charging stations and it is very important to stablish the best charging power topology in terms of efficiency and impact in the grid. This paper presents a review of the most relevant issues in EV charging station power topologies. This review includes the impact of the battery technology, currently existing standards and proposals for power converters in the charging stations. In this review process, some disadvantages of current chargers have been identified, such as poor efficiency and power factor. To solve these limitations, five unidirectional three-phase rectifier topologies have been proposed for fast EV charging stations that enhance the current situation of chargers. Simulation results show that all the proposed topologies improve the power factor issue without penalizing efficiency. The topologies with the best overall performance are the Vienna 6-switch and the Vienna T-type rectifier. These two converters achieve high efficiency and power factor, and they allow a better distribution of losses among semiconductors, which significantly increase the life-cycle of the semiconductor devices and the reliability of the converter.This work was supported in part by the Government of the Basque Country through the Fund for Research Groups of the Basque University System under Grant IT978-16, in part by the Research Program ELKARTEK under Project ENSOL2-KK-2020/00077 and Project HARVESTGEN-KK-2020/00113, in part by the Ministerio de Ciencia e Innovacion of Spain under Project PID2020-115126RB-I00, and in part by the FEDER Funds. Documen

    Vehicle electrification: technologies, challenges and a global perspective for smart grids

    Get PDF
    Nowadays, due to economic and climate concerns, the private transportation sector is shifting for the vehicle electrification, mainly supported by electric and hybrid plug-in vehicles. For this new reality, new challenges about operation modes are emerging, demanding a cooperative and dynamic operation with the electrical power grid, guaranteeing a stable integration without omitting the power quality for the grid-side and for the vehicle-side. Besides the operation modes, new attractive and complementary technologies are offered by the vehicle electrification in the context of smart grids, which are valid for both on-board and off-board systems. In this perspective, this book chapter presents a global perspective and deals with challenges for the vehicle electrification, covering the key technologies toward a sustainable future. Among others, the flowing topics are covered: (1) Overview of power electronics structures for battery charging systems, including on-board and off-board systems; (2) State-of-the-art of communication technologies for application in the context of vehicular electrification, smart grids and smart homes; (3) Challenges and opportunities concerning wireless power transfer with bidirectional interface to the electrical grid; (4) Future perspectives about bidirectional power transfer between electric vehicles (vehicle-to-vehicle operation mode); (5) Unified technologies, allowing to combine functionalities of a bidirectional interface with the electrical grid and motor driver based on a single system; and (6) Smart grids and smart homes scenarios and accessible opportunities about operation modes.Fundação para a Ciência e Tecnologia (FCT

    Experimental validation of a novel architecture based on a dual-stage converter for off-board fast battery chargers of electric vehicles

    Get PDF
    The experimental validation of a novel architecture of an off-board, three-phase fast battery charger for electric vehicles (EVs) with innovative operation modes is presented in this paper. The proposed EV fast battery charger is based on a dual-stage power converter (ac-dc and dc-dc) sharing the same dc link. The ac-dc stage is used as an interface between the power grid and the dc link. It is composed of the parallel association of two full-bridge voltage-source converters, and allows control of the grid current and of the dc-link voltage. The dc-dc stage is used as an interface between the dc link and the batteries. It is constituted by a bidirectional three-level asymmetrical voltage-source converter, and controls the flux of current during the EV battery charging process. Compared with the traditional solutions used for EV fast battery chargers, the proposed architecture operates as an interleaved converter, facilitating the reduction of the passive filters size, and the grid current harmonic distortion for the same switching frequency. Throughout the paper, the ac-dc and dc-dc stages, and the digital control algorithms are described in detail. The experimental validation was performed in a laboratory using a developed EV fast battery charger prototype, operating through the grid-to-vehicle and the proposed charger-to-grid modes, exchanging active, and reactive power with the power grid.ERDF - European Regional Development Fund()info:eu-repo/semantics/publishedVersio
    corecore