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Abstract—This paper presents a novel single-phase active
rectifier for applications of on-board EV battery chargers. The
proposed active rectifier, with reduced number of
semiconductors, is constituted by four MOSFETs and four
diodes, and can produce five distinct voltage levels, allowing to
reduce the passive filters used to interface with the electrical
power grid. An almost sinusoidal grid current with unitary
power factor is achieved in the grid side for all the operating
power range, contributing to preserve the power quality. The
principle of operation, the current control strategy and the
modulation technique are presented in detail. Simulation results
in different conditions of operation are presented to highlight the
feasibility and advantages of the proposed active rectifier.

Keywords—EYV Battery Charger; Five-Level Active Rectifier;
Power Quality; Sinusoidal Grid Current.

1. INTRODUCTION

Active rectifiers gained notoriety in several applications,
mainly, due to the contribution to preserve some power quality
aspects as the low total harmonic distortion of the grid current
and the unitary power factor [1]. Therefore, active rectifiers are
also identified as power-factor-correction (PFC) converters.
PFC converters for on-board EV battery chargers are proposed
in [2], [3], [4], [5] and [6], a PFC for motor drive applications
is proposed in [7], a PFC for minimizing life cycle cost in data
centers is proposed in [8], and a PFC in electronic ballasts for
lighting applications is proposed in [9].

The more usual active rectifier identified in the literature is
composed by a full-bridge diode rectifier followed by a dc-dc
boost converter with controlled input current. Reviews about
PFC active rectifiers using the boost converter are presented in
[10], [11] and [12]. Besides the boost converter, other dc-dc
converters for the same purpose can be used. A PFC with the
buck converter is proposed in [13], a PFC with a dc-dc flyback
is proposed in [14], a PFC with a full-bridge is proposed in [15]
and in [16], a PFC with the Cuk converter is presented in [17],
a PFC using three-state cells is proposed in [18], and a review
of PFC converters based on the buck, buck-boost and forward
is presented in [19]. Besides, a new family of isolated PFC
active rectifiers is proposed in [20]. In order to avoid the use of
the diode full-bridge front-end converter and to optimize the
efficiency comparing with the traditional PFC (boost
converter), a set of PFC bridgeless converters is proposed in
[21], a buck-type PFC bridgeless is proposed in [22], and a
buck-boost PFC bridgeless is proposed in [23].

Depending on the type of application, multilevel active
rectifiers are used to decrease the size of passive components

and consequently to decrease the cost of the application.
Moreover, multilevel active rectifiers are also an optimal
solution for applications with several dc-link interfaces. Taking
into account that voltage-source active rectifiers connected to
the power grid produce a voltage in order to control the grid
current, improving the produced voltage allows to improve the
grid current. The produced voltage can be improved increasing
the number of voltage levels allowed by the PFC active
rectifier. However, the increase in the number of voltage levels
requires more hardware components, namely, power
semiconductors, gate-drivers and voltage sensors, and cannot
be feasible for on-board EV battery chargers. Exhaustive
reviews about multilevel converters, power control theories and
applications are presented in [24] and [25]. By combining PFC
multilevel active rectifiers in series, it is possible to increase
significantly the number of voltage levels. However, the main
disadvantage is the number of independent dc-link outputs.
This family of converters is identified in the literature as
modular multilevel converters. Complete reviews about the
principle of operation, the control strategy and the applications
of the modular multilevel converters are presented in [26] and
[27].

In this context, this paper proposes a novel multilevel active
rectifier capable to produce five distinct voltage levels to
operate as front-end converter for on-board EV battery
chargers. The proposed active rectifier is presented in Fig. 1.
Comparing with the main five-level active rectifiers identified
in the literature [28][29][30][31][32], the main advantages of
the proposed active rectifier are: reduced number of
semiconductors to produce five distinct voltage levels; single
output dc-link with split capacitors, which is fundamental for
on-board EV battery chargers; and semi-bridgeless topology
without flying capacitors and cascade converters. The detailed
principle of operation is presented in section II and the digital
control design, including the grid current control strategy and
the modulation technique is presented in section III. A detailed
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Fig. 1. Proposed five-level active rectifier for on-board EV battery chargers.
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Fig. 2. Stages of operation of the proposed single-phase five-level active rectifier: (a) v,,=0V - when the produced voltage varies between 0 and +v,/2;
(b) var =+v4/2 V - when the produced voltage varies between 0 and +v4/2; (¢) va=+va/2 V - when the produced voltage varies between +v,/2 and +vy;

(d)vr=*va V -

when the produced voltage varies between +v,/2 and +v.; (¢) v,,=0V - when the produced voltage varies between 0 and -v,;/2;

(f) Var =-va/2 V - when the produced voltage varies between 0 and -v4/2; (g) va=-va/2 V - when the produced voltage varies between -v,/2 and -vu;

(h) var = -v4 V - when the produced voltage varies between -v4/2 and —v.

and comprehensive validation of the proposed active rectifier is
presented in section IV and the main conclusions are presented
in section V.

II.  PRINCIPLE OF OPERATION

The principle of operation is presented in this section. The
proposed active rectifier allows to produce five distinct voltage
levels (+vie, ¥va/2, 0, -v4/2 and -va), i.e., the voltage between
the points x and » identified in Fig. 1. The analysis is
performed for two quadrants, i.e., positive voltage with positive
current, and negative voltage with negative current.

During the positive half-cycle the MOSFETs S; and S, are
always OFF. When the voltage produced by the active rectifier
varies between 0 and +v,/2 are switched the MOSFETs S and
S3. When the MOSFET S, is ON and the MOSFET S3 is OFF the
voltage produced is 0 (cf. Fig. 2(a)), and when the MOSFET S,
is OFF and the MOSFET S; is ON the voltage produced is +v4./2
(cf. Fig.2(b)). When the voltage produced by the active
rectifier varies between +v,/2 and +v,., the MOSFET S, is OFF
and the MOSFET S5 is switched. When the MOSFET S is ON
the voltage produced is +va/2 (cf. Fig. 2(c)), and when the

MOSFET S; is OFF the voltage produced is +vg. (cf. Fig. 2(d)).
On the other hand, during the negative half-cycle the
MOSFETs S: and S; are always OFF. When the voltage
produced by the active rectifier varies between 0 and -v4/2 are
switched the MOSFETs S; and S;. When the MOSFET S is ON
and the MOSFET Sy is OFF the voltage produced is 0 (cf.
Fig. 2(e)), and when the MOSFET S; is OFF and the MOSFET
Sy is ON the voltage produced is -va/2 (cf. Fig. 2(f)). When the
voltage produced by the active rectifier varies between -vz/2
and —v,, the MOSFET S; is OFf and the MOSFET S, is
switched. When the MOSFET Sy is ON the voltage produced
is -va/2 (cf. Fig. 2(g)), and when the MOSFET Sy is OFF the
voltage produced is —vq. (cf. Fig. 2(h)).

The operation stages of the proposed active rectifier during
the positive and negative half-cycles to produce the five
distinct voltage levels are presented in Fig. 2, and the switching
states are summarized in Table I. It is important to note that,
when the MOSFETs are OFF, the maximum voltage applied to
each one is vg/2. Fig. 3 shows the power grid voltage (v;), the
grid current (ig), the voltage produced by the active rectifier
(var), the MOSFETSs pulse-pattern (S;, S, S3 and Sy), the



TABLE |
SWITCHING STATES OF THE PROPOSED FIVE-LEVEL ACTIVE RECTIFIER
Voltage MOSFET Level
Vg Si S> S Sq Var
OFF ON OFF OFF 0
OFF OFF ON OFF +vac/2
ve>0
OFF  OFF ON OFF +Vde/2
OFF OFF OFF OFF +Vde
ON OFF OFF OFF 0
OFF OFF OFF ON —Vac/2
vg <0
OFF OFF OFF ON —Vde/2
OFF OFF OFF OFF —Vde
400 V 60 A
200 V 30 A
ov 0A
2200V 230 A
-400 V -60 A
600 V
400 V
200 V
ov
2200 V
-400 V
-600 V
300 V : : -
1% Voo,
200V pwm \ x~ Vcarrier |
100 V
ov
| | | |
-100 V ' . : |
0.02s 0.03s 0.03s 0.04s 0.04s

(d)
Fig. 3. Simulation results of the proposed active rectifier: (a) Power grid
voltage (v,) and grid current (i,); (b) Voltage produced by the active rectifier
(Var); (¢) MOSFETS pulse-patterns (S;, S>, S; and S,); (d) Triangular carrier
(Vearrier) and signal that is compared with the carrier (Vyum).

triangular carrier (Vearier) and the signal that is compared with
the carrier (vyum). As shown, the active rectifier operates with
unitary power factor, i.e., the power grid voltage (v,) and the
grid current (i) are in phase, and the five voltage levels (vi)
are clearly identified. It is important to note that is used a
modified sinusoidal PWM in order to establish the
pulse-pattern for each MOSFET.

III. DIGITAL CONTROLLER DESIGN

This section presents the control algorithm of the proposed
active rectifier, i.e., the dc-link voltage control and the strategy
to control the grid current. Taking into account that the grid
current is directly influenced by the operating power, the grid
current reference (i, *) is established according to:

TABLE II
MAIN PARAMETERS OF THE SIMULATION MODEL

Parameter Value Unit

Power Grid Voltage 230 \Y
Power Grid Frequency 50 Hz
Maximum Power 5 kW

Maximum Dc-Link Voltage 400 \%
Switching Frequency 100 kHz
Sampling Frequency 200 kHz
Input Inductor 300 pH
Dc-Link Capacitor 3 mF

ig*[k] — pdc[k] +pload[k] Vg1[k] ) (1)

Vi?
where, V¢ is the rms value and v, the instantaneous value of
the power grid voltage fundamental component, pjo.s the power
of the load (dc-dc back-end converter of the EV battery
charger) and pu. the power necessary to maintain the dc-link
voltage regulated. Taking into account the structure of the
dc-link, the voltage of the capacitor C; is adjusted during the
positive half-cycle of the power grid voltage and the voltage of
the capacitor C; is adjusted during the negative half-cycle. In
order to control such voltages (vi; and wvu.), digital PI
controllers are used, according to:

Vdc1,2_error [k] = Udcl,z*[k] — Vdc1,2 [k] ’ (2)
Vdc1,2_int [k] = Vdc1,2in: [k—1]+ Vac1,2_error[K] 3)
Vaci,2 pilk] = KpVaciz_error K] = kiVaci 2 ine [k], 4)

where, Va2 emor 18 the error between the voltage reference
(vac*) and the measured voltage (Vaer2), Vaer2 in denotes the
integral of the vaes 2 errors Vaer 2 pr the output of the PI controller,
and k, and k; gains. In order to obtain a sinusoidal grid current
reference, instead of use directly the measured dc-link voltages
(vaer and vqe2) is used a low-pass digital filter. Taking into
account that the proposed active rectifier produces a voltage
(var) to control the grid current (i;) according to the reference
(ig*), the equation that relates these variables is established
according to:

var[k] = vg [k] - L fs(lg*[k] - lg[k]) ’ (5)

where, L is the value of the coupling inductor between the
active rectifier and the power grid and f; is the sampling
frequency of the digital controller. It is important to note that
the active rectifier is synchronized with the power grid voltage
through a phase-locked loop [33]. With the variables vy, vier ¥,
va2®, and v, are selected the states of the MOSFETSs according
to the switching technique described in section II.

IV. ANALYSIS AND SIMULATIONS

The proposed active rectifier was validated through
computer simulations using the PSIM v9.0 software. The main
parameters of the simulation model are presented in Table II.
Fig. 4 shows the simulation results of the proposed active
rectifier. Fig. 4(a) shows the power grid voltage (v,), the grid
current (ig), and the voltage produced by the active rectifier
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Fig. 4. Simulation results of the proposed active rectifier: (a) Power grid voltage (v,), grid current (i,) and voltage produced by the active rectifier (v,);
(b) (c) (d) (e): Circulating currents in the active rectifier (ig, ips, ip, ip3, ips, is; and iy;) according to the different voltage levels.

(var). Fig. 4(b), Fig. 4(c), Fig. 4(d), and Fig. 4(e) shows in detail
all the circulating currents in the active rectifier according to
the different voltage levels produced. During the positive
half-cycle, when the voltage v, varies between 0 and +vq./2,
the current in the diodes D,, D; and Dy is 0, the current in the
diode Dy (ip;) is equal to the current in the bidirectional switch,
formed by the MOSFETs S; and Sy, (i52) and the grid current
(ig) 1s the sum of iy, with the current in the MOSFETs S; and S,
(is1). These currents are shown in detail in Fig. 4(b). Also
during the positive half-cycle, when the voltage v, varies
between +v4/2 and +vy., the current in the diodes D, and Dj; is
0, the current in the diode D; (ip;) is equal to the grid current
(ig), which is composed by the sum of the current in the diode
Dy (ips) with the current in the MOSFETs S; and Sy (is).
During this interval, the current in the MOSFETs S; and S (/)
is also 0. These currents are shown in detail in Fig. 4(c). During
the negative half-cycle, when the voltage v, varies between 0
and -v4/2, the current in the diodes D;, D; and Dy is 0, the
current in the diode D, (ip;) is equal to the current in the
MOSFETs S; and Sy (ip2) and the grid current (ig) is the sum of
ip> with the current in the MOSFETs S; and S> (i»;). These
currents are shown in detail in Fig. 4(d). Also during the
negative half-cycle, when the voltage v, varies between -vu/2
and -vq., the current in the diodes D; and D, is 0, the current in
the diode D, (ipz) is equal to the grid current (iy), which is
composed by the sum of the current in the diode Dj; (ip3) with

the current in the MOSFETs S3 and S (i»2). During this
interval, the current in the MOSFETs S; and S (i) is also 0.
These currents are shown in detail in Fig. 4(e).

Fig. 5 shows, during a time interval of 300 ms, the dc-link
voltages (v and vy.2), the power grid voltage (v,), and the grid
current (i;). In order to approximate the simulation model to
realistic operating conditions, a power grid voltage with a total
harmonic distortion of 2% was used, as well as a dc-dc
back-end converter to simulate different operating powers.
These simulation results were obtained in order to validate the
proposed active rectifier operating as an ac-dc front-end
converter in an on-board EV battery charger, i.e., operating
with variable power. The simulation starts with a reference
power of 1 kW, at t=0.12 s the reference power changes to
3kW, and at t=0.265 the power reference changes to the
nominal power of 5 kW. As shown, during the three stages the
de-link voltages in both capacitors (va; and ve.) oscillates
around the reference voltage (200 V) and the ripple depends on
the power of the converter, i.e., if the power increases (due to
the dc-dc back-end converter), then the ripple in the dc-link
voltages also increases. Due to the PLL algorithm and the
low-pass digital filter (in the dc-link voltages) used in the
control algorithm (cf. section III), the grid current (ig) is almost
sinusoidal and in phase with the power grid voltage (v), during
the three operating power stages. A detailed visualization of the
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Fig. 5. Simulation results of the proposed active rectifier: (a) Dc-link voltages (v4; and va); (b) Power grid voltage (v,) with a THD% of 2% and grid current (iy);
(c) (d) (e) Details of the grid current (i ) and its reference (i,*) for three operating powers (respectively, 1 kW, 2 kW, and 5 kW).

grid current (i;), as well as a comparison between the grid
current (ig) and its reference (ig*) for three operating powers, is
shown in Fig. 5(c), Fig. 5(d) and Fig. 5(¢). A comparison
between the proposed active rectifier and the traditional PFC
converter applied in EV battery chargers (full-bridge diodes
followed by a dc-dc boost converter) was established. Both
converters were simulated connected to the power grid voltage
with an rms value of 230 V and under the same operating
conditions, i.e., nominal power of 5 kW, and the same passive
filters, switching frequency, sampling frequency, and grid
current control strategy. Fig. 6 shows, during a time interval of
50 ms, the power grid voltage (v,) and the obtained grid current
for both converters under comparison. A detailed visualization
between the obtained grid current using both converters under
comparison and the determined reference is shown in Fig. 6(b).
From this result is possible to verify that the grid current ripple
is more reduced using the proposed active rectifier,
representing an important advantage in terms of sizing and
optimization of the passive filters used as interface with the
power grid. Fig. 7 shows the THD% of the grid current using
both converters under comparison for a range of operating
power between 1 kW and 5 kW and for a THD% of the power
grid voltage of 2%. As expected, in both cases, the THD%
decreases as the operating power increases and is not
influenced by the THD% of the power grid voltage due to the
control strategy (cf. section III). As shown, the THD% is lower
using the proposed active rectifier for all the operating powers.
The reduced THD% of the proposed active rectifier represents
an important advantage for EV battery chargers connected into
the power grid.

V. CONCLUSION

A novel single-phase five-level active rectifier for on-board
EV battery chargers is presented. The proposed topology
presents advantages when compared with more conventional
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Fig. 6. Simulation results: (a) Power grid voltage (v,), grid current of the
proposed active rectifier and grid current of the traditional PFC; (b) Detailed
comparison of the grid current with its reference (i,*).
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Fig. 7. Simulation results of the grid current THD% for an operating power
range between 1 kW and 5 kW, and for a power grid voltage THD% of 2%.

active rectifiers used for the same applications. Since it
produces five distinct voltage levels, it allows to reduce the
values of the passive filters used to interface with the power
grid. The proposed active rectifier was validated through
computer simulations considering realistic  operating
conditions, e.g., a power grid voltage with a THD% of 2% and
a dc-dc back-end converter with operating powers from 1 kW
to 5 kW. A comparison with a traditional solution for on-board
EV battery chargers was established. The maximum measured
THD% of the grid current was 4.1% for an operating power of



1 kW, and the minimum THD% was 0.82% for the nominal
power of 5kW. For all the operating powers, an almost
sinusoidal grid current with unitary power factor is achieved,
contributing to preserve the power quality associated with the
integration of EVs into the electrical power grid.
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