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ABSTRACT Emission of greenhouse gases and scarcity of fossil fuels have put the focus of the scientific
community, industry and society on the electric vehicle (EV). In order to reduce CO2 emissions, cutting-edge
policies and regulations are being imposed worldwide, where the use of EVs is being encouraged. In the best
of scenarios reaching 245 million EVs by 2030 is expected. Extensive use of EV-s requires the installation
of a wide grid of charging stations and it is very important to stablish the best charging power topology
in terms of efficiency and impact in the grid. This paper presents a review of the most relevant issues in
EV charging station power topologies. This review includes the impact of the battery technology, currently
existing standards and proposals for power converters in the charging stations. In this review process,
some disadvantages of current chargers have been identified, such as poor efficiency and power factor.
To solve these limitations, five unidirectional three-phase rectifier topologies have been proposed for fast EV
charging stations that enhance the current situation of chargers. Simulation results show that all the proposed
topologies improve the power factor issue without penalizing efficiency. The topologies with the best overall
performance are the Vienna 6-switch and the Vienna T-type rectifier. These two converters achieve high
efficiency and power factor, and they allow a better distribution of losses among semiconductors, which
significantly increase the life-cycle of the semiconductor devices and the reliability of the converter.

INDEX TERMS Electric vehicle standards batteries charging modes three-phase rectifier Vienna rectifier
power factor.

I. INTRODUCTION
Protection of the environment has become one of the main
concerns of social agents, policy makers and the scientific
community due to factors such as greenhouse gas (GHG)
emissions, scarcity of fossil fuels and volatility of their prices.
The long-term European Commission strategic vision for
a modern, competitive and climate-neutral economy indi-
cates the tendency that GHG emissions should follow [1].
By 2050 the goal of not raising the planet temperature
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by more than 1.5 oC could be achieved. However, accord-
ing to the projections of the International Energy Agency
(IEA), GHG emissions are expected to double by 2050 from
2005 levels [2]. In this sense, United States Environmental
Protection Agency (EPA) states in [3] that transportation is
one of the sectors that contributes the most to GHG emis-
sions, producing, nowadays, approximately 28 % of the total
emissions.

According to United Nations reports, the world population
will reach 9.7 billion inhabitants in 2050 (which represents an
increase of practically 33 % compared to the 2015 population
of 7.3 billion inhabitants [4]) and the expected number of
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road vehicles will be around 2 billion in 2050 [5]. In this
context, the electrification of the transport sector in general,
and that of road vehicles in particular, becomes essential to
overcome the environmental problemsmentioned above. This
challenge demands improvements in all the power chain of
the electric vehicle (batteries, power converters, semiconduc-
tors, charging stations. . . ), providing innovative solutions that
facilitate end-customer access to the electric vehicle (EV)
[6], [7]. With this objective, several initiatives and campaigns
are being promoted worldwide: Electric Vehicles Initiative
(EVI) [8], EV30@30 campaign [9], EV100 [10], Global EV
Pilot City program [2], Drive to Zero campaign [2], GEF-7
global program [11], etc.

FIGURE 1. Global electric vehicle stock by scenario 2019-2030 (IEA) [2].

FIGURE 2. Electric vehicle charging energy demand (IEA) [2].

Regarding EV sales, the IEA [2] estimates that the global
stock of EVs can reach 140million by 2030with stated policy
scenarios (STEPS), and if ambitious sustainable development
scenarios (SDS) are implemented, it would reach 245 million
units (see Fig. 1). In this sense, the IEA forecasts a surge in the
global electricity demand of EVs, in both stated policies sce-
narios and sustainable development scenarios (Fig. 1-STEPS
and Fig. 1-SDS) [2]. As it can be seen in Fig. 2, an increase
around 550 TWh is expected from 2019 to 2030 according to
STEPS. Conversely, in the SDS scenario reaching 1000 TWh
is expected, which is equivalent to an 11 fold increase com-
pared to 2019. While EVs today represent a small fraction of
total electricity consumption (globally less than 0.5 %), this
will change in the future. According [2], in 2030 EVs could
represent between 1-4 % of global electricity consumption in
the STEPS scenario and between 2-6 % in the SDS [2].

In such a context, the EV takes on a lot of relevance
for the grid. The grid will have to be dimensioned so that

these demands will not become a source of problems for
the electrical supply system. Many aspects need to be con-
sidered: change of peak and valley hours in the demand
curve, re-evaluation of rating of the power grid and others.
During the past few years there has been a focus on increasing
grid power quality. Today the greatest part of the harmonic
distortion in the electric grid is caused by the input stage of
power electronic converters. International standards, such as
IEEE 519 and EN 61000, set the limits to power quality-
related parameters (harmonic currents and voltages). More-
over, the power factor (PF) is one of the key performance
parameters for a grid without distortion, where power factor
(PF) ' 1 is necessary for that purpose [13].

FIGURE 3. Most relevant vehicle architectures according to their
propulsion system (adapted from [12]).

Regarding the electrification of the vehicles, there are sev-
eral alternatives (see Fig. 3) to internal combustion engines
(ICE) [14]–[20]: battery electric vehicles (BEV), plug-in
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TABLE 1. Examples of commercial electric vehicle models and their characteristics (BEV and PHEV).

hybrid electric vehicle (PHEV), hybrid electric vehicles
(HEV), fuel cell electric vehicles (FCEV), and fuel cell hybrid
electric vehicles (FCHEV). Nowadays, there is a trend among
manufacturers towards BEV and PHEV and it seems that it
will be maintained in the near future [14], [21]. Table 1 shows
some examples of commercialized electric vehicles (BEV)
and plug-in hybrids (PHEV).

The majority of light EVs are equipped with battery packs
with nominal voltage range between 300 V and 420 V, while
for heavy EVs this voltage can reach up to 800 V [22].
However, according to some studies [23]–[27], a change in
trend is expected in the battery voltage of light EVs, and
an increase in the DC bus to 800 V systems1 is expected.
With this change, a substantial reduction in the conductive
wire weight could be achieved, since half the current will
be handled for the same power [23]. Increasing the voltage
of the battery pack would also reduce quadratic conduction
losses (P = I2 R). Therefore, with this change in the battery
voltage, the efficiency of the EV will be improved. Battery
voltage has a great impact in the selection of the charging
station power converter topology. Section II presents the most
extended types of batteries and their expected evolution for
2030. In section III, the standards applicable to each of the
stages of the recharging system are reviewed. In addition,
the charging modes that support current EVs and the types
of existing charging stations are reviewed, and also a study
of DC fast-charge stations from different manufacturers is

1An example is the Porsche Taycan, the first production vehicle with a
system voltage of 800 V instead of the usual 400 V for electric vehicles.

carried out. In Section IV, a classification of valid power con-
verter topologies for the fast-charging application is shown
from a general perspective. Finally, in Section V, a compar-
ison is made between the most suitable topologies selected
with the criteria of high efficiency, unity power factor, and
high power rating for fast-charging.

II. BATTERIES: CURRENT STATUS AND FUTURE
PROSPECTS
Batteries play a crucial role in making EVs competitive
against ICEs [28], [29]. The batteries, apart from supply-
ing energy to EVs, can also act as energy storage systems
(ESS) for the grid. Charging the batteries in the hours of
less energy demand (off-peak hours) and then providing that
energy in the periods with higher demand [30]–[32] enables
to make the energy demand curve flatter, with the benefits
that this entails [33]–[37]. According to the International
Renewable Energy Agency (IRENA), using ESSs would
reduce energy installation costs between 50 % and 66 %
(see Fig. 4) [38].

As far as battery technologies are concerned, there are no
one-size-fits-all solutions in the ESS, and the decision to opt
for one storage technology over another depends on several
parameters, such as power density, lifetime, efficiency and
operation temperature [39], [40]. In this context, some of
the best known materials for battery systems are lead-acid
[41]–[43], nickel-cadmium [44], [45] and lithium-ion
[46]–[48]. Lead-acid batteries are one of the most mature
and inexpensive battery technologies [38], [41], [49] but they
are not as suitable as lithium-ion for EV application, since
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FIGURE 4. Energy cost reduction potential installing ESS classified by battery types [38].

TABLE 2. Evolution of battery technology by 2030 [40].

their energy density is low [42]. Even so, they are still widely
used for the stabilization of the grid [43]. Nickel-cadmium
batteries serve special markets where energy must be stored
in extreme weather conditions, as they work well where
temperatures are very low (down to−40 oC) [44]. The biggest
drawback to using them in the application of the EV is its high
price and low power density [44]. In this context, lithium-
ion batteries have entered the industrial market (see Table 1),
drawing on the extensive experience gained in developing
batteries for electric and hybrid vehicles. The choice of
lithium-ion for EVs is justified by high energy density, low-
charge operation capability [47], [48] and long lifetime which
could reach the full EV operating life [40]). This technology
is versatile, highly scalable and can be adapted to almost any
power requirement [40], [46].

According with the Association of European Automo-
tive and Industrial Battery Manufacturers (EUROBAT),

Table 2 shows how lead-acid, nickel-cadmium and lithium-
ion batteries will be improved by 2030 [40]. These three types
of batteries tend to improve their efficiencies (here lithium-
ion batteries achieve 95 % efficiency, 5 % and 10 % higher
than lead-acid and nickel-cadmium respectively), power den-
sities (lithium-ion batteries are expected to reach 1100 Wh/l,
more than 7 times greater than its most direct rival, lead-acid),
recycling capabilities (lithium-ion is expected to improve
the most, until almost reaching lead-acid batteries recycling
capacity of 90 %) and lifetime (here lithium-ion reaches
>10.000 life cycles, twice that of its competitors) [40].
EV manufacturers are currently selecting lithium-ion bat-
teries and it seems that in the near future this trend will
not change, since none of the other battery materials reach
the levels of power density required in EVs. In addition,
according to the international organization Bloomberg-NEF
[50], [51], the price trend of batteries is downward
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TABLE 3. Overview of the most important standards for EV charging stations [52].

FIGURE 5. Battery pack average price projection [50].

FIGURE 6. Electric vehicle charging station standardized stages
(blocks 1 to 6), battery stage and power train stages.

(see Fig. 5), which will make lithium-ion technology much
more competitive.

III. ELECTRIC VEHICLE: STANDARDS, CHARGING
MODES AND CHARGING STATIONS
Electric vehicle charging points [1], [2], [8], [9] are spreading
around the world due to the growing demand of EVs. This
has led to the regulation of charging stations. In this context,
there are several standards defined by organizations for EV
charging established worldwide [52]–[55]: IEC, SAE, IEEE,
GB/T, CHAdeMO, among others. Figure 6 shows the electric
stages of an EV: (I) the charging stage, (II) the battery stage
(where there is a 7 battery system, which is charged through
the stage (I)) and finally, (III) the power train (composed
by the power converter 8 and the electric motor 9 which

is responsible for transmitting the power to the wheels).
Regarding (I) the charging stage, there are standards related
to 1 the grid power-connection, 1 the grid central management
system communications, 4 the EV charging cable power and
communication capability, 5 the vehicle connectors, 5 the
battery management system (it can be an on-board charger,
if not, 6 can act as off-board charger).

Table 3 summarizes the standards(Fig. 6 - 1 to 6) classified
by regions. The EV charging modes are included in the
IEC 62196 (international standard for the set of electrical con-
nectors and charging modes), IEC 61851 (international stan-
dard for conductive electric vehicle systems) and SAE J1772
(general physical, electrical, communication protocol and
performance requirements) standards, used in Europe and in
USA, respectively. These regulations are being updated as
technology matures, adapting to increasing power ratings for
lower charging times.2

Regarding the EV charging modes (see Table 4), some
of best known battery charging modes are described in
the IEC 61851, IEC 62196 and SAE J1772 standards.
The charger power ranges from 4 kW (IEC 61851-1:2020,
mode 1) to 600 kW (IEC 61851-23:2014, mode 4), which
shows that these regulations contemplate a wide range of
chargers. Special attention should be paid to the fastest charg-
ers (120-600 kW) since they would decrease the anxiety of
EV owners caused by the lack of large autonomy-range and
the non-possibility of fast-charging [24], [57]–[63]. In this
sense, many manufacturers are working in EV fast-charging
system development. Some of them are shown in Table 5.
According to the data provided by these manufacturers the
power converters have an efficiency of 94-95 %.

Another important aspect that characterizes the charging
station is the power factor (1. A suitable electric vehicle
charger is one that demands unity power factor, PF = 1.

2Phoenix Contact is already manufacturing connectors that comply with
the IEC 62196-3-1 standard. These connectors reach 1000 V and 500 A, thus
achieving powers of 500 kW, high powers that would accelerate the charging
time of the EVs [56].
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TABLE 4. Charging modes for the most important standards applied in EV charging systems.

TABLE 5. Characteristics of some fast chargers according to the manufacturers.

The distortion factor, (DistF), measures the effect of the
total harmonic distortion (THD), and the displacement
factor, (DispF), also known as cos(8), measures the effect
of the phase displacement of the current first harmonic and
the grid voltage. Figure 7 shows the different parameters
affecting power factor. Assuming that cos(8) is equal to 1 in
the converters in Table 5, from (1), the PF values provided
by the manufacturers, between 0,96 and 0,99, would mean
the THDi is between 29 % and 14 %.

PF =
P
S
⇒ PF = DistF · DispF =

1√
1+ THDi2

· cos(8)

(1)

There is a need to improve harmonic distortion in the
charging stations (THDi). In this sense, a niche for improve-
ment is the power converter of the battery chargers, where
several topologies can provide power factor close to unity
(PF ' 1). Section IV analyses alternatives of power con-
verter topologies that can achieve these targets.

IV. UNIDIRECTIONAL THREE-PHASE RECTIFIERS FOR
FAST EV CHARGING STATIONS
In the actual stage of development of technology users who
normally require fast-charging do not act as power suppliers
to the grid, and therefore the charger does not have to be
bidirectional. In the short and medium term there is no ESS
capability in the grid. Thus, fast-charging stations demand
unidirectional rectifiers for users who need a quick emer-
gency charge, those who do not have electric chargers at their
homes,3 and customers who are on long routes [65]–[67].
In this context, the converters (see Fig. 8) that meet the
requirements of the energy demand of this type of customer
can be divided in three main groups [68], [69]: (1) passive,
(2) hybrid and (3) active rectifiers:

1) Passive rectifiers: these are low complexity rectifiers
that are divided into two groups: single diode bridges
and multi-pulse rectifiers. These type of topologies

337 % of U.S. house owners do not have a garage for EV charging [64].

102182 VOLUME 9, 2021



I. Aretxabaleta et al.: High-Voltage Stations for EV Fast-Charging

FIGURE 7. Distortions affecting the power factor: displacement factor (DispF) and distortion factor (DistF).

FIGURE 8. Classification of unidirectional three-phase rectifiers (adapted from [68], [69]).

allow easy implementation, but at the same time lack of
controllability results in low quality input current and
output voltages [68], [70], [71], which makes ageing of
batteries worse [72]–[74].

2) Many of the unidirectional three-phase rectifiers that
appear in the literature are located in the subset of
hybrids rectifiers. They are divided into three groups:
those based on reactance, those obtained by combining
diodes and DC/DC converters and, finally, the topolo-
gies that allow injection of the third harmonic [68].
In general, the hybrid converters are made up of pas-
sive (capacitors and inductors) and active semiconductor
devices, the latter being found in reduced quantities,
increasing the degree of controllability compared to pas-
sive rectifiers. However, the quality of the output volt-
ages given by the hybrid topologies is still not suitable
for the EV charging application [68].

3) Active rectifiers are known for their high degree
of controllability, synthesizing better input currents
(THDi < 5%) and output voltages, and potentially
they could achieve excellent efficiencies (up to 99%)
[75]–[81]. These converters use higher amounts of active
components compared to passive and hybrid rectifiers.
Active rectifiers can be divided in two subgroups: direct
and phase-modular systems. These topologies are used

extensively in industry; however their use is rarely seen
implemented for the EV charging application. This is
due to the fact that currently (as Table 1 shows) most
EVs use battery systems around 300-400 V. However,
there is a change in trend towards 800 V battery sys-
tems [23]–[27]. In this context, this work focuses on
boost-type unidirectional three-phase rectifier topolo-
gies, adapted to the trend towards 800 V battery sys-
tems [23]–[27]. These topologies are the most suitable
for EV charging stations and they are selected for com-
parison in this work.

The scientific literature proposes several active three-
phase rectifiers, which can be classified into (Fig. 8):
Grid-connected rectifiers [82]–[96], Power Factor Correc-
tor (PFC) [97]–[107] and Vienna rectifiers [108]–[118].
There is a large number of proposed converters, however,
in order to reduce the number of studied converters,
a parallel analysis of those topologies used by manufac-
turers has been made. Table 6 shows that most manufac-
turers use the following topologies: NPC, Vienna 6-switch
rectifier, Vienna T-type and the three-phase two-level
converter (3θ − 2L).

As a result of the previous review the most suitable topolo-
gies for fast charging of high voltage batteries have been
identified (see Fig. 9):
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TABLE 6. EV fast-charging topologies by manufacturer.

(a) Conventional three-phase two-level rectifier
(3θ − 2L) [119] is characterized by its simplicity
and controllability (Fig. 9(a)). This topology is well
positioned in the market. For this reason, it has
been used as benchmark in this work. The semi-
conductor devices must block the voltage of the
entire DC bus and the switching takes place between
the two devices in each phase (one leg). Modula-
tion and proper control techniques allow the voltage
and current to be maintained in phase [83], [84].
However, two-level converters cannot synthe-
size the same waveforms quality as three-level
topologies [120], [121].

(b) Neutral Point Clamped converter (NPC) [122]
is a topology that can provide three voltage levels
and is made up of twelve switches and six diodes
(Fig. 9(b)). The devices must block half of the volt-
age of the entire DC bus [117]. This allows lower
voltage rating semiconductors with lower conduc-
tion voltage drop. This topology also applies dou-
ble effective frequency in the output, reducing the
size of the output capacitors. High levels of effi-
ciency (around 97 %) have been achieved with these
converters [123]–[130]. These topologies have some
drawbacks such as fluctuations on the output DC bus
and mismatches in the distribution of losses between
power devices [131], [132]. However, using suitable
modulation techniques or additional control circuits,
this problems can be minimized [133].

(c) Vienna 6-switch rectifier [68] is an adaptation of
the original NPC topology in which non-current
switches are turned-off during the rectifying opera-
tion. This topology is a three voltage level rectifier,

it has six switches and twelve diodes (Fig. 9(c)) and
can achieve very high efficiency (98%) [75], [76].
The semiconductor devices must block half of the
voltage of the DC bus and high frequency switching
takes place between one diode and the switch [117].
This topology greatly facilitates the process of pre-
charging their output capacitors due to the path of the
diodes [68]. However, one of the main drawbacks of
this topology is the high number of devices.

(d) The Vienna 3-switch rectifier [134] (Fig. 9(d)),
like the previous topology, is also classified among
three-level voltage rectifiers. It is built by three
switches and eighteen diodes. It reduces the num-
ber of controlled switches at the cost of increasing
the number of simultaneously on devices to three
units. The devices must block half the voltage of the
entire DC bus and it can achieve a high efficiency
(97-98 %) [77], [78]. The number of semiconductors
can be considered its biggest disadvantage compared
to other rectifiers. Among the analysed topologies,
this is the one with the least number of active
switches.

(e) The Vienna T-type rectifier [135], together with
the Vienna 6-switch rectifier, is the most extended
Vienna-type topology in the scientific literature. This
topology is also a three voltage level rectifier. It is
built by six diodes, making a three-phase diode
rectifier and six switches forming three bidirec-
tional switches (Fig. 9(e)). The devices must block
all the DC bus voltage and the switching occurs
between the diode and two series connected switches,
one on diode-mode and the other in MOSFET-
mode [117]. This topology can reach an efficiency
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FIGURE 9. Rectifier topologies for EV fast-charging application.

of 94-98 % [79]–[81], however higher values (99 %)
can be achieved using advanced modulations like
interleaving technique [79]. The drawback of this
topology is that in the fast commutation-cell three

devices have to switch at the same time: a diode, and
two MOSFETs. Furthermore, the MOSFETs carry
current in both half cycles, therefore the losses are
highly concentrated in these devices.
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TABLE 7. Simulation setup parameters.

(f)-(g) The Y-switch (Fig. 9(f)) and 1-switch rectifiers
(Fig. 9(g)) are alternatives of the T-type topologywith
variations of the composition of the T-type structures
between phases. Since it is a two-level rectifier (the
output bus is not split in two and connected to the
midpoint), it is not possible to obtain the benefits
of three-level rectifiers [120], [121]. For this reason,
these two topologies are not considered as suitable
for the EV charging application.

V. COMPARISON OF SELECTED THREE-PHASE
BOOST-TYPE RECTIFIERS FOR FAST
EV CHARGING STATIONS
This section compares the topologies of interest for fast-
charging of the EVs reviewed in the previous section through
simulations performed with the PSIM simulation tool. For
that purpose, a Forward Oriented Control (FOC) and Pulse
Width Modulation (PWM) have been used. When analysing
the results, several figures of merit have been taken into
account, such as the number of devices and blocking voltage,
efficiency, quality of input currents (PF ' 1, THDi < 5%,
and cos(8) = 1), quality of output voltage (low voltage ripple
(1Vout ) and capacitor currents (iCrms)) and, finally, a good
distribution of semiconductor losses (which is very important
regarding the lifetime of the converter [136]).

The proposed simulation scheme (Fig. 10) consists of
a three-phase input source 1, input inductors 1, boost-
type three-phase rectifier topology under test 4 (3θ − 2L,
NPC, Vienna 6-switch, Vienna 3-switch and Vienna T-type),
output capacitors 4 and resistive load simulating battery

FIGURE 10. Simulation setup scheme for EV charging application.

current-demand 5. The test setup is described in Table 7,
where the parameter values of the simulation models are
detailed.4,5

Simulation results are summarized in Table 8. 3θ − 2L
topology presents the lowest component count with only
six semiconductors, but voltage rating of each one of them
is the entire bus voltage,VBUS . The Vienna 3-switch is the
topology with the highest component count (21). Regarding
efficiency, the 3θ − 2L, the Vienna 6-switch and the Vienna
T-type present the highest efficiency with values greater

4The SKKD8112 diodes can only be used in Vienna 6-switch (Fig. 9(c))
and Vienna 3-switch (Fig. 9(d)) topologies, since the input diodes
(D1,D1′ ,D2,D2′ ,D3,D3′ ) in these topologies do not switch current at high
frequency. With the implementation of these diodes at the input, conduction
losses are greatly improved due to their low resistance.

5Silicon Carbide (SiC) MOSFET semiconductors has been used to carry
out the simulations, since they have better switching performance compared
to the Silicon (Si) devices [51]. In this sense, increasing the switching fre-
quency is a suitable technique to reduce the size of the reactive components,
thus improving the power density of the converters.
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TABLE 8. Comparison table for 50 kW rectifier (switching frequency 100 kHz).

FIGURE 11. Input current waveforms and unity-normalized frequency response (FFT) for compared topologies.

than 96 %. The input current and output voltage waveforms
in all the converters (THDi < 5%, 1VBUS < 4.81 V
and iCrms ∈ (42.7 A, 47.1 A) are of high quality, and any
of these topologies is valid to achieve the figures of merit

required by fast-chargers. Even so, comparing the input cur-
rent and normalized frequency response (FFT) (Fig. 11),
it can be observed that compared to three-level topologies, the
3θ − 2L has worse input current quality, as it has the highest
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FIGURE 12. Output voltage waveforms VBUS (V ).

FIGURE 13. Comparison of power losses and temperature increments.

high-frequency current ripple (4 A) and the highest levels of
distortion (THDi = 4, 04 %). The latter confirms the neg-
ative aspect of the two-level voltage converters [120], [121].

Fig. 13(a) shows that distribution of losses is very different for
each of the topologies. The first thing that stands out is that
the Vienna 6-switch and the Vienna T-type topologies have
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FIGURE 14. Commutation-cell comparison: entire topology and cell zoom-in.

better distribution of losses, the former being the one that
obtains the best results (101W [Pref ]) compared to the latter
(159 W ≡ Pref + 58 W ). Conversely, the higher power loss
concentration (manly on the MOSFETs) are in the 3θ − 2L
(238W ≡ Pref +137W ), the NPC (194W ≡ Pref +235W )
and the Vienna 3-switch (202W ≡ Pref +101W ) converters.
Distribution of losses among semiconductors is a very

relevant aspect for the reliability of the converter. One of
the most extended model for the estimation of lifetime of
semiconductors is the Arrhenius and Coffin-Manson combi-
nation [136] of laws of degradation (2),

Nf = A 1Tj e(Q/RgasTm) (2)

where A, and α are device dependent constants,Rgas is the gas
constant (8.314 J/mol.K ), Tmj = Tjmin + (Tjmax − Tjmin)/2
is the mean cycle temperature expressed in Kelvin, and the
internal energy Q is 7.8×104 Jmol−l . 1Tj is the variation
of the junction temperature. The constants α = −5, and,
A=640 are obtained from curve fitting in the LESIT study.

Fig. 13(b) shows the temperature change for each vehi-
cle charge using the same semiconductor device in the five
topologies. As shown in Fig. 13(b), the differences in temper-
ature that occur in the diodes are practically negligible. The
biggest differences occur in the MOSFETs. In this sense the
3θ − 2L, the NPC and the Vienna 3-switch topologies have
respectively 163,7 oC , 140,8 oC and 145,1 oC junction tem-
perature (Tj) excursion, which makes these topologies very
sensitive regarding lifetime compared to the Vienna 6-switch
and Vienna T-type topologies that have respectively 92,5 oC
and 122,6 oC . Regarding the loss distribution, topologies
with best thermal behaviour are the Vienna 6-switch and
the Vienna T-type, with a maximum temperature deviation
between devices of 27,2 oC and 39,2 oC , respectively.

In order to analyse how much this increase in temperature
affects lifetime, LESIT study curves have been chosen (see
Fig. 13(c)) to show an approximation of how a few degrees of
temperature can vary the lifetime of a device. In this analysis,
referring to a 50 kW charging system, it can be seen that the
MOSFETs of the Vienna 6-switch can last 1.64 E+06 cycles.
Conversely, for the Vienna T-type this number is reduced to
6.18 E + 04. The number of cycles would be much lower in
the other three topologies.

According to the defined comparison criteria, the Vienna
6-switch and the Vienna T-type are the best alternative, due
to their high efficiency, good quality of input currents and
output voltages, and for their better distribution of losses
between semiconductors. Because of the similar performance
of both topologies (Vienna 6-switch and Vienna T-type),
an additional aspect has been considered to make a more
accurate comparison, the scalability in switching frequency
of the rectifiers. This aspect is relevant since there is a trend
towards power converters with higher power densities. In this
sense, one of the ways to achieve this is by reducing induc-
tances and capacities by increasing the switching frequency.
The Vienna 6-switch high-frequency commutation-cell con-
sists of a single MOSFET and a diode (Fig. 14(a)). On the
other side, Vienna T-type (Fig. 14(b)) has to commutate two
MOSFETs in series that work as a bidirectional switch. In this
sense, series connection on the T-type topology results in
an increase in resistive and parasitic components such as
inductances, which will cause greater power losses and over-
shoots in voltage and current. Additionally, this effect can
be increased if discrete devices are used instead of mod-
ules, since they have higher values of parasitic inductances
because of their packaging [137]–[139]. Due to the structure
of the Vienna 6-switch, the commutation-cell area is reduced
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with the use of a snubber capacitor very near commutation-
cell. The result of using these cells have been demonstrated
in several works [140]–[142], where commutation cells of
about 6 nH are implemented. Moreover, the effectiveness of
using snubber capacitors has been also demonstrated in other
works [143], [144], reducing switching losses produced by
parasitic overshoots on voltage.

The general review and subsequent comparative of electric
vehicle charging topologies has concluded with five valid
topologies for the EV charging application. Therefore, taking
into account the analysis carried out, the most appropriate
converters for the application of electric vehicle charging are
the Vienna 6-switch and the Vienna T-type, especially for
their efficiency, input power quality and stability of the output
voltage, all with a suitable distribution of the losses between
devices.

VI. CONCLUSION
There is a growing turned towards implementation of policies
to reduce the GHG emissions, where the EVs have crucial
relevance. Battery systems have a special relevance in EV
and that is why short-term improvements have been analysed.
In this context, lithium batteries currently are the prevailing
technology, and according to the literature they will continue
to be so, since these batteries improve the energy density the
most (which is expected to double to 1000 Wh/l), increase
the number of charging cycles (which will triple the current
batteries lifetime), and reduce the price of battery systems
(which is expected to be below $ 61/kWh, compared to
current prices of $ 156/kWh). Regarding operating voltages,
nowadays, most of the EV propulsion systems works at
300-420 V, but the trend is to increase these voltage levels
to 800 V. With this trend-change, a reduction on the system
current is achieved, making it possible to reduce the wire
gauge, thus reducing the weight. It has also been seen that
fast-charging users normally only demand power from the
grid. In this context, single phase rectifiers require very high
currents and would not be able to provide sufficient power
levels for fast-charging. Therefore, it is necessary to use three-
phase converters, with which the problem of power and high
current at the input of the fast-charging rectifiers is solved.

Five suitable topologies (3θ − 2L, the NPC, the Vienna
6-switch, the Vienna 3-switch and the Vienna T-type) have
been analysed that improve the current situation of the fast-
charging stations of the EVs. Although with some shortcom-
ings, all the presented topologies meet the criteria established
in this work, where specially the Vienna 6-switch and the
Vienna T-type have an advantage over the other due to their
performance, particularly in efficiency, quality of the input
currents and output voltages, and in the distribution of losses.
Using LESIT study results, it has been shown that small
increases in operating temperature can greatly reduce the
lifetime of semiconductors and it is important to use designs
in which the power losses are distributed between devices.

Finally, it is shown that increasing the switching frequency
is feasible in order to reduce passive components, such as

coils and capacitors, thus improving the power density of
the converters. In this context, it is pointed out that using
the Vienna 6-switch rectifier has advantages with respect
to scalability in switching frequency, since it has a better
commutation-cell if compared to Vienna T-type, the closest
rival in the comparison.
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