110 research outputs found

    Review on Radio Resource Allocation Optimization in LTE/LTE-Advanced using Game Theory

    Get PDF
    Recently, there has been a growing trend toward ap-plying game theory (GT) to various engineering fields in order to solve optimization problems with different competing entities/con-tributors/players. Researches in the fourth generation (4G) wireless network field also exploited this advanced theory to overcome long term evolution (LTE) challenges such as resource allocation, which is one of the most important research topics. In fact, an efficient de-sign of resource allocation schemes is the key to higher performance. However, the standard does not specify the optimization approach to execute the radio resource management and therefore it was left open for studies. This paper presents a survey of the existing game theory based solution for 4G-LTE radio resource allocation problem and its optimization

    Architecture design for disaster resilient management network using D2D technology

    Get PDF
    Huge damages from natural disasters, such as earthquakes, floods, landslide, tsunamis, have been reported in recent years, claiming many lives, rendering millions homeless and causing huge financial losses worldwide. The lack of effective communication between the public rescue/safety agencies, rescue teams, first responders and trapped survivors/victims makes the situation even worse. Factors like dysfunctional communication networks, limited communications capacity, limited resources/services, data transformation and effective evaluation, energy, and power deficiency cause unnecessary hindrance in rescue and recovery services during a disaster. The new wireless communication technologies are needed to enhance life-saving capabilities and rescue services. In general, in order to improve societal resilience towards natural catastrophes and develop effective communication infrastructure, innovative approaches need to be initiated to provide improved quality, better connectivity in the events of natural and human disasters. In this thesis, a disaster resilient network architecture is proposed and analysed using multi-hop communications, clustering, energy harvesting, throughput optimization, reliability enhancement, adaptive selection, and low latency communications. It also examines the importance of mode selection, power management, frequency and time resource allocation to realize the promises of Long-term Evolution (LTE) Device to Device (D2D) communication. In particular, to support resilient and energy efficient communication in disaster-affected areas. This research is examined by thorough and vigorous simulations and validated through mathematical modelling. Overall, the impact of this research is twofold: i) it provides new technologies for effective inter- and intra-agency coordination system during a disaster event by establishing a stronger and resilient communication; and ii) It offers a potential solution for stakeholders such as governments, rescue teams, and general public with new informed information on how to establish effective policies to cope with challenges before, during and after the disaster events

    5G network slicing for rural connectivity: multi-tenancy in wireless networks

    Get PDF
    As the need for wireless broadband continues to grow around the world, there is an increasing focus to minimise the existing digital divide and ensuring that everyone receives high-quality internet services, especially the inhabitants of rural areas. As a result, different technological solutions are being studied and trialled for improving rural connectivity, such as 5G with dynamic spectrum access. One of the architectures of 5G is network slicing, which supports network virtualisation and consists of independent logical networks, called slices, on the 5G network. Network slicing supports the multi-tenancy of different operators on the same physical network, and this feature is known as neutral host networks (NHN). It allows multiple operators to co-exist on the same physical network but on different virtual networks to serve end users. Generally, the 5G NHN deployment is handled by an infrastructure provider (InP), who could be a mobile network operator (MNO), an Internet service provider, a third-party operator, etc. At the same time, potential tenants would lease slices from the InP. The NHN strategy would help reduce resource duplication and increase the utilisation of existing resources. The existing research into NHN for small cells, in-building connectivity solutions, and other deployment scenarios help to understand the technological and business requirements. End-to-end sharing across operators to provide services to their end users is another innovative application of 5G NHN that has been tested for dense areas. Meanwhile, the feasibility and policy impact of NHN is not studied extensively for the rural scenario. The research in this thesis examines the use of NHN in macro- and small-cell networks for 5G communication systems to minimise the digital divide, with a special focus on rural areas. The study also presents and analyses the 5G multi-tenancy system design for the rural wireless scenario, focusing mainly on exploring suitable business cases through network economics, techno-economic study, and game theory analysis. The results obtained from the study, such as cost analysis, business models, sensitivity analysis, and pricing strategies, help in formulating the policy on infrastructure sharing to improve rural connectivity. The contributions of the thesis are useful for stakeholders and policymakers to assess the suitability of the rural 5G NHN by exploring state-of-the-art technologies, techno-economic analysis, sensitivity analysis, newer business models, investment assessment, cost allocation, and risk sharing. Initially, the research gap is highlighted through the extensive literature review and stakeholders’ views on rural connectivity collected from discussions with them. First, the in-depth discussion on the network economics of the rural 5G NHN includes the study of potential future scenarios, value network configurations, spectrum access strategy models, and business models. Secondly, the techno-economic analysis studies the key performance indicators (KPI), cost analysis, return on investment, net present value, and sensitivity analysis, with the application for the rural parts of the UK and India. Finally, the game theory framework includes the study of strategic interaction among the two key stakeholders, InP and the MNO, using models such as investment games and pricing strategies during multi-tenancy. The research concludes by presenting the contribution towards the knowledge and future work.As the need for wireless broadband continues to grow around the world, there is an increasing focus to minimise the existing digital divide and ensuring that everyone receives high-quality internet services, especially the inhabitants of rural areas. As a result, different technological solutions are being studied and trialled for improving rural connectivity, such as 5G with dynamic spectrum access. One of the architectures of 5G is network slicing, which supports network virtualisation and consists of independent logical networks, called slices, on the 5G network. Network slicing supports the multi-tenancy of different operators on the same physical network, and this feature is known as neutral host networks (NHN). It allows multiple operators to co-exist on the same physical network but on different virtual networks to serve end users. Generally, the 5G NHN deployment is handled by an infrastructure provider (InP), who could be a mobile network operator (MNO), an Internet service provider, a third-party operator, etc. At the same time, potential tenants would lease slices from the InP. The NHN strategy would help reduce resource duplication and increase the utilisation of existing resources. The existing research into NHN for small cells, in-building connectivity solutions, and other deployment scenarios help to understand the technological and business requirements. End-to-end sharing across operators to provide services to their end users is another innovative application of 5G NHN that has been tested for dense areas. Meanwhile, the feasibility and policy impact of NHN is not studied extensively for the rural scenario. The research in this thesis examines the use of NHN in macro- and small-cell networks for 5G communication systems to minimise the digital divide, with a special focus on rural areas. The study also presents and analyses the 5G multi-tenancy system design for the rural wireless scenario, focusing mainly on exploring suitable business cases through network economics, techno-economic study, and game theory analysis. The results obtained from the study, such as cost analysis, business models, sensitivity analysis, and pricing strategies, help in formulating the policy on infrastructure sharing to improve rural connectivity. The contributions of the thesis are useful for stakeholders and policymakers to assess the suitability of the rural 5G NHN by exploring state-of-the-art technologies, techno-economic analysis, sensitivity analysis, newer business models, investment assessment, cost allocation, and risk sharing. Initially, the research gap is highlighted through the extensive literature review and stakeholders’ views on rural connectivity collected from discussions with them. First, the in-depth discussion on the network economics of the rural 5G NHN includes the study of potential future scenarios, value network configurations, spectrum access strategy models, and business models. Secondly, the techno-economic analysis studies the key performance indicators (KPI), cost analysis, return on investment, net present value, and sensitivity analysis, with the application for the rural parts of the UK and India. Finally, the game theory framework includes the study of strategic interaction among the two key stakeholders, InP and the MNO, using models such as investment games and pricing strategies during multi-tenancy. The research concludes by presenting the contribution towards the knowledge and future work

    RESOURCE ALLOCATION FOR WIRELESS RELAY NETWORKS

    Get PDF
    In this thesis, we propose several resource allocation strategies for relay networks in the context of joint power and bandwidth allocation and relay selection, and joint power allocation and subchannel assignment for orthogonal frequency division multiplexing (OFDM) and orthogonal frequency division multiple access (OFDMA) systems. Sharing the two best ordered relays with equal power between the two users over Rayleigh flat fading channels is proposed to establish full diversity order for both users. Closed form expressions for the outage probability, and bit error probability (BEP) performance measures for both amplify and forward (AF) and decode and forward (DF) cooperative communication schemes are developed for different scenarios. To utilize the full potentials of relay-assisted transmission in multi user systems, we propose a mixed strategy of AF relaying and direct transmission, where the user transmits part of the data using the relay, and the other part is transmitted using the direct link. The resource allocation problem is formulated to maximize the sum rate. A recursive algorithm alternating between power allocation and bandwidth allocation steps is proposed to solve the formulated resource allocation problem. Due to the conflict between limited wireless resources and the fast growing wireless demands, Stackelberg game is proposed to allocate the relay resources (power and bandwidth) between competing users, aiming to maximize the relay benefits from selling its resources. We prove the uniqueness of Stackelberg Nash Equilibrium (SNE) for the proposed game. We develop a distributed algorithm to reach SNE, and investigate the conditions for the stability of the proposed algorithm. We propose low complexity algorithms for AF-OFDMA and DF-OFDMA systems to assign the subcarriers to the users based on high SNR approximation aiming to maximize the weighted sum rate. Auction framework is proposed to devise competition based solutions for the resource allocation of AF-OFDMA aiming tomaximize either vi the sum rate or the fairness index. Two auction algorithms are proposed; sequential and one-shot auctions. In sequential auction, the users evaluate the subcarrier based on the rate marginal contribution. In the one-shot auction, the users evaluate the subcarriers based on an estimate of the Shapley value and bids on all subcarriers at once

    Game-Theoretic Frameworks for the Techno-Economic Aspects of Infrastructure Sharing in Current and Future Mobile Networks

    Get PDF
    RÉSUMÉ Le phénomène de partage d’infrastructure dans les réseaux mobiles a prévalu au cours des deux dernières décennies. Il a pris de l’ampleur en particulier pendant les deux dernières migrations technologiques, à savoir de la 2G à la 3G et de la 3G à la 4G et il sera encore plus crucial à très court terme avec l’avènement de la 5G. En permettant aux Opérateurs de Réseaux Mobiles (ORM) de faire face à la demande croissante des utilisateurs et à la baisse des revenus. Il n’est pas rare non plus que le partage d’infrastructure s’accompagne du partage du spectre, une ressource essentielle et de plus en plus rare pour les réseaux mobiles. Dans ce milieu, la communauté des chercheurs, parmis d’autres, a étudié les multiples aspects techniques du partage d’infrastructure parfois associés au partage du spectre. Entre autres, ces aspects techniques comprennent l’évaluation des performances en termes de métriques de réseau, de gestion de ressources et d’habilitateurs et d’architectures adaptées. Les aspects économiques ont également été abordés, mais généralement en se concentrant étroitement sur l’estimation des économies de coûts des dfférentes alternatives de partage d’infrastructure. Cependant, lorsqu’on considère le problème du partage d’infrastructure, et le cas échéant aussi du partage du spectre du point de vue d’un ORM, qui est une entité intéressée à maximiser le profit, il est important d’évaluer non seulement la réduction des coûts de cette infrastructure, et le cas échéant aussi le partage du spectre, mais aussi leur impact sur les performances du réseau et par conséquent sur les revenus de l’ORM. De ce point de vue, la viabilité du partage d’infrastructure ne doit pas être prise pour acquise ; afin d’étudier le problème stratégique d’un ORM concluant un accord de partage avec un ou plusieurs autres ORM, les aspects techniques et économiques doivent être pris en compte. Cette étude constitue le premier objectif de ce projet de recherche doctorale. Plus précisément, nous avons considéré plusieurs variantes résultant de deux cas où chaque variante a été abordée par un modèle mathématique approprié. Ces variantes répondent à un scénario 4G commun dans lequel il existe un ensemble de ORM avec des parts de marché données qui coexistent dans une zone géographique urbaine dense ; chaque ORM doit décider s’il faut déployer une couche de petites cellules dans la zone et, le cas échéant, s’il doit le faire lui-même ou en concluant un accord de partage en créant un réseau partagé avec certains, ou la totalité, des autres ORM, auquel cas une coalition est créée. Une caractéristique commune importante de ces variantes est le modèle de tarification de l’utilisateur défini comme une fonction linéaire du taux moyen perçu par l’utilisateur en fonction de la coalition dont fait partie l’ORM de l’utilisateur.----------ABSTRACT The phenomenon of infrastructure sharing in mobile networks has been prevalent over the last two decades. It has gathered momentum especially during the last two technology migrations, i.e., from 2G to 3G and from 3G to 4G and it will be even more crucial with the advent of 5G. The key rationale behind such phenomenon is cost reduction as a means for Mobile Network Operators (MNOs) to deal with an increasing user demand but declining revenues. It is also not unusual for infrastructure sharing to go hand in hand with sharing of spectrum, an essential and increasingly scarce resource for mobile networks. In this milieu, the research community (but not only) has addressed multiple technical aspects of infrastructure sharing sometimes combined with spectrum sharing. Among others, such technical aspects include performance evaluation in terms of network metrics, resource management and enablers and adapted architectures. Economic aspects have been addressed as well, but usually with a narrow focus on estimating the cost savings of the di˙erent infrastructure sharing alternatives. However, from the perspective of an MNO, which is a self-interested, profit-maximizing entity, it is important to assess not only the cost reduction that infrastructure sharing, and when applicable, also spectrum sharing bring about, but also their impact on the network performance and consequently on the MNO’s revenues. From this perspective, the viability of infrastructure sharing should not be taken for granted; in order to study the strategic problem of an MNO entering a sharing agreement with one or multiple other MNOs, both technical and economic aspects should be taken into account – such study has been the first objective of this doctoral research project. We have specifically considered multiple variants arising from two cases where each variant has been tackled by an appropriate mathematical model. These variants address a common 4G scenario in which there is a set of MNOs with given market shares that coexist in a given dense urban geographical area; each MNO has to decide whether to deploy a layer of small cells in the area and if so, whether to do that by itself or by entering a sharing agreement, i.e., building a shared network with a subset or all other MNOs (in which case a coalition is created). One key common feature of these variants is the user pricing model which is defined as a linear function of the average rate perceived by the user depending on the coalition joined by the user’s MNO; such pricing model allows us to capture the impact that infrastructure sharing, and, when applicable, also spectrum sharing have on the MNO’s revenues through a network performance metric. In turn, the two key outcomes of the models tackling these variants are the set of coalitions and the number of small cells they deploy

    Techno-economic assessment of 5G infrastructure sharing business models in rural areas

    Get PDF
    How cost-efficient are potential infrastructure sharing business models for the 5G era (and beyond)? This significant question needs to be addressed if we are to deliver universal affordable broadband in line with Target 9.1 of the UN Sustainable Development Goals. Although almost two-thirds of the global population is now connected, many users still lack access to high-speed and reliable broadband connectivity. Indeed, some of the largest connectivity issues are associated with those living in areas of low economic viability. Consequently, this assessment evaluates the cost implications of different infrastructure sharing business models using a techno-economic assessment framework. The results indicate that a rural 5G neutral host network (NHN) strategy helps to reduce total cost between 10 and 50% compared with other sharing strategies. We also find that, compared to a baseline strategy with No Sharing, the net present value of rural 5G sharing strategies can earn between 30 and 90% more profit. The network upgrades to 5G using various sharing strategies are most sensitive to changes in the average revenue per user, the adoption rate, and the amount of existing site infrastructure. For example, the results from this study show that a 20% variation in demand revenue is estimated to increase the net present value of the sharing strategies by 2–5 times compared to the No Sharing strategy. Similarly, a 10% increase in existing infrastructure lowers the net present value by 8–30%. The infrastructure sharing strategies outlined in this study have the potential to enhance network viability while bridging the digital divide in remote and rural locations

    The economic effects of network neutrality: a policy perspective

    Get PDF
    Network neutrality - regulation of Internet service providers (ISPs) to ensure equal treatment of all traffic - is becoming something many people have heard about. While the context is technical, network neutrality ultimately boils down to economics. The political weight of the subject is heavy, and the international debate is fierce. Still, surprisingly little rigorous research appears to be behind it. In this paper, I review economic literature on network neutrality and ISP regulation, covering both practical and theoretical implications for the broadband market. I define the degrees of network neutrality with more granularity than papers so far, evaluate the qualitative economic effects of regulation, and describe the broadband market, frameworks for modeling it, and its peculiar economic characteristics. In particular, I review and compare different theoretical modeling approaches and models' predictions of the welfare effects of different regulatory regimes. Throughout the paper, I incorporate economic literature from relevant areas into the analysis. I do not make definite policy recommendations, but I draw conclusions that are potentially of interest from a policy point of view. My analysis would indicate that the complexity of the Internet ecosystem and interrelations between market participants make effective regulation difficult. There is no economic evidence that network neutrality generally increases total welfare. In fact, it turns out that from a well-rounded economic perspective, strong network neutrality appears in most cases as detrimental to both consumer surplus and total welfare. In certain scenarios, however, models predict that neutrality can increase static and dynamic efficiency. The results depend crucially on model specifications and parameters, which differ significantly across the literature. So far, there is no consensus among economists on the optimal level of ISP regulation. Market-driven solutions such as dynamic pricing might provide a way to circumvent the neutrality question. Verkkoneutraliteetti - teleoperaattorien sääntely tietoliikenteen tasa-arvoisen kohtelun varmistamiseksi - on astunut käsitteenä julkisuuteen. Vaikka konteksti onkin tekninen, verkkoneutraliteetti viime kädessä redusoituu taloustieteeseen. Aiheen poliittinen painoarvo on suuri ja kansainvälinen keskustelu kiivasta. Tästä huolimatta sen takaa vaikuttaa löytyvän yllättävän vähän tieteellistä tutkimusta. Lopputyössäni tarkastelen taloustieteellistä kirjallisuutta verkkoneutraliteetista ja teleoperaattorien sääntelystä ja sen vaikutuksia laajakaistamarkkinaan käytännöllisestä kuin myös teoreettisesta näkökulmasta. Määrittelen verkkoneutraliteetin asteet hienojakoisemmin kuin aikaisemmat julkaisut, arvioin sääntelyn laadullisia vaikutuksia ja kuvailen laajakaistamarkkinaa, viitekehyksiä sen mallintamiseksi sekä sen eriskummallisia taloudellisia piirteitä. Kuvaan teoreettisia lähestymistapoja ja merkittävimpien mallien ennusteita sääntelymallien hyvinvointivaikutuksista. Liitän analyysini relevanttiin taloustieteelliseen kirjallisuuteen. En anna suoria politiikkasuosituksia, mutta teen johtopäätöksiä, jotka ovat mahdollisesti mielenkiintoisia poliittisesta näkökulmasta. Analyysini perusteella vaikuttaa, että Internet-ekosysteemin monimutkaisuus ja toimijoiden väliset suhteet tekevät tehokkaasta sääntelystä vaikeaa. Taloustieteellistä näyttöä verkkoneutraliteetin hyvinvointia kasvattavista vaikutuksista ei ole. Tasapainoisesta taloudellisesta näkökulmasta katsottuna tiukka neutraliteettisääntely näyttää useimmissa tapauksissa sekä pienentävän kuluttajan ylijäämää että laskevan kokonaishyvinvointia. Joissakin skenaarioissa mallit toisaalta ennustavat neutraliteetin lisäävän staattista ja dynaamista tehokkuutta. Tulokset riippuvat rajusti mallin rakenteesta ja parametreistä, jotka vaihtelevat merkittävästi tutkimuksesta tutkimukseen. Toistaiseksi taloustieteilijät eivät ole päässeet yhteisymmärrykseen optimaalisesta teleoperaattorien sääntelyn asteesta. Markkinalähtöiset ratkaisut kuten dynaaminen hinnoittelu saattavat mahdollistaa neutraliteettikysymyksen kiertämisen
    • …
    corecore