
United Arab Emirates University
Scholarworks@UAEU

Dissertations Electronic Theses and Dissertations

Summer 5-2014

RESOURCE ALLOCATION FOR WIRELESS
RELAY NETWORKS
Hanan Hassan Al-Tous

Follow this and additional works at: https://scholarworks.uaeu.ac.ae/all_dissertations

Part of the Electrical and Computer Engineering Commons

This Dissertation is brought to you for free and open access by the Electronic Theses and Dissertations at Scholarworks@UAEU. It has been accepted
for inclusion in Dissertations by an authorized administrator of Scholarworks@UAEU. For more information, please contact fadl.musa@uaeu.ac.ae.

Recommended Citation
Al-Tous, Hanan Hassan, "RESOURCE ALLOCATION FOR WIRELESS RELAY NETWORKS" (2014). Dissertations. 20.
https://scholarworks.uaeu.ac.ae/all_dissertations/20

https://scholarworks.uaeu.ac.ae?utm_source=scholarworks.uaeu.ac.ae%2Fall_dissertations%2F20&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uaeu.ac.ae/all_dissertations?utm_source=scholarworks.uaeu.ac.ae%2Fall_dissertations%2F20&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uaeu.ac.ae/etds?utm_source=scholarworks.uaeu.ac.ae%2Fall_dissertations%2F20&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uaeu.ac.ae/all_dissertations?utm_source=scholarworks.uaeu.ac.ae%2Fall_dissertations%2F20&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=scholarworks.uaeu.ac.ae%2Fall_dissertations%2F20&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uaeu.ac.ae/all_dissertations/20?utm_source=scholarworks.uaeu.ac.ae%2Fall_dissertations%2F20&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:fadl.musa@uaeu.ac.ae


United Arab Emirates University

College of Engineering

RESOURCE ALLOCATION FOR WIRELESS

RELAY NETWORKS

Hanan Hassan Al-Tous

This dissertation is submitted in partial fulfillment of the requirements for

the degree of Doctor of Philosophy

Under the direction of Dr. Imad Barhumi

May 2014



DECLARATION OF ORIGINAL WORK

I, Hanan Al-Tous, the undersigned, a graduate student at the United

Arab Emirates University (UAEU) and the author of the dissertation titled

”Resource Allocation for Wireless Relay Networks”, hereby solemnly de-

clare that this dissertation is an original work done and prepared by me

under the guidance of Dr. Imad Barhumi, in the College of Engineering

at UAEU. This work has not been previously formed as the basis for the

award of any degree, diploma or similar title at this or any other university.

The materials borrowed from other sources and included in my dissertation

have been properly acknowledged.

Student’s Signature .............................................. Date ...........................



COPYRIGHT

Copyright c© 2014 by Hanan Al-Tous

All Rights Reserved



Approved by

PhD Examining Committee:

1) Advisor (Committee Chair): Dr. Imad Barhumi

Title: Associate Professor

Department of Electrical Engineering

College of Engineering

Signature .............................................. Date ...........................

2) Member: Dr. Mohammed Abdel-Hafez

Title: Associate professor

Department of Electrical Engineering

College of Engineering

Signature .............................................. Date ...........................

3) Member: Dr. Khaled Shuaib

Title: Associate professor

Department of Information Security

College of Information Technology

Signature .............................................. Date ...........................

4) Member (External Examiner): Prof. K. J. Ray Liu

Title: Christine Kim Eminent Professor of Information Technology

Department of Electrical and Computer Engineering

Institution: University of Maryland, USA

Signature .............................................. Date ...........................



Accepted by

Dean of the College of Engineering: Prof. Amr Salah El-Dieb

Signature .............................................. Date ...........................

Dean of the College of Graduate Studies: Prof. Nagi Wakim

Signature .............................................. Date ...........................

Copy of



ABSTRACT

In this thesis, we propose several resource allocation strategies for re-

lay networks in the context of joint power and bandwidth allocation and

relay selection, and joint power allocation and subchannel assignment for

orthogonal frequency division multiplexing (OFDM) and orthogonal fre-

quency division multiple access (OFDMA) systems. Sharing the two best

ordered relays with equal power between the two users over Rayleigh flat

fading channels is proposed to establish full diversity order for both users.

Closed form expressions for the outage probability, and bit error probabil-

ity (BEP) performance measures for both amplify and forward (AF) and de-

code and forward (DF) cooperative communication schemes are developed

for different scenarios. To utilize the full potentials of relay-assisted trans-

mission in multi user systems, we propose a mixed strategy of AF relaying

and direct transmission, where the user transmits part of the data using the

relay, and the other part is transmitted using the direct link. The resource

allocation problem is formulated to maximize the sum rate. A recursive

algorithm alternating between power allocation and bandwidth allocation

steps is proposed to solve the formulated resource allocation problem. Due

to the conflict between limited wireless resources and the fast growing wire-

less demands, Stackelberg game is proposed to allocate the relay resources

(power and bandwidth) between competing users, aiming to maximize the

relay benefits from selling its resources. We prove the uniqueness of Stack-

elberg Nash Equilibrium (SNE) for the proposed game. We develop a dis-

tributed algorithm to reach SNE, and investigate the conditions for the sta-

bility of the proposed algorithm. We propose low complexity algorithms

for AF-OFDMA and DF-OFDMA systems to assign the subcarriers to the

users based on high SNR approximation aiming to maximize the weighted

sum rate. Auction framework is proposed to devise competition based so-

lutions for the resource allocation of AF-OFDMA aiming to maximize either



vi

the sum rate or the fairness index. Two auction algorithms are proposed; se-

quential and one-shot auctions. In sequential auction, the users evaluate the

subcarrier based on the rate marginal contribution. In the one-shot auction,

the users evaluate the subcarriers based on an estimate of the Shapley value

and bids on all subcarriers at once.

Keywords: Relay Networks, Amplify and Forward (AF), Decode and

Forward (DF), Resource Allocation, Optimization, Stackelberg Game,

OFDM/OFDMA, Auction Framework.
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CHAPTER1

INTRODUCTION

Wireless communications have seen unpredictable growth during the past

few decades and will continuously evolve in the future. The exploding

growth of wireless data traffic is far beyond the growth of wireless capacity.

Wireless spectrum is very limited and overly crowded, and wireless chan-

nels suffer from random variations of channel quality in time, frequency,

and space due to multipath fading, shadowing, and path loss effects. The in-

troduction of multiple-input multiple-output (MIMO) communication con-

stitutes a breakthrough in the design of wireless communication systems

[14, 94]. MIMO systems could potentially increase the system capacity as

well as system reliability. Such systems provide significant improvement

in link reliability and spectral efficiency through the use of multiple an-

tennas at the transmitter and/or the receiver sides. Multiple-antenna tech-

niques are very attractive for deployment in cellular systems at the base sta-

tions and have already been included in third generation cellular standards.

Variations of MIMO techniques are now considered in many existing and

emerging wireless standards, such as IEEE 802.11 wireless fidelity (WiFi),

IEEE 802.16 worldwide interoperability for microwave access (WiMax), and

IEEE 802.20 mobile broadband wireless access (MBWA) [14, 62].

Size and power constraints limit the deployment of MIMO techniques in

cellular mobile devices, as well as in wireless sensor and ad-hoc networks,

which are gaining popularity in recent years. An innovative approach to
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gain spatial diversity without deploying multiple antennas is cooperative

diversity, also known as cooperative communications. Instead of a clas-

sical network with isolated communicating pairs, cooperative communica-

tion techniques take advantage of the broadcast nature of wireless transmis-

sion, creating virtual antenna array through cooperating nodes. This new

transmission paradigm promises significant performance gains in terms of

link reliability, spectral efficiency, system capacity, and transmission range.

Cooperative communication builds upon a network architecture in which

nodes help each other in relaying information to realize spatial diversity ad-

vantages, thereby improving their own performance and that of the whole

network [35, 62, 144].

An overview of cooperative communications; history and milestones,

state-of-the-art, application areas, and pros and cons are presented in Sec-

tion 1.1. The motivations behind this dissertation and the addressed prob-

lems are presented in Section 1.2. A chapter by chapter overview and sum-

mary of contributions of this dissertation will be given in Section 1.3.

1.1 Cooperative Communications

It is expected that the served data rate of the next generation mobile system

will be 100 to 1000 times more than the current ones. The limitations of tra-

ditional cellular systems to achieve high data rates in future mobile systems

can be discussed as : (1) cellular networks can not meet the desired high

data rate due to limited transmit power, (2) high speed mobile environment

requires high frequency handover, which makes the system complex and

expensive, (3) at frequencies higher than 2GHz, the cell edge effect becomes

more serious due to the larger attenuation of radio signals.

However, a new paradigm has emerged to overcome these limitations

and turn the traditional cellular system into a cooperative system. A coop-

erative communication system may contain one or more of the following
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techniques: relaying, distributed antenna systems (DASs), multicell coor-

dination, group cell, and coordinated multiple point transmission and re-

ception (CoMP). In relaying cooperative transmission, a relay is used to for-

ward the overheard information after processing. DAS was introduced to

improve the indoor coverage performance of wireless communication sys-

tems, in which two or more information sources simultaneously transmit a

common message. Multicell coordination was introduced to increase the ca-

pacity of cellular mobile communications by using microcells and advanced

power control techniques. A group cell is characterized by several adjacent

cells that use the same resources to communicate with a specific user and

different resources to communicate with different users. CoMP entails dy-

namic coordination among multiple geographically separated transmission

points. It was proposed to improve the coverage at the cell-edge and/or to

improve the system throughput at high data rates [140, 171].

In this dissertation, our main concern is cooperative communication us-

ing relaying; other cooperation techniques are beyond the scope of this dis-

sertation. In the following subsections, we trace the history and mention

some milestones of relay networks, then present the state of the art and ex-

plore some application areas. Finally, the advantages and disadvantages of

relay networks are discussed.

1.1.1 History and Milestones

Information theoretical development of the simplest form of cooperative

communications stems back to the groundbreaking contributions by van

der Meulen in 1968 [145] and by Cover and Gamal in 1979 [29]. In particu-

lar, they determined the capacity region of a three node network consisting

of a source, a destination, and a relay. It was assumed that all nodes can op-

erate in the same band, so the system can be decomposed into a broadcast

channel (BC) and a multiple access channel (MAC) from the viewpoint of
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the source and destination nodes, respectively. Cooperative relaying where

two users help each other to boost each other’s performance was introduced

by Sendonaris et al. in [119, 120]. Specifically, each of the two users is re-

sponsible for transmitting not only her own information, but also the infor-

mation of her partner, which she receives and detects.

Harrold and Nix [54, 55] were the first to prove that by cooperating, ev-

ery user gains in the long run, whilst sometimes short-term gains were un-

favorable. They also showed that coverage holes in a cellular system could

be largely closed by using simple relaying.

Laneman [84, 86] in his seminal work formalized various types of sup-

portive and cooperative communication protocols and proved that signifi-

cant gains in performance can be achieved using cooperation. Cooperative

schemes based on channel coding, and special code designs were proposed

by Hunter et al. and Stefanov et al. [69, 132]. Space-time relaying key contri-

butions emerged from the works of Dohler et al. and Laneman and Stefanov

in [34, 85, 133].

Huang et al. [66] proposed auction framework to sell the relay power to

source nodes, where the relay allocates its transmission power proportional

to the source nodes’ bids. Wang et al. [149] formulated the trade between a

source node and multiple relay nodes as Stackelberg market with the source

node as the leader and relay nodes as followers. Yang et al. [161] proposed

an auction mechanism to allocate the relay nodes and charge the source

nodes aiming to maximize the revenue of the base station.

Zhang et al. [174] proposed a cooperation strategy among two users

communicating with an access point to allocate the bandwidth using the

Nash bargaining model. Chen et al. [24] proposed a reputation based mech-

anism to provide incentives for nodes to serve as relay nodes using repeated

game framework. Gao et al. [42] introduced a game theoretical approach to

stimulate user cooperation using indirect reciprocity game.
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Figure 1.1 Use Cases for 802.16j [43].

1.1.2 State of the Art

Multihop wireless systems have the potential to offer improved coverage

and capacity over single-hop radio access systems. The relay has been adopted

by many international communication standards, such as IEEE 802.16j and

the third-generation partnership project-long term evolution (3GPP-LTE).

The IEEE 802.16j standard has been developed to provide performance en-

hancement to existing IEEE 802.16 networks by incorporating relay capabil-

ities to the system as shown in Figure 1.1. IEEE 802.16j was approved by

the IEEE-SA Standards Association Board on 2009-05-13 as an amendment

to IEEE standard 802.16-2009.

Two relaying modes are defined in the standard; transparent and non-

transparent modes. In the transparent mode, the relays do not forward

framing information. The main use of this mode is to facilitate capacity

increase within the BS coverage area. In the non-transparent mode, the re-

lays forward framing information or generate their own framing informa-

tion based on a scheduling scheme (distributed or centralized). The relays
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are used in this mode to provide an increase in the coverage area. Non-

transparent relays can support more than two hops in either centralized or

distributed scheduling modes, leading to different levels of complexity at

the relay node.

Relay is one of the key features of the 3GPP LTE-Advanced standard.

Relays are introduced to reduce the cost of wired back-haul. Similar to IEEE

802.16j standard, the relay in 3GPP LTE-Advanced standard can operate

in two operational modes; transparent and non-transparent. Only simple

relaying schemes are considered in IEEE 802.16j and LTE-Advanced stan-

dards. However, more complicated and advanced cooperative communi-

cation techniques are expected in later versions and other future wireless

systems [63].

1.1.3 Application Areas

Cooperative communication is one of the promising wireless technologies,

and it has promising applications in many wireless systems and networks as

shown in Figure 1.2. A brief overview of some application areas is presented

as follows.

• Mobile Ad-Hoc Networks (MANETs): Two potential architectures

for cooperative MANETs are proposed for improving the connectiv-

ity; the clustered infrastructure where cooperative relays are centrally

controlled by cluster head and the decentralized architecture, where

cooperative links are formed by request of a source node [116].

• Sensor Networks (SENETs): Multiple relay nodes can be used to im-

prove energy-saving compared to direct transmission as proposed in

[178]. In addition, cooperative transmission among sensor nodes can

be used for maximizing the network lifetime under maximum bit-

error-rate constraint. The network lifetime can be maximized by choos-

ing the optimum location of each relay and optimally allocating the
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power at the relay and sensor nodes [61]. Furthermore, unmanned

aerial vehicle relays (UAVRs) can be used to increase the transmission

reliability of sensor nodes under real-world impairments such as dis-

tance or obstructed line of sight between the nodes [25].

• Vehicular Ad-Hoc Networks (VANETs): Cooperative communication

can be used to enhance the quality of service (QoS) performance of

VANETs; through the cooperation of a set of dynamically selected re-

lay nodes, high speed content downloading can be achieved [93, 179].

• Heterogeneous Networks (HETNETs): It is expected that the relay

nodes will constitute the basis of HETNETs. The efficiency of large-

scale HETNETs mainly depends on the deployment of relay nodes;

relays can be employed to provide a cost-effective coverage [63].

• Cognitive Radios (CRs): In overlay cognitive networks, the secondary

users (SUs) can transmit simultaneously with the primary users (PUs).

The interference to the PUs can be offsett by using part of the SU’s

power to relay the PUs’ data [15, 91, 168]. In addition, sensing diver-

sity gain in cognitive communications can be utilized by employing

a CR that is located near the PU as a relay. Hence, the signal of the

PU can be detected reliably by far users. Furthermore, the so-called

cognitive wireless relay network can be used to utilize the spectrum,

where the relay nodes are CRs which are dispersed over a wide-band

spectrum, and each cognitive radio is allowed to be chosen as a relay

as proposed in [92].

• Green Wireless Networks (GRWNETs): It is believed that future wire-

less communication networks will be powered by sustainable energy

sources. The capacity and availability of green energy highly depend

on the weather and location, which may lead to degradation of user

performance. In this sense, joint power allocation and relay placement
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Figure 1.2 Relaying Application Areas.

can significantly increase the network throughput and the transmis-

sion performance, which will boost the construction of green wireless

networks [172]. In addition, relay and cooperative networks are also

promising architectures to improve energy efficiency; where the chan-

nel diversity can be exploited for potential energy savings [38].

1.1.4 Pros and Cons of Cooperation

Performance gains such as path-loss gains, diversity, and multiplexing gains

are considered the key advantages of cooperative communications. These

gains can be transformed into a higher capacity, better cell coverage, or re-

duced power transmission levels. Relaying can solve the problem of capac-

ity and coverage at the cell edge or in shadowed areas. In addition, relaying

is a cost-effective-solution to provide a given level of QoS to all users in the

cell. The capital and operational costs are generally lower when relays are

used [141].

The major disadvantages of cooperative communications are: complex

schedulers, increased overheads, and more channel coefficient estimations

to detect the signal, since relaying increases the number of wireless chan-

nels. Relaying requires sophisticated schedulers to select the relays and

schedule the relayed data flow for different users in the system. Extra over-

heads are required to maintain synchronization in relay networks [35].



9

1.2 Overview of Dissertation

This section presents the context of the dissertation, introduces the inves-

tigated resource allocation problems, and presents objectives and solution

approaches.

Sharing the network resources (that is, relay selection, and power and/or

bandwidth) among users is one of the foremost concerns of cooperative

communication systems (to be fully implemented) in future communication

systems.

Resource allocation refers to the problem of allocating physical layer re-

sources such as bandwidth and power among active users. Compared to

conventional transmission, the relay-aided transmission raises more com-

plicated resource allocation problems, since it introduces extra tasks such as

deciding the transmission mode, determining assisting relay(s) and allocat-

ing power and bandwidth for each relay-aided user. In addition, resource

allocation for orthogonal frequency division multiple access (OFDMA) relay-

aided systems, requires subcarrier assignment and power allocation at the

source and relay nodes for each subcarrier.

In a cooperative communication system, the following questions should

be answered: Which nodes should be selected as relays? What relaying

strategy should be used? How power and bandwidth are allocated among

users? Which criterion for optimality should be considered? Clearly, the

answers to these questions depend on the topology of the network, the ob-

jective and formulation of the resource allocation problem, the number of

users in the network, and the power and bandwidth available at the relay

and source nodes.

Our main concern in this dissertation is resource allocation in relay net-

works for multi user scenarios. However, we address one single user sce-

nario in the context of relay aided orthogonal frequency division multiplex-
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ing (OFDM) systems. We investigate resource allocation for relay networks

to achieve different objectives; i.e. equal diversity order, maximum sum

rate, maximum revenue, maximum weighted sum rate, and maximum fair-

ness index for different scenarios and using different tools from order statis-

tics, optimization, and game theory.

For multiple users scenarios, usually the system viewpoint is considered

in allocating the system resources. One of the most likely scenarios in multi-

ple users and multiple relays is examined, in which two users are competing

for the same relay, the best relay for both users is selected. Since the relay

has limited power capability, it can not satisfy the power requested by both

users simultaneously. From the system viewpoint, the relay will be allo-

cated to the user with the maximum end-to-end signal to noise ratio (SNR),

and the other user will be allocated the second best ordered relay if the ob-

jective is to maximize the sum rate1. In the case of having the same end-to-

end SNR for both users, the best and next-best relays are assigned randomly

to the users. Hence, in both cases the first and second users achieve different

diversity orders. In this regard, we address the problem of two users com-

peting for the best relay by a different approach, aiming to achieve full di-

versity order for both users by sharing the two best ordered relays between

the two users. We develop closed form expressions for the outage proba-

bility and bit error probability (BEP) performance measures, and prove that

the proposed scenario achieves better performance than using the next best

relay alone. In addition, sharing the two best ordered relays is studied in

the context of beamforming and space time block coding (STBC) techniques

to utilize the spectrum efficiently.

In the literature, most resource allocation problems investigate power

allocation for a fixed bandwidth assignment, or bandwidth allocation for a

fixed power allocation [57, 108, 122, 169]. To utilize the resources efficiently,

1The converse applies if the objective is to maximize the minimum data rate.
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joint power and bandwidth needs to be investigated. In [46, 124], the au-

thors investigated joint power and bandwidth allocation for a decode and

forward (DF) cooperative communication system, where the resource allo-

cation problem is a convex optimization problem, and the solution can be

found using convex optimization techniques. Even though amplify and for-

ward (AF) is the simplest cooperative communication protocol, joint power

and bandwidth allocation for multi user systems was not addressed in the

literature. This problem is a complex problem to solve since the objective

function is not a jointly concave function in power and bandwidth profiles.

In [98], the authors showed that the AF strategy does not necessarily benefit

from the large available bandwidth in a network with many relays and a sin-

gle source-destination pair. Based on this result, we modify AF cooperative

protocol so that the users will use part of the bandwidth for AF transmission

with diversity, and the other part is used only for direct transmission. We

then formulate the optimization problem for a multiple users single relay

system aiming to maximize the sum rate. The formulated problem is not

convex. We propose, an iterative algorithm alternating between two steps;

a power allocation step for a given bandwidth profile, and a bandwidth al-

location step for a given power profile. The sum rate of the proposed algo-

rithm coincides with the sum rate when using particle swarm optimization

(PSO) method.

Joint power and bandwidth resource allocation for the improved AF re-

laying scheme using optimization framework relies on a system viewpoint,

which requires all users to follow the resource sharing mechanism and re-

quires the relay to belong to the system. However, in the absence of a cen-

tral controller, where the relay and users may not belong to the same sys-

tem, or the relay may support more than one system, then the optimization

approach is no longer applicable. An alternative solution is to model the in-

teractions between the users and the relay using a game theory framework.
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Game theory is used to design incentives for cooperation in coopera-

tive communications using different mechanisms; reputation based mecha-

nism, resource-exchange-based mechanism, and pricing-based mechanism

[28, 149, 156, 160, 161]. In this regard, we use pricing based mechanism to

jointly sell the relay limited resources (i.e. power and bandwidth) to com-

peting users using the Stackelberg framework. We investigate existence,

and uniqueness of the Stackelberg Nash Equilibrium. We develop an iter-

ative algorithm to find the equilibrium (i.e. relay prices, and power and

bandwidth profiles for competing users), and study stability conditions of

the proposed algorithm.

For relay-aided OFDM and relay-aided OFDMA systems, joint power

and bandwidth resource allocation includes subcarrier assignment and source

and relay power profiles at each subcarrier. Resource allocation in OFDM

and OFDMA systems is a challenging problem, because of the mixed inte-

ger nature of the issue. In the literature, resource allocation problems for

OFDMA systems are addressed using the dual domain2, which entails a

large number of iterations to find the correct Lagrange multipliers [30, 96].

Our main concern in resource allocation problems for relay-aided OFDM

and relay-aided OFDMA systems is to develop low complexity algorithms

or distributed competition based algorithms to solve such problems. As

a result, we investigate joint subcarrier assignment and power allocation

at the source and relay nodes under individual node and total power con-

straints for selective AF/DF-OFDM systems, aiming to maximize the sym-

bol rate. In selective AF/DF-OFDM systems, each subcarrier can be used

either for AF or DF relaying with diversity or direct transmission without

diversity. We develop a low complexity subcarrier assignment algorithm

based on optimal power profiles at the source and relay nodes and high

SNR approximation.

2Resource allocation problems of multicarrier systems achieve zero duality gap for large
number of subcarriers [167].
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For AF/DF-OFDMA communication systems, we address joint power

allocation at the source and relay nodes and subcarrier assignment in two

different contexts: In the first context, we target developing a low complex-

ity algorithm for joint subcarrier assignment and power allocation at the

source and relay nodes, aiming to maximize the weighted sum rate under

individual node power constraint. A low complexity algorithm is devised

based on optimal source and relay power profiles and high SNR approxi-

mation.

In the second context, we target competition based distributed algo-

rithms for joint subcarrier assignment and power allocation at the source

and relay nodes aiming to maximize either the sum rate or the fairness in-

dex under individual node power constraint. In this sense, two auction

algorithms are proposed to assign subcarriers among users: sequential and

one-shot auction algorithms. The proposed auction algorithms are designed

using a utility function to evaluate the worth of the subcarriers and bid on

them. In both auction algorithms, the bidding strategies are based on op-

timal power profiles at the source and relay nodes. In the sequential algo-

rithm, the user utilizes her history in the game to bid for the current sub-

carrier, whereas in the one-shot algorithm, the user evaluates the worth of

the subcarriers at once, based on the Shapley value. A sampling approach

is used to estimate the Shapley value.

1.3 Dissertation Outline and Contributions

In this section, a chapter by chapter outline is presented. In addition, the

contributions associated with each chapter are listed.

• Part One contains the following chapters:

Chapter 2, the basics of cooperative communication schemes and the

their performance measures are explained. In particular, outage prob-
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ability, diversity order and symbol error probability (SEP) are discussed.

Basic concepts in optimization and game theory are introduced. In

particular, the focus is put on optimality conditions, dual method, and

Nash equilibrium. These concepts will be used extensively in subse-

quent chapters.

Chapter 3, the problem of two users sharing the same best ordered

relay is investigated for different cooperative schemes. Expressions of

the outage probability, BEP, and diversity order are derived for these

schemes. The results of this chapter are partially incorporated in a

manuscript published as:

– H. Al-Tous, I. Barhumi, Performance Analysis of Relay Selection in

Cooperative Networks Over Rayleigh Flat Fading Channels, EURASIP

Journal on Wireless Communications and Networking, (1), 1-16,

December 2012.

Chapter 4, joint power and bandwidth resource allocation for a mod-

ified AF cooperative communication scheme is investigated aiming

to maximize the sum rate in frequency flat and frequency selective

channels. An adaptive algorithm is developed to find the optimal al-

location profiles. In addition, joint power and bandwidth and relay

selection is addressed using PSO method. Publications related to this

chapter are:

– H. Al-Tous, I. Barhumi, Joint Power and Bandwidth Allocation for

Multiuser Amplify and Forward Cooperative Communications Using

Particle Swarm Optimization, IEEE 13th International Workshop on

Signal Processing Advances in Wireless Communications (SPAWC

2012), pp. 55-59, 17-20 June 2012, Cesme, Turkey.

– H. Al-Tous, I. Barhumi, Resource Allocation for Multiuser AF Coop-

erative Communications, IEEE Transactions on Wireless Communi-
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cations, Submitted for Publication.

Chapter 5, joint power and bandwidth resource allocation for a sin-

gle relay AF cooperative communication system is investigated using

Stackelberg game; where the relay aims to maximize its benefits by

selling its resources to the users. A distributed iterative algorithm

is developed to reach Nash Equilibrium. Publications related to this

chapter are:

– H. Al-Tous, I. Barhumi, Resource Allocation for AF Cooperative Com-

munications Using Stackelberg Game, 6th International Signal Pro-

cessing and Communication Systems Conference (ICSPCS 2012),

12-14 December 2012, Gold Coast, Australia.

– H. Al-Tous, I. Barhumi, Joint Power and Bandwidth Allocation for

Amplify and Forward Cooperative Communications Using Stackelberg

Game, IEEE Transactions on Vehicular Technology, 62 (4), 1678-

1691, May 2013.

• Part Two contains the following chapters:

Chapter 6, basic concepts of OFDM and OFDMA systems are intro-

duced, and resource allocation problems for AF/DF-OFDM and AF/DF-

OFDMA systems are explored.

Chapter 7, joint mode selection of AF/DF-OFDM cooperative com-

munication and power allocation at the source and relay nodes aim-

ing to maximize the symbol data rate under either individual node or

total power constraints are investigated. Low complexity algorithms

are developed to select the transmission mode. Publications related to

this chapter are:

– H. Al-Tous, I. Barhumi, A Low Complexity Algorithm for Selective

AF-OFDM System, IEEE 79th Vehicular Technology Conference
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(VTC 2014 Spring), Accepted.

Chapter 8, joint resource allocation for AF/DF-OFDMA aiming to max-

imize the weighted sum rate is addressed. A low complexity algo-

rithm is developed to assign the subcarriers to the users. Publications

related to this chapter are:

– H. Al-Tous, I. Barhumi, Two Bands Subcarrier Partition Resource Al-

location for Two users AF-OFDMA System, IEEE Transactions on

Mobile Computing, Revised.

– H. Al-Tous, I. Barhumi, Resource Allocation for Two-Sources Single-

Relay AF-OFDMA Systems, SPAWC 2014, Submitted for Publica-

tion.

– H. Al-Tous, I. Barhumi, Resource Allocation for Two-Users DF-OFDMA

Systems, IEEE VTC 2014 Fall, Accepted.

Chapter 9, auction framework is proposed for subcarrier assignment

in AF-OFDMA systems, sequential and one-shot algorithms are pro-

posed to allocate the resources aiming to maximize either the sum rate

or the fairness index. Publications related to this chapter are:

– H. Al-Tous, I. Barhumi, Resource Allocation Using Auction Frame-

work, IEEE Transactions on Wireless Communications, Revised.

– H. Al-Tous, I. Barhumi, Auction Framework for Resource Allocation

in AF-OFDMA Systems, PRIMC 2014, Submitted for Publication.

– H. Al-Tous, I. Barhumi, One-Shot Auction for Resource Allocation

in AF-OFDMA Systems, GLOBCOM 2014, Submitted for Publica-

tion.

Chapter 10, we conclude and explore further direction of research.



Part I

Relay Selection, Joint Power and

Bandwidth Allocation in Relay

Networks



CHAPTER2

BASIC CONCEPTS

Some basic concepts related to cooperative communications are discussed

throughout this chapter, and the necessary resource allocation tools, which

facilitate the understanding of the rest of this dissertation, are presented.

Wireless channel models and performance metrics are introduced in Sec-

tion 2.1 and Section 2.2, respectively. In Section 2.3, the fundamental coop-

erative communication schemes AF and DF are introduced. We focus on

the discussion of the outage probability, diversity order, and the SEP perfor-

mance measures. In addition, multiple relays scenarios are presented with

their performance measures.

Resource allocation problems can be addressed using two different ap-

proaches; optimization and game theory. The optimization problem is for-

mulated to achieve a certain performance measure related to the system

viewpoint. Game theory can capture the users and the system viewpoints,

using utility functions. Basic concepts in optimization and game theory are

reviewed in Sections 2.4 and 2.5, respectively. Conclusions are drawn in

Section 2.6.

2.1 Wireless Channel

Reliable high-speed communication using the wireless radio frequency trans-

mission as a channel is a challenging task. Wireless channels are not only
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susceptible to noise, interference, and other channel impediments, but these

impairments change over time in unpredictable way due to user and sur-

rounding object movements. The variation in the received signal power

over distance is due to path loss, shadowing and small scale fading. Path

loss is caused by dissipation of the power radiated by the transmitter as well

as effects of the propagation channel. Generally, path loss models assume

that path loss is the same at a given transmit-receive distance. Shadowing is

produced by obstacles between the transmitter and receiver which attenu-

ate the signal power through absorption, reflection, scattering, and diffrac-

tion. Variation due to path loss occurs over very large distances (100 − 1000

meters), whereas variation due to shadowing occurs over distances propor-

tional to the length of the obstructing object (10 − 100 meters ). Large-scale

fading effects are due to path loss and shadowing, which occur over rela-

tively large distances. Small-scale fading effect is due to multipath propa-

gation, which occurs over very short distance, i.e. on the order of the signal

wavelength. For the design and simulation of wireless systems, models are

needed to describe mathematically the basic properties of wireless channels

such as, path loss, shadowing, amplitude-fading, scattering function, de-

lay spread, etc. Three methods are used to model the wireless channel as

follows [100]:

• Realistic Channel Models: In these models, a sounder is used to mea-

sure, digitize, and store the channel impulse response. The disadvan-

tage of this method is that it requires a large effort to acquire the data,

and it only characterizes a certain area.

• Deterministic Channel Models: In these models, the geographical

and morphological information are used to form a database for a de-

terministic solution of Maxwell’s equations. The main advantage is

that computer simulations are easier to perform than realistic mea-

surements, but these models are less accurate compared to realistic
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Figure 2.1 Fading Channel Classifications [26].

channel modes.

• Stochastic Channel Models: These methods do not attempt to cor-

rectly predict the impulse response in one specific location, but rather

predict the probability density function (PDF) of the channel over a

large area, an example of this approach is the Rayleigh-fading model.

In the following we will discuss some basic properties of wireless chan-

nels, and how they can be described mathematically using stochastic chan-

nel models; emphasizing on how these mathematical descriptions can be

converted into simulation models, and how to parametrize these models.

Figure 2.1 shows classifications of fading channels [26].

2.1.1 Large-Scale Channel Model

It is difficult to obtain a single model that characterizes path loss accurately

in different environments, due to the complexity of signal propagation. For

analysis of various systems, it is sometimes best to use a simple model that

captures the basics of signal propagation without resorting to complicated

path loss models, which are only approximations to the real channel any-

way [44]. The following simplified model for path loss as a function of dis-

tance is commonly used for system design, which is called log-scale propa-

gation model given by:

PL(d) = PL(d0)
(d0

d

)α
, (2.1)



21

where PL(d), is the path-loss at distance d, d0 is a distance in the far-field that

is used to measure PL(d0), and α ∈ [2, 6] is the path loss exponent. A table

summarizing α values for different indoor and outdoor environments and

antenna heights can be found in [44]. The path-loss in dB is:

PL(d)dB = PL(d0)dB − 10α log10

( d

d0

)

. (2.2)

A simple statistical model that can account for shadowing is the log-normal

shadowing model in dB given as:

PL(d)S = PL(d)dB + X0, (2.3)

where X0 is a zero-mean Gaussian random variable with variance typically

from 3 to 12. The shadow path-loss is frequently referred to as log-normal

fading.

2.1.2 Small-Scale Channel Model

Small scale (fading) models describe the variation in the amplitude of a sig-

nal over a small distance or time interval. Multipath fading is caused by the

interference between two or more delayed versions of the transmitted sig-

nal. Several factors influence the behavior of multipath fading. One is the

random presence of reflectors and scatterers between the transmitter and re-

ceiver, the second is the presence of motion; the speed of the mobile terminal

and the speed of surrounding objects. The third is the transmission band-

width of the signal. Copies of the transmitted signal; each has a different

amplitude, phase and delay are added with each other at the receiver creat-

ing either constructive or destructive interference. The relation between the
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transmitted signal x(t) and the received signal y(t) can be written as:

y(t) =

L∑

l=1

hl(t) x
(

t − τl(t)
)

+ n(t), (2.4)

where hl(t) is the attenuation of the lth path at time t, τl(t) is the delay of

the lth path, and L is the number of resolvable paths at the receiver, n(t) is

the received additive white Gaussian noise (AWGN). Clearly, this relation

describes a linear channel with an impulse response h(t, τ) given as:

h(t, τ) =
L∑

l=1

hl(t) δ
(

t − τl(t)
)

. (2.5)

If the multipath components do not change with time, the impulse response

can be represented as:

h(t) =

L∑

l=1

hl δ(t − τl). (2.6)

The discrete-time baseband equivalent model of (2.4) can be obtained by a

sampling operation at the receiver, and can be represented by a time varying

finite impulse response (FIR) digital filter as [94]:

y(m) =

Ls∑

k=1

hk(m) x(m − k) + n(m), (2.7)

this model is frequently called tapped-delay model, all the paths with ar-

rival time within one sampling period are combined into a single channel

response coefficient hk, and Ls is the number of resolvable paths after sam-

pling.

In fact, it is quite common to characterize and classify wireless channels

based on the power delay profile, which represents the average power asso-

ciated with each path, and the power spectrum profile, which is the Fourier

transform of the power delay profile. The features that can be extracted

from these profiles and used to characterize the channel are as follows:
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• Delay Spread: It represents the time difference between the arrival

of the first measured path and the last. If the duration of the symbols

used for signaling over the channel is more than the delay spread, then

the transmitted symbols will suffer from inter-symbol-interference (ISI).

• Coherence Bandwidth: It is the range of frequencies over which the

amplitude of two spectral components of the channel response are cor-

related. It is used to measure the range of frequencies over which

the channel shows a flat frequency response. If the transmitted sig-

nal bandwidth is less than the channel coherence bandwidth, then all

the spectral components of the signal will be affected by the same at-

tenuation and by a linear change of phase. The channel in this case

is called a flat fading channel or a narrowband channel. On the other

hand, if the transmitted signal bandwidth exceeds the channel coher-

ence bandwidth, then the spectrum component of the signal will be

affected by different attenuation factors, and the channel is called a

frequency selective channel or a broadband channel.

To characterize the parameters that are related to the time varying nature

of the wireless channel, it is necessary to examine the variation of the fre-

quency components over time. The correlation function between two real-

izations of the channel impulse response and its Fourier transform which is

called the Doppler power spectrum can be used. The Doppler power spec-

trum provides information about the Doppler shift, i.e. if a single tone of

frequency fc is sent through a channel with a Doppler shift fD, the Doppler

spectrum will have components in the range from fc − fD to fc + fD. The pa-

rameters that can be extracted from the correlation function and the Doppler

power spectrum are as follows:

• Coherence Time: It is the time difference that makes the correlation

between two realizations of the channel impulse response approxi-

mately zero.
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• Doppler Spread: It represents the range of frequencies over which the

Doppler power spectrum is non-zero. The Doppler spread provides

information about how fast the channel changes over time. Doppler

spread is proportional to the inverse of the channel coherence time. If

the Doppler spread is smaller than the signal bandwidth, the channel

is called slow fading channel. On the converse, if the signal bandwidth

is smaller than the Doppler spread, the channel is called fast fading

channel.

The channel coefficient h(t, τ) in (2.5) of a time-invariant system is modeled

by a random variable, and it is modeled by a random process for a time-

variant system. One of the most common models for the random channel

coefficient is Clarke’s model (or Jake’s model). In this model, the arrived

signal at the receiver is assumed to be scattered on a very large number of

scatterers, which are located on a circle centered around the receiver. In ad-

dition, it is assumed that there is no line-of-sight (LOS) signal with a power

notably larger than the rest. The channel coefficient for narrow-band time-

invariant system based on Clarke’s model can be modeled as:

h = hI + hQ, (2.8)

where hI and hQ represent the in-phase and quadrature-phase components,

respectively. These components are modeled by zero mean Gaussian ran-

dom variables; i.e. hI ∼ N(0, σ2), and hQ ∼ N(0, σ2), where σ2 is the signal

variance. In addition, the channel coefficient h can be written in the polar

form as h = r e θ, where the PDFs of r and θ are given as:

fR(r) =
r

σ
e
−r2

2σ2 , r ≥ 0, (2.9a)

fΘ(θ) =
1

2π
, 0 ≤ θ ≤ 2π. (2.9b)

Because the magnitude of the channel coefficient follows a Rayleigh dis-
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tribution, this model is frequently called Rayleigh fading channel model.

When there exists one LOS path, the magnitude of the channel coefficient is

modeled using Ricean distribution. In addition, modeling the channel coef-

ficient can be done using channels realization and using probability distri-

butions that can be tuned to the data samples such as the Nakagami distri-

bution [44].

It is common to model the time variation of the channel statistically us-

ing the autocrrelation function. Therefore, assuming the transmitted signal

is a single tone, and the multipath components are uncorrelated, the channel

correlation function can be modeled as:

Ch(τ) = PrJ0

(

2π fDτ
)

, (2.10)

where Pr is the received signal power, J0(·) is the Bessel function of the first

kind and zeroth order computed as J0(x) = 1
π

∫ π

0
e− x cos(θ)dθ, fD =

v
λ is the

Doppler frequency, v is the absolute velocity of the receiver, and λ is the

wavelength. From (2.10), the auto-correlation function is zero for fDτ ≈

0.4. Thus the signal decorrelates over a distance of approximately one-half

wavelength under the uniform scattering assumption. The corresponding

channel power spectral density can be obtained as [44]:

Sh( f ) =
Pr

2π fD

1
√

1 −
(

f

fD

)2
, if | f | ≤ fD. (2.11)

A common method to simulate the envelop of a narrow-band process is to

pass two independent (i.e. the in-phase and quadrature phase components)

white Gaussian noise sources with power spectral density (PSD) N0

2
through

a lowpass filter with frequency response H( f ) given as:

|H( f )|2 = Sh( f ). (2.12)
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2.2 Performance Metrics

In this section, the capacity of a single-user wireless channel is discussed

where the transmitter and/or receiver had a single antenna. We introduce

the well-known formula for capacity of a AWGN channel, then we exam-

ine capacity of time-varying flat-fading channels. For multi-users scenarios,

specific points within the rate region are highlighted.

2.2.1 Single User View

The input-output relationship of a discrete-time AWGN channel is modeled

as [44]:

y(m) = x(m) + n(m), (2.13)

where x(m) and y(m) are the channel input and channel output at time m, re-

spectively. n(m) is a white Gaussian noise random process with PSD equals

N0

2
. For a channel with bandwidth W and transmit power P, the channel

capacity is given by Shannon’s well-known formula [123]:

C =W log2

(

1 +
P

N0W

)

, (2.14)

the capacity units are bits per second (bps). Shannon’s coding theorem

proves that a code exists that achieves data rates arbitrarily close to the ca-

pacity with arbitrarily small probability of bit error. The converse theorem

shows that any code with rate R > C has a probability of error bounded

away from zero.

The deterministic effect of the path-loss only scales the signal power in

(2.14). The randomness in the wireless channel needs to be investigated

based on the types of variation. Mainly, two types of channel variations

need to be considered; ergodic (fast fading) and non-ergodic fading (slow

fading). The capacity of an AWGN channel with fast flat fading, when only
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the receiver has knowledge of the channel state information (CSI) is given

as:

C = Eh

[

W log2

(

1 +
P|h|2
N0W

)]

, (2.15)

where Eh[·] is the expectation operator with respect to the channel varia-

tion h, and |h|2 is the envelop of the channel attenuation. It is worth noting

that the capacity-achieving code must be sufficiently long so that a received

codeword is affected by all possible fading states. Using Jensen’s inequality:

Eh

[

W log2

(

1 +
P|h|2
N0W

)]

≤W log2

(

1 + Eh

[ P|h|2
N0W

])

. (2.16)

Therefore, Shannon capacity in (2.15) is less than Shannon capacity of an

AWGN channel with the same average SNR, i.e. fading reduces Shannon

capacity when only the receiver has CSI. Since Shannon capacity is not de-

veloped for wireless communications when the average channel conditions

change from codeword to codeword, the concept of outage capacity was

introduced to deal with non-ergodic fading, i.e. for slow flat fading chan-

nels the notion of outage capacity is used, where the instantaneous received

SNR denoted as γ = P|h|2
N0W

is constant over a large number of transmissions

and then changes to a new value based on the fading distribution. With this

model, data can be sent over the channel at a rate W log2(1+γ) with negligi-

ble probability of error. Since the transmitter does not know the SNR value

γ, it must fix a transmission rate independent of the instantaneous received

SNR. Therefore, the outage condition for a realization of γ can be written as:

W log2(1 + γ) < R. (2.17)

Hence, the outage probability at a required data rate R can be defined as:

Pout(R) = Pr
[

W log2(1 + γ) < R
]

. (2.18)
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With simple algebraic operations, the outage probability can be written as:

Pout(γth) = Pr
[

γ < γth

]

. (2.19)

where γth is the threshold SNR computed as γth = 2
R
W −1. The value of γth is a

design parameter based on an acceptable outage probability. Typically, it is

common to characterize flat fading channels by the normalized capacity C
W

versus the outage probability Pout(γth). The normalized capacity approaches

zero for small outage probability values, and increases dramatically as the

outage probability increases. However, the probability of incorrect data re-

ception increases as the outage probability increases. The average rate cor-

rectly received over many transmission bursts is defined as:

C =
(

1 − Pout(γth)
)

W log2(1 + γth). (2.20)

Diversity techniques are used to improve the performance of wireless

communication systems in fading channels. It mitigates the fluctuations

due to fading by providing more than one signal path between the source

and destination nodes, so that the channel appears more like an AWGN

channel. The trend is that as the number of independent paths becomes

larger, the channel looks like an AWGN channel. At the receiver termi-

nal, different techniques can be used to combine the received signals in a

constructive fashion from different paths such as the maximal ratio com-

bining (MRC), selective combining (SC), and the threshold combining (TC).

The MRC combines multiple signals by first cophasing them, then weight-

ing each signal proportionally to the corresponding path SNR, and finally

adding them. SC selects the path with the best SNR. The TC scans sequen-

tially the received signals and outputs the first signal with SNR exceeding a

threshold [130].

There are many different forms of diversity; time diversity, frequency di-
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versity, and spatial diversity. In time diversity, multiple copies of a symbol

are sent at different time instants. In frequency diversity, multiple copies

of a symbol are sent using different carrier frequencies. In spatial diversity,

multiple copies of a symbol are sent using different spatial paths. More-

over, multiple diversity techniques can be combined to obtain greater per-

formance gains, for example, time diversity with spatial diversity, and fre-

quency diversity with spatial diversity. In this dissertation, our main focus

is spatial diversity using cooperative communications. For any diversity

technique, the performance improvement is revealed by the outage proba-

bility (or the symbol error probability) decreasing at high SNR at a much

larger rate than a system with less or no diversity. Formally, the diversity

order (gain) can be computed as:

d = − lim
γ→∞

log
(

Pout(R)
)

log(γ)
, (2.21)

where γ = Eh[γ]. Note that (2.21) illustrates a linear function between out-

age probability and high average SNR on a log-log scale. If d = 0, then with

increasing SNR no decrease in outage probability is achieved. At high av-

erage SNR, diversity order is equivalent to the gradient of the outage prob-

ability (or symbol error probability) curve. Note that if the expression of

Pout(R) at high SNR can be written as:

lim
γ→∞

Pout(R) ≃ c| γ |−d, (2.22)

then the diversity order is d, and the coding gain is c [94].

2.2.2 System View

In multi-user communication systems, different users or terminals share the

same radio channel to communicate among themselves. In the context of

multi-user systems, the achievable system performance in such systems is
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Figure 2.2 Rate Region.

characterized by the capacity region, which is defined as the set of achiev-

able rates under limited resources. For example, the capacity region for the

Gaussian K-users channel is a convex region in the K dimensional space

[106].

Some specific rates on the boundary of the capacity region, correspond-

ing to some desirable working points, can be identified. The sum-rate is one

of the important points on the boundary of the rate region. The sum-rate is a

single number that defines the maximum throughput of the system, regard-

less of fairness in terms of rate allocation between the users. It is therefore,

much easier to characterize than the capacity region, and often leads to im-

portant insights.

Figure 2.2 shows the rate region for a two user scenario. Specific points

on the boundary can be highlighted as follows. Points A, and F correspond

to the single-user rates R(0)
2

and R(0)

1
, that is, all the resources are allocated to

either user 2 or user 1, respectively. Point E corresponds to the maximum

sum rate. Point B gives the symmetric maximum rate, when single user

rates are very different. Setting a common rate for all users is generally a

waste of resources as it forces the users with the best channel condition to

lower their rates to reach the level of the weakest users. The line AGF repre-

sents the rate distributions obtained by using time-division multiple-access
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(TDMA), that is, the channel is allocated to user 1 solely for 0 ≤ α ≤ 1 of the

time, and 1 − α of the time the channel is allocated solely to user 2. Point G

is obtained if time slots of equal duration are allocated to each user. Point C

satisfies a fairness criterion called ’balanced rates’; that is, maximum simul-

taneously achievable rates (on the boundary region) that are proportional

to the single user rates R1/R
(0)

1
= R2/R

(0)
2

. It is a compromise between the

symmetric average rate B and the maximum sum rates E. Point D satisfies

Nash bargaining fairness criterion, defined later in this subsection. In every

scenario, a specific constrained optimization problem can be formulated to

allocate the resources to achieve the system objectives, and then solved by

an appropriate method.

The following are some of the criteria that are used to allocate the re-

sources for a multi-user wireless system:

• Equal Allocation: The resources are allocated between the users with

some control policy (for example, maximum number of users can be

served). It can be used for the following cases: (1) to allocate non-

dividable resources, such as time-slots, subcarriers by allocating equal

number of time slots or subcarriers for each user in the system, (2) to

simplify the resource allocation problem of dividable resources, that

is, allocating equal power or bandwidth for all users in the system.

This resource allocation criterion can be used as a benchmark for other

resource allocation criterion, but it may have the disadvantage of in-

creasing the interference as in near-far problems and/or inefficient us-

age of the resources.

• Max-Weighted Sum Rate: It is used as the basis for physical layer re-

source allocation; it is used for, power/rate control policy in wireless,

as well as in wireline networks. It has been used extensively in joint

power control and subcarrier assignment algorithms for OFDMA net-

works. Maximum sum rate is a special criterion, where all users have
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the same priority. In multiuser systems, by introducing a time shar-

ing argument, one can always assume that the rate region is convex.

Therefore, any boundary point of the rate region can be obtained by

solving a max-weighted sum rate problem for different weights [152].

Algorithmically, varying the weights allows us to prioritize different

users in the system and enforce certain notions of fairness [154].

• Max-Min Fairness: It is used when it is required to achieve the same

quality of service for all users in the system, a max-min fairness is

said to be achieved by an allocation, if and only if, the allocation is

feasible and an attempt to increase the allocation of any user results in

the decrease in the allocation of another user with an equal or smaller

allocation [108, 136].

• Proportional Fairness: An allocation R∗ = [R∗
1
· · · ,R∗I] is said to be

proportional fair, if for any other feasible allocation R = [R1 · · · ,RI],

the following holds [81]:

I∑

i=1

Ri − R∗
i

R∗
i

≤ 0, (2.23)

where Ri is the rate of user i, for i = 1, · · · , I. For convex sets, this point

is unique and can be determined by allocating the resources to maxi-

mize the sum of logarithmic user rates. For certain nonconvex sets that

are strictly convex after a logarithmic transformation, maximizing the

sum of logarithmic user rates is proportionally fair [17].

• Nash Bargaining Fairness: It is a popular strategy for allocating re-

sources among competing users. It is a unique Pareto optimal point

that is characterized by a set of axioms called Nash Bargaining axioms.

A rate distribution is said to be Pareto optimal, if and only if, there is

no other rate distribution that leads to superior performance for some
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users without causing performance degradation for some other users.

Nash Bargaining axioms are: (1) individual rationality, (2) feasibility,

(3) independence of linear transformations, (4) independence of irrel-

evant alternatives, (5) symmetry. The detailed explanation for these

axioms can be found in [157, 174]. Nash bargaining solution (NBS)

can be obtained for compact convex sets by finding the allocation that

maximizes the product of user utility functions. The user utility func-

tion can be defined in terms of the user data rate, or the difference be-

tween the user data rate and a minimum acceptable data rate [50, 174].

For convex sets, Nash bargaining and proportional fairness are equiv-

alent [17]. In addition, since NBS is Pareto optimal, it can be obtained

as the solution to the maximization of the sum of the weighted utility

functions [157].

• Minimum Power consumption subject to minimum achievable rates:

This formulation tries to utilize the resources in an efficient way when

it is required to maintain constant data rates for all users [108].

2.3 Cooperative Communication Schemes

Cooperative communication schemes can be characterized based on the pro-

cessing done at the relay node. In AF relaying scheme, the relay scales the

received signal and transmits an amplified version to the base-station. Al-

though noise is amplified by cooperation, the destination node receives two

independently faded versions of the signal and can make better decisions

on the detection of the transmitted information. DF relaying is another pos-

sibility of processing at the relay node, where the relay decodes the received

signal, re-encodes it, and then transmits it to the destination node. Co-

operative communication protocols can be categorized into fixed relaying

and adaptive relaying protocols. In fixed relaying protocols, the channel re-
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sources (that is, time slots or frequency slots) are divided between the source

and the relay in a fixed deterministic fashion. Fixed relaying schemes are

easier to implement but have low bandwidth efficiency. This is due to allo-

cating half the channel resources to the relay’s transmission, which reduces

the overall transmission rate [35]. Adaptive relaying protocols try to over-

come the problem of low bandwidth efficiency in fixed relaying protocols.

Adaptive relaying includes selective relaying, and incremental relaying. In

selective DF relaying, the relay decodes and forwards the information only

if the received SNR at the relay node exceeds a certain threshold [71]. In

incremental relaying, the relay forwards the information only if the destina-

tion node does not decode the source information correctly. The destination

informs the relay and the source nodes via feedback channels [94].

Most cooperative communication protocols/schemes operate in a half-

duplex mode, since the relay cannot listen and transmit simultaneously in

the same time-slot or frequency-band. Two orthogonal phases are used

to model typical cooperative schemes, either in time division multiplexing

(TDM) manner, or frequency division multiplexing (FDM) manner. In phase

I (broadcast phase), the source sends its information to the destination. The

information is also received at the relay node at the same time. In phase

II (multi-access phase), the relay node helps the source by forwarding or

retransmitting the information to the destination node [94].

2.3.1 AF Cooperative Communications

The system under consideration is depicted in Figure 2.3, sender (source)

node S is communicating with the destination terminal D over a quasi-static

channel (that is, is stable over two-time slots) with channel coefficient hSD.

The relay node R is used to improve the reliability of the communication be-

tween the source-destination pair using simple AF cooperative scheme. The

channel coefficients between the source-relay and relay-destination pairs
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Figure 2.3 System Model.

are denoted as hSR and hRD, respectively. The channel coefficients are mod-

eled by Rayleigh flat fading coefficients. The analysis of other fading chan-

nel models such as Nakagami and Ricean can be found in [72, 138]. In AF,

the relay scales the received data and transmits it in the second phase. The

source uses two-time slots T1 and T2 in a TDM manner. In the first-time

slot T1, the source broadcasts its signal to the relay and destination nodes.

In the second-time slot T2, the relay amplifies the received signal without

decoding it and forwards to the destination node. The received signals in

the first-time slot T1 defined as y(R)
T1

and y(D)
T1

at the relay and at destination

nodes, respectively, are obtained as follows:

y(R)
T1
=

√

PS hSR x + n(R)

1
, (2.24a)

y(D)
T1
=

√

PS hSD x + n(D)

1
, (2.24b)

where PS is the source transmitted power. The transmitted symbol x is

drawn from a constellation with unit energy. n(R)

1
and n(D)

1
are AWGNs re-

ceived at the relay and at the destination nodes, respectively. During the

second-time slot T2, the received signal y(D)
T2

at the destination node is ob-

tained as:

y(D)
T2
= G

√

PR hRD y(R)
T1
+ n(D)

2
, (2.25)
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where PR is the relay transmitted power, n(D)
2

is the AWGN received at the

destination node in the second-time slot T2. G1 is the normalization factor

at the relay node, which is a function of the instantaneous channel gain

(variable type) of the source-relay link given as [56]:

G =
1

√

PS|hSR|2 + σ2
0

. (2.26)

The end-to-end SNR for AF scheme denoted as ΓAF is given as [4]:

ΓAF =
PSPR|hSR|2|hRD|2

σ2
0
(σ2

0
+ PS|hSR|2 + PR|hRD|2)

. (2.27)

After using MRC at the destination node, the instantaneous mutual infor-

mation IAF for AF cooperative scheme is computed as:

IAF =
W

2
log2

(

1 + ΓSD + ΓAF

)

, (2.28)

where ΓSD =
PS |hSD|2
σ2

0

, and the factor 1
2

is due to the fact that two time slots are

used for cooperative transmission. The outage probability can be obtained

by averaging over the channel gains as:

PAF
out(R) = Pr{IAF < R} = EhSD,hSR,hRD

[IAF < R]. (2.29)

Note that the channel gains are independent random variables. The random

variable Y that is defined as the magnitude square of a Rayleigh-distribution

channel coefficient (that is, (Y = |h|2)) follows an exponential distribution

with PDF fY(y) = 1
σ2 e−

y

σ2 µ(y), where µ(y) is the unit step function. By calcu-

lating the expectation in (2.29), the outage probability with PS = PR = P can

1The normalizing factor can generally be of variable type as in [56], averaged type as in
[58], or fixed type as in [80].
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be simplified for high SNR0 =
P
σ2

0

as [86]:

PAF
out(R) ≃

σ2
SR
+ σ2

RD

2 σ2
SD
σ2

SR
σ2

RD

(

22R − 1

SNR0

)2

. (2.30)

For high SNR, the outage probability PAF
out(R) decays as SNR−2

0 , which means

that AF cooperative protocol achieves diversity order of two.

Using the moment generating function (MGF) approach to evaluate the

performance over fading channels, the average SEP of AF cooperative scheme

with M-array phase shift keying (M-PSK) modulation or M-array quadra-

ture amplitude (M-QAM) modulation can be tightly approximated for high

SNR as [134, 135]:

SEPAF ≃
B σ2

0

b2

1

PS σ2
SD

(

1

PS σ2
SR

+
1

PR σ2
RD

)

, (2.31)

where B is computed as:

B =





3(M−1)

8M
+

sin( 2 π
M )

4π − sin( 4 π
M )

32π M-PSK,

3(M−1)

8M
+

(1− 1√
M

)2

π M-QAM,

(2.32)

while b is computed as:

b =





sin2( π
M

) M-PSK,

3
2(M−1)

M-QAM.

(2.33)

The exact expression for the SEPAF can be found in [59]. The SEPAF expres-

sion in (2.31) with PS = PR = P and SNR0 =
P
σ2

0

can be simplified as:

SEPAF ≃ B

b2

1

SNR2
0
σ2

SD

(

1

σ2
SR

+
1

σ2
RD

)

, (2.34)

which reveals a diversity order of two.
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2.3.2 DF Cooperative Communications

In a DF cooperative scheme, the relay decodes the received signal, re-encodes,

and then transmits to the destination. DF has the advantage over AF coop-

erative scheme by reducing the effects of the additive noise at the relay, but

it has the possibility of forwarding an erroneously detected signal to the

destination node, resulting in performance degradation. The instantaneous

mutual information IDF for DF cooperative scheme using MRC is computed

as [86]:

IDF =
W

2
min

{

log2

(

1 + ΓSR

)

, log2

(

1 + ΓSD + ΓRD

)}

, (2.35)

where, ΓRD =
PR |hRD|2
σ2

0

, and ΓSR =
PS |hSR|2
σ2

0

. The mutual information between

the source and the destination is limited by the weakest link between the

source-relay and the combined channel from the source-destination and

relay-destination. The outage probability with PS = PR = P can be sim-

plified for high SNR0 =
P
σ2

0

as in [86]:

PDF
out(R) ≃ 1

σ2
SR

(

22R − 1

SNR0

)

. (2.36)

For high SNR, the outage probability PDF
out(R) decays as SNR−1

0 , which means

that DF cooperative protocol achieves diversity order one. Clearly, DF co-

operative scheme has the disadvantage of low bandwidth efficiency.

Since the fading coefficient hSR can be measured to high accuracy at the

relaying terminal, the relay can adapt its transmission based on the realized

value of hSR which results in selective relaying, where the relay forwards

the received information if |hSR|2 lies above a certain threshold. Otherwise,

the relay keeps silent and the source may repeat the transmission of the in-

formation. The mutual information for selective DF (SDF) relaying is com-
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puted as [86]:

ISDF =





W
2

log2(1 + 2ΓSD) |hSR|2 < 22R−1
SNR0
,

W
2

log2(1 + ΓSD + ΓRD) |hSR|2 ≥ 22R−1
SNR0
.

(2.37)

The outage probability for high SNR can be approximated as [86]:

PSDF
out (R) ≃

σ2
SR
+ σ2

RD

2 σ2
SD
σ2

SR
σ2

RD

(22R − 1

SNR0

)2
. (2.38)

Clearly from (2.38), SDF cooperative scheme achieves a diversity order of

two, similar to AF cooperative scheme.

The average SEP of SDF cooperative scheme with M-PSK modulation or

M-QAM modulation can be tightly approximated for high SNR as in [114]:

SEPSDF ≃
σ4

0

b2

1

PS σ2
SD

(

A2

PS σ2
SR

+
B

PR σ2
RD

)

, (2.39)

where A is computed as:

A =





M−1
2M
+

sin( 2 π
M )

4 π M-PSK,

M−1
2M
+

(

1− 1√
M

)2

π M-QAM,

(2.40)

B, and b are computed as in (2.32) and (2.33), respectively.

2.3.3 Multiple Relays Scenarios

In this subsection we extend the analysis of the SEP for M-PSK/M-QAM,

and the diversity order for multi-relay AF/SDF cooperative schemes; the

destination node is allowed to combine the received signals from all the re-

lays using either MRC or SC. The system under investigation is depicted in

Figure 2.4, it consists of a source, a destination, and K relays. The trans-

mitted signal from the source in the first time slot T1 can be overheard at
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Figure 2.4 Multi Relay System Model.

the relay nodes. Using TDM each relay k ∈ {1, · · · ,K} amplifies and for-

wards the received signal in an orthogonal fashion to the destination node.

Therefore, K+ 1 time slots are required to transmit the information from the

source and K relay nodes to the destination node. The end-to-end SNR at

the destination node Γ(D)

AF
after using MRC technique, can be computed as:

Γ
(D)

AF
= ΓSD +

K∑

k=1

Γ
(k)

AF
, (2.41)

where Γ(k)

AF
is computed as:

Γ
(k)

AF
=

PSPRk
|hSRk
|2|hRkD|2

σ2
0
(σ2

0
+ PS|hSRk

|2 + PRk
|hRkD|2)

, (2.42)

where PRk
is kth relay transmitted power, hSRk

, and hRkD are the channel gains

between the source and relay k, and relay k and destination nodes, respec-

tively, which are modeled as Rayleigh flat fading channels. Asymptotically

tight lower and upper bounds can be found for the SEP of M-PSK and M-
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QAM as in [4]:

SEPAF
K ≥





(

1 +
g PS σ2

SD

σ2
0

)

) K∏

k=1




1 +

g PS PRk
σ2

SRk
σ2

RkD

σ2
0
(PSσ2

SRk
+ PRk

σ2
RkD

)









−1

WAF(K,M),

(2.43a)

SEPAF
K ≤

2K

g(K+1)





PS σ2
SD

σ2
0

K∏

k=1

PSPRk
σ2

SRk
σ2

RkD

σ2
0
(PSσ2

SRk
+ PRk

σ2
RkD

)





−1

WAF(K,M), (2.43b)

where g is computed as:

g =





sin2( π
M

) M-PSK,

3
4(M−1)

M-QAM,

(2.44)

and WAF(K,M) is computed as:

WAF(K,M) =





1
π

∫ (M−1)π
M

0
sin2K+2(φ)dφ M-PSK,

4C
π

∫ π
2

0
sin2K+2(φ)dφ − 4C2

π

∫ π
4

0
sin2K+2(φ)dφ M-QAM,

(2.45)

where C = 1 − 1√
M

. Using the lower and upper bounds of the SEP, it can be

shown that the system achieves full diversity order of K + 1 for high SNR

scenarios.

In a K relays SDF scheme, the relay retransmits only if the received signal

exceeds certain threshold. The SEP of M-PSK and M-QAM can be approxi-

mated for high SNR as in [94]:

SEPDF
K ≃

(σ2
0)K+1

σ2
SD

(b P)K+1

K+1∑

k=1

WDF(K − k + 2,M)(WDF(1,M))k−1

ak
0

∏K
i=k aiσ2

RiD

∏k−1
l=1 σ

2
SRl

, (2.46)
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and WDF(K,M) is computed as:

WDF(K,M) =





1
π

∫ (M−1)π
M

0
sin2K(φ)dφ M-PSK,

4C
π

∫ π
2

0
sin2K(φ)dφ − 4C2

π

∫ π
4

0
sin2K(φ)dφ M-QAM,

(2.47)

with PS +
∑K

k=1 PRk
= P, PS = a0P, and PRk

= akP, for k = 1, · · · ,K. Using (2.46)

it can be proven that K relays SDF scheme achieves the full diversity order

of K + 1. A closed form expression for the outage probability for K relays

SDF is derived in [9].

In common cooperative diversity networks with K relaying nodes, K + 1

orthogonal channels or time slots are used to provide K + 1 diversity order,

which encounters bandwidth penalty [73, 111, 142, 175]. In [16], oppor-

tunistic best relay selection is used to utilize the resources efficiently; only

two channels or time slots are required regardless of the number of relays,

while maintaining a full diversity order of K + 1. The best relay is only

selected to forward the data. In [86], the authors proved that best relay se-

lection achieves full diversity order for AF and SDF cooperation schemes

under flat fading Rayleigh channels. The performance is measured in terms

of the outage events and the associated outage probabilities.

Performance analysis of the lth best ordered relay cooperative commu-

nication is studied in [75, 76], where one relay is selected based on ordering

of the received SNRs. It is proved that the lth best ordered relay for AF/SDF

provides a diversity order equals K − l + 1, where K is the number of relays,

l = 0 is the best relay, l = 1 is the next-best relay, and so on. Closed-form ex-

pressions for the symbol error probability, outage probability and the chan-

nel capacity were derived for the lth best ordered relay for AF/SDF scheme

using the MGF approach. In [79], different criteria for relay selection are

investigated with their achievable diversity orders.
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2.4 Optimization Concepts

Resource allocation is the action of obtaining the best result under given

conditions. In this section, we present the basic formulation of resource

allocation problems, investigate how to judge whether a solution is optimal,

discuss the important concept of duality, and introduce non-conventional

optimization techniques.

Resource allocation problems usually can be formulated as constrained

optimization problems, which can be optimized from the system viewpoint.

The general resource allocation problem can be written as:

min
x∈χ

f0(x), (2.48a)

s.t. f j(x) ≤ 0, j = 1, · · · ,m, (2.48b)

gi(x) = 0, i = 1, · · · , p, (2.48c)

where x = (x1, · · · , xn) is an n dimensional vector called the design vector

defined over the feasible range χ, f0(x) is termed the objective function (op-

timization goal) which represents the performance or the cost, and f j(x) and

gi(x) are known as inequality and equality constraints, respectively. The

optimization process finds the optimal solution x∗ ∈ χ that satisfies all the

inequality and equality constraints, and f0(x∗) ≤ f0(x), ∀x ∈ χ. Linear pro-

gramming (LP) is an optimization problem where the objective function,

the inequality and equality constraints are all linear functions of the design

vector x. One of the important features of LP is the existence of a global

optimal point that can be found easily using LP methods. Unfortunately,

most wireless resource allocation problems are nonlinear, that is, either the

objective function and/or the constraints are non-linear, and therefore fall

under the category of nonlinear programming problems. Generally, non-

linear programming problems are characterized by the existence of multiple
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(a) Convex Set. (b) Non-Convex Set.

Figure 2.5 A Convex and Non-Convex Sets.

local optima, and finding the global optimum is a challenging task.

In addition, if some of the design parameters are restricted to be integers,

then the problem as defined in (2.48) is called integer programming. Most

integer programming can not be solved by polynomial time algorithms, and

are described as non-deterministic-polynomial-hard (NP-hard) problems.

2.4.1 Convex Optimization

Convex optimization problems are a special class of nonlinear optimization

problems in which the feasible set χ is a convex set, objective function f0(x)

is a convex function, inequality functions f j(x), j = 1, · · · ,m are convex func-

tions, and the equality constraints gi(x), i = 1, · · · , p are linear functions. A

convex set is defined as:

Definition 2.4.1 A set χ ⊆ R
n is convex if for any x1, x2 ∈ χ, and for any θ ∈

[0, 1] the following holds:

θx1 + (1 − θ)x2 ∈ χ. (2.49)

Figure 2.5(a) shows an example of a convex set. Whereas, Figure 2.5(b)

shows an example of a non-convex set. A convex function is defined as:

Definition 2.4.2 A function f is convex over x if the feasible range χ of the vector
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x is a convex set, and if for all x1, x2 ∈ χ, and 0 ≤ θ ≤ 1, the following holds:

f
(

θx1 + (1 − θ) x2

)

≤ θ f (x1) + (1 − θ) f (x2). (2.50)

A function is strictly convex if the strict inequality in (2.50) holds strictly whenever

x1 , x2, and 0 < θ < 1. A function is called concave if − f is a convex function.

Figure 2.6(a) shows an example of a convex function. Whereas, Figure 2.6(b)

shows an example of a non-convex function.

Some of the important properties of convex functions are:

• Global Bound Property: It is also called the first-order condition, if

f (x) is differentiable function over χ, then it is convex over χ if and

only if

f (x2) ≥ f (x1) + ∇ f (x1)T(x2 − x1),∀x1, x2 ∈ χ. (2.51)

In addition, f (x) is strictly convex over χ if and only if the inequality

in (2.51) holds strictly when x1 , x2.

• Hessian Related Property: It is also called the second-order condition,

if f (x) is twice differentiable function over χ, then it is convex over χ

if and only if

∇2 f (x) � 0,∀x ∈ χ. (2.52)

In addition, f (x) is strictly convex over χ if and only if the inequality

in (2.52) holds strictly.

• Jensen’s Inequality: If f (x) is a convex function over χ, then the fol-

lowing holds:
K∑

k=1

θk f (xk) ≥ f
(

K∑

k=1

θkxk

)

. (2.53)

Generally, when the vector x is a random vector over χ, and the func-
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Figure 2.6 Two Dimensions Convex and Non-Convex Functions.

tion f (x) is convex, then the following holds:

f (Ex[x]) ≤ Ex[ f (x)]. (2.54)

When f (x) is strictly convex then the inequality in (2.54) holds strictly.

Conditions (2.51) or (2.52) can be used to check the convexity of a differ-

ential function. These methods often lead to very demanding mathematical

procedures. A more efficient way to recognize a convex function is to check

if that function can be transformed from certain convex functions through

operations that preserve convexity. A number of typical convex and con-

cave functions are listed in Chapter 3 of [20]. A few of them will be used in

this dissertation, which are listed below:

1. Affine Function: f (x) is an affine convex function over Rn, if

f (x) = aTx + b, ∀a ∈ Rn,∀b ∈ R. (2.55)

2. Logarithmic Function: f (x) is a logarithmic concave function over

R++, if

f (x) = log(x). (2.56)

3. Minimum of Two Concave Functions: h(x) = min{ f (x), g(x)} is a con-

cave function, if f (x) and g(x) are concave functions.
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A number of typical convexity or concavity preserving operations are

listed in Chapter 3 of [20]. A few of them will be used in this dissertation,

which are listed below:

• Weighted Summation: The function f (x) defined as:

f (x) =
∑

i

wi fi(x), (2.57)

is convex over χ, if ∀i one of the following conditions is satisfied:

– wi ≥ 0 and fi(x) is convex over χ.

– wi ≤ 0 and fi(x) is concave over χ.

• Composition of Functions: The function f (x) defined as:

f (x) = h
(

z1(x), · · · , zL(x)
)

, (2.58)

is convex over χ, if ∀l ∈ {1, · · · ,L} one of the following conditions is

satisfied:

– h(z) is increasing of zl and zl(x) is convex in χ.

– h(z) is decreasing of zl and zl(x) is concave in χ.

• Perspective Function: The perspective function g(y) defined as:

g(y, t) = t f (
y

t
), (2.59)

is convex over {(y, t) ∈ Rn+1| y
t
∈ χ, t > 0}, where f (x) is convex over χ.

2.4.2 Duality Principle

Duality is an important concept that can be used to give a lower bound on

the optimal value of (2.48). In addition, under some convexity assumptions
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and constraint properties, the primal and dual problems have the same opti-

mal objective values, so it is possible to solve the primal problem by consid-

ering the dual problem. In this subsection, we will start by defining the dual

problem, then present the duality theorem and discuss some of its proper-

ties and applications.

Problem (2.48) is called the prime (or primal) problem using duality

notation. The basic idea of duality is to augment the objective function

with a weighted sum of the constraint functions. The Lagrangian function

L(x,λ,µ) : Rn × R
m × R

p 7→ R is defined as:

L(x,λ,µ) = f (x) +

m∑

j=1

λ j f j(x) +

p
∑

i=1

µigi(x), (2.60)

where λ = (λ1, · · · , λm) and µ = (µ1, · · · , µp) are called the Lagrange multi-

pliers.

One of the essential methods to solve optimization problems analyti-

cally (in closed form) is the Lagrangian method, which is based on writing

the Lagrangian function (2.60), then the optimal solution x∗ can be obtained

by differentiating L(·) over x and setting to zero as ∂L∂x = 0, and using the

inequity and equality constraints to substitute for the Lagrange multipliers

[52].

The Lagrangian dual problem (dual problem) of (2.48) can be defined as:

max
λ≥0, µ

β(λ,µ), (2.61)

where β(λ,µ) = inf
x∈χ

L(x,λ,µ), where inf stands for infimum. It is worth noting

that the dual problem is convex even if the primal problem is non-convex

[20]. One of the main applications of the dual problem is the duality theo-

rem, which is stated as follows:

Theorem 2.4.1 Weak Duality Theorem: If x is a feasible solution to the prime

problem (2.48) and λ,µ are the feasible solution to the dual problem (2.61), then
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f0(x) ≥ β(λ,µ). The duality gap is defined as f0(x) − β(λ,µ).

The duality gap is zero under convexity assumption and constraint qualifi-

cation (Slater’s strict feasibility condition) as stated next in the strong dual-

ity theorem.

Theorem 2.4.2 Strong Duality Theorem: Let (2.48) be a convex problem, suppose

there exists an x ∈ χ such that f j(x) < 0 , for j = 1, · · · ,m (Slater’s strict feasibility

condition), and gi(x) = 0, for i = 1, · · · , p. Then the optimal point of a prime

problem is the same as the optimal point of a dual problem.

When all inequality constraints of the convex problem (2.48) are linear, Slater’s

strict feasibility condition is refined to feasibility conditions, that is, f j(x) ≤ 0,

for j = 1, · · · ,m [20].

The necessary and sufficient condition for zero duality gap is the exis-

tence of a saddle point for the Lagrangian function. Thus, strong duality

can be expressed as [20]:

sup
λ≥0, µ

inf
x∈χ

L(x,λ,µ) = inf
x∈χ

sup
λ≥0, µ

L(x,λ,µ), (2.62)

where sup stands for supremum. For zero-duality-gap problems, it is pos-

sible to solve the prime problem indirectly by solving the dual problem.

Some times, solving the dual is easier than solving the prime problem, and

this may lead to a distributed algorithm to solve the problem.

It is worth noting that a problem with zero duality gap might be non-

convex. For example, the spectrum optimization of a multicarrier system is

non-convex problem, but it has zero duality gap, when number of subcarri-

ers is sufficiently large [167].

Global optimality conditions for zero-duality-gap, can be stated as [13]:

Theorem 2.4.3 Suppose (2.48) has zero duality gap , then x∗, λ∗ and µ∗ are globally

optimum for (2.48) and (2.61), respectively, if and only if they satisfy the following

conditions:
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• Primal Feasibility: x∗ is feasible for (2.48)

• Dual Feasibility: λ∗ ≥ 0.

• Lagrangian Optimality Condition: x∗ = arg min
x∈χ

L(x,λ∗,µ∗).

• Complementary Slackness: λ∗
j
f j(x

∗) = 0, for j = 1, · · · ,m.

For a zero-duality-gap problem without equality constraints (that is, p =

0), the optimal dual variables x∗ and λ∗, can be obtained iteratively using

either the subgradient or ellipsoid methods [19, 21].

The sub-gradient method for the dual problem can be described as fol-

lows: For initial values of the Lagrange multipliers λ(t) for t = 0, find x(t) =

arg min
x∈χ

L(x,λ(t)). Then λ(t+1) is updated as:

λ(t+1)
=

(

λ(t)
+ δ(t) f (x(t))

)+

, (2.63)

where t = 0, 1, · · · , f (x(t)) = [ f1(x(t)), · · · , fm(x(t))]T, and (x)+ = max{x, 0}. Some

of the used values for δ(t) are δ(t) = κ , δ(t) =
κ

t+1
, and δ(t) =

κ√
t+1

, where

κ is sufficiently small [21]. The procedure is repeated iteratively, that is, by

finding the argument x(t) that minimizes the Lagrangian function, and using

it to update the Lagrange multipliers λ(t+1). It is noted that the convergence

of the subgradient method is very slow [143].

Ellipsoid method is a multi dimensional bisection method. It is an effi-

cient algorithm for structured problems; that is, it is faster in convergence

compared to the subgradient method [19]. It can be used to solve the dual

problem by updating the dual variables. The ellipsoid method basic idea

is that the optimal solution is located within an ellipsoid, then at each it-

eration, the volume of the ellipsoid is reduced until the optimal solution

is obtained within a specified tolerance. For initial values of the Lagrange

multipliers λ(t), for t = 0, the value of x(t) is obtained as x(t) = arg min
x∈χ

L(x,λ(t)).
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Algorithm 2.1 Dual Method

Initialize λ(t).
Repeat
Find x(t) by solving an unconstrained optimization problem (the La-
grangian function).
Update the Lagrangian multipliers using (2.63) or (2.65).

Until x(t) is feasible and |∑m
j=1 λ

(t)

j
f j(x

(t))| ≤ ǫ.
Return f0(x(t)) and x(t) as the approximate optimal value and optimal so-
lution, respectively.

The ellipsoid E(t) at iteration t is defined as [167]:

E(t)
= {λ|(λ − λ(t))TA−1

t (λ − λ(t)) ≤ 1}, (2.64)

where A−1
t is positive semi-definite matrix. A(t) defined as the inverse matrix

of A−1
t . λ(t+1) and A(t+1) are updated to generate a new ellipsoid E(t+1) as:

λ(t+1)
= λ(t) − 1

m + 1
A(t)b(t), (2.65a)

A(t+1)
=

m2

m2 − 1

(

A(t) − 2

m + 1
A(t)b(t)b(t)TA(t)

)

, (2.65b)

where b(t)
=

f (x(t))√
f (x(t))TA(t) f (x(t))

. The dual method is illustrated in Algorithm 2.1.

The termination criterion is chosen as |∑m
j=1 λ j

(t) f j(x
(t))| ≤ ǫ, since it is often

difficult to find an x(t) that satisfies simultaneously the feasibility and the

complementary slackness conditions exactly.

2.4.3 Optimality Conditions

Karush-Kuhn-Tucker (KKT) first condition is a necessary condition for a

point to be a local minimizer, stated as follows [27]:

Theorem 2.4.4 Let f0(x) , f j(x), gi(x) ∈ C1, for j = 1, · · · ,m, and i = 1, · · · , p,

and let x∗ be a regular point and a local minimizer for (2.48). Then, there exist

λ∗ = (λ∗
1
, · · · , λ∗m) ∈ Rm and µ∗ = (µ∗

1
, · · · , µ∗p) ∈ Rp such that

1. λ∗ ≥ 0.
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2. ∇ f0(x∗) +
∑m

j=1 λ
∗
j
∇ f j(x

∗) +
∑p

i=1
µ∗

i
∇gi(x

∗) = 0.

3. λ∗
j
f j(x

∗) = 0, for j = 1, · · · ,m.

where a regular point x∗ is defined as:

Definition 2.4.3 x∗ is a regular point if the vectors ∇gi(x
∗), for i = 1, · · · , p, and

∇ f j(x
∗), for j ∈ J(x∗) are linearly independent, where J(x∗) is the index set of

active inequality constraints, that is, J(x∗)
def
= { j : f j(x

∗) = 0}.

The KKT condition is applied in the same way as any necessary condition.

Specifically, points that satisfy the KKT condition are considered as candi-

date minimizer of the optimization problem (2.48). For convex optimization

problems with zero duality gap, the first order KKT condition is a necessary

and sufficient condition for optimality.

The KKT second order necessary condition for optimality is stated as:

Theorem 2.4.5 Let f0(x) , f j(x), gi(x) ∈ C2, for j = 1, · · · ,m, and i = 1, · · · , p,

let x∗ be a regular point and a local minimizer for (2.48). Then, there exists λ∗ =

(λ∗
1
, · · · , λ∗m) ∈ Rm and µ∗ = (µ∗

1
, · · · , µ∗p) ∈ Rp such that

1. λ∗ ≥ 0.

2. ∇ f0(x∗) +
∑m

j=1 λ
∗
j
∇ f j(x

∗) +
∑p

i=1
µ∗

i
∇gi(x

∗) = 0.

3. λ∗
j
f j(x

∗) = 0, for j = 1, · · · ,m.

4. For all y , 0, we have yTΨ(x∗,λ∗,µ∗)y ≥ 0,

where ∀y ∈ Rn the following holds:

• yT∇gi(x
∗) = 0, for i = 1, · · · , p,

• yT∇ f j(x
∗) = 0, for j ∈ J(x∗).

AndΨ(x,λ,µ) is computed as:

Ψ(x,λ,µ) = F0(x) +

m∑

j=1

λ jF j(x) +

p
∑

i=1

µiGi(x), (2.66)
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where F0(x), F j(x), and Gi(x) are the Hessian matrices at x of f0(x), f j(x),

and gi(x), respectively. The Hessian matrix F j(x) of the function f j(x), j =

0, 1, · · · ,m is computed as:

F j(x) =





∂2 f j(x)

∂x2
1

· · · ∂2 f j(x)

∂x1∂xn

. . .

∂2 f j(x)

∂xn∂x1
· · · ∂2 f j(x)

∂x2
n





. (2.67)

The second order sufficient condition for optimality is stated as:

Theorem 2.4.6 Suppose f0(x) , f j(x), gi(x) ∈ C2, for j = 1, · · · ,m, i = 1, · · · , p,

and there exist a feasible point x∗ ∈ Rn and there exist vectors λ∗ = (λ∗
1
, · · · , λ∗m) ∈

R
m and µ∗ = (µ∗

1
, · · · , µ∗p) ∈ Rp such that

1. λ∗ ≥ 0.

2. ∇ f0(x∗) +
∑m

j=1 λ
∗
j
∇ f j(x

∗) +
∑p

i=1
µ∗

i
∇gi(x

∗) = 0.

3. λ∗
j
f j(x

∗) = 0, for j = 1, · · · ,m.

4. For all y , 0 we have yTΨ(x∗,λ∗,µ∗)y > 0,

then x∗ is a strict local minimizer of (2.48).

Usually, using the second order condition for optimality check is computa-

tionally expensive [104].

2.4.4 Nonlinear Programming

One of the greatest challenges for nonlinear non-convex problems is to find

the global optimum, since some problems exhibit local optima, where the lo-

cal optima satisfy the requirements on the derivatives of the function. First,

we will introduce algorithms to find local optimum. Specifically, barrier

(interior-point) and penalty methods are discussed, then we will discuss

some techniques to find global optimum.
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Algorithm 2.2 Barrier Method

Initialize βt > 0, feasible x(t).
Repeat
Find x(t) in (2.69).
Update βt+1 = νβt, ν > 1.
Until tolerance is satisfied.
Return f0(x(t)) and x(t) as the approximate optimal value and optimal so-
lution, respectively.

A barrier function is a continuous function whose value on a point in-

creases to infinity as the point approaches the boundary of the feasible re-

gion. It is used to penalize the term that violates the constraints. The barrier

function should be convex and smooth. One of the most common types of

barrier function is the logarithmic barrier function defined as:

I(x) = −
m∑

j=1

log(− f j(x)). (2.68)

The barrier method stands on solving an optimization problem for a se-

quence of iterations t = 1, 2, · · · . For each iteration t, and βt > 0, the associ-

ated optimization problem can be written as:

min
x∈χ
βt f0(x) + I(x), (2.69a)

s.t. g j(x) = 0, j = 1, · · · , p. (2.69b)

The barrier method computes the optimal x∗ of (2.48) by solving a sequence

of the associated optimization problem (2.69) by updating the value βt+1 =

νβt, with ν > 1 until the solution is within a specified tolerance. Various

modifications of interior-point method for linear and quadratic program-

ing were proposed to cope with non-convexity of the objective function

and non-linearity of the equality constraints. Generally, the interior point

method starts from the center of the feasible region, then follows the cen-

tral path, and finally converges to an optimal solution [20]. Algorithm 2.2
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illustrates the barrier method.

The penalty function method for solving constrained optimization prob-

lems involves constructing and solving an associated unconstrained opti-

mization problem, and using the solution to the unconstrained problem as

the solution to the original constrained problem [104].

Definition 2.4.4 A function P(x) : Rn 7→ R is called a penalty function for (2.48)

if it satisfies the following three conditions:

• P(x) is continuous.

• P(x) ≥ 0, ∀x ∈ Rn.

• P(x) = 0 if and only if x is feasible, that is f j(x) ≤ 0, for j = 1, · · · ,m and

gi(x) = 0, for i = 1, · · · , p.

The penalty function P(x) must be appropriately chosen to have a good ap-

proximation of the original problem (2.48). The penalty function is defined

in terms of the constraint functions. One possible choice is the so-called

Courant-Beltrami penalty function, defined as [27]:

P(x) =

m∑

j=1

max2( f j(x), 0) +

p
∑

i=1

g2
i (x). (2.70)

The association function q(γt, x) is defined as:

q(γt, x) = f0(x) + γtP(x), (2.71)

where γt is a given positive constant for t = 1, 2, · · · . The associated uncon-

strained optimization problem for each t can be written as:

min
x∈χ

q(γt, x), (2.72)

Let x(t) be the solution of (2.72), the following theorem relates the conver-

gence of the sequence x(t) as t→∞ to the solution of (2.48) as [13]:
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Algorithm 2.3 Penalty Method

Initialize γt, and x(t).
Repeat
Find x(t) in (2.72).
Update γt+1 = νγt, ν > 1.
Until the termination criterion is satisfied.
Return f0(x(t)) and x(t) as the approximate optimal value and optimal so-
lution, respectively.

Theorem 2.4.7 Let f0(x) ∈ C1, γt < γt+1, and γt → ∞ as t → ∞. Then, the

limit of any convergent sequence x(t) is a solution to the constrained optimization

problem (2.48).

Algorithm 2.3 illustrates the penalty method.

The initial starting point for the optimization algorithm plays an impor-

tant role in achieving the global optimum for non-convex functions. One

popular approach is to use stochastic initial points; these algorithms use

random or pseudo-random numbers to initialize the algorithm in the fea-

sible region (for example, it can be used with the barrier method), so that

different local optima can be obtained, by comparing the local optima. The

probability of finding the global optimum is increased with the number of

initialization points. In addition, there are various stochastic optimization

methods that use non-conventional approaches to find the optimal such as,

simulated annealing, genetic, and PSO algorithms [109].

2.4.5 Mixed Integer Programming

Mixed integer programing are formulated as follows:

min
x,y

f0(x, y), (2.73a)

s.t. f j(x, y) ≤ 0, j = 1, · · · ,m, (2.73b)

gi(x, y) = 0, i = 1, · · · , p, (2.73c)

x ∈ Rn, y ∈ ZN. (2.73d)
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In general, mixed integer programming are very hard to solve even for the

simple linear objective and constraint functions. Enumerating all the in-

teger solutions in the feasible region and individually solving the resulted

optimization problems and checking each one for optimality, are computa-

tionally extensive. As the dimension of the problem grows, enumeration

becomes NP hard. One common technique is to relax the value of the in-

teger variables. Simply rounding the solution will often compromise op-

timality. Besides, the rounded solution may not be in the feasible region.

For linear mixed integer programming techniques based on solving linear

programming problems such as the cutting plan method, can be used to

solve the problem. Mixed integer non-linear programming (MINLP) can be

solved using algorithms that seek an upper and lower bound of the MINLP

such as the generalized benders decomposition(GBD) algorithm. The upper

bound results from the primal problem, while the lower bound results from

the master problem. The primal problem corresponds to (2.73) with fixed y

variables and its solution provides information about the upper bound and

the Lagrange multipliers associated with the equality and inequality con-

straints. The master problem is derived via nonlinear duality theory, which

makes use of the Lagrange multipliers obtained in the primal problem. Its

solution provides information about the lower bound, as well as the next set

of fixed y variables to be used subsequently in the primal problem. The ter-

mination criterion for GBD is based on the difference between the updated

upper bound and the current lower bound. GBD algorithm has finite con-

vergence if the problem has certain structures; for example, the functions

f0(x, y), fi(x, y), and g j(x, y) for j = 1, · · · ,m, and i = 1, · · · , p are separable in

x, and y [39].
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2.4.6 Particle Swarm Optimization

PSO has been widely used to solve continuous and integer programming

problems in a faster and cheaper way, compared to other stochastic opti-

mization methods [82, 165]. The swarm is defined as a set of candidate so-

lutions known as particles of size P. Each particle [xp : yp] for p ∈ {1, . . . ,P}

represents a potential solution to the optimization problem:

min
x,y

f0(x, y), (2.74a)

x ∈ Rn, y ∈ ZN, (2.74b)

where xp represents the continuous variable vector defined as: xp = [x
(p)

1
, . . . ,

x
(p)
n ], and yp represents the binary variables vector defined as: yp = [y

(p)

1
, . . . ,

y
(p)

N
]. Using PSO, the continuous particle solution is updated as [82]:

x
(t+1)
p = x

(t)
p + v

(t+1)
p for t ≥ 1, (2.75)

where v
(t)
p is the pseudo-velocity for the continuous variables and computed

as:

v
(t+1)
p = ω(t)v

(t)
p + c1r1(x(t)

p,best
− x

(t)
p ) + c2r2(x(t)

Gbest
− x

(t)
p ) for t ≥ 1, (2.76)

the particle new velocity v
(t)+1
p depends on the previous velocity v

(t)
p and the

distance of its current position x
(t)
p from its own best position x

(t)

p,best
and the

global best position x
(t)

Gbest
. The best position x

(t)

p,best
is defined as the position

at which the particle had best fitness (that is, minimum objective function),

and it is checked at the end of every iteration. The global best position x
(t)

Gbest

is defined as the best of x
(t)

p,best
of all particles. r1 and r2 are uniform random

numbers between 0 and 1, c1 and c2 are two positive constants, andω(t) is the

inertia weight, which is employed to control the impact of previous history.
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For integer variables, two approaches can be used to represent and up-

date the value and the velocity of the variables. In the first approach, the

integer variable is treated as a real variable; the velocity and value are up-

dated using (2.75) and (2.76), then the value is rounded to the nearest inte-

ger. In this second approach, a suitable number of binary digits d is selected

to represent the value. The velocity of particle p at time t with d binary digits

is defined as ṽ
(t)
p , the update of the binary velocity can be computed as:

ṽ
(t+1)
p = ω(t)ṽ

(t)
p + c1r1(y(t)

p,best
− y

(t)
p ) + c2r2(y(t)

Gbest
− y

(t)
p ) for t ≥ 1, (2.77)

where y
(t)

p,best
and y

(t)

Gbest
are analogy to x

(t)

p,best
and x

(t)

Gbest
for the binary variables.

The binary variables y
(t)
p are then updated as [165]:

If c
(t+1)
p ≤ sig(ṽ(t)

p ) then y
(t+1)
p = 1 else y

(t+1)
p = 0, (2.78)

where c
(t)
p is a vector of random numbers of [0, 1]dN, and sig(·) is the sig-

moid function defined as sig(x) = 1
1+exp(−x)

. Initially, v
(0)
p and ṽ

(0)
p are random

numbers within the boundary 0 ≤ v
(0)
p , ṽ

(0)
p ≤ vmax. The particle then flies

toward a new position according to (2.75) and (2.78). The update speed for

the continuous variables could be set faster/slower than the speed of the bi-

nary variables in order to allow for convergence. The performance of each

particle is measured according to the objective of the optimization problem

(2.74).

For constraint optimization problems, there are efficient techniques to

handle the constraints in (2.73), such as using a penalty term in the objec-

tive function or using a fitness function [109]. If the constraints are linear,

there is no need to include them in the fitness function. The updated vari-

ables are selected to satisfy the constraints, otherwise they are normalized

or reinitialized such that the constraints are satisfied. PSO method is illus-

trated in Algorithm 2.4.
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Algorithm 2.4 PSO Method

Initialize x
(t)
p , and y

(t)
p , for p = 1, · · · ,P.

Repeat

Evaluate the objective function f0(x(t)
p ,y

(t)
p ) in (2.74) for p = 1, · · · ,P.

Find x
(t)

p,best
, y

(t)

p,best
, x

(t)

Gbest
, and y

(t)

Gbest
.

Update x
(t)
p , and y

(t)
p , for p = 1, · · · ,P.

Until termination criterion is satisfied.
Return f0(x(t)

Gbest
,y(t)

Gbest
), x

(t)

Gbest
, and y

(t)

Gbest
as the approximate optimal value

and optimal solution, respectively.

2.5 Game Theory Concepts

In this section, the basic elements of game theory are defined. The cele-

brated Nash equilibrium (NE) solution concept is introduced. Theorems

related to the existence and uniqueness of NE are reviewed. Special game

types are highlighted. A brief introduction to auction terminology is given,

and the Shapley value solution concept to cooperative games is introduced.

Game theory is a mathematical tool to study the interactions among

decision-makers who can have conflicting or common interests. Decision-

makers are called players in game theory, the meaning of a player can be

very broad; it can be a human being, a machine, an automaton, etc. Inter-

action means that what others do has an impact on each player; what she

gets from a decision does not only depend on her decision. Game theory

possesses its own tools, notations and solution concepts coming from dif-

ferent areas such as economics, biology, and computer science. Rationality,

punishments, cooperative plans, and evolutionary strategy are examples of

game theory terminologies. Game theory uses interaction models, behav-

ior models, and information assumptions aiming to predict the outcome of

the interactive situation. Solution concepts and other issues like existence,

uniqueness of the solution are essentials of game theory [90].

Games can be classified into two representative types non-cooperative

and cooperative games as shown in Figure 2.7. In cooperative games, the
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Nash
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Figure 2.7 Game Classifications.

basic modeling unit is the group rather than the individual player, and the

coalition model captures the capability of different groups. Solutions in co-

operative games deal with distributing the profit among the users in the

coalition, different solution concepts are used for cooperative games such

as the core and Shapley value.

Non-cooperative games do not always infer that the players do not co-

operate, but it means that any cooperation that might occur must be self-

enforcing with no communications or coordination of strategic choices among

the players [53]. Non-cooperative games are represented using two forms;

normal (strategic) and extensive forms. The strategic form is the most used

form. It is appropriate for mathematical analysis and can be used for both

discrete and continuous strategy sets. Firstly, some notations and defini-

tions in game theory will be introduced, and then solution concepts are

discussed. The normal form stands on the existence of a utility function

for each player, which represents the cost or payoff to the player. In some

scenarios in wireless communications, performance measures e.g., QoS are

used directly as utility functions.

The strategic game is defined as follows:

Definition 2.5.1 A strategic game is an ordered triplet:

G = (I, {Si}i∈I, {Ui}i∈I), (2.79)

where I = {1, · · · , I} is the set of players, Si is the set of strategies of player i, and

Ui : S 7→ R is the utility of player i, and S = S1 × · · · ×Si × · · · ×SI is the Cartesian
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product of the strategy sets.

For player i, si ∈ Si denotes a strategy, s−i = [s j] j∈I, j,i denotes the vector of

strategies of all players except player i, and s = (si, s−i) ∈ S is referred to as

the strategy profile. The game is called finite whenever the sets of strategies

Si are finite for all i ∈ I.

Extensive games are used to represent games that are played sequen-

tially. Tree is the key feature of the extensive form, since the game is rep-

resented by a tree. At each node of the tree, a given player can make a

decision, so the next node depends on the decision made of other players.

Extensive game is defined as:

Definition 2.5.2 An extensive form game is a sextuplet:

G = (I,V , vroot, π, {V i}i∈I,U), (2.80)

where I = {1, · · · , I} is the set of players, (V , vroot, π) is a tree with V is the set

of vertices (nodes), vroot is the root node, and π is the predecessor function, that

is, ∀v ∈ V ,∃ n ≥ 1, π(n) = π ◦ · · · ◦ π = vroot, {V i}i∈I is a partition of V , and

U = (U1, · · · ,UI) is a result function.

The extensive form is some times more intuitive and gives a better under-

standing of the game, and it can be used for computer-based analysis.

Games can be classified into two types based on the available infor-

mation to the players; complete information, and non-complete informa-

tion games. In complete information games, it is assumed that the data of

the game are common knowledge (the actions and utility functions), that

is, every player knows the data of the game, every player knows that the

other players know the data of the game, and every player knows that the

other players know that she knows the data of the game. Games with non-

complete information (known as Bayesian games) model the case where the

players have partial information about the game. Furthermore, games can
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be classified into two types based on the history of the game as perfect and

imperfect information games. When all the players know the history of the

game perfectly, it is called perfect information game, otherwise, it is called

imperfect information game.

A game is classified as static, if players take their actions only once, in-

dependent of each other. In contrast, a dynamic game is one where play-

ers may act more than once; that is, players have some information about

others’ actions, and time has an important role in decision-making. Game

theory has been recently used extensively in communication systems and

networks to model routing, flow control, power control in up-link CDMA

systems, and resource allocations in cooperative communications [3, 28, 47,

60, 127, 149, 156].

2.5.1 Solution Concepts

For an optimization problem the key notion is the optimal profile, that is, a

strategy that maximizes the objective function under the given constraints.

However, the situation is even more complex in a game setting. In this case,

the environment includes other players, all of whom are also hoping to max-

imize their payoffs. Thus the notion of an optimal profile for a given player

is not meaningful; the best strategy depends on the choices of others. Game

theory deals with this problem by identifying certain subsets of outcomes,

called solution concepts, that are interesting in one sense or another. In this

subsection, we describe some of the most fundamental solution concepts:

dominant-strategy equilibrium, Nash equilibrium, and Pareto optimality.

One useful concept for solving non-cooperative games in strategic form

is the notion of dominate-strategy equilibrium. Dominant strategy is de-

fined as:
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Definition 2.5.3 A strategy si ∈ Si is said to be dominant for player i if [40]

Ui(si, s−i) ≥ Ui(śi, s−i),∀śi ∈ Si, and ∀s−i ∈ S−i, (2.81)

where S−i =
∏

j∈I, j,i

S j is the set of all strategy profiles for all players except player i.

Whenever a player has a dominant strategy, she has no incentive to choose

any other strategy. If each player has a dominant strategy, then all users will

choose their dominant strategies. This strategy profile denoted as dominant

strategy equilibrium is defined as:

Definition 2.5.4 A strategy profile s∗ ∈ S is the dominant-strategy equilibrium if

every element s∗
i
∈ s∗ is a dominant strategy for player i.

The existence of dominant-strategy equilibrium is not guaranteed in many

games.

On the other hand, strictly dominated strategies are defined as:

Definition 2.5.5 A strategy śi ∈ Si of a player i is said to be strictly dominated by

a strategy si ∈ Si if

Ui(si, s−i) > Ui(śi, s−i), ∀śi ∈ Si, śi , si. (2.82)

A player in a complete information game eliminates all strictly dominated

strategies before making a decision. Eliminating all strictly dominated strate-

gies leads to a concept called iterated strictly dominance, which can be used

to reduce the strategy space and in some cases results in a reasonable out-

come of the game.

The most accepted solution concept for a non-cooperative game is that

of Nash equilibrium (NE). It is a state of a non-cooperative game where no

player can improve her utility function by changing its strategy, if the other

players keep their current strategies. Formally, NE is defined as:
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Definition 2.5.6 A pure strategy NE of a non-cooperative game G = (I, {Si}i∈I,

{Ui}i∈I) is a strategy profile s∗ ∈ S such that ∀i ∈ I the following holds:

Ui(s
∗
i , s
∗
−i) ≥ Ui(si, s

∗
−i), ∀si ∈ Si, (2.83)

where pure strategies are deterministic choices by the players. In general,

a player may be able to assign a certain probability to each pure strategy,

which constructs the mixed strategy concept. NE is strict if Ui(s
∗
i
, s∗−i

) >

Ui(si, s∗−i
), ∀si ∈ Si.

When studying NE of a game, the key points of interest are existence,

multiplicity (or uniqueness) and efficiency.

Static continuous kernel games are games where the strategy sets have

uncountably many elements, such as subsets of a finite-dimensional Eu-

clidean space, and the payoff functions are continuous on these sets. In

other words, the strategies are intervals, or unions of sub-intervals of the

real line. For static continuous kernel games, the concept of best response

(BR) function is useful to solve some games, which is defined as:

Definition 2.5.7 The BR function bi(s−i) of a player i to the profile of strategies s−i

is a set of strategies for player i such that:

bi(s−i) = {si ∈ Si|Ui(si, s−i) ≥ Ui(śi, s−i),∀śi ∈ Si}, (2.84)

NE can be characterized using the BR function, that is, it is a strategy profile

for which every player’s strategy is a best response to the other players’

strategies. This can be stated as:

Theorem 2.5.1 A strategy profile s∗ ∈ S is a Nash equilibrium of a non-cooperative

game if and only if every player’s strategy is a best response to other players’ strate-

gies; that is,

s∗i ∈ bi(s
∗
−i), ∀i ∈ I. (2.85)
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If each player i has a single best response for every strategy profile s−i, then

(2.85) can be written as the following set of equations:

s∗i = bi(s
∗
−i), ∀i ∈ I. (2.86)

To find NE, one can find the BR function of each player, then the strategy

profiles that satisfy (2.85) are sought, which reduces to the solution of the

set of equations (2.86) for single BR function. If closed form expressions for

the BR can be found, the pure strategy NE and their existence can be found

by investigating the intersection of these BR functions. In particular, if the

BR function can be found explicitly, the uniqueness of the pure strategy NE

can be proved by the concept of a standard function, which is defined as:

Definition 2.5.8 A function f : S 7→ R
I
+

is said to be standard if it has the follow-

ing properties:

• Monotonicity: ∀s, ś ∈ S, s ≤ ś⇒ f (s) ≤ f (ś).

• Scalability: ∀α > 0, s ∈ S, f (αs) ≤ α f (s).

The standard function has a unique fixed point. This is used to prove the

following theorem [164]:

Theorem 2.5.2 If the BR functions of a non-cooperative game G = (I, {Si}i∈I, {Ui}i∈I)

are standard functions for all players, that is, ∀i ∈ I, then the game has a unique

NE in pure strategies.

Away from the BR, some theorems exist for describing the existence of NE,

the most common is the following:

Theorem 2.5.3 Given a non-cooperative game in strategic form G = (I, {Si}i∈I,

{Ui}i∈I), if ∀i ∈ I, every strategy set Si is compact and convex, Ui(si, s−i) is a

continuous function in the profile of strategies s ∈ S and quasi-concave in si, then

the game has at least one pure strategy NE.
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Theorem 2.5.3 can be used to show the existence of NE. It does not give any

idea about the number of these equilibria. The following theorem is useful

to show the uniqueness of NE [112].

Theorem 2.5.4 Consider a strategic game G = (I, {Si}i∈I, {Ui}i∈I) where ∀i ∈ I,

every strategy set Si is compact and convex, Ui(si, s−i) is a continuous function in

the profile of strategies s ∈ S and concave in si. Let r = (r1, · · · , rI) be an arbitrary

vector of fixed positive parameters, if the diagonal strict concavity (DSC) property

holds true, that is,

∃ r : (s − ś)
(

g(s, r) − g(ś, r)
)

> 0, ∀s, ś ∈ S, s , ś, (2.87)

with g(s, r)
def
= [r1

∂U1(s1,s−1)

∂s1
, · · · , rI

∂UI(sI ,s−I)

∂sI
]T, then the game has a pure strategy NE.

Theorem 2.5.4 is used to prove the uniqueness of NE in many wireless com-

munication problems as in [10]. In many cases, proving the DSC property

in complicated scenarios is difficult and restrictive since the condition needs

to be satisfied for all strategies [53]

One measure of the efficiency of a strategy is Pareto optimality concept,

defined as:

Definition 2.5.9 A strategy profile s ∈ S is Pareto-superior to another strategy

profile ś ∈ S if for every player i ∈ I the following inequality holds:

Ui(si, s−i) ≥ Ui(śi, ś−i), (2.88)

with strict inequality for at least one player. Hence, a strategy profile ŝ ∈ S is Pareto

optimal (PO) if there exists no other strategy profile that is Pareto-superior to ŝ.

A PO outcome cannot be improved without hurting at least one player. In

a game with multiple equilibria, it is desired to select a PO equilibrium, if

possible. In general, NE is not PO.
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Besides Pareto optimality, the price of anarchy2 is another metric that

can be used to evaluate the performance of NE. It is defined as the ra-

tio of the maximum social welfare obtained by maximizing the total util-

ity
∑

i∈I
Ui(s) over S to the social welfare achieved at the worst-case equilib-

rium. Let SNE defined as the set of NE strategy profiles of a given game

G = (I, {Si}i∈I, {Ui}i∈I), then the price of anarchy η is computed as [88]:

η =

min
s∈SNE

∑

i∈I
Ui(s)

max
s∈S

∑

i∈I
Ui(s)

. (2.89)

In general, no formal rule exists for selecting an efficient equilibrium, even

though concepts such as Pareto optimality and the price of anarchy are suit-

able in some situations. Some techniques such as pricing and hierarchy

structure are used to improve NE as in [89, 115]. In [89], the authors pro-

posed hierarchy to improve energy-efficiency for non-cooperative power

control game. In [115], the authors proposed a linear pricing function of

the transmitted power to establish a Pareto optimal power solution for the

uplink one-cell code division multiple access (CDMA) wireless system.

2.5.2 Special Classes of Non-Cooperative Games

In this subsection, we investigate two special classes of games: Potential and

Stackelberg games. Potential games are non-zero sum games which possess

a potential function that can be used to determine NE. The set of pure NE

can be found by finding the maximum of the potential function. Formally a

potential game is defined as:

Definition 2.5.10 A non-cooperative strategic game G = (I, {Si}i∈I, {Ui}i∈I), is an

exact potential game if there exists an exact potential function Φ : S 7→ R such that

2The price of stability can be defined in a similar way using best-case equilibrium [88].
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∀i ∈ I,

Φ(x, s−i) −Φ(y, s−i) = Ui(x, s−i) −Ui(y, s−i), ∀x, y ∈ Si, ∀s ∈ S. (2.90)

An equivalent condition for the existence of an exact potential function Φ(·)

is [101]:

∂Ui

∂ai
=
∂Φ

∂ai
. (2.91)

In a similar fashion, the ordinal potential function can be defined as:

Definition 2.5.11 A game is a general ordinal potential game if there is an ordinal

potential function Φ : S 7→ R such that:

sign
(

Φ(x, s−i) −Φ(y, s−i)
)

= sign
(

Ui(x, s−i) −Ui(y, s−i)
)

, ∀x, y ∈ Si, ∀s ∈ S.

(2.92)

The interest in potential game is due to the following results [40]:

Corollary 2.5.1 For infinite potential games (with a finite number of players), a

pure strategy NE exists if

1. Si are compact strategy sets.

2. The potential function Φ is upper semi-continuous on S.

Another interesting result for potential game that is pertained to the unique-

ness of NE is:

Corollary 2.5.2 For infinite potential games (with a finite number of players),

unique pure strategy NE exists if

1. The strategy set S is compact and convex.

2. The potential function Φ is continuously differentiable on the interior of S.

3. The potential function Φ is strictly concave in S.
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Finding a potential function for a game is a difficult task, and in many cases

a potential function may not exist. The following theorem can be used to

check the existence of a potential function.

Theorem 2.5.5 Given a strategic game where the strategy sets Si, ∀i ∈ I, are

intervals of R, and assuming the utilities are twice continuous differentiable, then

this game is a potential game if and only if

∂2
(

Ui(si, s−i) −U j(s j, s− j)
)

∂si∂s j
= 0,∀i, j ∈ I, i , j. (2.93)

Stackelberg games describe a hierarchical decision-making scheme, where

one or more of the players declare and announce their strategies before the

other players decide their strategies. In such games, the declaring players

are called leaders, and can be in a position to enforce their own strategies

upon the other players who are called the followers.

For a two player non-cooperative games between a leader and a fol-

lower, let Si, for i = 1, 2 denote the strategy set of player i. Each time the

leader (player 1) chooses a strategy s1 ∈ S1, she knows that the follower

(player 2) observes her action before taking a decision s2 ∈ S2. Formally, this

can be stated as:

Definition 2.5.12 Given a two player finite game, the set R2(s1), defined for each

strategy s1 ∈ S1 by:

R2(s1) = {s2 ∈ S2 : U2(s1, s2) ≥ U2(s1, t),∀t ∈ S2}, (2.94)

is the optimal response set of player 2 to the strategy s1 ∈ S1 of player 1.

As the leader knows that the follower observes her action, when the fol-

lower reaction set R2(s1) is a singleton for each s1 ∈ S1, then the leader has
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the following utility to maximize:

max
s1∈S1

U1

(

s1,R2(s1)
)

. (2.95)

The concept of Stackelberg equilibrium strategy (s∗
1
, s∗2) for a two player game

is defined as:

s∗1 = max
s1∈S1

U1

(

s1,R2(s1)
)

, (2.96)

and,

s∗2 = R2(s∗1). (2.97)

It is worth noting that using Stackelberg game can improve the leader utility

when the followers reaction set R2(s1) is a singleton for each s1 ∈ S1 as per

the following theorem.

Theorem 2.5.6 For a given two-person finite game, let U∗
1

and UNE
1

denote, re-

spectively, the Stackelberg Equilibrium utility and the Nash Equilibrium utility of

player 1 (the leader in Stackelberg formulation). If the reaction set is a singleton set

for all s1 ∈ S1, then the following holds:

U∗1 ≥ UNE
1 . (2.98)

Accordingly, Stackelberg solution for a single leader multi-follower non-

cooperative game describes the case where the leader maximizes her util-

ity function given the reaction set of the follower group while the followers

respond to the leader announced strategy by playing according to a certain

equilibrium concept (e.g., Nash Equilibrium). The case of more than two

levels of hierarchy can be treated using the concept of backward-induction

from extensive games as in [89]. Stackelberg game is used extensively to

perform resource allocation for relay networks as in [28, 149, 163, 170].
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2.5.3 Distributed Algorithms

In this subsection, we present distributed algorithms to reach an equilib-

rium based on the best response correspondence (or function). Asynchronous

(sequential) best response dynamics (ABRD) and synchronous (simultane-

ous) best response dynamics (SBRD) are discussed in [90]. For a strategic

form game G = (I, {Si}i∈I, {Ui}i∈I), the ABRD assumes that G starts at initial

state s(0) = (s(0)

1
, · · · , s(0)

I
). Player i for i ∈ I update her strategy by choosing

her best response to s(0)

−i
as s(1)

i
= BRi(s

(0)

−i
). If there is more than one best

strategy, one of them is chosen randomly. The algorithm proceeds by up-

dating the strategy of another player by choosing her best response to the

new action profile, and so on. In SBRD algorithm all players update their ac-

tions synchronously. Both the ABRD and SBRD have been used in resource

allocation for wireless communication problems as in [101, 118].

There are not many general results regarding the convergence of the best

response dynamics, which means, that each situation needs to be investi-

gated by itself. One of the positive properties of potential games is that

SBRD dynamics converge with probability of one to a pure Nash equilib-

rium [90].

2.5.4 Auction Theory

An auction may take many forms, but it is described by two properties:

first, it is used to sell any item. Second, the outcome of the the auction does

not depend on the identity of the bidders, that is, auctions are anonymous.

Auction can be defined as [53]:

Definition 2.5.13 An auction is a market mechanism in which an object, service,

or set of objects, is exchanged on the basis of bids submitted by participants. It

provides a specific set of rules that will govern the sale of an object to the submitter

of the most favorable bid. Specific mechanism includes: first price, second price,
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English, and Dutch auctions.

Auctions can be categorized in many ways. In general, there are four types

of auctions that are used for single item allocation as follows:

1. First Price Auction: The bidder who submits the highest bid is awarded

the object being sold and pays a price equal to the amount of the bid.

First price auctions are either sealed-bid, in which bidders submit bids

simultaneously, or Dutch. In first price auctions, bidders shade their

bids below their true value.

2. Second Price Auction: The bidder who submits the highest bid is

awarded the object being sold and pays a price equal to the second

highest bid. Second price auctions are either sealed-bid, or English, in

which bidders continue to raise each other’s bids until only one bidder

remains. In second price auctions, true value is a dominant strategy.

3. English Auction: It is a sequential second price auction, in which

the auctioneer directs participants to beat a standing bid. New bids

must increase the current bid by a predefined increment. The auction

ends when no participant is willing to outbid the current standing bid.

The participant who placed the current bid is the winner and pays the

amount bid.

4. Dutch Auction: A clock initially indicates a price for the object for sale

which is substantially higher than any bidder is likely to pay, then the

clock gradually decreases the price until a bidder indicates a willing-

ness to pay. The auction is then concluded and the winning bidder

pays the amount reflected on the clock at time the process was termi-

nated.

Most auction theory rotates around the above four basic types, other types

of auction such as share auction for divisible goods, double auction, and



74

multi-items auction have received some importance in wireless communi-

cations as in [66, 137, 159]. Bids in some wireless communication scenarios

are not used as true payments but are used as signals of willingness to pay.

2.5.5 Cooperative Games

In cooperative games, the players are allowed to form agreements among

themselves, which can affect the strategic choices of these players and their

utilities. Cooperative games includes two main categories bargaining and

coalition games. Bargaining games are out of the scope of this dissertation.

Here, we will give a brief introduction to coalition games and discuss one

solution concept of a coalition game called the Shapley value. Coalition

games can be defined as:

Definition 2.5.14 A Coalition game is defined by the pair (I, v), where v is a map-

ping that determines the payoff that any coalition of players can receive in the game.

Characteristic form game is a class of coalition games, where the value of a

coalition S ⊆ I of players depends solely on the members of that coalition,

with no dependence on how the players in I \ S are structured. A trans-

ferable utility (TU) game implies that the total utility can be divided in any

manner between the coalition members. Formally, the value of a TU game

can be defined as [113]:

Definition 2.5.15 The characteristic function of a coalition game with transferable

utility is a function v over the real line defined as: v : 2|I| 7→ R, with v(∅) = 0, and

|I| is the cardinality of the set I.

The characteristic function associates with every coalitionS ⊆ I a real num-

ber, that represents the value of S. The values in TU games represent the

monetary worth that members in a coalition can distribute among them-

selves using an appropriate rule. The amount of utility that player i ∈ S re-

ceives from the distribution of v(S) is the player’s payoff, and is denoted as
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xi. The payoff allocation for the players in the set S is denoted by the vector

x ∈ R|S|. Many solution concepts are defined for coalition games such as the

core, the nucleolus, and the Shapley value. The Shapley value has received

interest in this research because it is a unique and fair solution that always

exists. In contrast, the core suffers from three main drawbacks: it can be

empty, quite large, and allocations in the core may be unfair. Furthermore,

computing the Shapley value is less complex, compared with computing

the nucleolus, which is unique, always exists, and it is a fair allocation (that

is, achieves min-max criterion).

The Shapley value is denoted as Φ(v) = [Φ1(v), · · · ,Φi(v), · · · ,Φ|I|(v)],

where Φi(v) is the payoff given to player i. The Shapley value satisfies four

axioms as follows:

1. Efficiency Axiom: v(I) =
∑

i∈IΦi(v).

2. Symmetry Axiom: If player i and player í are such that v(S ∪ {i}) =

v(S ∪ {í}) for every coalition S not containing player i and player í,

then Φi(v) = Φí(v).

3. Dummy Axiom: If player i is such that v(S) = v(S ∪ {i}), for every

coalition S not containing i, then Φi(v) = 0.

4. Additive Axiom: If u and v are characteristics functions, then Φ(v +

u) =Φ(u + v) =Φ(v) +Φ(u).

The Shapley value for player i is computed as:

Φi(v) =
1

|I|!
∑

π∈Ω
v(Ci(π) ∪ {i}) − v(Ci(π)), (2.99)

where Ω is the set of all possible |I|! permutations on I, π is a permutation

in Ω, and Ci(π) is the set of players that precedes user i in the permutation

π.
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2.6 Conclusions

In this chapter, the basic concepts and notations that will be used through-

out the dissertation are introduced. The basic schemes of cooperative com-

munication, specifically AF, DF, and SDF are introduced with emphasis on

the outage probability, diversity order, and SEP performance measures. Ba-

sic concepts of optimization theory such as optimality conditions, duality

formulation, and solution methods are presented. Solution concepts, such

as NE for non-cooperative games, and Shapley value for cooperative games

are discussed. In the remainder of this dissertation, the emphasis will be in

studying the performance measures of specific cooperative communication

scenarios and designing resource allocation algorithms, using different for-

mulations. Tools and concepts from optimization and game theory frame-

works will be used to find the solutions.



CHAPTER3

ORDERED BEST RELAYS: PERFORMANCE

ANALYSIS

This chapter addresses relay selection in multi source multi relay scenarios.

Relay selection based on the highest end-to-end SNR utilizes the spectrum

efficiently, when only two time slots are used. For a system with multiple

users and multiple relays with limited power capability, the scenario of two

users competing for the same relay is pronounced. Along this direction, the

scenario of two users having the same best ordered relay is addressed for

both AF and DF cooperative communication schemes. We propose sharing

of the two ordered best relays over Rayleigh flat fading channel subject to re-

lay power constraint per user to establish full diversity order for both users.

We study the performance of the proposed scheme in terms of the outage

probability, diversity order, and the BEP performance measures. The MGF

formula of the received SNR of the two ordered best relays (the best, and

the next-best) after using MRC is derived assuming equal power sharing,

where each relay transmits with half power.

Introduction and related works are given in Section 3.1. The system

model and notations are introduced in Section 3.2. Three-time slots, and

two-time slots based cooperative relay transmission schemes with their per-

formance measures are presented in Sections 3.3 and 3.4, respectively. Nu-

merical results and discussions are presented in Section 3.5. Conclusions are
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drawn in Section 3.6.

3.1 Introduction

As discussed in Subsection 2.3.3, using the best ordered relay achieves full

diversity order using two time slots. However, for multi-user systems, the

probability of two users competing for the same best relay is significant and

comparable to the probability of having different best relays with similar

average channel conditions as was proven in [11]. In this sense, two solu-

tions are proposed in literature; the first solution is to use the best relay for

user one, and the next-best relay for the other user. So, this solution trans-

forms the problem to the kth best ordered relay selection problem, which

was investigated in [74–76, 158], by this solution the users achieve different

diversity orders. The second solution is to use the best relay for the two

users with half power for each user, if this choice gives better performance

than using the next-best relay alone with full power, which was proposed in

[11]. However, no analytical results for the BEP, or outage probability have

yet been derived because of the mathematical complexity. In summary, the

two solutions are based on using only one relay for each user.

In this chapter, we propose a different solution, in which the best relay

and the next-best relay are equally shared between the two users. The re-

lays are ordered based on the instantaneous end-to-end SNR of the source-

relay-destination links. Each user will have the chance to use the best and

the next-best ordered relays in a predetermined manner. The relay transmit

power is equally shared between the two users. Equal opportunity of using

the best relay is the base to build up this scheme. Three-time-slots are used,

where each user benefits from two relays as follows: the first-time-slot is

used to transmit the sources’ data to the relays and the destination nodes,

the second-time-slot is used to relay the processed data from the best relay

to the destination node, and the third-time-slot is used to relay the processed
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data from the next-best relay to the destination node. In addition, sharing

the two ordered best relays for both AF and DF cooperative schemes for

independent identically distributed (iid) flat fading Rayleigh channels, uti-

lizing two-time slots using distributed STBC or distributed beamforming

(BF) are also investigated to exploit the channel efficiently. The proposed

schemes place full diversity selection at the core of the design scheme, and

take into consideration the limited available power at the relay. The avail-

able power at the relay is used to support both users, and it is equally split

between them.

3.2 System Model

The system under consideration is depicted in Figure 3.1. In this model,

the channel characterizing the link between source Si and relay Rl is de-

noted as hSiRl
, and the channel characterizing the link between relay Rl and

destination node D is denoted as hRlD. Moreover, the channel identifying

the link between source Si and destination node D is denoted as hSiD. The

channels hSiRl
, hRlD, and hSiD are assumed iid Rayleigh random variables for

l ∈ {1, . . . ,K} with K is the number of relays, and i ∈ {1, 2}. The received

noise at all links is assumed to be iid AWGN with zero mean and variance

σ2
0. For relay selection schemes, the channel characterizing the link between

the source Si and the jth ordered best relay Rbj is denoted as h
( j)

SiR
, and the

channel characterizing the link between the jth ordered best relay and the

destination is denoted as h
( j)

RD
, where j ∈ {0, 1}.

In this chapter, time division multiple access (TDMA) is considered. For

a two-users case, each time slot is divided into two sub-slots. Frequency di-

vision multiple access (FDMA) can also be considered in a similar fashion,

where each frequency sub-band in FDMA corresponds to a time sub-slot in

TDMA. The sharing scenarios are classified into two categories: three-time

slots scenario (orthogonal), and two-time slots scenario (non-orthogonal).
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Figure 3.1 System Model.

In both scenarios, the first-time slot is used for the sources’ transmission

to the destination node and relay nodes (broadcast phase). Orthogonal in

this context refers to relay transmission, where the best relay transmits in

the second-time slot, and the next-best relay transmits in the third-time slot

(no interference). The second and third time slots are subdivided into Tm1,

and Tm2 for m ∈ {2, 3} to transmit user’s 1 and user’s 2 data respectively.

For two-time slots scenario, STBC or BF transmission schemes are used to

relay the data from the two best ordered relays to the destination node for

the two users simultaneously. Non-orthogonal in this context refers to the

transmission in the second-time slot; the best, and the next-best relays trans-

mit at the same time. Sub-slot T2i is used by the best and next-best relays

for transmitting user’s i data simultaneously for BF scenarios. The instanta-

neous value of the phase of the CSI of the source-relay and relay-destination

links are required to be available at the best, and the next-best relays to

perform distributed BF. For distributed STBC the best and next-best relays

transmit the re-encoded signal or the complex conjugate of the re-encoded

signal in a predetermined way as will be explained in Subsection 3.4.1. The

destination node for all scenarios, combines the directed and relayed signals

using MRC, where the received signals from all independent paths are co-
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phased, weighted, and combined, assuming the destination knows the in-

stantaneous CSI from the sources and relays. The instantaneous CSI is kept

invariant over multiple transmission intervals. So, the selection of the best,

and next-best relays is performed once for multiple transmissions. Relay se-

lection is performed before data transmission. The best and next-best relays

can be determined for both AF and DF in a centralized or distributed fash-

ion, depending on where the decision is carried out. In a centralized relay

selection, the destination node based on the end-to-end SNR of the source-

relay-destination links determines the best and the next-best relays, and in-

forms the selected relays through feedback channels. In a distributed relay

selection, each relay acquires the instantaneous CSI of the two links (relay-

destination, and source-relay), the CSI of the relay-destination link can be

acquired by allowing the destination to transmit a pilot signal. The relay

then can determine the CSI of the relay-destination link assuming that the

relay-destination link is symmetric. Besides, the CSI of the source-relay link

can be determined at the relay from the source request to transmit. Based

on CSI of the two links (relay-destination, and source-relay), the relay sets a

timer and remains silent inversely proportional to the end-to-end SNR. The

relay whose timer expires first or second will broadcast a signal to other re-

lays, indicating that they can go to a sleep mode for the rest of the current

transmission period. If the relay receives two signals from other relays be-

fore its timer goes to zero, it can go to a sleep mode, otherwise, it will be the

best relay or the next-best relay [16, 155].

3.3 Three-Time Slots Scenario

In this scenario, three-time slots are used. The selected relays are shared

between the two sources (users), where the relays transmit power is shared.

The transmission scheme is illustrated in Table 3.1, where Txi
stands for

transmission of user i data xi, and Rxi
stands for receiving user i (source Si)
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Table 3.1 Three-Time Slots Scenario.

Terminal T11 T12 T21 T22 T31 T32

S1 Tx1
- - - - -

S2 - Tx2 - - - -

Rb0 Rx1
Rx2 Tx1

Tx2 - -

Rb1 Rx1
Rx2 - - Tx1

Tx2

D Rx1
Rx2 Rx1

Rx2 Rx1
Rx2

data xi. The received signal y(D)
T1i

at the destination node D, in time slot T1 is

obtained as follows:

y(D)
T1i
=

√

PShSiDxi + n(D)

1i
, i = 1, 2. (3.1)

The received signal y(Rl)
T1i

at the relay node Rl, in time slot T1 is as:

y(Rl)
T1i
=

√

PShSiRl
xi + n(Rl)

1i
, i = 1, 2 & l = 1, . . . ,K. (3.2)

In particular, the received signal at the ordered best relays Rb0 and Rb1 in

time slot T1 is obtained as:

y
(Rbj)

T1i
=

√

PSh
( j)

SiRbj
xi + n

(Rbj)

1i
, i = 1, 2 & j = 0, 1, (3.3)

where n(D)

1i
, n(Rl)

1i
, and n

(Rbj)

1i
are the AWGNs at the destination D, at the re-

lay Rl, and at the best ordered relay Rbj, respectively. The relays are or-

dered based on the end-to-end SNR of the source-relay-destination links as

explained later in Subsections 3.3.1 and 3.3.2 for DF and AF scenarios, re-

spectively. The transmitted symbol xi is drawn from a constellation with

unit energy, and PS is the source transmitted power. The instantaneous re-

ceived SNR at the destination node, from the source Si through the direct

link over Rayleigh flat fading channel is defined as γSiD. It is computed
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using (3.1) as γSiD = γ0|hSiD|2, where γ0 =
PS

σ2
0

, and γSiD is a random vari-

able exponentially distributed with parameter λSiD. To simplify the analysis,

the source-destination links of user 1 and user 2 are assumed to be iid with

λS1D = λS2D = λSD =
1

γ0E[|hSiD
|2]

1. Similarly, the instantaneous received SNR

at the relay Rl from source Si is computed using (3.2) as γSiRl
= γ0|hSiRl

|2,

where γSiRl
is also an exponentially distributed random variable with pa-

rameter λSiRl
. The source relay links are assumed to have the same average

value λSiRl
= λSR =

1
γ0E[|hSiRl

|2]
, ∀l ∈ {1, . . . ,K}, and ∀i ∈ {1, 2}. For an ex-

ponentially distributed random variable X with parameter λ, the mean is

given as µX = E[X] = 1
λ . The transmission in the second and third-time

slots depends on the cooperation scheme, DF or AF. The three-time slots

DF scenario is investigated in Subsection 3.3.1, and the three-time slots AF

scenario is investigated in Subsection 3.3.2.

3.3.1 DF Three-Time Slots Scenario

As illustrated in Table 3.1, the received signal y(DF)
Tmi

at the destination node

in time slot Tm for DF scheme is as:

y(DF)
Tmi
=

√

PS

2
h

( j)

RD
x̃ ji + n(DF)

mi
, j = 0, 1, i = 1, 2, & m = 2, 3, (3.4)

where n(DF)

mi
is the received AWGN at the destination node in time slot Tm,

and x̃ ji is the ith user decoded symbol at the jth relay. The jth ordered relay

transmits with power P
( j)

R
equals half the source power (P

( j)

R
= PS/2) for each

user. Defining γ(0.5D) as the instantaneous SNR for the ith user at the desti-

nation node after using MRC, and assuming the relays Rb0 and Rb1 decoded

the symbol xi correctly (i.e. x̃0i = x̃1i = xi), then γ(0.5DF) is obtained as:

γ(0.5DF)
= γSiD +

1

2
γ(DF)

sum , (3.5)

1EX[X] is written as E[X] to simplify the notations.
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where γ(DF)
sum , is defined as γ(DF)

sum = γ
(DF)

b0
+γ(DF)

b1
, and γ(DF)

b0
, γ(DF)

b1
are respectively

the instantaneous end-to-end SNR of the best, and the next-best relays. The

factor 1
2

in (3.5) is due to the fact that the best and next-best relays are equally

shared between the two users, where P
( j)

R
= PS/2 for j ∈ {0, 1}.

The best relay Rb0 is the relay with the maximum instantaneous end-to-

end SNR at the destination node, i.e. γ(DF)

b0
= max

l
(γ0|hRlD|2). The next-best

relay Rb1 is the relay with the next-maximum instantaneous end-to-end SNR

at the destination node, i.e. γ(DF)

b1
= max

l, l,b0
(γ0|hRlD|2), where l = 1, . . . ,K (l is

used as an index for the relay without ordering). The selection of the best

relay Rb0 and next-best relay Rb1 from the K available relays is determined

by ordering the instantaneous end-to-end SNRs from the K relays as follows

γ(DF)

b0
> γ(DF)

b1
> γ(DF)

b2
> . . . > γ(DF)

bK−1
. 2 In the following, the PDF and the MGF

of the end-to-end SNR γ(0.5D) are derived in order to evaluate the BEP and

outage probability performance measures of the proposed scenario.

In order to find the PDF fγ(DF)
sum

(z) of the instantaneous end-to-end SNR

γ(DF)
sum , from the best and the next-best relays, we consider the following. (1)

Instead of dealing with the decoding set C as in [65], we assume that the

relay is selected from the K available relays. However, if a relay cannot

decode the message correctly, it will not transmit and hence, the instanta-

neous end-to-end SNR equals zero [77]. (2)The lth relay can decode the

message of user Si, if γ0|hSiRl
|2 is greater than some threshold value ∆TH, i.e.

if γ0|hSiRl
|2 > ∆TH. Defining β as the probability of erroneously decoding the

message, then β is computed as β = Pr(γ0|hSiRl
|2 < ∆TH) = 1 − e−λSR∆TH , where

γ0|hSiRl
|2 is an exponential random variable with a parameter λSR. Assuming

the source-relay links are identical random variables, then ∆TH can be com-

puted as the value of γ0|hSiRl
|2 that is sufficient to satisfy a given transmission

rate R. In other words, ∆TH is the threshold value satisfying the inequality

1
2

log (1 + γ0|hSiRl
|2) ≥ R or equivalently γ0|hSiRl

|2 ≥ ∆TH = (22R − 1). The re-

2The decoding set C is a subset of the K available relays. If a relay is not in the decoding
set, the end-to-end SNR value is set to zero.
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lay Rl that satisfies this condition is considered in the decoding set C [9, 77].

Defining the unordered instantaneous end-to-end SNR at the destination

node from the lth relay as γ(DF)

l
, for l = {1, . . . ,K}, γ(DF)

l
is then obtained as:

γ(DF)

l
=





0, if γ0|hSiRl
|2 < ∆TH,

γ0|hRlD|2 if γ0|hSiRl
|2 ≥ ∆TH.

(3.6)

The PDF fγ(DF)
l

(x), and the cumulative density function (CDF) Fγ(DF)
l

(x) of γ(DF)

l

are given as [76]:

fγ(DF)
l

(x) =(1 − β)λRDe−λRDxµ(x) + βδ(x), (3.7a)

Fγ(DF)
l

(x) =
(

1 − (1 − β)e−λRDx
)

µ(x), (3.7b)

where µ(x) is the unit step function, δ(x) is Dirac delta function, and λRD

is the parameter of the exponential random variable characterizing the re-

ceived SNR at the destination node from the relay, assuming that all relay-

destination links are iid random variables, with λRD =
1

γ0E{|hRlD
|2} .

In order to find the PDF of the SNR of the best and next-best relays, the

order statistics of random variables is used. Let X1, X2, . . . , XK be defined as

iid random variables, with PDF fX(x) and CDF FX(x). In addition, define the

ordered random variables Y1 < Y2 . . . < YK, where Y1 = minl Xl, and YK =

maxl Xl for l ∈ {1, . . .K}, then the PDF of the kth ordered random variable Yk

is obtained as [31]:

fYk
(y) =

(

K

k

)

k [FX(y)]k−1[1 − FX(y)]K−k fX(y), (3.8)

and the joint PDF of the two ordered random variables (Yr and Ys), where
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r < s is given by [70]:

fYr,Ys(x, y) =
K!

(r − 1)!(s − r − 1)!(K − s)!
[FX(x)]r−1 fX(x) fX(y)

× [1 − FX(y)]K−s[FX(y) − FX(x))]s−r−1. (3.9)

From (3.8) the PDFs of the received SNR γ(DF)

b0
, and γ(DF)

b1
from the best, and

next-best relays respectively are obtained as:

fγ(DF)
b0

(z) = K[FX(z)]K−1 fX(z), (3.10a)

fγ(DF)
b1

(z) = K(K − 1)[FX(z)]K−2[1 − FX(z)] fX(z). (3.10b)

The joint PDF of the received SNR from the ordered relays (Rb0,Rb1) using

(3.9) is obtained as:

fγ(DF)
b1
,γ(DF)

b0

(x, y) = K(K − 1)[FX(x)]K−2 fX(x) fX(y). (3.11)

Substituting (3.7a) in (3.11), results in:

fγ(DF)
b1
,γ(DF)

b0

(x, y) =K(K − 1)
[(

1 − (1 − β)e−λRDx
)

µ(x)
]K−2[

(1 − β)λRDe−λRDxµ(x) + βδ(x)
]

×
[

(1 − β)λRDe−λRD yµ(y) + βδ(y)
]

. (3.12)

Note that, γ(DF)

b0
and γ(DF)

b1
are dependent random variables due to the or-

dering of the instantaneous end-to-end SNR. The PDF of their sum γ(DF)
sum =

γ(DF)

b0
+ γ(DF)

b1
is computed as [107]:

fγ(DF)
sum

(z) = A(DF)e−λRDzµ(z) + B(DF)ze−λRDzµ(z) +D(DF)δ(z) +

K∑

k=3

E(DF)

k
e−kλRD

z
2µ(z).

(3.13)

Defining ck as:

ck =

(

K

k

)

k (k − 1) (−1)k−2, (3.14)
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then A(DF),B(DF),D(DF), and E(DF) are computed as given in Table 3.2.

The MGFΨγ(DF)
sum

(s) of the received SNR γ(DF)
sum is obtained using (3.13) as:

Ψγ(DF)
sum

(s) = E{e−s γ(DF)
sum } = A(DF)

s + λRD
+

B(DF)

(s + λRD)2
+

K∑

k=3

E(DF)

k

s + kλRD

2

+D(DF). (3.15)

For the case of sharing the best and next-best relays, it is required to com-

pute the MGF of 0.5γ(DF)
sum , which can be obtained simply from γ(DF)

sum asΨ
γ

(DF)
sum
2

(s) =

Ψγ(DF)
sum

( s
2
). Since the received SNR from the source-destination link γSiD is in-

dependent of the received SNR from the relay-destination link 0.5γ(DF)
sum , the

MGFΨγ(0.5DF)(s) of the received SNR at the destination node after using MRC

is Ψγ(0.5DF)(s) = Ψγ(DF)
sum

( s
2
)ΨγSD

(s). Applying the partial fraction expansion, we

arrive at:

Ψγ(0.5DF)(s) =
a(DF)

1 + s
2λRD

+
b(DF)

(1 + s
2λRD

)2
+

K∑

k=3

e(DF)

k

1 + s
λRDk

+
f (DF)

1 + s
λSD

, (3.16)

where a(DF), b(DF), f (DF), and e(DF)

k
(assuming that λSD , λRD or multiple of

it for simplicity, but the analysis can be easily extended), are given as in

Table 3.2. Since MRC is used at the destination node, the SEP can be cal-

culated by averaging the multichannel conditional SEP over the PDF of the

random variable representing the received end-to-end SNR at the destina-

tion node [73]. The SEP for M-PSK and M-QAM are respectively obtained

by using the MGFΨ(s) of the received end-to-end SNR as follows [130]:

SEPMPSK =
1

π

∫ (M−1)π
M

0

Ψ

(sin2( π
M

)

sin2 θ

)

dθ, (3.17a)

SEPMQAM =
4q

π

∫ π
2

0

Ψ

( 3

2(M − 1) sin2 θ

)

dθ − 4q2

π

∫ π
4

0

Ψ

( 3

2(M − 1) sin2 θ

)

dθ,

(3.17b)

where q = 1 − 1√
M

.

Here, the SEP is calculated only for BPSK modulation by substituting
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Table 3.2 Coefficients of The PDF, The MGF, The BEP, and the Pout(γTh) for
DF Sharing Scheme.

Coefficient Value

A(DF)
∑K

k=3 λRDck(1 − β)k−1
(

β +
1−β
k−2

)

+ c2(1 − β)βλRD

B(DF) c2

2 (1 − β)2λ2
RD

D(DF)
∑K

k=2 ckβ
2(1 − β)k−2

E
(DF)

k

ck

2 (1 − β)k
(
−2
k−2

)

λRD

a(DF) 1
2λRD

(
2A(DF)λSD

−2λRD+λSD
− 4B(DF)λSD

(−2λRD+λSD)2

)

b(DF) 1
4λ2

RD

(
4B(DF)λSD

−2λRD+λSD

)

f (DF) 2A(DF)

2λRD−λSD
+

4B(DF)

(2λRD−λSD)2 +
∑K

k=3

2E
(DF)
k

λRDk−λSD
+D(DF)

e
(DF)

k
1
λRDk

( 2E
(DF)
k
λSD

−λRDk+λSD

)

M = 2 in (3.17a), but it can be easily extended to M-PSK, and M-QAM us-

ing (3.17a) and (3.17b) respectively, and can be expressed in a closed-form

using the hypergeometric functions [130]. In the following we obtain the

BEP for different sharing scenarios. The BEP is computed using (3.17a) as:

BEP =
1

π

∫ π
2

0

Ψ

( 1

sin2 θ

)

dθ. (3.18)

Defining the function Fn(u) as:

Fn(u) =
1

π

∫ π
2

0

1

(1 + u
sin2 θ

)n
dθ =

(1 − ku

2

)n
n−1∑

t=0

(

n − 1 + t

t

)
(1 + ku

2

)t
, (3.19)

where ku =
√

u
1+u

and n is an integer, the integral for n = 1 simplifies to

F1(u) = 1
2
(1 − ku).

The BEPγ(0.5DF) is obtained by substituting (3.16) into (3.18), and computing



89

the integral as follows:

BEPγ(0.5DF) =
a(DF)

2

(

1 −
√

1

1 + 2λRD

)

+ b(DF)F2
( 1

2λRD

)

+

K∑

k=3

e(DF)

k

2

(

1 −
√

1

1 + λRDk

)

+
f (DF)

2

(

1 −
√

1

1 + λSD

)

. (3.20)

The CDF Fγ(0.5DF)(x) of the end-to-end SNR γ(0.5DF) can be obtained from the

MGFΨγ(0.5DF)(s) given in (3.16). Hence, the outage probability P(0.5DF)
out (γTh) can

be obtained as:

P(0.5DF)
out (γTh) =Fγ(0.5DF)(γTh),

=

K∑

k=3

e(DF)

k
(1 − e−λRDkγTh) + f (DF)(1 − e−λSDγTh)+

(a(DF)
+ b(DF))(1 − e−2λRDγTh) − 2λRD b(DF)γTh(e−2λRDγTh). (3.21)

The diversity order of sharing the two best ordered relays can be investi-

gated using asymptotic analysis of the BEP or the outage probability Pout(γTh)

at high SNR values [86, 175]. Another approach, is to use the asymptotic

analysis of the PDF or the MGF of the end-to-end SNR [6, 95, 151]. We fol-

low the latter approach using the MGF of the end-to-end SNR at the output

of the MRC. The MGFΨγ(0.5DF)(s) is given in (3.16). Using the results of [151],

the MGF can be approximated as s → ∞ by b|s|−d + O(|s|−d) 3, where d is the

diversity order, and b is related to the coding gain. Writing Ψγ(0.5DF)(s) as a

division of two polynomials Ψγ(0.5DF)(s) = B(s)

A(s)
, where B(s) and A(s) are the

numerator and denominator polynomials respectively. A(s) can be written

as A(s) = (1 + s
2λRD

)2(1 + s
λSD

)
∏K

k=3(1 + s
λRDk

), which can be approximated for

s → ∞ as A(s) ≈ ( s
2λRD

)2( s
λSD

)
∏K

k=3( s
λRDk

) = (2λRDλSD

∏K
k=3 λRDk)−1s(K+1). The

numerator polynomial can be found by collecting and combining the corre-

sponding terms, which is clearly of a degree less than the denominator poly-

3A function a(x) is written as O(x) if limx→0
a(x)

x = 0.
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nomial. Taking only the constant term of the numerator polynomial, and

divide this term by the approximation of the denominator polynomial re-

sults in the term b|s|−(K+1). This means that the diversity order is K+ 1. Other

terms which result from the division of the numerator polynomial with the

approximation of the denominator polynomial contribute to O(|s|−(K+1)).

3.3.2 AF Three-Time Slots Scenario

As illustrated in Table 3.1, the received signal y(AF)
Tkj

at the destination node

in time slot Tm for AF scheme is as follows:

y(AF)
Tmi
= G

( j)

SiR

√

PS

2
h

( j)

RD
y

(Rbj)

T1i
+ n(AF)

mi
, j = 0, 1, i = 1, 2, & m = 2, 3, (3.22)

where n(AF)

mi
is an AWGN at the destination node, and G

( j)

SiR
is the normalizing

factor at the relay, which depends on the instantaneous CSI between the ith

source and the jth ordered best relay. Assuming that each relay knows its

instantaneous channel information h
( j)

SiR
, the normalizing factor using (3.3) is

G
( j)

SiR
=

1
√

PS|h( j)

SiR
|
2
+σ2

0

. The end-to-end received SNR at the destination node for

AF scheme (with instantaneous CSI at the lth relay) with PRl
= PS/2, and

using the normalizing factor GSiRl
=

1√
PS|hSiRl

|2+σ2
0

is obtained as

γ(AF)

l
=

γSiRl
γRlD

2

1 + γSiRl
+
γRlD

2

, (3.23)

which can be upper and lower bounded for high SNR as [4, 56]:

1

2
min(γSiRl

,
γRlD

2
) ≤ γ(AF)

l
≤ min(γSiRl

,
γRlD

2
). (3.24)

The upper bound in (3.24) is shown to be tight, and can be used to simplify

the analysis [75]. It is easy to show that the PDF of the upper bound in

(3.24) for Raleigh flat fading channels is an exponential random variable,
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with parameter λeq = λSR + 2λRD. The upper bound of the received end-to-

end SNR γ(0.5AF) at the destination node after using MRC, and using (3.22),

and (3.3) is given as:

γ(0.5AF)
= γSiD + γ

(0.5AF)
sum , (3.25)

where γ(0.5AF)
sum = γ(0.5AF)

b0
+ γ(0.5AF)

b1
with γ(0.5AF)

b0
and γ(0.5AF)

b1
are the upper bound

of the end-to-end SNR from the best, and next-best relays respectively. The

best relay Rb0 is selected as the relay with the maximum upper bound of the

end-to-end SNR γ(0.5AF)

b0
at the the destination node, i.e. γ(0.5AF)

b0
=

max
l

(min(γSiRl
,
γRlD

2
)), where l = 1, . . . ,K. Similarly, the next-best relay Rb1 is

selected as the relay with the next-maximum upper bound of the end-to-end

SNR γ(0.5AF)

b1
at the the destination node, i.e. γ(0.5AF)

b1
= max

l, l,b0
(min(γSiRl

,
γRlD

2
)).

The selection of the best, next-best relays Rb0 and Rb1, respectively from the

K available relays is done using the ordering of the upper bound of end-to-

end SNRs from the K available relays as follows γ(0.5AF)

b0
> γ(0.5AF)

b1
> γ(0.5AF)

b2
>

. . . > γ(0.5AF)

bK−1
.

The joint PDF of the upper bound received SNRs from the ordered relays

Rb0 and Rb1 using (3.9) can be obtained as:

fγ(0.5AF)
b1

,γ(0.5AF)
b0

(x, y) = K(K − 1)[(1 − e−λeqx)]K−2λ2
eqe
−λeqxe−λeq yµ(x)µ(y). (3.26)

Using (3.26), and following a similar procedure to that followed in Subsec-

tion 3.3.1, the BEPγ(0.5AF) can be derived as:

BEPγ(0.5AF) =
a(AF)

2

(

1 −
√

1

1 + λeq

)

+ b(AF)F2
( 1

λeq

)

+

K∑

k=3

e(AF)

k

2

(

1 −
√

1

1 +
λeqk

2

)

+

f (AF)

2

(

1 −
√

1

1 + λSD

)

, (3.27)

where A(AF), B(AF), and E(AF)

k
are defined in column 2 of Table 3.3, and a(AF),

b(AF), e(AF)

k
and f (AF) are defined in column 4 of Table 3.3. The outage proba-

bility P(0.5AF)
out (γTh) of sharing the two ordered best relays for AF scheme can
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Table 3.3 Coefficients of The PDF, The MGF, The BEP, and the Pout(γTh) for
AF Sharing Scheme.

Coeff. Value Coeff. Value

A(AF)
∑K

k=3 ckλeq
1

k−2 a(AF) 1
λeq

(
A(AF)λSD

−λeq+λSD
− B(AF)λSD

(−λeq+λSD)2

)

B(AF) c2λ2
eq

2 b(AF) 1
λ2

eq

(
B(AF)λSD

−λeq+λSD

)

E
(AF)

k
− ckλeq

k−2 e
(AF)

k
2
λeqk

( E
(AF)
k
λSD

− λeqk

2 +λSD

)

f (AF) A(AF)

λeq−λSD
+

B(AF)

(λeq−λSD)2 +
∑K

k=3

E
(AF)
k

(
λeqk

2 −λSD)

be computed as:

P(0.5AF)
out (γTh) = Fγ(0.5AF)(γTh) =

K∑

k=3

e(AF)

k
(1 − e−

λeqk

2 γTh) + f (AF)(1 − e−λSDγTh)+

(a(AF)
+ b(AF))(1 − e−λeqγTh) − λeq b(AF)γTh(e−λeqγTh).

(3.28)

The diversity order of sharing the two ordered best relays for AF scheme

is also K + 1, which can be found from the similarity between BEPγ(0.5AF)

expression in (3.27) and the BEPγ(0.5DF) expression in (3.20).

It is worth noting that, for AF sharing scenario, the ordering of the best,

and the next-best relays depends on the relay’s transmitted power with the

assumption that the relays transmit with the same power level. Therefore,

the best and next-best relays in this scenario are different from the best and

next-best relays without sharing. In the sharing scenario, the best relay is se-

lected as max
l

(min (γSiRl
,
γRlD

2
)) but the best relay without sharing is selected

as: max
l

(min (γSiRl
, γRlD)). It is clear that the factor 1

2
affects the ordering of

the relays. The same result holds for the next-best relay. In general the or-

dered best relays for sharing and without sharing AF are different (even

the relays transmit with equal power). Whereas for DF scenario, the relays

are ordered depending on the received SNR at the destination as given by
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Table 3.4 Best Relay Selection Criterion for AF Scheme.

The Case The Best Relay The Best Relay Comments

With Sharing Without Sharing

γSiRl
<
γRlD

2 < γRlD max
l

(γSiRl
) max

l
(γSiRl

) Same

γRlD

2 < γSiRl
< γRlD max

l
(
γRlD

2 ) max
l

(γSiRl
) Different

γRlD

2 < γRlD < γSiRl
max

l
(
γRlD

2 ) max
l

(γRlD) Different

max
l

(γ0|h(l)
RD
|2) if the relays transmit with full power, and as max

l
(1

2
γ0|h(l)

RD
|2)

if the relays transmit with half power. The factor 1
2

in the last expression

does not affect the ordering of the relays, and it can be removed from the

expression without affecting the ordering for DF. The different cases for AF

ordering are illustrated in Table 3.4. Rows 2 and 3 illustrate that the sharing

scenario may use different relays from the best and next-best relays which

were ordered based on full power transmission. Simulation results show

that AF sharing scenario based on half power allocation achieves full diver-

sity order and outperforms the BEP performance of the best relay (alone)

scenario. The ordering based on relay half power allocation is used for two

reasons: First, the BEP performance of the sharing based on half power or-

dering outperforms the sharing based on full power ordering. Second, us-

ing the half power ordering simplifies deriving the PDF expression (3.26).

3.4 Two-Time Slots Scenario

So far, the transmission schemes discussed do not utilize the resources ef-

ficiently. The sources and the relays needed to wait for three-time slots to

start a new retransmission. In this section, we will discuss more efficient

transmission schemes where only two time slots are required. Three types

of such transmission schemes will be examined. These schemes are DF with
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Table 3.5 Distributed STBC-DF Scenario.

Terminal T11 T12 T21 T22

S1 Tx1
- - -

S2 - Tx2 - -

Rb0 Rx1
Rx2 Tx̃1

T−x̃∗
2

Rb1 Rx1
Rx2 Tx̃2 Tx̃∗

1

D Rx1
Rx2 R

(DS)
T21

R
(DS)
T23

distributed STBC at the relays, DF with distributed BF at the relays, and AF

with distributed BF at the relays.

3.4.1 Distributed STBC for DF Scheme

In this scenario, the selected relays are shared between the two sources

equally. The two sources are assumed to have the same best and next-best

relays. As illustrated in Table 3.5, only two-time slots are used for coop-

eration. Alamouti STBC [2] is used between the relays and the destination

node [7]. The noiseless received signals generated using distributed STBC

in time sub-slots T21 and T22 are denoted as R(DS)
T21

and R(DS)
T22

, respectively. The

received signals y(DS)

21
and y(DS)

22
at the destination node in sub-slots T21 and

T22 respectively, are given as:

y(DS)

21
=

√

PS

2
h(0)

RD
x̃01 +

√

PS

2
h(1)

RD
x̃12 + n(DS)

21
, (3.29a)

y(DS)
22
= −

√

PS

2
h(0)

RD
x̃∗02 +

√

PS

2
h(1)

RD
x̃∗11 + n(DS)

22
, (3.29b)

where x̃ ji is the decoded symbol of the transmitted symbol xi at the best

relay Rbj. The superscript (∗) stands for complex conjugate. n(DS)

2i
is the ad-

ditive noise at the destination in time sub-slot T2i for i = 1, 2. The estimated

symbols x̂1 and x̂2 at the destination node in time sub-slots T21 and T22 can

be found with the assumption that the transmitted symbols are correctly
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Table 3.6 Distributed BF Scenarios.

Terminal T11 T12 T21 T22

S1 Tx1
- - -

S2 - Tx2 - -

Rb0 Rx1
Rx2 Tx̃1

/ Tx1
Tx̃2 / Tx2

Rb1 Rx1
Rx2 Tx̃1

/Tx1
Tx̃2 / Tx2

D Rx1
Rx2 R

(BD)
T21

/ R
(BA)
T21

R
(BD)
T22

/ R
(BA)
T22

decoded at the relays (i.e. x̃0i = x̃1i = xi) as [2]:

x̂1 = h∗(0)
RD

y(DS)

21
+ h(1)

RD
y∗(DS)

22
, (3.30a)

x̂2 = h∗(1)
RD

y(DS)

21
− h(0)

RD
y∗(DS)

22
. (3.30b)

The end-to-end SNR at the destination node after using MRC is computed

as γ(DS) = γSiD + γ
(DS)
sum , with γ(DS)

sum = (γ(DS)

b0
+ γ(DS)

b1
), which is similar to the

SNR expression obtained in (3.5). Hence, the same analysis can be carried

out, which results in the same BEP performance as (3.20). The goal of this

analysis is not to investigate the distributed STBC, but to examine the BEP

performance of sharing the two ordered best relays. A detailed analysis of

distributed STBC for multi-relay systems using pairwise error probability

can be found in [78].

The two best order relays STBC-AF requires greater investigation for the

selection criterion, and the amplification gain at the relays, using the instan-

taneous CSI. This however, is a topic for further research.

3.4.2 Distributed BF for DF Scheme

In this scenario, two-time slots are used as in the previous scenario, except

that the best and the next-best relays transmit the same information at the

same time. As illustrated in Table 3.6. The noiseless received signals using
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DF distributed BF in time sub-slots T21, and T22 are denoted as R(BD)
T21

and

R(BD)
T22

, respectively. For DF scheme, it is referred to as BF-DF (BD). The re-

ceived signals at the destination node in the second-time slot for BD are:

y(BD)

2i
=

√

PS

2

(

|h(0)
RD
|x̃i0 + |h(1)

RD
|x̃i1

)

+ n(BD)

2i
i = 1, 2, (3.31)

where x̃i0 and x̃i1 are the decoded symbols of the ith user at the relays Rb0 and

Rb1 respectively, and n(BD)

2i
is the AWGN received at the destination node.

From (3.31) and using MRC with the assumption that the signal is decoded

correctly at both relays Rb0 and Rb1 (x̃i0 = x̃i1), the SNR γ(BD) at the destination

node is computed as:

γ(BD)
= γSiD + 0.5

(
√

|γ(DB)

b0
| +

√

|γ(DB)

b1
|
)2
. (3.32)

It is rather complicated to obtain the PDF and/or the MGF of γ(BD) in (3.32)

at the destination node analytically. In this respect, we obtain the PDF and

MGF of the bounded SNR as follows. Defining γB = 0.5
(√

γ(BD)

b0
+

√

γ(BD)

b1

)2

,

then γB can be lower and upper bounded as:

1

2
(γ(BD)

b0
+ 3γ(BD)

b1
) ≤ γB ≤

1

2
(3γ(BD)

b0
+ γ(BD)

b1
). (3.33)

Now, defining Z1 =
1
2
(γ(BD)

b0
+ 3γ(BD)

b1
) and Z2 =

1
2
(3γ(BD)

b0
+ γ(BD)

b1
), the PDF

of Z1, and the PDF of Z2 can be easily computed using the joint PDF of

fγ(BD)
b1
,γ(BD)

b0

(x, y) given in (3.12). The MGF of the lower and upper bounds fol-

low easily. Based on the MGF ΨγSiD
(s)ΨZ1

(s) and the MGF ΨγSiD
(s)ΨZ2

(s)

(note that the random variables γSiD and Z1, and γSiD and Z2 are indepen-

dent), the upper and lower bounds of the BEP(BD) can be computed using

(3.18). Applying partial fraction expansion, the BEP(BD) is upper bounded
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Table 3.7 Coefficients of the PDF, the MGF and the BEP for the Upper and
the Lower Bounds of BD.

Coeff. S = U S = L

A(S)
λRD

3

∑K
k=2 ck(1 − β)k−1

(
1−β
k− 4

3

+ β
)

c4(1 − β)3βλRD+

λRD
∑K

k=2
k,4

ck(1 − β)k−1
(

1−β
k−4 + β

)

B(S) -
c4(1−β)4λ2

RD

4

E
(S)

k

ck(1−β)kλRD

4

(

1 − k
k− 4

3

)
ck(1−β)kλRD

4

(

1 − k
k− 4

3

)

, k , 4

a(S) 3
2λRD

(
2A(S)λSD
−2λRD

3 +λSD

)
1

2λRD

(
2A(S)λSD

−2λRD+λSD
− 4B(S)λSD

(−2λRD+λSD)2

)

b(S) - 1
4λ2

RD

(
4B(S)λSD

−2λRD+λSD

)

e
(S)

k
2
λRDk

( 2E
(S)
k
λSD

− λRDk

2 +λSD

)
2
λRDk

( 2E
(S)
k
λSD

−λRDk

2 +λSD

)

f (S)
2A(S)

2λRD
3 −λSD

+
∑K

k=2

2E
(S)
k

(
λRDk

2 −λSD)
+

2A(S)

2λRD−λSD
+

4B(S)

(2λRD−λSD)2+

D(DF)
K∑

k=2
︸︷︷︸

k,4

2E
(S)
k

λRDk

2 −λSD

+D(DF)

as:

BEP(BD) ≤a(U)

2

(

1 −
√

1

1 + 2λRD

3

)

+
f (U)

2

(

1 −
√

1

1 + λSD

)

+

K∑

k=2

e(U)

k

2

(

1 −
√

1

1 + λRDk
2

)

,

(3.34)

where A(U), E(U)

k
, a(U), f (U) and e(U)

k
are as defined in Table 3.7. Similarly, the

BEP(BD) is lower bounded as:

BEP(BD) ≥a(L)

2

(

1 −
√

1

1 + 2λRD

)

+ b(L)F2
( 1

2λRD

)

+

f (L)

2

(

1 −
√

1

1 + λSD

)

+

K∑

k=2
k,4

e(L)

k

2

(

1 −
√

1

1 + λRDk
2

)

, (3.35)

where A(L), B(L), E(L)

k
, a(L), f (L), and e(L)

k
are as defined in Table 3.7. A tighter

upper bound for the end-to-end SNR γ(BD) can be obtained by comparison
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with the optimal power allocation under total relay power constraint as [87]:

γ(BD) ≤ γ(BD)

Op
= γS jD + γ

(BD)

b0
+ γ(BD)

b1
, (3.36)

where γ(BD)

Op
is defined as the maximum received SNR using optimum power

assignment for distributed BF scenario, using the best and the next-best re-

lays under the constraint P(0)
R
+P(1)

R
= PS. This upper bound can also be used

to compute the BEP(BD)

Op
using (3.20) by replacing 2λRD with λRD in all terms.

Hence, the BEP(BD) can be lower bounded by BEP(BD)

Op
, i.e. BEP(BD)

Op
≤ BEP(BD).

However, in this research we are only concerned with equal power sharing

to simplify the analysis.

3.4.3 Distributed BF for AF Scheme

In this scenario, two-time slots are used as in the previous scenario, as illus-

trated in Table 3.6. The noiseless received signals using AF distributed BF in

time sub-slots T21, and T22 are denoted as R(BA)
T21

, and R(BA)
T22

, respectively. For

the distributed BF-AF scheme, it is referred to as (BA). The received signal

at the destination node for BA in the second-time slot is as [87]:

y(BA)

2i
=

√

PS

√

PS

2
xi

|h(0)
RD
||h(0)

SiR
|

√

σ2
0
+ PS|h(0)

SiR
|2
+

√

PS

√

PS

2
xi

|h(1)
RD
||h(1)

SiR
|

√

σ2
0
+ PS|h(1)

SiR
|2
+

√

PS

2

|h(0)
RD
|n0i

√

σ2
0
+ PS|h(0)

SiR
|2
+

√

PS

2

|h(1)
RD
|n1i

√

σ2
0
+ PS|h(1)

SiR
|2
+ n(BA)

2i
, i = 1, 2, (3.37)

where n0i, n1i and n(BA)

2i
are AWGNs at the best, next-best relays in time slot

T1 and the destination node at time slot T2, respectively.

The SNR γ(BA) at the destination node using MRC and using the best and
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next-best relays can be computed as:

γ(BA)
= γSiD +

(
1∑

j=0

√√√√ |γ( j)

RD
||γ( j)

SiR
|

1 + |γ( j)

SiR
|

)2

2
(

1 +

1∑

j=0

|γ( j)

RD
|

2(1 + |γ( j)

SiR
|)

)

, (3.38)

where γ( j)

SiR
= γ0|h( j)

SiR
|2, and γ( j)

RD
= γ0|h( j)

RD
|2. It is also difficult here to compute

analytical expressions for the PDF and the MGF of γ(BA) at the destination

node. Therefore, the upper bound for the SNR γ(BA) is given as [87]:

γ(BA) ≤ γ(BA)

Op
= γSiD +

γ(0)

SiR
γ(0)

RD

1 + γ(0)

SiR
+ γ(0)

RD

+

γ(1)

SiR
γ(1)

RD

1 + γ(1)

SiR
+ γ(1)

RD

,

≤ γSiD + γ
(BA)

b0
+ γ(BA)

b1
, (3.39)

where γ(BA)

Op
is defined as the maximum received SNR using optimum power

assignment for the best, and the next-best ordered relays under the con-

straint P(0)
R
+ P(1)

R
= PS, γ(BA)

b0
= max

l
(min (γSiRl

, γRlD)) and, γ(BA)

b1
is given as

γ(BA)

b1
= max

l, l,b0

(min (γSiRl
, γRlD)). Hence, the lower bound of the BEP(BA) can be

found using (3.27) by replacing λeq = 2λSR + λRD with λeq = λSR + λRD.

It is worth noting that the weights for BF-AF and BF-DF are chosen as

w1 = 1 and w2 = 1 for the following reasons. First, the weights w1 and w2 can

be considered as power adjustment factors, and in this study optimal power

adjustment is not considered, only equal power assignment is investigated

in all scenarios. Second, the weights are not similar to the weights given

by [79, 87] which were derived for one user scenario. The weights for this

problem need to be selected to maximize the minimum received SNR of

the two users under individual relay power constraint and user sum power

constraint. Finally, if power adjustment is to be used, there is no benefit

from relay ordering. Relay ordering in this paper is based on relays’ equal

power transmission.
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Figure 3.2 Comparison of the BEP Performance Using Derived Formulas
and Simulations for the Sharing of the Best Ordered Relays Rb0,Rb1.

3.5 Numerical Results and Discussion

In this section, we provide the results of the BEP and the outage probability

performance measures for sharing the two ordered best relays, and compare

them with the performance of the best ordered and next-best ordered relays

using Monte Carlo simulations for K = 4.

In all the simulations and the analytical expressions λSD = 10, λRD = 7.5

and λSR = 6.0 are used to simulate a better average source-relay and relay-

destination channel links than a source-destination link except in Figure 3.6

where three different conditions are considered, as explained later.

In Figure 3.2, the analytical BEP performance is compared to the simu-

lated BEP performance for both DF and AF schemes in both two-time slots

and three-time slots scenarios. As can be seen clearly from this figure, the

BEP curves using simulations exactly coincide with those obtained analyt-

ically for orthogonal DF (3.20), the upper bound of the distributed BF-DF

(3.34), the lower bound of BF-DF (3.35), and the lower bound of AF (3.27).

An SNR gain of 0.85dB for the case of DF cooperation scheme is observed,

compared to AF cooperation scheme computed at BEP= 10−4.
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Figure 3.3 The BEP Performance For The sharing DF Scenario Using Simu-
lation.

In Figure 3.3 simulation results of the BEP performance for sharing the

two ordered best relays in a DF cooperation scheme are shown, and com-

pared with the BEP performance of the best and the next-best ordered re-

lays. As shown in this figure, sharing the two best ordered relays outper-

forms the next-best relay by 2.27dB at BEP= 10−4. The best ordered relay

BEP performance outperforms the sharing BEP performance by 0.71dB at

BEP= 10−4. We also compare the BEP performance of the three time slots

DF with the BEP performance of the two-time slots BF-DF scenario. An

SNR gain of 0.82dB for BF-DF is observed compared to DF best relay at

BEP= 10−4.

For distributed BF-DF cooperation schemes, the exact BEP performance

is obtained and compared with the BEP performance upper bound, BEP

performance lower bound and BEP performance with optimal power allo-

cation strategy. The simulation results are shown in Figure 3.4. As can be

seen clearly from this figure, the upper and lower bounds are very close.

The SNR gain of the BEP performance with optimal power strategy is very

marginal. The SNR gain of the optimal power strategy is 0.16dB compared

to equally sharing the best and next best ordered relays at BEP= 10−4.
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Figure 3.4 The BEP Performance for DF Distributed BF scenario with
Lower & Upper Bounds.

In Figure 3.5, the BEP performance of sharing the two ordered best re-

lays in AF scheme is obtained and compared to the BEP performance of

the best and next-best ordered relays. The BEP performance of the sharing

scenario outperforms the best relay by 0.18dB at BEP= 10−4. In addition,

we simulate the BEP performance of BA, which approaches that of the best

ordered relay at high SNR. The BEP performance of BF-AF using optimal

power allocation under total power constraint is also shown. The SNR gain

of the BEP performance with optimal power allocation is 0.7dB compared

to sharing the best and next best ordered relays at BEP= 10−4.

Figure 3.6 shows results of the analytical BEP performance for three

channel conditions for DF with sharing the best and next-best ordered re-

lays. In setup 1, λSD = 10.14, λRD = 7.58 and λSR = 6.01. In setup 2,

λSD = 7.58, λRD = 10.14 and λSR = 6.01, and finally, in setup 3, λSD = 7.58,

λRD = 5.40 and λSR = 6.01. The BEP performance of the channel in setup

3 outperforms the BEP performance of the other setups. An SNR gain of

1.30dB and 1.93dB is observed compared to setup 2 and setup 1 respectively,

computed at BEP= 10−4. It is well observed that, a better BEP performance is

achieved when the source-relay and the relay-destination links are in better
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Figure 3.5 The BEP Performance for AF Sharing Scenario Using Simulation.
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Figure 3.6 The BEP Performance for the sharing DF scenario for Different
Channels’ Conditions Using Analytical Formula.

channel conditions than source-destination links.

In Figure 3.7, the BEP performance is shown at high SNR range from

25dB to 30dB for sharing the best and next-best relays, the best relay alone,

and the next-best relay alone for both AF and DF schemes. In all schemes,

analytically a diversity order 5 is expected, except for the next-best relay

where a diversity order 4 is expected. The diversity order is calculated us-

ing simulation results as shown in Table 3.8. As shown in this table, the
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Figure 3.7 The BEP Performance for Diversity Calculations for the Orthog-
onal Sharing AF and DF Schemes Using Simulations.

Table 3.8 Diversity Calculations.

Scheme BEP1 BEP2 Diversity Order

Best AF 2.4777 × 10−8 8.7832 × 10−10 4.8181

Next-Best AF 1.0507 × 10−6 7.4121 × 10−8 3.8253

Sharing AF 1.8862 × 10−8 6.2973 × 10−10 4.9046

Best DF 3.3840 × 10−9 1.0909 × 10−10 4.9551

Next-Best DF 2.5017 × 10−7 1.6573 × 10−8 3.9160

Sharing DF 6.6892 × 10−9 2.0673 × 10−10 5.0160

diversity order of sharing the two ordered best relays for both DF and AF

schemes is the same as the diversity order of the best relay. The slope of

the BEP performance of sharing the best and next best relays is approx-

imately the same as the slope of the BEP performance of the best relay.

Two SNR values are considered for comparison purpose (SNR1 = 27dB and

SNR2 = 30dB). The diversity order is computed in the last column of Ta-

ble 3.8.

In Figure 3.8 the outage probability performance for R = 1bps/Hz is

shown for sharing the best and next-best relays, distributed beamforming,
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Figure 3.8 The Outage Probability Performance for AF/DF Scenarios

the best relay alone, and the next-best relay alone for both DF and AF schemes.

In addition, the outage probability performance for distributed STBC for

DF scheme is shown. It is clear from the these curves that the sharing sce-

narios achieve full diversity order as expected and as proved by the BEP

performance. Furthermore, distributed beamforming and distributed STBC

scenarios utilize the resources efficiently.

3.6 Conclusions

In this chapter, relay selection for cooperative communication systems is in-

vestigated. Assuming two users scenario, and the availability of K relays,

BEP is computed for the case of sharing the two ordered best relays for AF

and DF relaying schemes. Analytical expressions for the BEP and the out-

age probability are derived for the different scenarios. Simulation results

validate the analytical expressions of the BEP and outage probability per-

formance measures. The BEP performance of the proposed schemes are also
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compared with the BEP performances of the best and the next-best relays.

In DF scheme, the BEP performance of the best relay outperforms the BEP

performance of the sharing. But, the BEP performance of BF-DF scenario

outperforms the BEP performance of the best ordered relay. As a result, the

BEP performance of equally sharing the two best ordered relays for AF out-

performs the BEP performance of the best ordered relay. Efficient channel

utilization can be achieved by using STBC and BF schemes.



CHAPTER4

JOINT RESOURCE ALLOCATION FOR AF RELAY

NETWORKS

Conventional resource allocation strategies based on equal or optimal allo-

cation of the relay power between users with full bandwidth relaying may

not be efficient. In this sense, this chapter, considers joint power and band-

width allocation for an uplink multi-user improved AF cooperative commu-

nication scheme. This improved AF cooperative scheme is proposed to uti-

lize the spectrum efficiently. In this system, each user can adapt to a mixed

strategy transmission where FDM is used; part of the data is transmitted

using the relay with diversity, and the other part is transmitted using the di-

rect link without diversity. This mixed strategy targets improving the user

rate compared to full bandwidth relaying. Joint power and bandwidth allo-

cation is proposed for the improved AF cooperative communication scheme

aiming to maximize the sum rate of all users under relay node power con-

straint. The formulated optimization problem is non-convex and difficult

to solve. In order to find the optimal power and bandwidth profiles, we

propose a recursive algorithm that solves iteratively either power allocation

for a given bandwidth profile or bandwidth allocation for a given power

profile. The attained solution using the proposed algorithm is compared to

the solution obtained using PSO. The resource allocation problem is solved

using PSO, because of its simplicity in tuning its parameters and the high
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possibility of obtaining a global solution. The two solutions coincide with

negligible difference as shown by numerical simulations. Moreover, joint

power and bandwidth allocation with relay selection for the improved AF

scheme aiming to maximize the sum rate is addressed using the PSO algo-

rithm because of the MINLP nature of the problem.

The introduction and related research are presented in Section 4.1. Sec-

tion 4.2, presents the formulation of the optimization problem and the pro-

posed algorithm for power and bandwidth allocation. In Section 4.3, AF

resource allocation problem is extended to frequency selective fading chan-

nels. In Section 4.4, relay selection and joint power and bandwidth are ad-

dressed using the PSO algorithm. Numerical results are presented and dis-

cussed in Section 4.5. Finally, conclusions are drawn in Section 4.6.

4.1 Introduction

Efficient management of relay resources becomes a critical issue for increas-

ing transmission rate for multiple users scenarios. In [108], the authors de-

veloped power allocation schemes for AF multi-user system, using different

objectives such as maximizing the minimum rate, maximizing the sum rate,

and minimizing the total power consumption with a constrained minimum

transmission rate. In [176], the authors studied relay assignment and power

allocation for AF relay system aiming to maximize the sum-rate of all users

subject to individual and total power constraints at the relays.

Joint power and bandwidth allocation for transmission nodes are equally

important. For multi-user DF relay networks, joint power and bandwidth

allocation was addressed in [46, 124]. In [46], the optimization problem

was transformed into an equivalent convex optimization problem. Whereas

in [124], the optimization problem was transformed into an equivalent no-

relaying broadcast channel optimization problem, where each user was sub-

stituted by two virtual users having different channel quantities and mul-
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tiplexing weights. AF joint power and bandwidth allocation problem for

multi source-destination pairs is more difficult compared to DF, since the

transmission rate is not a jointly concave function in the power and band-

width profiles. Therefore, convex optimization techniques cannot be used

to solve this problem. In [99], joint power and bandwidth allocation for two

users cooperative relaying is addressed aiming to maximize the achievable

rate region using AF and DF cooperative schemes. In [98], joint power and

bandwidth allocation for multi-relay and a single source-destination pair

was investigated. It was shown that an AF strategy cannot benefit necessar-

ily from large bandwidth.

In this chapter, the sum rate for multi-user AF relay assisted network is

maximized in the presence of source-destination direct link. The ith user

is willing to seek cooperative transmission only if the data rate achieved

through cooperation is not lower than the data rate achieved through non

cooperation using direct link only. Full cooperative transmission may not be

always beneficial or even necessary if direct transmission from the source to

the destination results in the best achievable transmission rate. If coopera-

tion is sought, it should result in a higher rate than using the direct link only.

To gain the benefits of the two approaches user i can adapt to a mixed strat-

egy transmission; part of her data can be transmitted using the direct link

only, and the other part is transmitted using AF cooperative communication

scheme. With this strategy, we ensure that the ith user rate is maximized,

and the relay’s resources are used more efficiently. Admission control is

considered inherently in the formulated problem in the sense that the user

who cannot benefit from cooperation will use direct transmission, and will

not waste the relay’s resources. In this chapter, we show that by seeking the

optimal relaying power and bandwidth profiles, we are able to improve the

system sum rate when compared to full bandwidth relaying.

Joint power and bandwidth allocation is investigated for a single relay
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for both flat and frequency selective fading channels using the improved AF

cooperative communication scheme. Resource allocation for the improved

AF scheme with frequency selective fading channels is different from selec-

tive AF-OFDM, since here the issue is to determine the range of frequencies

that are used for relaying, i.e. adjacent subcarriers are used for relaying or

for direct transmissions. Whereas, in selective AF-OFDM transmission each

subcarrier solely can be used for AF relaying or direct transmission without

looking at its adjacent subcarriers [30, 36, 49, 126]. Selective AF-OFDM is

addressed in Section 7.2.

An iterative two-step recursive algorithm is proposed to solve the prob-

lem, which separates the joint power and bandwidth allocation problem

into two subproblems; power allocation for a given bandwidth profile, and

bandwidth allocation for a given power profile. Simulation results show

that the power and bandwidth profiles of the proposed algorithm coincide

with the power and bandwidth profiles obtained using PSO and the exte-

rior penalty methods. Furthermore, simulation results show the fast con-

vergence of the proposed algorithm and the possibility of implementing it

in a distributed fashion.

Joint power and bandwidth allocation and relay selection are investi-

gated to maximize the sum rate for a system with I users and K relays

using the improved AF cooperative communication scheme. The problem

at hand, is a mixed integer optimization problem, which is computationally

intensive to solve using an exhaustive search. In this sense, PSO is used

to solve the formulated problem without the need for the convexity and

differentiability of the objective function, nor the relaxation of the integer

variables, which are associated with conventional optimization techniques.

Modified versions of the PSO method are developed to handle the nature

of the formulated problem. Asynchronized PSO velocity update is used

to guarantee the convergence of the mixed integer problem. A distributed
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Figure 4.1 System Model: AF Multiple Users Single Relay System.

PSO algorithm is also developed to allocate the resources in a distributed

fashion. The key feature towards this is the use of a fitness function with a

penalty factor and then applying the PSO algorithm at the user side.

4.2 Flat Fading Improved AF Cooperative Com-

munication

The system under consideration is depicted in Figure 4.1. Let I = {1, ..., I}

denote the set of active users. Sender (Source) nodes Si for i ∈ I are com-

municating with the destination terminal D over stable channels with co-

efficients h(i)

SD
. The relay station R is used to improve the reliability of the

communication between the source-destination pairs using simple AF co-

operative scheme. h(i)

SR
, and h(i)

RD
are the channel gains of source-relay and

relay-destination links of user Si. In AF, the relay scales the received data

and transmits it in the relaying phase. Considering FDMA and assuming

no interference between the users, each active user utilizes a different fre-

quency band. Each user will use two-time slots T1 and T2 in a TDM manner.

The received signals of user Si in the first-time slot T1 defined as y(Ri)
T1

and

y(Di)
T1

at the relay and destination nodes, respectively are obtained as follows:
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y(Ri)
T1
=

√

PSh(i)

SR
xi + n(Ri)

1
, (4.1a)

y(Di)
T1
=

√

PSh(i)

SD
xi + n(Di)

1
, (4.1b)

where PS is the source transmitted power, which is assumed to be the same

for all users in the system. The transmitted symbol xi is drawn from a con-

stellation with unit energy, and n(Ri)

1
and n(Di)

1
are AWGNs in the first-time

slot T1 received at the relay and destination nodes, respectively. During the

second-time slot T2, the received signal y(Di)
T2

of user Si at the destination node

is obtained as:

y(Di)
T2
= G(i)

√

P(i)
R

h(i)
RD

y(Ri)
T1
+ n(Di)

2
, (4.2)

where P(i)
R

is the relay transmitted power for user Si, and n(Di)
2

is the AWGN

received at the destination node in the second-time slot T2. The noise vari-

ance is expressed as σ2
i
= N0Wi, where N0

2
is the PSD per dimension of the

AWGN, N0 is assumed to be the same at all nodes in the system, and Wi

is the relaying bandwidth for user Si. G(i) is the normalization factor at the

relay station given as [56]: G(i) =
1

√

PS|h(i)
SR
|
2
+σ2

i

. The end-to-end SNR Γ(i)

AF
of user

Si using the relay is given by [4]:

Γ
(i)

AF
=

PSP(i)
R
|h(i)

SR
|2|h(i)

RD
|2

σ2
i
(σ2

i
+ PS|h(i)

SR
|2 + P(i)

R
|h(i)

RD
|2)
, (4.3)

which can be written in a simplified form as [149]:

Γ
(i)

AF
=

AiP
(i)
R

Wi(Bi + P(i)
R
+ CiWi)

, (4.4)

with Ai =
PS|h(i)

SR
|2

N0
, Bi =

PS|h(i)
SR
|2

|h(i)
RD
|2

and Ci =
N0

|h(i)
RD
|2

. The SNR of user Si at the

destination node is denoted as Γ(i)

SD
, that resulted from direct transmission

between the ith source-destination pair in the first time slot T1, which can
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be expressed as [149]:

Γ
(i)

SD
=

PS|h(i)

SD
|2

N0Wi
. (4.5)

The achievable data rate R(i)

AF
of AF cooperative communication scheme at

the destination node with the aid of the relay node using relaying power P(i)
R

and relaying bandwidth Wi and using MRC technique, can be computed as:

R(i)

AF
=

Wi

2
log2

(

1 +
Γ

(i)

SD
+ Γ

(i)

AF

Γ

)

, (4.6)

where the factor 1
2

is due to the fact that two time slots are used for coop-

erative transmission, and Γ is a constant representing the capacity gap as in

[45].

Assuming no interference between the users; each user Si for i ∈ I is

assigned a bandwidth W, and transmits with source power PS. The relay

can offer user Si relaying power P(i)
R

depending on the channel conditions

and the other users in the system, to relay her information or part of it in a

bandwidth 0 ≤Wi ≤W in the second time slot. To benefit from all available

degrees of freedom, user Si uses the remaining bandwidth W−Wi to transmit

her message directly to the destination node without the help of the relay

node (no diversity). The SNR of user Si at the destination node that results

from direct transmission between the ith source-destination pair is the same

as in (4.5) with Wi being replaced by W −Wi. The achievable data rate R(i)

SD

using direct transmission without diversity is given as:

R(i)

SD
= (W −Wi) log2

(

1 +
PS|h(i)

SD
|2

ΓN0(W −Wi)

)

. (4.7)

Following the proposed protocol, depending on the availability of the re-

sources, user Si may operate in different transmission modes; for example

user Si can use direct transmission for all the bandwidth achieving a data
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rate R(i)

SD0
given as:

R(i)

SD0
=W log2

(

1 +
PS|h(i)

SD
|2

ΓN0W

)

, (4.8)

In general, user Si uses a mixed strategy transmission achieving a date rate

R(i) given as:

R(i)
= R(i)

AF
+ R(i)

SD
. (4.9)

This mixed strategy transmission is illustrated in Figure 4.2. Note that: di-

rect transmission with achievable rate R(i)

SD0
is a special case of the mixed

strategy with Wi = 0. From now on, the mixed strategy transmission is

denoted as the improved AF cooperative communication scheme.

One criterion for resource allocation is to maximize the overall network

performance. This criterion is sometimes denoted as the efficient resource

allocation criterion, which appears in applications without delay constraints,

where high data rate from any user is preferable. Since the user has a source-

destination link, the resources allocated to this user need to achieve a trans-

mission rate higher than the rate achieved using direct transmission. The

user needs to determine the relaying bandwidth to maximize her data rate

by using the improved AF scheme. Therefore, the maximum sum rate prob-

lem (effective resource allocation) can be formulated as follows1:

max
P,W

∑

i∈I
R(i), (4.10a)

s.t.
∑

i∈I
P(i)

R
≤ P(R)

max, (4.10b)

1The case of additional relaying bandwidth constraint
∑

i∈IWi ≤ Wmax is addressed in
the simulations.
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Wi ≤W, ∀i ∈ I, (4.10c)

Wi ≥ 0, P(i)
R
≥ 0, ∀i ∈ I, (4.10d)

where P = [P(1)
R
, · · · ,P(I)

R
], and W = [W1, · · · ,WI] are the relay power and

bandwidth profiles respectively, for all users Si for i ∈ I. Constraint (4.10b)

means that the total power allocated to forward the data of all users as-

sisted by the relay is limited to P(R)
max. Whereas, constraint (4.10c) indicates

that the bandwidth allocated for user Si is limited to W. The achievable

data rate (4.9) for user Si is not a joint concave function with respect to the

power and bandwidth profiles, since ∃Wi ∈ [0,W] and/or ∃P(i)
R
> 0, such

that ∂
2R(i)

∂Wi
2
∂2R(i)

∂P(i)2
R

< ( ∂
2R(i)

∂Wi∂P
(i)
R

)2. To solve this problem we adapt an iterative re-

cursive algorithm that is repeated until convergence is obtained. The joint

resource allocation problem is implemented into two recursive steps; power

allocation step for a given bandwidth profile and bandwidth allocation step

for a given power profile as described below.

1. Power Allocation Step: in this step, given the relaying bandwidth

profile W for all users Si for i ∈ I, the effective power allocation prob-

lem can be formulated as:

max
P

∑

i∈I
R(i)

AF
, (4.11a)

s.t.
∑

i∈I
P(i)

R
≤ P(R)

max, (4.11b)

P(i)
R
≥ 0, ∀i ∈ I. (4.11c)

The power allocation problem (4.11) can be considered as a weighted-

sum rate allocation, which is a convex optimization problem. The ob-

jective function is a concave function with respect to the power profile

as can be proved by the second order derivative test (Hessian matrix

is positive definite). The constraints are also linear.
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The KKT conditions for (4.11) are as follows:

P(i)2
R

(Wi(Γ + Γ
(i)

SD
) + Ai) + P(i)

R

(

AiBi + CiWiAi + 2Wi(Γ + Γ
(i)

SD
)(Bi + CiWi)

)

+

Wi(Γ + Γ
(i)

SD
)(Bi + CiWi)

2 − AiWi(Bi + CiWi)

2λR ln(2)
= 0, ∀i ∈ I, (4.12a)

∑

i∈I
P(i)

R
= P(R)

max, (4.12b)

P(i)
R
≥ 0, ∀i ∈ I, (4.12c)

λi ≥ 0, ∀i ∈ I, (4.12d)

λiP
(i)
R
= 0, ∀i ∈ I, (4.12e)

where, λis are the Lagrange multipliers of the non-negativity power

constraint (4.11c), and λR is the Lagrange multiplier associated with

the total relaying power constraint (4.11b). To simplify the forthcom-

ing notations, we define α(i)
2

, α(i)

1
, and α(i)

0
as:

α(i)
2
=Wi(Γ + Γ

(i)

SD
) + Ai, (4.13a)

α(i)

1
= AiBi + CiWiAi + 2Wi(Γ + Γ

(i)

SD
)(Bi + CiWi), (4.13b)

α(i)
0
=Wi(Γ + Γ

(i)

SD
)(Bi + CiWi)

2 − AiWi(Bi + CiWi)

2λR ln(2)
, (4.13c)

then, the optimal solution P∗(i)
R

can be obtained by solving the KKT

conditions given as:

P∗(i)
R
= max

(

0,

√

α(i)2

1
− 4α(i)

2
α(i)

0
− α(i)

1

2α(i)
2

)

, (4.14)

and λR is chosen such that the total power constraint
∑

i∈I P∗(i)
R
= P(R)

max

is satisfied.

The optimal relaying power P∗(i)
R

for user Si can be obtained in an in-

dependent manner using the dual decomposition approach. In this

sense, the Lagrangian function can be written by relaxing the total
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power constraint (4.11b) as:

L(P, λR) =
∑

i∈I
R(i)

AF
− λR(

∑

i∈I
P(i)

R
− P(R)

max), (4.15a)

s.t. P(i)
R
≥ 0, λR ≥ 0, (4.15b)

then, with a little algebra, we can rearrange the Lagrangian function

as:

L(P, λR) =
∑

i∈I
(R(i)

AF
− λRP(i)

R
) + λRP(R)

max. (4.16)

The associated dual problem can be written as:

g(λR) = max
P �0

L(P, λR). (4.17)

Since problem (4.11) is convex with linear constraints, strong duality

holds. Hence, the solution of the problem can be obtained from the

solution of the corresponding dual problem which is given as:

min g(λR), (4.18a)

s.t. λR ≥ 0. (4.18b)

The dual problem can be solved iteratively using the gradient or sub-

gradient methods as [21]:

λ(t+1)
R
=

(

λ(t)
R
− ǫ(P(R)

max −
∑

i∈I
Pt(i)

R
)
)+

, (4.19)

where ǫ is a small step size, t is the iteration index, and (·)+ denotes the

projection operator in the set of non-negative numbers. The relaying

power Pt(i)
R

at iteration t is computed using (4.14) with λR substituted

with λ(t)
R

.

2. Bandwidth Allocation Step: in this step, given the relaying power
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profile P(i)
R

for all users Si for i ∈ I, the effective bandwidth allocation

problem can be formulated as:

max
W

∑

i∈I
R(i), (4.20a)

s.t. 0 ≤Wi ≤W, ∀i ∈ I, (4.20b)

since the users are assigned orthogonal frequency bands, the band-

width allocation problem (4.20) can be decomposed into |I| bandwidth

allocation problems, where each user Si for i ∈ I finds her optimal

bandwidth profile W∗
i

without affecting other users as:

W∗
i = arg max

0≤Wi≤W
R(i). (4.21)

Examining the user achievable rate R(i) given by (4.9) as a function of

Wi for P(i)
R
, 0 reveals that R(i) can have only one maximum value at W∗

i

where 0 < W∗
i
≤ W. W∗

i
can be obtained by solving dR(i)

dWi
|W∗

i
= 0, where

the derivative of R(i) with respect to Wi is given as:

dR(i)

dWi
=

1

2
log2

(

1 +
PS|h(i)

SD
|2

ΓN0Wi
+

AiP
(i)
R

ΓWi(Bi + P(i)
R
+ CiWi)

)

− log2

(

1 +
PS|h(i)

SD
|2

ΓN0(W −Wi)

)

+

1

2 ln(2)

(−PS |h(i)
SD
|2

ΓN0Wi
− AiP

(i)
R

(Bi+P
(i)
R
+2CiWi)

ΓWi(Bi+P
(i)
R
+CiWi)2

)

1 +
PS |h(i)

SD
|2

ΓN0Wi
+

AiP
(i)
R

ΓWi(Bi+P
(i)
R
+CiWi)

+
1

ΓN0 ln(2)

PS|h(i)
SD
|2

(1 +
PS |h(i)

SD
|2

ΓN0(W−Wi)
)(W −Wi)

.

(4.22)

If there exists no feasible solution that satisfies dR(i)

dWi
= 0, then the max-

imum value of R(i) occurred at the boundaries; either at W∗
i
= 0 or at
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W∗
i
=W. Hence, the optimal bandwidth W∗

i
can be written as:

W∗
i =





arg dR(i)

dWi
= 0 Where 0 < W∗

i
< W.

0 P(i)
R
= 0 or, dR(i)

dWi
< 0, ∀Wi, where 0 <Wi <W.

W If dR(i)

dWi
> 0, ∀Wi, where 0 <Wi <W, and R(i)

AF
> R(i)

SD0
.

(4.23)

The optimal bandwidth W∗
i

can be obtained using an iterative algorithm as

[103]:

W(t+1)

i
=W(t)

i
+ θWi

W(t)

i

dRt(i)

dWi
. (4.24)

where W(t+1)

i
is the bandwidth update at iteration t + 1, and θWi

is adjust-

ment speed parameter. At optimal bandwidth W(t+1)

i
= W(t)

i
. The effect of

θWi
on the convergence and the stability of the algorithm can be studied

as in [1, 103]. The value of the derivative dRt(i)

dWi
can be estimated by user Si

using the central difference method. User Si computes the date rate R(i) at

iteration t by submitting the power W(t)

i
± ǫW, where ǫW is a small num-

ber, then estimates dRt(i)

dWi
≈ R+(i)−R−(i)

2ǫW
. The iterative distributed algorithm for

joint power and bandwidth allocation is illustrated in Algorithm 4.1. Given

the relay power constraints P(R)
max, the channel gains h(i)

RD
, h(i)

SD
, and h(i)

SR
for

i ∈ I. The power and bandwidth profiles are allocated using equations

(4.14) and (4.23), respectively. The convergence in the power is attained

when
∑

i∈I Pt(i)
R
= P(R)

max. The The convergence in the bandwidth is attained

when W(t+1)

i
= W(t)

i
. The convergence in the sum rate is attained when the

sum rate could not be improved further by applying the power and band-

width iterative steps |∑i∈I(Rl+1(i) − Rl(i))| < δ, where l denotes one procedure

of one power allocation step plus one bandwidth allocation step.
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Algorithm 4.1 Iterative Algorithm for Power and Bandwidth Allocation.

Require: h(i)

SD
, h(i)

SR
, h(i)

RD
, ∀i ∈ I, P(R)

max, W, PS, N0, and Γ.
1: Calculate: Ai, Bi, and Ci.
2: Initialize: Wi =W, ∀i ∈ I.
3: Initialize: t = 0, and λ(0)

R
= λ0.

4: while convergence in P is not attained do

5: Find the power allocation Pt(i)
R

, ∀i ∈ I using (4.14).

6: Update λ(t+1)
R

using (4.19).
7: Update t = t + 1.
8: end while
9: Return P∗(i)

R
, ∀i ∈ I.

10: Initialize: t = 0.
11: while convergence in W is not attained do

12: Compute dRt(i)

dWi
, ∀i ∈ I.

13: Update W(t+1)

i
using (4.24).

14: Update t = t + 1.
15: end while
16: Return W∗

i
, ∀i ∈ I.

17: Compute the sum rate
∑

i∈I R(i) using P∗(i)
R

and W∗
i
, ∀i ∈ I.

18: while convergence in sum rate is not attained do
19: Go to 3
20: end while
21: Return P, W, and

∑

i∈I R(i).

4.3 Frequency Selective Fading Improved AF Co-

operative Communication

The capacity of single carrier frequency selective fading channels without

relaying and with total source power constraint is addressed in [41, 44]. In

this section, the sum rate of multi user single relay improved AF cooper-

ative communication system is investigated under individual node power

constraint at the source and relay nodes for single carrier frequency selec-

tive fading channels. Let h(i)

SD
( f ), h(i)

SR
( f ), and h(i)

RD
( f ) denote the ith instanta-

neous source-destination, source-relay and relay-destination channel gains

as a function of frequency f , respectively. To simplify the forthcoming nota-

tions we define Γ(i)

SD
( f ) =

|h(i)
SD

( f )|2
ΓN0

, A(i)( f ) =
|h(i)

SR
( f )|2|h(i)

RD
( f )|2

ΓN0
, B(i)( f ) = |h(i)

SR
( f )|2 and

C(i)( f ) = |h(i)
RD

( f )|2.
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The instantaneous data rate for user Si for i ∈ I using (4.1)-(4.2) is ob-

tained as:

R(i)

FS
=

1

2

∫

f∈W(AF)
i

log2

(

1 + P(i)
T1

( f )Γ(i)

SD
( f ) +

P(i)
T1

( f )P(i)
R

( f )A(i)( f )

N0 + P(i)
T1

( f )B(i)( f ) + P(i)
R

( f )C(i)( f )

)

d f+

1

2

∫

f∈W(DC)
i

log2

(

1 + P(i)
T1

( f )Γ(i)

SD
( f )

)

d f +
1

2

∫

f∈W(DC)
i

log2

(

1 + P(i)
T2

( f )Γ(i)

SD
( f )

)

d f .

(4.25)

The equation inside the first integral can be thought of as the incremental

data rate of user Si for i ∈ I associated with a given frequency f over band-

width d f with power allocation profiles P(i)
T1

( f ) and P(i)
R

( f ) at the source and

relay nodes using AF relaying, respectively. The equation inside the second

and third integrals can be interpreted as the incremental data rate of user

Si associated with a given frequency f over bandwidth d f with power allo-

cation profiles P(i)
T1

( f ) and P(i)
T2

( f ) at the source node in first and second time

slots using direct transmission. The instantaneous sum rate optimization

problem can be formulated as:

max
P( f ),W

∑

i∈I
R(i)

FS
, (4.26a)

s.t.
∑

i∈I

∫

f∈W(AF)
i

P(i)
R

( f )d f ≤ P(R)
max, (4.26b)

∫

f∈W
P(i)

T1
( f ) d f ≤ P(i)

max, ∀i ∈ I, (4.26c)

∫

f∈W(DC)
i

P(i)
T2

( f ) d f ≤ P(i)
max,∀i ∈ I, (4.26d)

P(i)
R

( f ) ≥ 0, P(i)
T1

( f ) ≥ 0, P(i)
T2

( f ) ≥ 0, ∀i ∈ I, (4.26e)

W(AF)

i
+W(DC)

i
=W, ∀i ∈ I, (4.26f)

W(AF)

i
≥ 0, W(DC)

i
≥ 0, ∀i ∈ I. (4.26g)

The optimization problem underlying variables are P( f ), which includes

P(i)
T1

( f ), P(i)
T2

( f ), and P(i)
R

( f ) for f ∈ [0,W] and ∀i ∈ I, and the bandwidth pro-
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file W, which includes W(DC)

i
, and W(AF)

i
, ∀i ∈ I. Where P(i)

T1
( f ) and P(i)

T2
( f ),

and P(i)
R

( f ) is the PSDs of user Si in the first time slot T1, and second time

slot T2 for direct transmission. P(i)
R

( f ) is the PSD of the relayed signal of

user Si in the second time slot T2. W(AF)

i
, and W(DC)

i
are frequency bands for

cooperative and direct transmissions of user Si, respectively. It is worth not-

ing that in flat fading scenarios, each user transmits with constant power in

all the bandwidth [0,W] since the user faces one realization of the channel.

Whereas, in frequency selective fading scenarios, the user can utilize one

more degree of freedom by allocating the source power profiles P(i)
T1

( f ) and

P(i)
T2

( f ) for f ∈ [0,W].

Solving (4.26) is a complex task since the frequency is a continuous vari-

able (infinite dimension) and the problem is not convex. To tackle this prob-

lem, we propose a four-step iterative recursive algorithm based on the algo-

rithm proposed for the flat fading improved AF cooperative communication

system.

1. Relaying Power Allocation Step: in this step for a given relaying

bandwidth W and source power PT1
( f ) profiles, and by relaxing the

relaying power constraint, the optimization problem using the La-

grangian multiplier λR can be written as:

max
PR( f )

∑

i∈I

1

2

∫

f∈W(AF)
i

log2

(

1 + P(i)
T1

( f )Γ(i)
SD

( f ) +
P(i)

T1
( f )P(i)

R
( f )A(i)( f )

N0 + P(i)
T1

( f )B(i)( f ) + P(i)
R

( f )C(i)( f )

)

d f−

λR

(∑

i∈I

∫

f∈W(AF)
i

P(i)
R

( f )d f − P(R)
max

)

, (4.27a)

s.t. (4.26e). (4.27b)

Similar to (4.19), the optimal power solution can be obtained in an

independent manner using the dual decomposition approach, where
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each user Si for i ∈ Imaximizes her own rate as:

max
P

(i)
R

( f )

1

2

∫

f∈W(AF)
i

log2

(

1 + P(i)
T1

( f )Γ(i)
SD

( f ) +
P(i)

T1
( f )P(i)

R
( f )A(i)( f )

N0 + P(i)
T1

( f )B(i)( f ) + P(i)
R

( f )C(i)( f )

)

d f−

λR

∫

f∈W(AF)
i

P(i)
R

( f ) d f , (4.28a)

s.t. (4.26e). (4.28b)

This is a convex optimization problem with respect to P(i)
R

( f ). To sim-

plify the forthcoming notations, α(i)
2

( f ), α(i)

1
( f ), and α(i)

0
( f ) are defined

as:

α(i)
2

( f ) =
(

1 + Γ(i)

SD
( f )P(i)

T1
( f )

)

C(i)2( f ) + A(i)( f )C(i)( f )P(i)
T1

( f ), (4.29a)

α(i)

1
( f ) =2C(i)( f )

(

1 + Γ(i)

SD
( f )P(i)

T1
( f )

)(

N0 + P(i)
T1

( f )B(i)( f )
)

+

(

N0 + P(i)
T1

( f )B(i)( f )
)

P(i)
T1

( f )A(i)( f ), (4.29b)

α(i)
0

( f ) =
(

1 + Γ(i)

SD
( f )P(i)

T1
( f )

)(

N0 + P(i)
T1

( f )B(i)( f )
)2
−

(

N0 + P(i)
T1

( f )B(i)( f )
)

P(i)
T1

( f )A(i)( f )

2 ln(2)λR
, (4.29c)

then, the optimal solution P∗(i)
R

( f ) can be obtained as:

P∗(i)
R

( f ) = max
(

0,

√

α(i)2

1
( f ) − 4α(i)

2
( f )α(i)

0
( f ) − α(i)

1
( f )

2α(i)
2

( f )

)

, (4.30)

and λR is chosen such that the total power constraint
∑

i∈I
∫

f∈W(AF)
i

P∗(i)
R

( f )d f =

P(R)
max is satisfied.

2. Source Power Allocation Step: in this step, for a given relaying band-

width W and power PR( f ) profiles, the optimal source power alloca-
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tion problem is formulated as follows:

max
PT1

( f ), PT2
( f )

1

2

∑

i∈I

∫

f∈W(AF)
i

log2

(

1 + P(i)
T1

( f )Γ(i)
SD

( f ) +
P(i)

T1
( f )P(i)

R
( f )A(i)( f )

N0 + P(i)
T1

( f )B(i)( f ) + P(i)
R

( f )C(i)( f )

)

d f+

1

2

∑

i∈I

∫

f∈W(DC)
i

log2

(

1 + P(i)
T1

( f )Γ(i)
SD

( f )
)

d f+

1

2

∑

i∈I

∫

f∈W(DC)
i

log2

(

1 + P(i)
T2

( f )Γ(i)
SD

( f )
)

d f , (4.31a)

s.t. (4.26c), (4.26d), and (4.26e). (4.31b)

Once again, the source power allocation problem can be separated into

2|I| sub problems, each user Si for i ∈ I solves two convex optimiza-

tion problems; the first problem is the source power allocation in the

first-time slot T1 which is given as:

max
P

(i)
T1

( f )

1

2

∫

f∈W(AF)
i

log2

(

1 + P(i)
T1

( f )Γ(i)

SD
( f ) +

P(i)
T1

( f )P(i)
R

( f )A(i)( f )

N0 + P(i)
T1

( f )B(i)( f ) + P(i)
R

( f )C(i)( f )

)

d f

+
1

2

∫

f∈W(DC)
i

log2

(

1 + P(i)
T1

( f )Γ(i)

SD
( f )

)

d f , (4.32a)

s.t. (4.26c) and (4.26e), (4.32b)

which is a convex optimization problem. However, the solution is

difficult to find in closed form, but can be obtained using any con-

vex optimization technique. The second problem is the allocation of

the source power in the second time slot T2 using direct transmission

given as:

max
P

(i)
T2

( f )

1

2

∫

f∈W(DC)
i

log2

(

1 + P(i)
T2

( f )Γ(i)

SD
( f )

)

d f , (4.33a)

s.t. (4.26d) and (4.26e), (4.33b)

the solution of (4.33) is in the form of the well known water filling
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solution given as [44]:

P∗(i)
T2

( f ) =
( 1

λS
− Γ(i)

SD
( f )

)+

, (4.34)

where λS is selected such that the source power constraint is satisfied
∫

f∈W(DC)
i

P∗(i)
T2

( f ) = P(i)
max for W(DC)

i
, 0.

3. Bandwidth Allocation Step: in this step, first we compare the achiev-

able data rate using direct transmission with the achievable rate using

AF with Wi = W. If the achievable rate using direct link is larger than

the achievable rate using AF with Wi = W, increasing the AF band-

width Wi from zero to Wi = W in a predetermined step size. Perform-

ing frequency scanning along side, source and relay power allocation

steps for each change in the bandwidth is required. The bandwidth

keeps increasing as long as the achievable data rate increases, other-

wise it decreases until reaching the optimal bandwidth. On the other

hand, if initially the achievable data rate using direct link is smaller

than the achievable data rate using AF with Wi = W, decreasing AF

relaying bandwidth from Wi = W towards zero until reaching the op-

timal bandwidth. For each change in the bandwidth, performing fre-

quency scanning along side with source and relay power allocation is

required. Bandwidth allocation can be implemented by following a

simple approach using a defined bandwidth increment for relaying,

that is, Wi ∈ {0,∆W, 2∆W, ...,W} and then finding the optimal band-

width that maximizes the data rate over these bandwidth increments.

4. Frequency Scanning Step: the start and end frequencies for a given

AF relaying bandwidth affect the power profiles at the source and re-

lay nodes. In this sense, for each incremental bandwidth Wi ∈ {0,∆W,

2∆W, ...,W}, the start frequency for AF relaying in the range [0,W] that

maximizes the sum rate is sought. Note that the relaying bandwidth
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Algorithm 4.2 Resource Allocation for Improved AF with Frequency Se-
lective Channels.

Require: h(i)
RD

( f ), h(i)

SD
( f ), h(i)

SR
( f ), P(i)

max, i ∈ I, P(R)
max, W, N0, and Γ.

1: Compute: Γ(i)

SD
( f ), A(i)( f ), B(i)( f ), and C(i)( f ).

2: for each relaying bandwidth Wi ∈ {∆W, 2∆W, · · · ,W}, i ∈ I do

3: Scan the whole bandwidth to find the relaying bandwidth W(AF)

i
for

a given Wi for i ∈ I.
4: Find the power power profiles by iterating between solving (4.28),

(4.32a) and (4.33a) for the relaying power profile P(i)
R

( f ) and the source

power profiles P(i)
T1

( f ) and P(i)
T2

( f ).

5: Compute the sum rate
∑

i∈I R(i)

FS
for each Wi and W(AF)

i
for i ∈ I.

6: end for
7: Find the power profiles P(i)

R
( f ), P(i)

T1
( f ), and P(i)

T2
( f ), the relaying band-

width W(AF)

i
that maximize the sum rate.

8: Return P, W, and the maximum sum rate
∑

i∈I R(i)

FS
.

W(AF)

i
includes Wi and the start relaying frequency. For each change

in the start point of the relaying bandwidth, source and relay power

allocation steps are required to allocate the optimal start relaying fre-

quency.

In our model where frequency is continuous, it is natural in wireless

communications and digital subscriber lines to divide the available frequency

bandwidth into N discrete channels each with bandwidth BN and assume

that the channel gain is constant in each discrete channel. This approxima-

tion makes the complexity of the resulting optimization problem scales with

N as in [37]. This discretization is used in the simulations as described next.

The iterative algorithm for joint power and bandwidth allocation for im-

proved AF frequency with selective fading channels is illustrated in Algo-

rithm 4.2. For given power constraints at the source and relay nodes P(R)
max,

and P(i)
max, respectively, and channel gains h(i)

RD
( f ), h(i)

SD
( f ), h(i)

SR
( f ) for i ∈ I,

the power and bandwidth profiles can be determined using Steps 1-4. Fur-

thermore, a distributed implementation for the resource allocation for the

improved AF with frequency selective fading channels can be developed

based on (4.28). The Lagrange multiplier λ(t)
R

at t = 0 is initialized, then each
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user Si for i ∈ I determines the relaying bandwidth Wt(AF)

i
, power profiles at

the source and relay nodes Pt(i)
T1

( f ), Pt(i)
R

( f ), and Pt(i)
T2

( f ), respectively, then the

Lagrange multiplier λ(t+1)
R

is updated as:

λ(t+1)
R
=

(

λ(t)
R
− ǫ(P(R)

max −
∑

i∈I

∫

f∈Wt(AF)
i

Pt(i)
R

( f )d f )
)+

, (4.35)

the procedure is repeated until the relay total power constraint (4.26b) is

satisfied.

4.4 Relay Selection and Joint Power and Bandwidth

Allocation

In this section, we extend the resource allocation problem of flat fading

channels using the improved AF transmission to multiple-relays. The sys-

tem under consideration consists of I users, K relays, and a common des-

tination D as depicted in Figure 4.3. In this setting, another degree of free-

dom is explored, where the relay assignment profile needs to be determined

for each user with optimal relaying power and bandwidth profiles. Let

K = {1, ..., K} be the set of active relays, each user Si for i ∈ I can only

use one relay from the set K . The channel coefficients that are used for

user Si transmission, using relay Rk are denoted as h(ik)

SR
and h(ik)

RD
. Following

the lines of (4.1)-(4.10) in Section 4.2, the resource allocation problem can be
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Figure 4.3 System Model: AF Multiple Users System.

formulated as:

max
Z, P,W

∑

k∈K

∑

i∈I
ZikR

(ik), (4.36a)

s.t.
∑

i∈I
ZikP

(ik)
R
≤ P(Rk)

max, ∀k ∈ K , (4.36b)

∑

k∈K
Zik = 1, ∀i ∈ I, (4.36c)

Wik ≤W, ∀i ∈ I, ∀k ∈ K , (4.36d)

P(ik)
R
≥ 0, Wik ≥ 0, Zik ∈ {0, 1}, ∀i ∈ I, ∀k ∈ K , (4.36e)

where Z is the relay selection indicator profile with Zik = 1 indicates that

relay Rk is assigned to user Si. P, and W are the relay power and bandwidth

profiles respectively, for all users Si for i ∈ I, with [P]ik = P(ik)
R

, and [W]ik =

Wik are the power and bandwidth profiles of user Si by using relay Rk. The

constraint (4.36b) means that the total power allocated to forward the data

from all users assisted by relay Rk is limited to P(Rk)
max. Whereas, constraint

(4.36d) indicates that the bandwidth allocated for user Si is limited to W.

Constraint (4.36c) means that only one relay is assigned to user Si. The data
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rate R(ik) for user Si using relay Rk after using MRC is computed as:

R(ik)
= R(ik)

SD
+ R(ik)

AF
, (4.37)

where R(ik)

SD
is the data rate using direct transmission, which is given as:

R(ik)

SD
= (W −Wik) log2(1 +

PS|h(i)

SD
|2

ΓN0(W −Wik)
), (4.38)

and R(ik)

AF
is the achievable data rate of AF cooperative communication using

relay Rk, with relaying bandwidth Wik and power P(ik)
R

given as:

R(ik)

AF
=

Wik

2
log2(1 +

Γ
(ik)

SD
+ Γ

(ik)

AF

Γ
), (4.39)

with Γ(ik)

SD
=

PS|h(i)
SD
|2

N0Wik
, and Γ(ik)

AF
=

PSP
(ik)
R
|h(ik)

SR
|2|h(ik)

RD
|2

N0Wik(N0Wik+PS|h(ik)
SR
|2+P

(ik)
R
|h(ik)

RD
|2)

. Problem (4.36) is

not only not jointly concave, but also a mixed integer (combinatorial prob-

lem), which is computationally intensive to solve using exhaustive search,

where there are |K||I| possible joint power and bandwidth profiles. There-

fore, we resort to solving it using a PSO for mixed integer problems. We use

a PSO algorithm for two fitness functions, the first is the objective function

in (4.36a) and the second fitness function is formulated by adding the relay

total power constraint as:

F =
∑

k∈K

∑

i∈I
ZikR

(ik)
+

∑

k∈K
λRk

(P(Rk)
max −

∑

i∈I
ZikP

(ik)
R

), (4.40)

where λRk
represent the sensitivity of the fitness function to the power con-

straint of relay Rk. This fitness function can be written as:

F =
∑

i∈I
Fi +

∑

k∈K
λRk

P(Rk)
max (4.41)
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where Fi =
∑

k∈K (ZikR
(ik) − λRk

ZikP
(ik)
R

). It is clear that maximizing Fi taking

into consideration constraint (4.36b) for all i ∈ I leads to maximizing the

system throughput. By this reordering and splinting of the fitness function

we can apply a distributed PSO algorithm as explained next.

4.4.1 Distributed PSO

Capitalizing on the fitness function (4.41) and in order to have a flexible

distributed resource allocation algorithm, we propose a distributed PSO al-

gorithm that can be implemented at the users side with less information

exchange between the users and the base station and without information

exchange among the users. This entails the following: Initially, the base

station announces the sensitivity parameter (λ(0)
Rk

, ∀k ∈ K ). Assuming all

users use direct link only (initially no relay is assigned), set this allocation

to x
(0)

iGbest
= [P(0)

iGbest
,W(0)

iGbest
]2, y

(0)

iGbest
= Z

(0)

iGbest
and F(0)

iGbest
= R(i)

SD0
for all i ∈ I. User

Si for i ∈ I at iteration t applies the PSO algorithm with her fitness function

F(t)

i
; generating a swarm of size P and dimension 3|K| and computing the

new global best F(t)

iGbest
. Then, the base station collects all F(t)

iGbest
and computes

the value of the fitness function using (4.41) as (
∑

i∈I F(t)

iGbest
) and compares it

with the value of the fitness function of the previous iteration
∑

i∈I F(t−1)

iGbest
, if

the new value achieves a better performance, the base station informs the

users to use the updated global bests F(t)

iGbest
, x

(t)

iGbest
, and y

(t)

iGbest
in the next it-

eration. Otherwise, the users use the previous global bests F(t−1)

iGbest
, x

(t−1)

iGbest
, and

y
(t−1)

iGbest
in the next iteration using (2.76)-(2.78) to update the values of x

(t)

i
and

y
(t)

i
.

Using KKT condition we know that at a local or global optimal, the so-

lutions must satisfy λRk
(P(Rk)

max −
∑

i∈I ZikP
(ik)
R

) = 0, which means that λRk
= 0 or

(P(Rk)
max −

∑

i∈I ZikP
(ik)
R

) = 0. In this regard, the base station successively adjusts

the sensitivity parameter λ(t)
Rk

using gradient or sub-gradient methods as in

2The notations of PSO algorithm follow Subsection 2.4.6.
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Figure 4.4 Flow Chart of the Distributed PSO Algorithm.

(2.63):

λ(t+1)
Rk
=

(

λ(t)
Rk
+ ǫ(P(Rk)

max −
∑

i∈I
Pt(ik)

R
Z(t)

ik
)
)+

(4.42)

where, Pt(ik)
R

and Z(t)

ik
are obtained from y

(t)

iGbest
and x

(t)

iGbest
, respectively. The

distributed PSO algorithm is shown in Figure 4.4. Applying the distributed

PSO algorithm and updating the sensitivity parameter λ(t)
Rk

are repeated un-

til convergence is achieved as illustrated in Figure 4.5. For the case of more

than two relays, the binary variable y are updated as in [5] to satisfy con-

straint (4.36c). It is worth noting that, the user needs to know only her own

information (the CSI between the source, the destination and all the relays

in the system, can be measured at the user terminal, the CSI between the

relay and the destination is feedbacked by the relay or base station to the

user).
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4.5 Simulation Results and Discussion

In the simulations for flat fading scenario, we consider a system of two users

(S1 and S2), one relay and a common destination D as illustrated in Fig-

ure 4.6. The source S1 is located at coordinate (−450m, 50m), S2 is located at

coordinate (400m, 0m), and the destination D is located at (0, 200m). The re-

lay y-coordinate is fixed at 80m, and the x-coordinate varies from −1500m to

1500m to represent different channel gains. The channel gains are obtained

using the simple path loss model [115] as κ/dα, where α is the propagation

loss factor α = 4, d is the distance between the two transmission ends, and

κ equals 0.097. The source transmitted power PS is fixed for the two sources

and set to 10mWatt. The two sources are assigned a bandwidth W = 1MHz

each, and the capacity gap is set to Γ = 1. The noise PSD is selected as

N0 = 1 × 10−21Watt/Hz, unless otherwise specified [149].

Joint power and bandwidth resource allocation for the improved AF flat

fading scheme is solved using various optimization methods; the exterior

penalty method [12], PSO, and Algorithm 4.1. As clear from Figure 4.7 the

solution obtained using Algorithm 4.1 coincides with negligible differences

with the solutions obtained by PSO and exterior penalty methods. The ex-

ternal penalty method is difficult to tune in terms of the initial penalty factor
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Figure 4.6 The Location of a System Consists of Two Users and a Relay.

3 and the initial solutions. In addition, the initial penalty factor, the initial

solutions and the number of iterations need to be adjusted for each relay

x-coordinate. Simulation results show that obtaining the solution using the

exterior penalty method becomes more difficult for low SNRs, i.e. when

the problem could not be approximated by a convex function. The exterior

penalty method is implemented using Powell’s method for unconstrained

nonlinear programming as in [12]. In contrast, PSO is not sensitive to ini-

tial solutions and no adjustment is needed for different relay x-coordinates

and/or different SNR regimes but requires the evaluation and the updates

for the whole population (the swarm) for number of iterations. On the other

hand, simulation results show that Algorithm 4.1 convergences to the solu-

tion in such few recursive steps. In Figures 4.8 & 4.9, the probability of

the sum data rate of Algorithm 4.1 to the optimal rate for l iterations with

l = 1, 2, 3, 4 and I = 2, 4 users is shown. The users x,y-coordinates of the

users are uniformly generated in [−600, 600]m for 1000 runs, the destination

is set at (0, 200)m, and the relay is set at (50, 80)m. The optimal solution is

obtained using the PSO method.

Figure 4.10 shows the convergence of the iterative bandwidth algorithm

(4.24) for different values of θW and different initial values of W(0)

1
, W(0)

2
for

3Modified versions of the penalty method can be used to handle some of these problems
as in the augmented Lagrangian method [104]. However, the penalty method is only used
to compare the result of Algorithm 4.1.
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Figure 4.7 The Sum Rate Using Different Algorithms.

Table 4.1 Comparison Between Solution Methods

Algorithm Algorithm 4.1 PSO Exterior Penalty

Description Iterative Evolutionary Conventional

Non-Linear Program

Parameters
- c1 = 2, c2 = 2, ω = 0.9 νt = 0.1, β = 2

Swarm Size 50,

Particles: P(1)
R

, P(2)
R

, W1, W2

Convergence 3 − 5 Iterative Steps < 50 < 50

Starting Point

Feasible Solution Swarm of Feasible Solutions Non-Feasible

Solution

Stopping Point The Rate is not Increasing All the Particles Reach a Reaching a Feasible

for a Number of Iterations Global Solution Within a Solution

Certain Specified Tolerance

Distributed
Possible Possible Not-Possible

Implementation

rx = 400m and P(1)
R
= P(2)

R
= 0.5Watt.

Table 4.1, shows a comparison between different algorithms used to

solve the joint resource allocation problem for the improved AF for flat fad-
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Figure 4.9 Convergence of Algorithm 4.1 for Four Users.

ing scenario. It was noticed that Algorithm 4.1 converges to the solution in

3 − 5 iterations for any relay x-coordinate.

The convergence of the PSO algorithm for the improved AF scheme is

tested for a swarm of size P = 50, and for different relay x-coordinates.

PSO converges quickly in less than 50 iterations. The convergence for relay

coordinate x = 10 is shown in Figure 4.11.
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Figure 4.11 Convergence of PSO Algorithm.

Figure 4.12, shows the data rates for both users as a function of the relay

x-coordinate using Algorithm 4.1. The region from −1500m to 0m repre-

sents a better channel gain for user S1; the relay is much closer to source

S1 than to source S2, so the achievable data rate for user S1 is higher in this

region than the data rate for user S2. The same conclusion is drawn for user

S2 in the region from the 0m to 1500m.
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Figure 4.12 Data Rate as a Function of the Relay x-Coordinate.

Figure 4.13(a) and Figure 4.13(b) show the power and bandwidth allo-

cation profiles as a function of the relay x-coordinate using Algorithm 4.1,

which shows that the power constraint is always active, i.e. the sum of the

relaying power equals P(R)
max = 1Watt at all relay locations since at least one

user is using the relay. Whereas, the bandwidth constraint is not active, i.e.

the maximum allocated bandwidth for relaying is less than W at all relay

locations; i.e. both users adapt a mixed strategy AF cooperative communi-

cation scheme.

Figure 4.14 compares the sum rate obtained using Algorithm 4.1 with

the solution of the dual problem (A.2). The dual problem was solved using

a nested loop implementation as in [32]. Simulation results confirm the ex-

istence of a duality gap, so the joint resource allocation problem (4.10) could

not be solved in the dual domain. The solution of the dual problem (some

values of the power and bandwidth profiles) are not feasible solutions for

(4.10).

Figure 4.15 shows the apparent sum rate using the approximated SNR
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Figure 4.13 Resource Allocation as a Function of the Relay x-Coordinate.

(by its upper bound) as in [56]:

Γ
(i)
UB
=

AiP
(i)
R

Wi(Bi + P(i)
R

)
, (4.43)

then, the achievable rate of user Si using this approximation can be written
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as:

R(i)
UB
=

Wi

2
log2(1 +

Γ
(i)

SD
+ Γ

(i)
UB

Γ
). (4.44)

Using (4.44), the resource allocation problem is formulated as:

max
P,W

∑

i∈I
R(i)

UB
+ R(i)

SD
, (4.45a)

s.t. (4.10b), (4.10c), and (4.10d). (4.45b)

with this approximation the sum rate becomes a jointly concave function

in the power and bandwidth profiles, as can be proved by the second or-

der derivative test (Hessian). Hence, it can be solved by any convex op-

timization technique. Here, the interior point method is used. The sum

rate achieved by substituting the power and bandwidth profiles obtained

from optimizing (4.45) in the user rate (4.9) is shown in Figure 4.15. Clearly,

the difference between the two curves confirms that this approximation

could not be used in low SNR regime, and this points out the need to solve

the problem without the upper bound approximation, as is done in Algo-
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rithm 4.1. The dashed curve shows that the achievable sum rate based

on the exact expression for the SNR using Algorithm 4.1 is higher than

the achievable sum rate using the approximation. To simulate a low SNR

regime, the noise PSD is set at N0 = 1 × 10−16Watt/Hz.

Figure 4.16 compares the sum date rate for different allocation criterion;

optimum power and bandwidth FDM (improved AF), optimum power and

fixed bandwidth Wi = W, and optimum bandwidth FDM and fixed power

P(i)
R
= P(R)

max/2, i = 1, 2 for the same power constraint P(R)
max = 1Watt. Simu-

lation results show that, optimal power and bandwidth allocation achieves

maximum throughput compared to other allocation criterion.

Figure 4.17 shows the maximum sum rate as a function of the relay x-

coordinate for different relay maximum power. Clearly, as P(R)
max increases,

the maximum sum rate increases, since AF data rate is a concave increasing

function in the relay’s power. Note that, the total power constraint is met

with equality at the optimum solution if at least one user is using the relay.

The bandwidth increase for AF relaying is beneficial until reaching a certain

limit, after which the user does not benefit from the extra bandwidth as the
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Figure 4.17 Data Rate for Different Maximum Relay Power Profiles.

noise power will increase. So the extra part of the bandwidth is used for

direct transmission.

Figure 4.18 shows the sum rate as a function of the number of users. The

solution obtained using Algorithm 4.1 coincides with the solution obtained

from PSO.

The effect of an additional relay bandwidth constraint
∑

i∈IWi ≤ Wmax
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on the sum rate is investigated using PSO method; that is, the relay uses

different frequency bands to forward the users information. The bandwidth

increase is beneficial (that is, maximizes the sum rate) until reaching certain

limit Wmax = 1.6MHz, after that the user does not benefit from the extra

bandwidth as the noise power will increase, the remaining bandwidth is

used for direct transmission as shown in Figure 4.19.



143

Table 4.2 Achievable Data Rate for SFSC Scenario.

Scheme Direct AF Improved AF

Sum Rate Using the Proposed 1.0743 1.4461 1.8520

Algorithm in [Mbps]

Sum Rate Using PSO 1.0735 1.4315 1.7850

Algorithm in [Mbps]

4.5.1 Frequency Selective Fading Channels Scenario

For the single carrier frequency selective channel (SCFSC) scenario, the chan-

nel gains are modeled using IEEE 802.11 channel model with 4 taps [26].

We assume an exponential power delay profile, where all taps are subject to

Rayleigh fading. In our simulations, we set the relay at the origin (0, 0)m,

the destination at (−100, 0)m, user S1 at (25, 25)m, and user S2 at (25,−25)m.

For PSO, the particles are the sources’ power profiles in the first and second

time slots, the relaying power profile, and the start and end frequencies of

AF relaying. The channel frequency response is divided into 64 sub-bands,

where the channel gain is considered constant in each sub-band. The swarm

size is set to 500, where each swarm consists of 64 ∗ 3 + 4 particles. To re-

duce the number of computations in Algorithm 4.2, we include a defined

bandwidth increment for AF; i.e. AF is implemented in 0, 8, 16, 24, · · · , 64

adjacent sub-bands, and then we scan to find the best relaying range (the

start and end frequencies). For example in the simulated scenario, we find

that the relaying widths of 16, and 24 with starting frequencies of 49, and 1

for user S1 and user S2, respectively, achieve the maximum sum rate.

Table 4.2 compares the sum data rate for different allocation criteria.

Clearly the improved AF scheme achieves the maximum sum date rate. Im-

proved AF shows a 28.07% increase in the achievable data rate compared to

full bandwidth AF. Simulation results show that Algorithm 4.2 outperforms

or achieves at least the same sum rate as the PSO algorithm. Table 4.2 show
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Figure 4.20 Power Allocation as a Function of Relay One x-Coordinate.

a case where Algorithm 4.2 outperforms the PSO. Investigating this case,

reveals that the PSO algorithm finds a local minimum. The implementation

of the PSO does not scan all the frequency range to find the start and end

points. PSO is based on generating start and end points randomly, and then

updating until a stopping criterion is satisfied.

4.5.2 Relay Selection and Joint Power and Bandwidth Allo-

cation

For multi-relay AF cooperative communication, we consider three scenar-

ios. The first scenario consists of two sources, two relays, and a destination

node; the position of the source and destination nodes are as shown in Fig-

ure 4.6, the x-coordinate of the first relay varies from −1500m to 1500m and

the y-coordinate is fixed at 80m. The position of the second relay is fixed at

x-coordinate of 100m and y-coordinate of 20m.

Figure 4.20 and Figure 4.21 show the power and bandwidth allocation

profiles, respectively as a function of the relay x-coordinate. It can be re-

alized that the power constraint is always active, that is, the sum of the

relaying power equals P(Rk)
max = 1 for k = 1, 2 at all relay locations. Whereas,



145

−1500 −1000 −500 0 500 1000 1500
0

2

4

6

8

10
x 10

5

 

B
an

dw
id

th
 in

 [H
z]

 

 
W

11

W
12

−1500 −1000 −500 0 500 1000 1500
0

2

4

6

8
x 10

5

 x−Coordinate of the Relay

B
an

dw
id

th
 in

 [H
z]

 

 
W

21

W
22

Figure 4.21 Bandwidth Allocation as a Function of Relay One x-Coordinate.

the bandwidth constraint is not active, that is, the maximum allocated band-

width is less than W at many relay locations.

Table 4.3 shows the resource allocation for two scenarios: Scenario one

consists of I = 10 users and K = 2 relays. Scenario two consists of I = 10

users and K = 4 relays. The position of the sources, relays and the destina-

tion are as shown in Figure 4.22(a) and Figure 4.22(b) for scenarios one and

two, respectively. The position of the relays and destination nodes are fixed

and the users are generated uniformly in the area.

Clearly, Table 4.3 reveals that users S6 and S9 use only direct link for

transmission in the two-relays scenario; they are not benefiting from the

relays, users S1, S4, S5, S7 and S8 use AF for all the bandwidth Wi = W, and

the remaining users in this scenario use the mixed strategy; the bandwidth

profile Wik <W for the selected relays. For the four relays scenario all users

use mixed strategy profile Wik <W as shown in Table 4.3.
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Figure 4.22 Multi-Source Multi-Relay Scenario

4.5.3 Distributed PSO Algorithm

In this subsection, the sum rate of the distributed and centralized PSO al-

gorithms is compared for one and two relay scenarios. Figure 4.23, com-

pares the sum data rate for the centralized PSO and the distributed PSO

algorithm for the scenario depicted in Figure 4.6. The relay power con-

straint is P(R)
max = 1Watt. The initial fitness function (4.41) parameter is set as

λ(0)
R
= 0.4 × 106. The graph clearly demonstrates that the two curves coin-

cide with negligible differences. The region from −1500m to 0m represents

a better channel gain for user S1; the relay is much closer to source S1 than

to source S2, so the achievable data rate for user S1 is higher in this region

than the data rate of user S2. The same conclusion is drawn for user S2 in

the region from 0m to 1500m.
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Table 4.3 Resource Allocation

Two Relays Scenario

Users S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

Relay 1 1 1 1 1 1 2 2 2 2

Power
0.2226 0.1993 0.1469 0.2170 0.2141 0 0.3499 0.3503 0 0.2996

[Watt]

Bandwidth
1 0.8965 0.6731 1 1 0 1 1 0 0.7988

[MHz]

Four Relays Scenario

Users S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

Relay 1 1 2 2 3 3 3 4 4 4

Power
0.1699 0.8300 0.2666 0.7334 0.5865 0.0706 0.3429 0.1779 0.2092 0.6128

[Watt]

Bandwidth
0.6997 0.7878 0.7363 0.7044 0.7815 0.7118 0.7339 0.7040 0.7134 0.8085

[MHz]
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Figure 4.23 Comparison of the Sum Rate for the Distributed and the Cen-
tralized PSO Algorithms.

Figure 4.24(a), compares the data rate for the centralized PSO and the

distributed PSO algorithm for joint relay selection and resource allocation

for two users two relays scenario; the x-coordinate of the first relay varies

from −1500m to 1500m and the y-coordinate is fixed at 80m. The position of

the second relay is fixed at x-coordinate of 100m and y-coordinate of 20m.

The coordinates of the two sources and the destination nodes are similar to
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Figure 4.24 Resource Allocation as a Function of Relay One x-Coordinate
Using the Distributed and Centralized PSO Algorithms.

those in scenario one.

Figure 4.24(b) and Figure 4.24(c) show the relay selection for user S1 and

user S2 respectively. Z11 = 1, Z12 = 1, Z21 = 1, and Z22 = 1 is interpreted as

selecting relay R1 for user S1, selecting relay R2 for user S1, selecting relay R1

for user S2, and selecting relay R2 for user S2, respectively.
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4.6 Conclusions

In this chapter, we investigate joint power and bandwidth resource alloca-

tion for multiple users improved AF cooperative communication scheme

for flat and frequency selective fading channels in the presence of a direct

link between the source and destination nodes. In formulating the problem,

we consider that the user may use an AF cooperative scheme with diversity

for part of the bandwidth, and the remaining bandwidth is used for direct

transmission without diversity in order to benefit from all available degrees

of freedom. The optimization problem is formulated to maximize the sum

rate. The problem is not jointly concave in the power and bandwidth pro-

files. A recursive algorithm is proposed to solve the problem which sep-

arates it into power and bandwidth subproblems. In addition, for the fre-

quency selective fading scenario, the source power profile is to be optimized

in the first and second time slots to utilize resources efficiently. The joint

power and bandwidth allocation scenario outperforms both the power al-

location for fixed bandwidth profile and the bandwidth allocation for fixed

power profile scenarios. Joint relay selection and power and bandwidth al-

location for multi source multi relay for flat fading using the improved AF

cooperative communication scheme is addressed using PSO algorithm.



CHAPTER5

STACKELBERG GAME FOR JOINT POWER AND

BANDWIDTH ALLOCATION FOR AF RELAYING

In this chapter, power and bandwidth pricing is proposed as incentives for

cooperative communications, where a relay with limited resources is will-

ing to sell its resources; power and bandwidth to multiple users, aiming

to maximize its revenue. The users are competing for the relay resources.

Stackelberg market framework is used to model a single relay multiple users

AF cooperative communication system. The relay is the leader player in the

Stackelberg game, the power and bandwidth prices are used to model the

strategies of the leader, whereas, the users are the followers in the Stack-

elberg game. The power and bandwidth demands are used to model the

follower strategies. No coordination or information exchange between the

competing users is assumed in this model. The users determine the power

and bandwidth demands according to Nash equilibrium; each user maxi-

mizes her own utility function.

The introduction and related research are presented in Section 5.1. AF

Stackelberg game model and notations are introduced in Section 5.2. In Sec-

tion 5.3, AF Stackelberg game is analyzed; the existence and uniqueness of

Nash equilibrium (solution) are proven. Distributed algorithms for finding

the power and bandwidth prices and the power and bandwidth profiles are

also proposed. Numerical results are confirmed in Sections 5.4. Conclusions
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are drawn in Section 5.5.

5.1 Introduction

In Chapter 4, we considered a system viewpoint by jointly allocating power

and bandwidth profiles, aiming to maximize the sum rate for a multi user

single relay modified AF cooperative communication system. An optimiza-

tion approach was followed to find the solution. In this chapter, we want

to capture the interactions between the users and the relay, aiming to max-

imize the relay revenue from selling its resources, power and bandwidth.

The relay may not belong to the system or may support more than one sys-

tem. In this sense, game theory is used to model the interactions between

the users and the relay. The user determines the required power and band-

width profiles based on power and bandwidth prices, her channel gains,

and other users competing for the relay resources. The relay sets the prices

aiming to maximize its revenue from selling its resources.

Game theory has been recently used for resource allocation in cooper-

ative communications [28, 110, 127, 149, 156, 169]. In [110], the authors

proposed a non-cooperative game framework for pricing a single relay AF

multi-user system, aiming to maximize the relay revenue or the desirable

system utility. The relay sets prices and correspondingly charges the users

depending on the quality of the received signal. The user aims to maximize

its utility through power allocation. An iterative algorithm is proposed to

reach Nash equilibrium. In [169], the authors modeled the bandwidth shar-

ing among the users in a single relay cooperative communication system

using non-cooperative game, the utility function represents the achievable

throughput in the presence of a pricing term. A distributed algorithm is

proposed to find Nash equilibrium.

In [127], the authors studied Gaussian interference relay game (GIRG),

where each user seeks an optimum power across a set of hops, and showed
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that the GIRG for two users has a unique Nash equilibrium, which can be

reached in a distributed manner. In addition, the conditions under which

Nash equilibrium is Pareto optimal were studied. In [156], interference was

considered as a detrimental factor for the performance of both AF and DF

systems. The uniqueness and existence of Nash equilibrium are proven.

Furthermore, a distributed algorithm to reach Nash equilibrium is imple-

mented.

In [149], the authors proposed a Stackelberg game to perform power al-

locations in a multi-relay system. The relays announce the prices per unit

of power to all active users in the system, this action can be modeled as the

leader action in the Stackelberg game. The user determines her requirement

of the power based on the prices and her channel gains between the source,

relay and destination nodes. This action is modeled as the follower action

in the Stackelberg game. The proposed model helps competing relays to

maximize their own utility by asking optimal prices, and helps sources to

find the relays with better locations and buys the optimal amount of power

from them. In [28], the authors used Stackelberg game to model one relay

and multi-users. The relay determines the price per unit bandwidth, and

according to the price, each user determines the amount of bandwidth re-

quired for relaying her data.

In the aforementioned works, either power or bandwidth profiles are

considered for allocation. However, in a relay network, both power and

bandwidth allocation need to be accounted for. In this chapter, building on

previous research in [28, 149, 163, 170], power and bandwidth allocation

for AF single relay multi-user system is studied using Stackelberg game. In

this sense, a utility function with pricing factors is formulated to represent

the user demands for power and bandwidth. The pricing is used as a reim-

bursement for the relay as a compensation for using its resources. Relaying

requirements are both power and bandwidth, which can be translated in
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the language of game theory to the costs of power and bandwidth used

for relaying. Because power and bandwidth are two different commodities,

the cost of each depends on its availability and the competition between

the users. Our goal in this chapter is to devise a revenue-maximizing pric-

ing scheme for the relay for both power and bandwidth resources. Thus,

a non-cooperative AF power and bandwidth game is played by the users

(followers) in a Stackelberg game, where the goal of the leader (relay) is to

set prices for the power and bandwidth to maximize its revenue.

Our model differs from previous research [28, 149, 163, 170] in several

key aspects: First, in [149] the authors’ main concern is to select the relays

and determines the purchased power from each relay, i.e. the competition is

between the relays to determine the prices, not between the users as in our

work. The authors proposed a distributed algorithm to determine the re-

layed power price. Whereas in our research, the competition is between the

users and the relay to determine Stackelberg Nash Equilibrium. In addition,

we proposed a nested distributed algorithm; the inner algorithm is to deter-

mine the power and bandwidth allocation for the users for given power

and bandwidth prices, and the outer algorithm is to determine the power

and bandwidth prices. Second, we consider power and bandwidth as two

commodities that the user wants to pay for, and the relay resources are lim-

ited and appeared in the user utility function. The case of joint power and

bandwidth allocation is a generalized framework that can be used to study

power allocation for unlimited bandwidth, and bandwidth allocation for

unlimited power. The first case can be interpreted as bandwidth demand

is less than the available bandwidth at the relay, i.e. there is no competi-

tion for bandwidth. The second case can be interpreted as power demand is

less than the relay maximum power, i.e. there is no competition for power.

The two cases can be investigated using our proposed framework as spe-

cial cases. In our model, the relay by selling to the users the sub-bands of
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its dedicated bandwidth and controlling the relaying power in each sub-

band, aims to maximize its own revenue. The utility function of each user

is formulated to be a jointly concave function in the power and bandwidth.

None of the utility functions in [149] and [28] can be used to jointly allo-

cate power and bandwidth, since the analysis of NE becomes untraceable.

Third, the users and the relay in our model are assigned orthogonal fre-

quency bands, whereas in [163, 170] two types of users are considered: a

primary user who is assigned a specific time slot and secondary users who

are not assigned any time slots. The secondary users relay the primary user

information to access the channel, i.e. obtain a portion of the primary user

time slot. Fourth, we investigate the uniqueness of the equilibrium using the

concavity of the utility function and the theory of concave potential games.

Whereas in [28, 149, 163, 170], there is no potential function associated with

the utility function, and uniqueness is investigated using standard function

theory.

5.2 AF Stackelberg Model

The system under consideration is depicted in Figure 5.1, whereI = {1, ..., I}

is the set of active users. Sender (Source) nodes Si for i ∈ I are communi-

cating with their destination terminals D1, D2, . . ., DM, where M ≤ I over

stable channels with coefficients h(i)

SD
. The source-destination pair (Si, Dm) is

referred to as the ith user without loss of generality. In cellular systems we

can consider all the destination nodes as one destination node, which is the

common base station. The relay station R is used to improve the reliability

of the communication between the source-destination pair using a simple

AF cooperative scheme. In AF, the relay scales the received data or part of

it and transmits it using a different frequency band in the relaying phase.

Considering FDMA and assuming no interference between the users; each

active user utilizes a different frequency band. In addition, the relay uses
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Figure 5.1 System Model: Multi-Source Destination Pairs and One Relay.

different frequency bands for relaying the user’s information. Each user

will use two time slots T1 and T2 in a TDM scenario. In the first time slot T1,

the source broadcasts its signal to the relay node and to its corresponding

destination terminal. In the second time slot T2, the relay amplifies the re-

ceived signal without decoding and forwards it to the destination terminal.

At the destination terminal the received messages are co-phased weighted

and then combined using MRC. CSI from the source to the destination, from

the source to the relay, and from the relay to the destination are assumed to

be known at the destination node.

In order to explore the cooperative diversity, two fundamental questions

need to be answered: First, what is the optimum power Pi for the AF coop-

erative scheme? Second, what is the optimum bandwidth Wi for the AF

cooperative scheme? To answer these questions, we define users as buyers,

relays as sellers, and power and bandwidth as commodities in a Stackelberg

game framework as follows.

Definition 5.2.1 The Stackelberg Leadership Model [40]: is a two-stage game

in which the leader player (relay) moves first by announcing the prices of the power

ΠP (per unit power) and bandwidth ΠW (per unit bandwidth), then the follower

user moves sequentially by selecting the quantity of the power and bandwidth that

maximizes her own utility function. The solution of the Stackelberg model is called

Stackelberg Nash Equilibrium (SNE). SNE consists of (P(SE)

i
,W(SE)

i
,Π(SE)

P
Π

(SE)
W

),∀i ∈
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I, where P(SE)

i
,W(SE)

i
are the power and bandwidth strategies that maximize user i

utility function to be defined later, and Π(SE)
P
, Π(SE)

W
are the power and bandwidth

prices respectively (the relay strategies) that maximize the relay utility function to

be defined later.

Users (Buyers): The users are represented by the buyers who seek to get the

most benefits at the least possible expenses. The users are the followers in

the Stackeberg game. In this context, we choose to define the utility function

of user i as follows:

Ui =

√√

Z Wi log
(1 + Γ(i)

SD
+ Γ

(i)

SRD

1 + Γ(i)

SD

)

−ΠPPi −ΠWWi −
X

Pmax −
∑

j∈I P j
−

Y

Wmax −
∑

j∈IW j
, (5.1)

where X and Y are system constants that reflect the effect of the availability

of the resources on the utility function. Z is related to the gain in the rate

by using the relay. Non-identical Zi can also be used for non-homogeneous

systems (that is, different data rates or priorities) to reflect the ith user will-

ingness to pay for the relay. ΠP andΠW are the power and bandwidth selling

prices per unit power and per unit bandwidth respectively.

The SNR for the ith user at the destination node without relaying Γ(i)

SD
can

be expressed as [149]:

Γ
(i)

SD
=

PS|h(i)

SD
|2

σ2
. (5.2)

The end-to-end SNR utilizing the relay Γ(i)

SRD
for AF scheme can be obtained

as [174]:

Γ
(i)

SRD
=

PSPi|h(i)

SR
|2|h(i)

RD
|2

σ2(σ2 + PS|h(i)

SR
|2 + Pi|h(i)

RD
|2)
, (5.3)

where Γ(i)

SRD
can be written in a simplified form as [149]:

Γ
(i)

SRD
=

AiPi

Bi + Pi
, (5.4)
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with Ai and Bi are respectively computed as:

Ai =
PS|h(i)

SR
|2

σ2
, (5.5a)

Bi =
PS|h(i)

SR
|2 + σ2

|h(i)
RD
|2

. (5.5b)

In formulating the utility function Ui, the following are considered:

1. Relate the utility function to a meaningful quantity in cooperative com-

munication, which is in this case the square-root of the rate achieved

using AF cooperation scheme. The square root, and the linear pric-

ing are used to guarantee joint concavity of the utility function with

respect to the power and bandwidth purchased from the relay, and to

discourage the users from asking for high power and/or bandwidth

demands.

2. The term (1+Γ(i)

SD
) is used in the denominator

( 1+Γ
(i)
SD
+Γ

(i)
AF

1+Γ
(i)
SD

)

to ensure zero

AF data rate at zero relay power and/ or at zero relay bandwidth.

3. The available power and bandwidth of the relay are limited to Pmax

and Wmax.

4. The power and bandwidth purchased by the ith user depend on the

relay prices ΠP and ΠW.

5. The linear pricing terms −ΠPPi −ΠWWi are used to control power and

bandwidth allocations separately.

6. The availability of power and (or) bandwidth encourage users to buy

higher power and or higher bandwidth.

7. The competition for the resources between the users is captured by

X
Pmax−

∑

j∈I P j
and Y

Wmax−
∑

j∈IW j
in the user utility function.
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Relay (Seller): For the relay, the utility function is simply defined as:

UR = (ΠP − CP)
∑

j∈I
P j + (ΠW − CW)

∑

j∈I
W j, (5.6)

where CP and CW are the costs per unit power and per unit bandwidth re-

spectively. The selected relay utility function, sums the benefit from selling

the power and bandwidth resources separately to simplify the analysis of

the equilibrium, but other functions can be used to achieve different objec-

tives. Note that, Pi = 0 results in Wi = 0 and Wi = 0 results in Pi = 0

in the user utility function. So, the cases of selling power alone (with zero

bandwidth) and bandwidth alone (with zero power) will not occur using

this formulation. On the other hand, the cases of selling power with a fixed

relaying bandwidth and selling bandwidth for a fixed relaying power can

be investigated using this formulation. In addition, the relay utility sums

monetary units (profits) not power and bandwidth profiles.

5.3 Stackelberg Game Analysis

Based on (5.1), the optimization problem for the ith user (buyer) can now be

formulated as:

max
Pi,Wi

Ui s.t. {Pi ≥ 0, 0 ≤Wi ≤W}, (5.7)

whereas, the optimization problem for the relay (seller) based on (5.6) can

be formulated as:

max
ΠP,ΠW

UR s.t. {ΠP ≥ CP, ΠW ≥ CW}. (5.8)

Since the Stackelberg game is a two stage game, two games are defined: the

power bandwidth game (PWG) at the users’ side, and the prices game (ΠG)

at the relay side.
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5.3.1 Users Side

The Power-Bandwidth Game (PWG) in a Stackelberg game model is defined

as [115]:

Definition 5.3.1 The PWG is defined as PWG = [I, (Pi,Wi),Ui(.)], which de-

notes the non-cooperative power and bandwidth purchases for a given power and

bandwidth pricesΠP andΠW, respectively. Pi and Wi are the power and bandwidth

strategy sets of user i, and Ui(·) is the ith user utility function. Each user selects a

power level Pi such that Pi ∈ Pi and a bandwidth share Wi such that Wi ∈Wi. Let

the power vector P = (P1, . . . ,PI) ∈ ~P denotes the outcome of the game in terms of

the selected power levels for all users, where ~P is the set of all feasible power vec-

tors. Furthermore, let the bandwidth vector W = (W1, . . . ,WI) ∈ ~W denotes the

outcome of the game in terms of the selected bandwidth shares of all users, where

~W is the set of all feasible bandwidth vectors. The resulting utility for the ith user

is Ui

(

P,W; (ΠP,ΠW)
)

. An alternative notation Ui

(

Pi,Wi,P−i,W−i; (ΠP,ΠW)
)

can

also be used to emphasize that the ith user has control only over its own power and

bandwidth strategies Pi and Wi respectively. In this sense, W−i, and P−i denote a

vector consisting of elements of the power P and bandwidth W excluding the ith

element.

Definition 5.3.2 For a given ΠP and ΠW, the Nash equilibrium of the PWG is

a two dimensional |I| tuples (W∗
i
≥ 0, P∗

i
≥ 0) satisfying the following objective

function ∀i ∈ I [40]:

max
Wi, Pi

Ui

(

(Wi,Pi), (W
∗
−i,P

∗
−i); (ΠP,ΠW)

)

= Ui

(

(W∗
i ,P

∗
i ), (W

∗
−i,P

∗
−i); (ΠP,ΠW)

)

,

(5.9a)

s.t. 0 ≤Wi ≤Wmax −W−i, (5.9b)

0 ≤ Pi ≤ Pmax − P−i, (5.9c)

where W−i =
∑

j∈I, j,i W j, and P−i =
∑

j∈I, j,i P j. At the Nash equilibria, given the
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power levels, bandwidth shares of the other users, no user can improve her utility

level by making individual changes in its own power and/or bandwidth profiles,

that is, no user has the incentive to unilaterally change her own strategy [105]. The

power level and bandwidth share chosen by a rational self optimizing user constitute

the best response to the power and bandwidth strategies chosen by the other users.

After defining the PWG and its Nash equilibrium, existence, uniqueness,

analytical solution, adaptive algorithm, and the convergence of the adaptive

algorithm are investigated as explained next.

(A) Existence of a Nash Equilibrium

The existence of the Nash equilibrium for the PWG is assured by The-

orem 2.5.3. Anchored in Theorem (2.5.3), the PWG admits at least one

Nash equilibrium, because the strategy space for each user is a convex

and compact set (0 ≤ Wi ≤ Wmax −W−i), (0 ≤ Pi ≤ Pmax − P−i) and the

payoff function of each user is continuous on P and W. Furthermore,

the joint concavity of the utility function of user i in Pi and Wi can be

proved by using the second derivative test as [149]:

∂2Ui

∂W2
i

=
−1

3
√

W3
i

√√√

Z log
(1 + Γ(i)

SD
+ Γ

(i)
SRD

1 + Γ(i)
SD

)

− 2Y

(Wmax −
∑

j∈IW j)3
, (5.10a)

∂2Ui

∂P2
i

=
−
√

ZWi

2

√

log
( 1+Γ

(i)
SD
+Γ

(i)
SRD

1+Γ
(i)
SD

)





( AiBi

Pi+Bi
)2

(1 + Γ(i)
SD
+ Γ

(i)
SRD

)2
+

2AiBi

(Pi + Bi)3
(1 + Γ(i)

SD
+ Γ

(i)
SRD

)




−

√
Wi(

AiBi

Pi+Bi
)2

(1 + Γ(i)
SD
+ Γ

(i)
SRD

)2

√
(

Z log
( 1+Γ

(i)
SD
+Γ

(i)
SRD

1+Γ
(i)
SD

))3
− 2X

(Pmax −
∑

j∈I P j)3
,

(5.10b)

∂2Ui

∂Wi∂Pi
=

−AiBi

√
Z

3
√

W3
i

√

log
( 1+Γ

(i)
SD
+Γ

(i)
SRD

1+Γ
(i)
SD

)

(1 + Γ(i)
SD
+ Γ

(i)
SRD

)(Pi + Bi)2

. (5.10c)

It is straightforward to show that: ∂2Ui

∂W2
i

< 0, ∂
2Ui

∂P2
i

< 0 and ∂2Ui

∂W2
i

∂2Ui

∂P2
i

−
(
∂2Ui

∂Wi∂Pi

)2
≥ 0. This completes the proof of the concavity. Hence quasi-
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concavity is guaranteed for the proposed utility function Ui. Therefore,

at least one Nash equilibrium exists.

(B) Uniqueness of Nash Equilibrium

The uniqueness of Nash equilibrium can be proved using the potential

game theory. The PWG is an exact potential game as can be proved

by (2.91), where ∂Ui

∂Wi
=
∂V
∂Wi

, and ∂Ui

∂Pi
=
∂V
∂Pi

with a potential function V(·)

defined as:

V(P,W) =
∑

i∈I

√√

Z Wi log
(1 + Γ(i)

SD
+ Γ

(i)

AF

1 + Γ(i)

SD

)

−ΠP

∑

i∈I
Pi −ΠW

∑

i∈I
Wi−

X

Pmax −
∑

i∈I Pi
− Y

Wmax −
∑

i∈IWi
, (5.11)

The potential function V(·), has many important properties. First, if

user i is maximizing the potential function V(·) instead of his own utility

function Ui(·), keeping the other users’ strategies fixed, this will not af-

fect the Nash equilibrium [8]. Second, the potential function V(·) is con-

tinuously differentiable, and strictly concave in the nonnegative-orthant

bounded by the hyperplanes Pmax =
∑

j∈I P j and Wmax =
∑

j∈IW j. It

admits a unique solution (Nash equilibrium), which coincides with the

only user by user Nash equilibrium. Ui(·) is a strictly concave function

with respect to user i strategies as can be proved by the second deriva-

tive test (5.10). This proves the uniqueness of Nash equilibrium for the

PWG.

(C) Analytical Solution of Nash Equilibrium

The derivative of the utility function of the ith user Ui(·) with respect to
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Wi, and Pi, ∀i ∈ I are respectively obtained as:

∂Ui

∂Wi
=

√

Z log
( 1+Γ

(i)
SD
+Γ

(i)
SRD

1+Γ
(i)
SD

)

2
√

Wi

−ΠW −
Y

(Wmax −
∑

j∈IW j)2
, (5.12a)

∂Ui

∂Pi
=

√
ZWi

2

√

log
( 1+Γ

(i)
SD
+Γ

(i)
SRD

1+Γ
(i)
SD

)

1

1 + Γ(i)

SD
+ Γ

(i)

SRD

AiBi

(Pi + Bi)2
−ΠP −

X

(Pmax −
∑

j∈I P j)2
.

(5.12b)

To obtain the Nash equilibrium (P∗
i
,W∗

i
) ∀i ∈ I the partial derivatives

∂Ui

∂Wi
and ∂Ui

∂Pi
are set as:

∂Ui

∂Wi
= 0 and

∂Ui

∂Pi
= 0 if P∗i ≥ 0 and W∗

i ≥ 0. (5.13)

Solving for the partial derivatives in (5.13), we arrive at:

ΠW +
Y

(Wmax −
∑

j∈IW j)2
=

√

Z log
( 1+Γ

(i)
SD
+Γ

(i)
SRD

1+Γ
(i)
SD

)

2
√

Wi

, (5.14)

and

ΠP +
X

(Pmax −
∑

j∈I P j)2
=

√
ZWi

2

√

log
( 1+Γ

(i)
SD
+Γ

(i)
SRD

1+Γ
(i)
SD

)

1

(1 + Γ(i)

SD
+ Γ

(i)

SRD
)

AiBi

(Pi + Bi)2
.

(5.15)

The best response BRi(P−i,W−i) of user i is described implicitly using

(5.14) and (5.15). The solutions of (5.14) and (5.15) are the user’s i power

and bandwidth pair (Pi,Wi) as a function of (P−i,W−i), which are called

the best response curves for user i. In order to find Nash equilibrium

for all users, 2|I| simultaneous equations must be solved. Since the left-

hand-side (LHS) of (5.14)) and (5.15) are the same for all users on the

right-hand-side (RHS), with some simplifications we obtain the follow-
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ing solution:

AiBi
(

(1 + Γ(i)

SD
)(Pi + Bi) + AiPi

)

(Pi + Bi)
=

AkBk
(

(1 + Γ(k)

SD
)(Pk + Bk) + AkPk

)

(Pk + Bk)
.

(5.16)

To solve for Pi in terms of Pk in (5.16), a second order algebraic equation

is formulated. The non-negative solution is then derived as:

Pi =

−α(i)

1
+

√

α(i)2

1
− 4α(i)

2
α(i)

0

2α(i)
2

, (5.17)

where α(i)
0

, α(i)

1
, and α(i)

2
are respectively defined as follows:

α(i)
0
= − AiBi

AkBk

(

(1 + Γ(k)

SD
+ Ak)P

2
k + (2(1 + Γ(k)

SD
) + AkBk)Pk + (1 + Γ(k)

SD
)B2

k

)

+

(1 + Γ(i)

SD
)B2

i , (5.18a)

α(i)

1
=2(1 + Γ(i)

SD
) + AiBi, (5.18b)

α(i)
2
=1 + Γ(i)

SD
+ Ai. (5.18c)

It is worth noting that, only α(i)
0

depends on Pk. Using (5.18) the overall

SNR Γ(i)

SRD
of user i can be computed as a function of Pk as:

Γ
(i)

SRD
=

Ai

(

− α(i)

1
+

√

α(i)2

1
− 4α(i)

2
α(i)

0

)

2α(i)
2

Bi − α(i)

1
+

√

α(i)2

1
− 4α(i)

2
α(i)

0

. (5.19)

Similarly, the total sum power
∑

i∈I Pi can also be expressed in terms of

Pk as:

∑

i∈I
Pi = −

1

2

∑

i∈I

α(i)

1

α(i)
2

+
1

2

∑

i∈I

√√

(α(i)

1

α(i)
2

)2
− 4

(α(i)
0

α(i)
2

)

. (5.20)

To simplify the forthcoming notations, we define F(i)
0
= α(i)

0
/α(i)

2
, F(i)

1
=
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α(i)

1
/α(i)

2
, and define F1 and F2 as follows:

F1 = −
1

2

∑

i∈I
F(i)

1
, (5.21a)

F2 =

∑

i∈I

1

2

√

F(i)2

1
− 4F(i)

0
. (5.21b)

The total sum power can now be simplified as:

∑

i∈I
Pi = F1 + F2. (5.22)

For the bandwidth, similar solutions can be sought as follows. The user

i bandwidth Wi can be expressed in terms of Wk and Pk from (5.14) as:

Wi =Wk

log
( 1+Γ

(i)
SD
+Γ

(i)
SRD

1+Γ
(i)
SD

)

log
( 1+Γ

(k)
SD
+Γ

(k)
SRD

1+Γ
(k)
SD

)
. (5.23)

Substituting (5.17), (5.19), (5.22) in (5.14) and (5.15), with some simplifi-

cations, the kth user power Pk is obtained as a solution of the following:

ZE

4D
= ΠW +

Y
[

Wmax − (4/Z)D2E−2
∑

i∈I log
( 1+Γ

(i)
SD
+Γ

(i)
SRD

1+Γ
(i)
SD

)]2
, (5.24)

where D = ΠP +
X

(Pmax−F1−F2)2 , and E = AkBk/(Bk+Pk)2

1+Γ
(k)
SD
+Γ

(k)
SRD

. Similarly, the kth user

bandwidth Wk can be obtained as:

Wk = (4/Z)D2E−2 log
(1 + Γ(k)

SD
+ Γ

(k)

SRD

1 + Γ(k)

SD

)

. (5.25)

The solutions of (5.24) and (5.25) are the Nash equilibrium P∗
k
, W∗

k
, ∀k ∈

I. If the solutions are not feasible, i.e. if P∗
k
< 0 and/or W∗

k
< 0 or W∗

k
>

W, it is necessary to modify the solutions such that P̃∗
k
= max (P∗

k
, 0)

for the power and W̃∗
k
= min(max (W∗

k
, 0),W) for the bandwidth. It is

clear from (5.24) that P∗
k

depends on ΠW, ΠP, the channel gains of user
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k, and all other users’ channels gains. The solutions in (5.24) and (5.25)

are obtained in a centralized fashion provided that exchange of infor-

mation between users is possible. However, because exchange of infor-

mation between users expends the system resources power and band-

width; each user needs to know all other users channel gains which is

impractical. The proposed non-cooperative game framework is used to

represent the interactions among the users and the relay. The selfish be-

havior allows to reduce the signaling overheads; the users and the relay

are trying to maximize their corresponding utility functions individu-

ally. So if a centralized solution is applied at the relay side, the problem

is converted to an optimization problem and no-gain is obtained from

using the game theory framework.

(D) The Dynamic Adaptive PWG

A solution that can be implemented at the user side not at the relay

side with minimum information exchange between the users and the

relay without coordination between the users (non-cooperative game)

is recommended. This can be found using dynamic game algorithms.

Based on the theorem of infinite potential game, the adopted algorithm

to find the Nash equilibrium for the PWG can be formulated as [101,

103]:

P(t+1)

i
= P(t)

i
+ θPi

P(t)

i

∂Ui

∂Pi
, (5.26a)

W(t+1)

i
=W(t)

i
+ θWi

W(t)

i

∂Ui

∂Wi
, (5.26b)

where P(t+1)

i
and W(t+1)

i
are the power and bandwidth updates at iter-

ation t + 1, and θWi
and θPi

are adjustment speed parameters. At the

Nash equilibrium P(t+1)

i
= P(t)

i
and W(t+1)

i
= W(t)

i
. The effects of θWi

and

θPi
on the convergence and the stability of the algorithm can be studied

as in [1, 103]. The value of the partial derivative ∂Ui

∂Pi
can be estimated
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by the ith user using the central difference method. The ith user in-

quires the relay of the function X
Pmax−

∑

j∈I P j
at iteration t by submitting

the power P(t)

i
± ǫP, where ǫP is a small number, then the ith user ob-

serves the response of the relay and estimates ∂Ui

∂Pi
≈ U+

i
(.)−U−

i
(.)

2ǫP
. In a sim-

ilar manner the ith user estimates ∂Ui

∂Wi
=

U+
i

(.)−U−
i

(.)

2ǫW
, where ǫW is a small

number represents the incremental change of the required bandwidth

(the ith user inquires the relay of the function Y
Wmax−

∑

j∈IW j
at iteration t

by submitting the bandwidth W(t)

i
±ǫW). The ith user keeps updating its

power and bandwidth until reaching Nash equilibrium P(t+1)

i
= P(t)

i
and

W(t+1)

i
=W(t)

i
, where ∂Ui

∂Pi
and ∂Ui

∂Wi
are equal to zero at Nash equilibrium.

Given the power and bandwidth update rules (5.26), two different ap-

proaches can be used to update the power and bandwidth profiles,

namely, Gauss-Seidel and Jacobi based algorithms [117]. In Gauss-Seidel,

the users update their strategies sequentially, whereas in Jacobi algo-

rithms, the users update their strategies in parallel. In this research the

Jacobi method is adopted and its stability is investigated next.

(E) Stability Analysis of the PWG Distributed Algorithm

Stability analysis of the distributed power and bandwidth update algo-

rithm (5.26) can be investigated using the eigenvalues λl of the Jacobian

matrix. The updated functions (5.26) will converge to the Nash equilib-

rium, if and only if, all the eigenvalues of the Jacobian matrix are inside

the unit circle (i.e. |λl| < 1 ∀, l ∈ 2I) [103].

The Jacobian matrix JPW for the distributed power and bandwidth up-
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date algorithms (5.26) is as:

JPW =





∂P(t+1)

1

∂P(t)

1

· · ·
∂P(t+1)

1

∂P(t)
I

∂P(t+1)

1

∂W(t)

1

· · ·
∂P(t+1)

1

∂W(t)
I

...
...

...
...

...
...

∂P(t+1)
I

∂P(t)

1

· · ·
∂P(t+1)

I

∂P(t)
I

∂P(t+1)
I

∂W(t)

1

· · ·
∂P(t+1)

I

∂W(t)
I

...
...

...
...

...
...

∂W(t+1)

1

∂P(t)

1

· · ·
∂W(t+1)

1

∂P(t)
I

∂W(t+1)

1

∂W(t)

1

· · ·
∂W(t+1)

1

∂W(t)
I

...
...

...
...

...
...

∂W(t+1)
I

∂P(t)

1

· · ·
∂W(t+1)

I

∂P(t)
I

∂W(t+1)
I

∂W(t)

1

· · ·
∂W(t+1)

I

∂W(t)
I





. (5.27)

Using the eigenvalues of the Jacobian matrix, θWi
and θPi

can be de-

termined in a centralized way to ensure the stability of the adaptive

algorithm, which are broadcasted to all users. In the simulations, we

set θWi
= θW and θPi

= θP, for i ∈ I to ensure synchronization of the

convergence of the distributed algorithm among all users on the net-

work [28].

5.3.2 Relay Side

The prices game (ΠG) in the the Stackelberg game model is defined as:

Definition 5.3.3 Let ΠG = [(ΠP,ΠW), (P,W),UR(·)] denote the non-cooperative

power and bandwidth prices for the given power and bandwidth demands P and W

respectively. ΠP and ΠW are the power price and bandwidth price strategy sets,

respectively. The relay selects a power price profileΠP ∈ ΠP and a bandwidth price

profile ΠW ∈ ΠW . Finally, UR(·) is the relay utility function as defined in (5.6).

To complete the analysis of the Stackelberg game, the power and bandwidth

pricesΠP andΠW need to be selected to maximize the relay revenue (utility

function of the relay). The revenue function (5.6) has the following proper-

ties: first, UR = 0 when bothΠW = CW, andΠP = CP. Second, UR approaches
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zero when both ΠW → ∞, and ΠP → ∞. Third, the feasible prices ΠW and

ΠP are greater or equal to the costs (ΠW ≥ CW, ΠP ≥ CP ). Fourth, for a finite

number of users the revenue is finite.

Substituting the Nash equilibrium power and bandwidth (5.24) and (5.25)

into (5.6), and differentiating UR with respect toΠW,ΠP, and setting to zero,

we get:

∂UR

∂ΠP
=

∑

j∈I
P∗j + (ΠP − CP)

∑

j∈I

∂P∗
j

∂ΠP
+ (ΠW − CW)

∑

j∈I

∂W∗
j

∂ΠP
= 0, (5.28a)

∂UR

∂ΠW
=

∑

j∈I
W∗

j + (ΠW − CW)
∑

j∈I

∂W∗
j

∂ΠW
+ (ΠP − CP)

∑

j∈I

∂P∗
j

∂ΠW
= 0. (5.28b)

After investigating the effect of changing the pricesΠP, andΠW on the Nash

equilibrium P∗
i

on (5.24), using numerical simulations we found that P∗
i

is a

decreasing function of ΠP if ΠW is kept constant, and also P∗
i

is a decreasing

function of ΠW when ΠP is kept constant. In addition, investigating the

concavity of the relay utility function UR with respect to ΠP and ΠW at the

users demands P∗
i
, and W∗

i
shows that UR is a jointly concave function for

the range of prices ΠP < ΠP < ΠP, and ΠW < ΠW < ΠW. It is difficult to

obtain a closed form expressions for ΠP, ΠP, ΠW, and ΠW, but they can be

computed numerically by satisfying the negative semi-definiteness of the

Hessian matrix. The Hessian matrix H is defined as:

H =





∂2UR

∂Π2
P

∂2UR

∂ΠP∂ΠW

∂2UR

∂ΠP∂ΠW

∂2UR

∂Π2
W





.

The solutions (5.28a), (5.28b), and (5.24) constitute the Stackelberg equilib-

rium Π(SE)
P

, Π(SE)
W

, P(SE)

i
. The Stackelberg equilibrium bandwidth W(SE)

i
can

be obtained using (5.25). In order to compute the Stackelberg equilibrium

[(Π(SE)
P
,Π(SE)

W
), (P(SE)

i
,W(SE)

i
)] a centralized process is required, which may be

impractical. A distributed algorithm can be used to search Nash equilib-
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rium prices. TheΠG is treated as a dynamic game, the updates of this game,

need to be slower than the updates in algorithm (5.26), to guarantee conver-

gence. In this sense, the relay sets the initial pricesΠ(0)
P

andΠ(0)
W

for the users,

based on the power and bandwidth demands of the users, the relay adjusts

its prices to achieve maximum revenue as follows:

Π
(t+1)
P
=Π

(t)
P
+ βPΠ

(t)
P

∂UR

∂ΠP
, (5.29a)

Π
(t+1)
W
=Π

(t)
W
+ βWΠ

(t)
W

∂UR

∂ΠW
, (5.29b)

where Π(t+1)
P

and Π(t+1)
W

are the power and bandwidth prices updates at iter-

ation t + 1, and βP and βW are adjustment speed parameters. At the Nash

equilibrium Π(t+1)
P
= Π

(t)
P

and Π(t+1)
W
= Π

(t)
W

. The value of the partial deriva-

tive ∂UR

∂ΠP
can be estimated at the relay using the central difference method;

the relay inquires the users about their power and bandwidth demands by

submitting the prices (Π(t)
P
± ǫΠP

,Π(t)
W

), where ǫΠP
is a small number repre-

senting the incremental change in the power price. The relay then observes

the response of the users and estimates ∂UR

∂ΠP
≈ U+

R
(.)−U−

R
(.)

2ǫΠP
. In a similar fash-

ion, the relay estimates ∂UR

∂ΠW
by submitting the prices (Π(t)

W
± ǫΠW

,Π(t)
P

) and

inquires about the users power and bandwidth demands, then estimates

∂UR

∂ΠW
≈ U+

R
(.)−U−

R
(.)

2ǫΠW
, where ǫΠW

is a small number that representing the incre-

mental change in the bandwidth price. Stability analysis of the prices up-

date algorithm can also be investigated in a similar fashion to the analysis

followed in Subsection 5.3.1(E) using the eigenvalues of the prices’ Jacobian

matrix. The prices Jacobian matrix is defined as:

JΠ =





∂Π(t+1)
P

∂Π(t)
P

∂Π(t+1)
P

∂Π(t)
W

∂Π(t+1)
W

∂Π(t)
P

∂Π(t+1)
W

∂Π(t)
W





. (5.30)
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The constants βP and βW are then selected to ensure that the absolute value

of the eigenvalues of the prices’ Jacobian matrix (5.30) are less than one. The

stability of the price update algorithm is analyzed based on localization at

the fixed points by considering the eigenvalues of the price Jacobian matrix

and substituting equations (5.28a) and (5.28b) in (5.30). The fixed points

are (0, 0), (ΠP0
, 0), (0,ΠW0

), and (Π(SNE)
P
,Π(SNE)

W
). A fixed point is stable if and

only if the eigenvalues λi are inside the unit circle of the complex plane, i.e.

|λi| < 1. For any number of users we have two eigenvalues. Assuming that

the power and bandwidth prices are higher than the costs CP and CW, the

stability at the SNE fixed point (Π(SNE)
P
,Π(SNE)

W
) can be investigated using the

Jacobian matrix, which is given by:

JΠ(Π(SNE)
P
,Π(SNE)

W
) =





J11 = 1 + βPΠ
(SNE)
P

∂2UR

∂Π2
P

J12 = βPΠ
(SNE)
P

∂2UR

∂ΠP∂ΠW

J21 = βWΠ
(SNE)
W

∂2UR

∂ΠW∂ΠP
J22 = 1 + βWΠ

(SNE)
W

∂2UR

∂Π2
W





. (5.31)

The characteristic polynomial is then obtained as:

p(λ) = λ2 − (J11 + J22)λ + J11J22 − J12J21. (5.32)

The eigenvalues are given by the roots of the characteristic polynomial as:

λ1,2 =
J11 + J22 ±

√

(J11 − J22)2 + 4J12J21

2
. (5.33)

The relationship between βP and βW can be obtained such that the SNE fixed

point is stable for a given configuration and a given source-relay, relay-

destination, and source-destination channel gains.

5.4 Simulation Results and Discussion

In order to evaluate the performance of the proposed algorithms, we con-

sider a system of two users and one relay as illustrated in Figure 5.2. User 1
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1D 2D

1S 2S

R

(-50,0) (50,0)

(-50,400) (50,400)

(0,80)

Figure 5.2 A System of Two Users and a Relay.

source-destination pair is (S1, D1), and user 2 source-destination pair is (S2,

D2). The source S1 is located at coordinate (-50m, 0m), and destination D1

is located at (-50m, 400m). The source S2 is located at coordinate (50m, 0m),

and destination D2 is located at (50m, 400m). The relay y-coordinate is

kept fixed at (80m), and the x-coordinate varies from -800m to 800m to

present different channel gains as in [28]. The available relay resources are

Pmax = 2Watt and Wmax = 2MHz. We use the same channel gains as in [149],

where, the propagation loss factor is set to 2. The source transmitted power

PS is fixed for the two sources and set at 10mWatt, and the capacity gap

Γ = 1. The cost per unit power CP = 1000unit price/Watt, and the cost per

unit bandwidth CW = 1 × 10−3 unit price/Hz. The users’ utility function

parameters are chosen as follows: X = 1, Y = 1 and Z =
√

0.5
log(2)

, and the

noise power σ2 = 10−8Watt, unless otherwise specified.

Fixing the relay x-coordinate at 20m, SNE
(

P∗
1
,P∗2,W

∗
1
,W∗

2,Π
∗
P,Π

∗
W

)

are

computed as summarized in Table 5.1. As explained in this table, the users

and the relay have no incentive to deviate from the SNE either by increas-

ing or decreasing the users’ power, the users’ bandwidth, or their respective

prices at the relay. The rows from 2 to 5 and from 10 to 13 illustrate that

changing the power level, or the bandwidth share or both of user S1 from



172

the SNE will not improve user’s S1 utility function U1. In the same way, the

rows from 6 to 9 illustrate that changing the power level, or the bandwidth

share of user S2 from the SNE will not improve user’s S2 utility function

U2. Finally, the rows from 14 to 21 illustrate that changing the power price,

or the bandwidth price or both at the relay from the SNE will not improve

the relay’s utility function UR. These examples prove that the obtained al-

location and prices are a SNE strategy. The best response strategies of the

relay to a deviation of user S1 and user S2 strategies from the SNE and vice

verse is explained in Table 5.2. As shown in this table, the relay modi-

fies its prices to any changes in the users’ strategies as appears in rows 2

to 13. For example, row 2 shows that if user S1 increases its demand from

the SNE power strategy, this will increase its utility function U1 but at the

same time it will decrease the relay revenue UR. Therefore, the relay will

change the prices as a best-response to the change in users’ demands un-

til reaching the SNE strategies. Rows 3 to 13 can be explained in a similar

way. In addition, Table 5.2 shows that the users best-response to any devia-

tion of the relay prices, where the users modify their demands as a response

to changes in the relay’s power and bandwidth prices, as illustrated in the

rows from 14 to 21. For example, row 14 shows that if the relay increases its

power price from the SNE strategy, this will decrease its utility function UR,

and in-return will decrease the users’ utility functions U1 and U2. Hence,

the relay will change the prices as a best-response to the change in users’

demands until reaching the SNE strategies. Rows from 15 to 21 can be ex-

plained in a similar way where either the relay’s power price or bandwidth

price changes or the power and bandwidth prices change simultaneously.

The optimum power and bandwidth allocation profiles of each user as a

function of the x−coordinate of the relay are plotted in Figure 5.3. The re-

gion from −800m to 0m represents a better channel for user S1, where the

relay is much closer to S1 than to S2.
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Table 5.1 Deviation from the Nash Equilibrium

Users Strategies Relay Strategies Utility Functions

Strategy P1 P2 W1 W2 ΠP ΠW U1 U2 UR

×10−2 ×10−2 ×105 ×105 ×103 ×10−3 ×102 ×102 ×102

1 SNE 4.4742 5.1000 2.0989 2.2181 1.3432 1.900 3.3790 3.5220 4.2139

2 P1 ↑ 5.4742 3.3626 ↓
3 P1 ↓ 3.4742 3.3570 ↓
4 W1 ↑ 2.1988 3.3767 ↓
5 W1 ↓ 1.9989 3.3767 ↓
6 P2 ↑ 6.1000 3.5077 ↓
7 P2 ↓ 4.1000 3.5034 ↓
8 W2 ↑ 2.3181 3.5198 ↓
9 W2 ↓ 2.1181 3.5198 ↓

10 P1 ↑,W1 ↑ 5.4742 2.1988 3.3632 ↓
11 P1 ↑,W1 ↓ 5.4742 1.9989 3.3575 ↓
12 P1 ↓,W1 ↑ 3.4742 2.1989 3.3510 ↓
13 P1 ↓,W1 ↓ 3.4742 1.9989 3.3584 ↓
14 ΠP ↑ 1.4432 4.0998 ↓
15 ΠP ↓ 1.2432 4.1772 ↓
16 ΠW ↑ 2.0000 4.1867 ↓
17 ΠW ↓ 1.7000 4.1887 ↓
18 ΠP ↑ ΠW ↑ 1.4432 2.0000 4.20343 ↓
19 ΠP ↑ ΠW ↓ 1.4432 1.8000 3.9819 ↓
20 ΠP ↓ ΠW ↑ 1.24320 2.0000 4.1514 ↓
21 ΠP ↓ ΠW ↓ 1.24320 1.8000 4.1779 ↓

Note: empty cells are kept at SNE strategies



1
7
4

Table 5.2 Best Response

Users Strategies Relay Strategies Utility Functions

Strategy P1 P2 W1 W2 ΠP ΠW U1 U2 UR

×10−2 ×10−2 ×105 ×105 ×103 ×10−3 ×102 ×102 ×102

1 SNE 4.4742 5.1000 2.0989 2.2181 1.3432 1.900 3.3790 3.5220 4.2139

2 P1 ↑ 5.4742 1.3135 1.8927 3.3951 3.5532 4.1855 ↓
3 P1 ↓ 3.4742 1.3885 1.9090 3.3208 ↓ 3.4789 ↓ 4.2573

4 W1 ↑ 2.1988 1.2512 1.8801 3.4616 3.6130 4.1279 ↓
5 W1 ↓ 1.9989 1.4395 1.9219 3.2899 ↓ 3.4244 ↓ 4.3082

6 P2 ↑ 6.1000 1.3135 1.8927 3.407 3.5420 4.1855 ↓
7 P2 ↓ 4.1000 1.3885 1.9090 3.3398 ↓ 3.4648 ↓ 4.2573

8 W2 ↑ 2.3181 1.2513 1.8801 3.4619 3.6129 4.1279 ↓
9 W2 ↓ 2.1181 1.4395 1.9219 3.2900 ↓ 3.4244 ↓ 4.3083

10 P1 ↑,W1 ↑ 5.4742 2.1988 1.2380 1.8748 3.4771 3.6315 4.1156 ↓
11 P1 ↑,W1 ↓ 5.4742 1.9989 1.3924 1.91233 3.3069 ↓ 3.4695 ↓ 4.2621

12 P1 ↓,W1 ↑ 3.4742 2.1989 1.2715 1.8861 3.4049 3.5894 4.1466 ↓
13 P1 ↓,W1 ↓ 3.4742 1.9989 1.5119 1.9343 3.2298 ↓ 3.3599 ↓ 4.3788

14 ΠP ↑ 3.0261 4.7844 1.9757 2.1950 1.4432 3.2999 ↓ 3.4726 ↓ 4.0998 ↓
15 ΠP ↓ 4.8093 5.4575 2.1215 2.2424 1.2432 3.4255 3.5747 4.1772 ↓
16 ΠW ↑ 4.3145 4.8773 1.88379 1.9875 2.0000 3.1802 ↓ 3.3120 ↓ 4.1867 ↓
17 ΠW ↓ 4.8717 5.6180 2.6561 2.8135 1.7000 3.8516 4.0215 4.1887 ↓
18 ΠP ↑ ΠW ↑ 3.9607 4.5737 1.8588 1.9664 1.4432 2.0000 3.1382 ↓ 3.2649 ↓ 4.20343 ↓
19 ΠP ↑ ΠW ↓ 2.3637 4.8477 2.1247 2.4532 1.4432 1.8000 3.4378 3.7046 3.9819 ↓
20 ΠP ↓ ΠW ↑ 4.6076 5.2205 1.9027 2.0097 1.24320 2.0000 3.2247 ↓ 3.3625 ↓ 4.1514 ↓
21 ΠP ↓ ΠW ↓ 5.0289 5.7158 2.3791 2.5166 1.24320 1.8000 3.65004 3.8121 4.1779 ↓

Note: empty cells are kept at SNE strategies
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Figure 5.3 Power and Bandwidth Allocation as a Function of the Relay x-
Coordinate.
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Figure 5.4 Power and Bandwidth Prices as a Function of the Relay x-
Coordinate.

The amount of power and bandwidth bought by user S1 are more than

the amount of power and bandwidth bought by user S2 in the same region.

On the other hand, the region from 0m to 800m represents a better channel

condition for user S2, so the power and bandwidth bought by user S2 are

larger. At the relay x-coordinate rx = 0, both users have similar channel

conditions to the relay. Therefore, the two users bought the same amount

of power and bandwidth. Note that at each rx the prices that maximize the

relay revenue are computed as shown in Figure 5.4, where the power and
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(b) Convergence of the Bandwidth Adaptive Algorithm.

Figure 5.5 Convergence of the Power and Bandwidth Adaptive Algorithm.

bandwidth profiles are computed using the adaptive prices algorithm as a

function of the relay x-coordinate.

The convergence of the proposed adaptive power and bandwidth allo-

cation algorithms for the two users scenario is shown in Figure 5.5. The

prices are set at ΠP = 1100, and ΠW = 1.1 × 10−3 and the x-coordinate of

the relay is set at 20m. Two cases are considered: in the first case (θP, θW) =

(1 × 10−3, 200) and in the second case (θP, θW) = (1.1 × 10−3, 100). Both cases

are selected to satisfy the convergence condition such that the absolute value

of the eigenvalues of the Jacobian matrix are less than one. In case two, the

power profiles go through oscillations before reaching Nash equilibrium.

Similar convergence behavior is shown in Figure 5.6 for the proposed

adaptive relay’s power and bandwidth prices, where the x-coordinate of the

relay is set at 50m. Two cases are also considered: in the first case, (βP, βW) =

(4 × 10−6, 4 × 10−6), and in the second case (βP, βW) = (6 × 10−6, 8 × 10−6).

Figure 5.7 shows the convergence of the proposed adaptive power and

bandwidth prices update algorithm for 2, 4, and 10 users. The locations

of the relay and destination nodes are fixed at coordinate (50, 80) for the

relay and the destination at coordinate (50, 400). The users’ locations are

randomly generated, where the (x, y)-coordinate is a uniform random vari-
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Figure 5.6 Convergence of the Power and Bandwidth Prices Adaptive Al-
gorithm.
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Figure 5.7 The Convergence of the Prices Update Algorithm for Different
Number of Users.

able over the interval [0, 300]. As shown in this figure the convergence time

does not depend on the number of users. However, this does not imply that

the prices for 2 users is lower or higher than the prices for 10 users because

each curve realizes different users’ locations.

The average relay utility as a function of the number of users is shown

Figure 5.8(a), and the users’ locations are generated uniformly, where the

(x, y) coordinate varies in the range from [0, 300], for 200 runs. Clearly, the

relay revenue increases as the number of users increase until a certain limit
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Figure 5.8 The Average Relay Utility Function and Resource Allocation Pro-
files as a Function of the Number of Users.

after which there is no marginal increase in relay revenues, due to the fact

that the relay resources are limited. As the number of users increases the

number of users that are allocated zero power and bandwidth may also

increase.

In Figure 5.8(b) and Figure 5.8(c), we show the average minimum and

average maximum power and bandwidth, respectively that are allocated to

the users as a function of the number of users. Clearly, as the number of

users increases, the allocated resources (power and bandwidth) to the users

are reduced because of the increased competition among the users. In Fig-

ure 5.9(a), we show the convergence of the prices’ update algorithm from

different initial prices Π(0)
P

, and Π(0)
W

for two cases: relay x-coordinate equals

50 and relay x-coordinate 200. It is clear from this figure that the conver-

gence range for the first case is larger than the convergence range of the sec-

ond case. Whereas, in Figure 5.9(b) we show the convergence of the power
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Figure 5.9 Convergence of Prices and Resource Allocation Profiles from Dif-
ferent Initial Values and βP and βW

and bandwidth allocation as a function of the initial allocations P(0)

1
, and

W(0)

1
of user S1. The second user S2 initial allocations are fixed at P(0)

2
= 0.01

and W(0)
2
= 1 × 105. For the two cases, the convergence range is the same.

Figure 5.9(c) shows the convergence of the prices update algorithm for dif-

ferent values of βP and βW. It is clear that the convergence range for relay

x-coordinate 200 is larger than the convergence range of relay x-coordinate

50.
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5.5 Conclusions

In this chapter, we propose a non-cooperative game theoretic framework for

joint power and bandwidth resource allocation for the AF cooperative com-

munication. The formulated user’s utility function is related to the data rate

achieved using the AF cooperation scheme, which depends on the power

and bandwidth obtained from the relay. In addition, the utility function is

associated with an exact potential function, which facilitates the analysis of

the uniqueness of Nash equilibrium. A distributed algorithm is developed

to find NE for given relay prices. Simulation results show the convergence

of the proposed algorithm, and show how to allocate the resources between

the selfish users without any coordination amongst them. Furthermore, a

distributed price algorithm is developed to find the optimum price to max-

imize the relay revenue. The network is considered homogeneous, but the

game formulation can be easily extended to a non-homogeneous network,

by changing one of the parameters of the user’s utility function.



Part II

Joint Power Allocation and

Subchannel Assignment in OFDM

and OFDMA Relay Networks



CHAPTER6

BASIC CONCEPTS OF OFDM AND OFDMA

COMMUNICATION SYSTEMS

In this chapter, a brief overview of multi-carrier OFDM and OFDMA sys-

tems is presented. Resource allocation problems for OFDM and OFDMA

systems are discussed. Resource allocation problems for OFDM and OFDMA

systems with cooperative communication schemes are examined. Formula-

tions and solutions of essential resource allocation problems are addressed.

Fundamental principles that are used to solve resource allocation problems

for OFDMA and OFDMA systems are highlighted, such as zero duality gap

principle for non-convex problems, and two-bands partition principle for

multicarrier systems.

Section 6.1 presents OFDM systems. In Section 6.2, OFDMA systems are

introduced and basic principles of finding the solution of resource allocation

problems are discussed. Conclusions are drawn in Section 6.3.

6.1 Basics of OFDM Systems

Frequency selective channels suffer from ISI, one way to mitigate this im-

pairment is to use multicarrier modulation techniques, where the wide band-

width signal to be transmitted is divided over multiple mutually orthogo-

nal signals of a bandwidth small enough such that the channel appears to

be non-frequency-selective. OFDM is a multicarrier modulation technique
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that has been chosen as the modulation scheme for 4G mobile broadband

standards and for high speed wireless networks. It implements multicarrier

modulation using DFT and IDFT. Let x(n) for 0 ≤ n ≤ N−1, denote a discrete

time sequence. The DFT of x(n) is defined as [44]:

DFT{x(n)} = X(k) ,
1√
N

N−1∑

n=0

x(n)e− 
2πnk

N , k = 0, · · · ,N − 1, (6.1)

X(k) characterizes the frequency content of the time samples x(n) for 0 ≤ n ≤

N − 1. The sequence x(n) can be recovered using the IDFT as:

IDFT{X(k)} = x(n) ,
1√
N

N−1∑

k=0

X(k)e 
2πnk

N , n = 0, . . . ,N − 1. (6.2)

The output sequence y(n) when an input data x(n) is sent through a linear

time-invariant discrete-time channel with an impulse response h(n), is given

as:

y(n) = x(n) ∗ h(n) =
∑

m

h(m)x(n −m), (6.3)

The circular convolution is defined as:

y(n) = x(n) ⊗ h(n) =
∑

m

h(m)x(n −m)N, (6.4)

where x(n − m)N is a periodic version of x(n − m) with period N. From the

properties of the DFT, circular convolution leads to multiplication in the

frequency domain,

DFT{y(n) = x(n) ⊗ h(n)} = Y(k) = X(k)H(k), k = 0, · · · ,N − 1. (6.5)

At the receiver, if the output of the channel is a circular convolution of the

input sequence x(n) and the channel impulse response h(n), then the in-

put data sequence x(n) can be recovered by taking the IDFT of Y(k)/H(k),

0 ≤ k ≤ N − 1. Unfortunately, the channel output is a linear convolution
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not a circular convolution. However, linear convolution can be turned into

circular convolution by adding a special prefix to the input sequence called

a cyclic prefix. Consider a channel input sequence x(n), 0 ≤ n ≤ N − 1 of

length N and a discrete-time channel with FIR h(n), 0 ≤ n ≤ L − 1 of length

L. Let x̂ =
[

x̂(0) · · · , x̂(N + L− 1)
]

denote the input sequence after adding the

cyclic prefix, such that:

x̂ =
[

x(N − L + 1), · · · , x(N − 1), x(0), · · · , x(N − 1)
]

. (6.6)

The output sequence can be written as:

ŷ(n) =

L−1∑

l=0

h(l)x̂(n − l) + v(n), n = 0, · · · ,N + L − 1, (6.7)

where v(n) is AWGN. The multipath channel affects the first L − 1 symbols.

Therefore, the receiver ignores these symbols; the received sequence after

removing the cyclic prefix is given as:

y =
[

y(0), · · · , y(N − 1)
]

. (6.8)

The input-output relation can be written in the frequency domain after re-

moving the cyclic prefix in terms of the original sequence as:

Y(k) = H(k)X(k) + V(k), k = 0, · · · ,N − 1, (6.9)

where V(k) is AWGN at the kth subcarrier. It is clear from (6.9) that the selec-

tive channel has been transformed into parallel flat channels using OFDM.

The block diagram of the OFDM transmitter is shown in Figure 6.1(a)

where the input data is divided into blocks of size N referred to as OFDM

symbols. Then a cyclic prefix is added to each OFDM symbol to induce cir-

cular convolution of the input sequence and the channel impulse response.
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Figure 6.1 Block Diagram of OFDM System

At the receiver, as shown in Figure 6.1(b), the output samples affected by ISI

between OFDM symbols are removed by removing the cyclic prefix, then

the DFT of the remaining samples are used to recover the original input

sequence.

6.1.1 Capacity of OFDM Systems

In an OFDM system, the frequency-selective fading channel consists of a set

of AWGN channels in parallel H( j), as revealed from (6.9). Let P( j) denote

the power allocated to the jth subchannel (subcarrier), and Pmax denote the

total available power at the transmitter. The capacity of this parallel set of

channels is the sum of rates associated with each subchannel with power

optimally allocated over all subchannels. This can be formulated as:

C =max
P

BN

∑

j∈J
log2

(

1 +
|H( j)|2P( j)

BNN0

)

, (6.10a)
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s.t.
∑

j∈J
P( j) ≤ Pmax, (6.10b)

P( j) ≥ 0, ∀ j ∈ J , (6.10c)

where BN is the bandwidth of each subchannel, N0 is the PSD of AWGN,

J = {1, · · · ,N}1 is the set of subcarriers, and P is the vector of power alloca-

tion profile P =
[

P(1), · · · ,P(N)
]

. The optimal power profile can be obtained

using the Lagrangian approach2 as[44]:

P( j) =





1
γ0
− 1
γ( j)

if γ j > γ0,

0 otherwise,

(6.11)

where γ( j) =
|H( j)|2
BNN0

, and γ0 is some cutoff value that satisfies:

∑

j∈J

1

γ0
− 1

γ( j)
= Pmax. (6.12)

The optimal power allocation of OFDM system is known as water-filling al-

location. The capacity then becomes:

C = BN

∑

j:γ( j)≥γ0

log2

(γ( j)

γ0

)

. (6.13)

This capacity is achieved by sending at different rates and powers over each

subchannel. Figure 6.2 shows a water-filling allocation for the OFDM sce-

nario with N = 16 subcarriers; it is clear that subcarrier j = 7 is allocated

zero power and subcarrier j = 5 is allocated the maximum power compared

to the other subcarriers.

Adaptive loading can be used to maximize the total rate of the system

using adaptive modulation such as variable-rate variable power M-QAM.

1The subcarrier index j = 1, · · · ,N is used instead of j = 0, · · · ,N − 1.
2Problem 6.10 is a convex optimization problem.
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Figure 6.2 Optimal Power Allocation: Water-Filling.

The idea is to vary the data rate and the power assigned to each subchannel

relative to that subchannel gain. The data rate for variable-rate variable-

power M-QAM modulation scheme can be formulated as3:

R =max
P

BN

∑

j∈J
log2

(

1 +
γ( j)P( j)

Γ

)

, (6.14a)

s.t.
∑

j∈J
P( j) ≤ Pmax, (6.14b)

P( j) ≥ 0, ∀ j ∈ J , (6.14c)

where Γ = − ln(5Pe)

1.5 , and Pe is the desired target BER in each subchannel. The

optimal power allocation is computed as:

P( j) =





1
γ0
− Γ

γ( j)
if γ j > Γγ0,

0 otherwise,

(6.15)

where γ0 is selected such that
∑

j∈J
1
γ0
− Γ

γ( j)
= Pmax, and the corresponding

3This formulation only consider instantaneous rate; i.e. the temporal dimension is not
being exploited when resource allocation is performed.
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data rate can be computed as:

R = BN

∑

j: γ( j) ≥Γγ0

log2

(γ( j)

γ0

)

. (6.16)

6.1.2 OFDM with Cooperative Communications

Consider an OFDM system where the transmission between the source and

destination nodes is facilitated by a relay node using AF cooperative com-

munication scheme; the received signal using subcarrier j at the relay node

is amplified and forwarded to the destination node at the same subcarrier4

j. The received signals at the destination node from the direct-link and

the relay node are combined using MRC. Let HSD( j), HRD( j), and HSR( j) de-

note the channel gains of the jth subcarrier between the source-destination,

relay-destination, and source-relay nodes, respectively. The resource alloca-

tion problem for single relay AF-OFDM cooperative communication system

with adaptive loading can be formulated using (2.28) as:

R =max
PS, PR

BN

2

∑

j∈J
log2

(

1 +
γSD( j)PS( j)

Γ
+

γSR( j)γRD( j)PR( j)PS( j)

Γ(1 + γSR( j)PS( j) + γRD( j)PR( j))

)

,

(6.17a)

s.t.
∑

j∈J
PS( j) ≤ Pmax

S , (6.17b)

∑

j∈J
PR( j) ≤ Pmax

R , (6.17c)

PS( j) ≥ 0,PR( j) ≥ 0, ∀ j ∈ J , (6.17d)

where γSD( j) =
|HSD( j)|2

BNN0
, γRD( j) =

|HRD( j)|2
BNN0

, and γSR( j) =
|HSR( j)|2

BNN0
. PR is the power

profile vector at the relay node, with PR =

[

PR(1), · · · ,PR(N)
]

, and PS is the

power profile vector at the source node, with PS =

[

PS(1), · · · ,PS(N)
]

. The

4Forwarding the received signal at a different subcarrier is out of the scope of this dis-
sertation.
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resource allocation problem (6.17) is not a jointly concave function with re-

spect to the source and relay power profiles PS and PR, as can be proven

by the second ordered derivative test given in (2.52). Before trying to solve

(6.17), we will look at the solutions of two problems. The first problem is the

achievable sum rate using fixed power profile at the source node and opti-

mal power profile at the relay node. The second problem is the achievable

sum rate using fixed power profile at the relay node and optimal power pro-

file at the source node. The first problem; the resource allocation problem

for a given source power profile can be formulated as [49]5:

R =max
PR

BN

2

∑

j∈J
log2

(

1 +
γSD( j)PS( j)

Γ
+

γSR( j)γRD( j)PR( j)PS( j)

Γ(1 + γSR( j)PS( j) + γRD( j)PR( j))

)

,

(6.18a)

s.t.
∑

j∈J
PR( j) ≤ Pmax

R , (6.18b)

PR( j) ≥ 0, ∀ j ∈ J . (6.18c)

Problem (6.18) is a convex optimization problem, which can be solved by

formulating the Lagrangian function, then equating to zero the derivative of

the Lagrangian function with respect to PR( j), for j = 1, · · · ,N. The optimal

power profile P∗R( j) can be obtained as:

P∗R( j) =
(
√

α1( j)2 − 4α0( j)α2( j)

2α2( j)
− α1( j)

)+

, (6.19)

where α0( j), α1( j), and α2( j) are computed as:

α0( j) =[1 + PS( j)γSR( j)]2[Γ + PS( j)γSD( j)] − KRPS( j)γSR( j)γRD( j)[1 + PS( j)γSR( j)],

(6.20a)

α1( j) =[2(Γ + PS( j)γSD( j)) + PS( j)γSR( j)][1 + PS( j)γSR( j)]γRD( j), (6.20b)

5In [49], the formulated resource allocation problem was solved without considering
diversity (no direct link between the source-destination nodes).
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α2( j) =Γ + PS( j)[γSD( j) + γSD( j)], (6.20c)

where KR =
BN

2 ln(2)λR
, and λR is selected such that the relay power constraint

is fulfilled (6.18b).

The second problem: the resource allocation for a given relay power pro-

file can be formulated as:

R =max
PS

BN

2

∑

j∈J
log2

(

1 +
γSD( j)PS( j)

Γ
+

γSR( j)γRD( j)PR( j)PS( j)

Γ(1 + γSR( j)PS( j) + γRD( j)PR( j))

)

,

(6.21a)

s.t.
∑

j∈J
PS( j) ≤ Pmax

S , (6.21b)

PS( j) ≥ 0, ∀ j ∈ J . (6.21c)

Since (6.21) is a convex optimization problem, it can be solved using any

convex optimization technique. However, it is difficult to obtain a closed

form expression for the optimal source power profile P∗
S
( j), for j = 1, · · · ,N

since a cubic equation in P∗
S
( j) is obtained for each subcarrier j ∈ J by equat-

ing to zero the derivative of the Lagrangian function with respect to PS( j) .

Optimal allocation of (6.17) can now be found by an alternate and sepa-

rate optimization approach of the source and relay power profiles as given

in (6.19) and the solution of (6.21). This approach will converge to a solution

of the joint optimization problem (6.17) as can be proved using a similar

approach to [49]. A simple iterative algorithm based on an approximated

equivalent channel model was proposed in [126] to find the source and re-

lay power profiles for (6.17).

For mathematical tractability, the data rate for the AF scheme under high

SNR can be approximated as [57]:

R ≈ max
PR

BN

2

∑

j∈J
log2

(

1 +
γSD( j)PS( j)

Γ
+

γSR( j)γRD( j)PR( j)PS( j)

Γ(γSR( j)PS( j) + γRD( j)PR( j))

)

. (6.22)
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With this approximation, (6.17) becomes a convex optimization problem.

The data rate in (6.22) is a jointly concave function with respect to the source

and relay power profiles as proved in Appendix B.1, and the constraints are

linear. Optimal source and relay power profiles can be obtained by formu-

lating the Lagrangian function. Taking the derivative with respect to PR( j)

and PS( j), and equating to zero, the source power profile is obtained as:

P∗S( j) =





(
K(γSD( j)+A( j))−Γ
γSD( j)+B( j)

)+

if P∗R( j) > 0,

(

K − Γ

γSD( j)

)+

if P∗R( j) = 0,

(6.23)

where A( j) =
γSR( j)γ2

RD
( j)C2( j)

(γSR( j)+γRD( j)C( j))2 , B( j) =
γSR( j)γRD( j)C( j)

γSR( j)+γRD( j)C( j)
, K = BN

2 ln(2)λS
, and C( j) is

computed as:

C( j) =
γSR( j)

(

− 1 +
√

1 + (1 +
γSR( j)

γSD( j)
)( λS

λR

γRD( j)

γSD( j)
− 1)

)+

γRD( j)(1 +
γSR( j)

γSD( j)
)

, (6.24)

where λS and λR are selected to satisfy the power constraints (6.17c), and

(6.17b), respectively. The optimal relay power profile can be obtained as:

P∗R( j) = C( j)P∗S( j), (6.25)

The resource allocation problem of AF-OFDM under total power constraint

Pmax
R
+ Pmax

S
= Pmax and individual power constraints without direct link be-

tween the source and destination nodes were investigated and closed form

expressions for the source and relay power profiles were found in [49]. Re-

source allocation with subcarrier pairing for multi-relay OFDM system was

investigated using high SNR approximation in [30].

In order to compare the sum rate of the aforementioned power alloca-

tion criteria, we model the subcarrier channel coefficients between any two

nodes with a separating distance d as H( j) ∼ CN(0, 1
L(1+d)α

), whereCN(µH, σ2
H)
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Table 6.1 Uniform Resource Allocation for AF-OFDM.

Criterion Unif. PS( j) Unif. PS( j)

No Relaying Unif. PR( j)

Data Rate
24.03 29.93

in [Kbps]

Table 6.2 Resource Allocation for AF-OFDM.

Water-fill Sub-Opt. Sub-Opt. Iterative App. High SNR

Criterion Opt. PS( j) Unif. PS( j) Opt. PS(j) Opt. PS(j) Opt. PS( j)

No Relaying Opt. PR( j) Unif. PR( j) Opt. PR( j) Opt. PR( j)

Data Rate
32.13 34.20 32.58 37.34 37.36

in [Kbps]

is the complex normal distribution with mean µH and variance σ2
H, the prop-

agation loss factor is α = 4, and the number of channel taps is L = 4 as in

[49]. The distance between the relay and destination nodes is dRD = 50m,

the distance between the source and destination nodes is dSD = 100m, and

the distance between the source and relay nodes is dSR = 50m. The subcar-

rier noise power σ2 = N0BN is set at 4 × 10−10Watt. The source maximum

transmit power is Pmax
S
= 1Watt, and the relay maximum transmit power is

Pmax
R
= 1Watt. The subcarrier spacing is BN = 4KHz, and the capacity gap is

Γ = 1.

The achievable data rate using uniform power allocation at the source

and relay nodes for AF-OFDM is compared with the achievable data rate

using the direct link with uniform power allocation at the source node for

N = 16, where the source and relay6 power constraints are set to be equal

to have a fair comparison between relaying and direct link transmissions.

Clearly, the achievable data rate using AF is higher than the achievable rate

using the direct link only as shown in Table 6.1.

Table 6.2, compares the achievable data rate for different AF relaying

6Typically, the relay power capability is higher than the source in the uplink scenario.
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criteria; optimal source power allocation without relaying, optimal source

and uniform relay power allocation, uniform source power allocation and

optimal relay power allocation, optimal source and relay power allocation

using the two steps iterative algorithm, and optimal source and relay power

allocation using the high SNR approximation (6.22). Optimal source and

relay power allocation achieves the highest data rate as expected, and the

achievable data rates using the sub-optimal allocation criteria for AF-OFDM

are higher than the achievable data rate using the direct link with optimal

power allocation at the source node. The achievable data rate using the

approximated high SNR is approximately similar to the achievable data rate

using the iterative two steps algorithm with less computational complexity.

For DF-OFDM cooperative system, the resource allocation problem can

be formulated as:

R =max
PS, PR

BN

2

∑

j∈J
min

{

log2

(

1 +
γSD( j)PS( j)

Γ
+
γRD( j)PR( j)

Γ

)

, log2

(

1 +
γSR( j)PS( j)

Γ

)}

,

(6.26a)

s.t. (6.17b), (6.17c), (6.17d). (6.26b)

Problem (6.26) is a convex optimization problem; the objective function is

a concave function as can be proved using property 3 of concave functions

introduced in Section 2.6, and the constraints are linear. Optimization prob-

lem (6.26) can be rewritten as:

R = max
PS, PR

BN

2

∑

j∈J
log2

(

1 +
γSD( j)PS( j)

Γ
+
γRD( j)PR( j)

Γ

)

, (6.27a)

s.t. (γSD( j) − γSD( j))PS( j) + γRD( j)PR( j) ≤ 0, ∀ j ∈ J , (6.27b)

(6.17b), (6.17c), (6.17d). (6.27c)
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Table 6.3 Resource Allocation for DF-OFDM.

Water-fill Unif. Opt.

Criterion Opt. PS( j) Unif. PS( j) Opt. PS( j)

No Relaying Unif. PR( j) Opt. PR( j)

Data Rate
32.13 32.72 46.93

in [Kbps]

The optimal power profile at the source node can be computed as:

P∗S( j) =





(
KγSD( j)

γSR( j)
− Γ

γSR( j)

)+

if P∗R( j) > 0,

(

K − Γ

γSD( j)

)+

if P∗R( j) = 0,

(6.28)

and the optimal power profile at the relay node can be obtained as:

P∗R( j) = C( j)P∗S( j), (6.29)

with C( j) =

(

γSR( j)−γSD( j)

)+

γRD( j)
and K = BN

2 ln(2)λS
.

Resource allocation for DF scheme under total power constraint at the

source and relay nodes was considered in [146]. Resource allocation for DF

scheme with subcarrier pairing was investigated in [64].

Table 6.3, compares the achievable data rate for N = 16 subcarriers

DF-OFDM system using the same setting as in Tables 6.1 & 6.2. Clearly,

the achievable data rate of DF-OFDM with optimal power allocation at the

source and relay nodes is higher than the achievable data rate of the direct

link only with optimal power allocation at the source node, and higher than

the achievable data rate of AF-OFDM with optimal power allocation at the

source and relay nodes.
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Figure 6.3 Block Diagram of OFDMA Transmitter.

6.2 Basics of OFDMA Systems

OFDMA is a method that allows multiple users to access the air interface

at the same time by assigning different groups of subcarriers (in frequency)

to different users. OFDM assigns all N subcarriers within a group to a sin-

gle user, and only one user can transmit at a time. If multiple users want

to transmit using OFDM, then those users have to take their turns in time

(TDMA); i.e. in OFDM each user can be assigned one OFDM symbol in time,

and OFDM symbols are assigned to their respective users. In OFDMA, in-

stead of sequentially assigning OFDM symbols in time to different users,

the subcarriers are directly assigned to different users. Figure 6.3 shows the

block diagram of OFDMA transmitter.

In general, there are many ways to assign users’ data symbols to sub-

carriers. For example, distributed and contiguous assignments are com-

mon methods. In a distributed subcarrier assignment, subcarriers are as-

signed pseudorandomly to users. Whereas, in contiguous subcarrier as-

signments, subcarriers are assigned to users in continuous sets. The main

advantages of OFDMA system are that it can benefit from frequency di-

versity and multiuser diversity. Frequency diversity can be utilized by as-

signing the subcarriers in a distributed way to the users; some of the users’

subcarriers would likely experience good channel conditions, while other
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Figure 6.4 Subcarrier Assignment for OFDMA system.

user subcarriers would likely experience bad channel conditions. Multi-

user diversity occurs because different users at different locations would

likely experience different channel conditions. It can be utilized by assign-

ing subcarriers that experience the best channel conditions to the best user

[162]. Figure 6.4 shows an example of three users OFDMA system, where

the subcarrier is assigned to the user with the best channel gains. OFDM

and OFDMA are used in many standards that include IEEE 802.11a/WiFi,

IEEE 802.15/WiPAN, IEEE 802.16/ WiMAX, IEEE 802.20/MobileFi, IEEE

802.22/WiRAN, digital audio broadcasting (DAB), terrestrial broadcasting

of digital television (DVB-T, DVB-H), Flash-OFDM, SDARS for satellite ra-

dio, G.DMT (ITU G.992.1) for ADSL, and ITU-T G.hn for power line com-

munication [51].

6.2.1 Resource Allocation for OFDMA

The problem of assigning the subcarriers, rates, time slots, and power pro-

files to different users in an OFDMA system has been an area of active re-

search over the past several years. The research in this area can be catego-
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rized into two areas: margin-adaptive and rate-adaptive. In margin adap-

tation, the aim is to minimize the transmit power subject to minimum QoS

parameters for each user, which could be a combination of data rate, bit er-

ror rates, delays, etc. In rate adaptation, the aim is to maximize the data rate

subject to various QoS and/or resource constraints [154].

In the following formulations, two degrees of freedoms are utilized, namely

frequency, and multi-user dimensions. The weighted-sum rate maximiza-

tion subject to a single power constraint for down-link communication, as

well as the weighted-sum rate maximization subject to individual power

constraint for up-link communications are introduced, assuming perfect

CSI is available at the transmitter(s). The weighted-sum rate maximization

problem for up-link OFDMA system7 can be formulated as:

max
P, Y

BN

∑

i∈I
αi

∑

j∈J
Yi( j) log2

(

1 +
γ(i)( j)P(i)( j)

Γ

)

, (6.30a)

s.t.
∑

i∈I
Yi( j)P(i)( j) ≤ Pmax

i , ∀i ∈ I (6.30b)

∑

i∈I
Yi( j) ≤ 1,∀ j ∈ J , (6.30c)

P(i)( j) ≥ 0,Yi( j) ∈ {0, 1}, ∀ j ∈ J , ∀i ∈ I, (6.30d)

where, the set of users is denoted as I = {1, · · · , I}. P contains the power

profiles, where [P]i, j = P(i)( j) at the source nodes ∀i ∈ I and ∀ j ∈ J . The

matrix Y is the subcarrier assignment profile [Y]i, j = Yi( j), ∈ {0, 1}, with

Yi( j) = 1 indicates that subcarrier j is assigned to user i, and αi’s are the

relative priority for each user.

The weighted-sum rate maximization problem for down-link OFDMA

system can be formulated in a similar fashion to (6.30) by replacing the in-

7Assuming orthogonal transmission, i.e. no interference is considered between the users
at the j subcarrier.
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dividual power constraint (6.30b) by the total power constraint as:

∑

i∈I

∑

j∈J
Yi( j)P(i)( j) ≤ Pmax, (6.31)

where, Pmax is the total available power at the base-station or the access-

point. The resource allocation problem (6.30) for OFDMA is a MINLP prob-

lem, which is computationally complex for real-time implementation using

exhaustive search algorithms. A popular approach to attain near-optimality

is constraint relaxation. This approach performs a convex reformulation of

the problem by relaxing the binary integer constraints Yi( j) ∈ {0, 1} to in-

terval constraints 0 ≤ Yi( j) ≤ 1, where Yi( j) is now a sharing factor. The

solution to the reformulated convex problem is then projected back to the

original constraint space using some criteria; for example, assigning each

subcarrier to the user with the largest sharing factor. This approach is sub-

optimal, and more importantly, it is also computationally prohibitive, be-

cause it involves solving a large constrained convex optimization problem

with 2NI variables with 2NI + I + N + 1, and 2IN + I + 1 linear inequality

constraints for up-link and down-link resource allocation problems, respec-

tively. The number of operations per iteration when using Newton-type

projected gradient methods is O
(

(2NI)3
)

[154].

Another popular approach is based on Lagrangian relaxation of the power

constraints, instead of the constraint relaxation. This relaxation incorpo-

rates the power constraints into the objective function, thereby allowing us

to solve the dual problem instead and achieves relative optimality as dis-

cussed next.

6.2.2 Zero Duality Gap Principle

Problem (6.30) is one of a family of resource allocation problems for mul-

ticarrier communications, in which the optimization objective and the con-
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straints consist of large number of individual functions, each corresponds

to one of the n ∈ J frequency subcarriers, that is, the resource allocation

problem can be written as [167]:

max
∑

n∈J
fn(xn), (6.32a)

s.t.
∑

n∈J
hn(xn) ≤ P, (6.32b)

where xn ∈ R
I are vectors of optimization variables, fn(·) are R

I 7→ R, and

hn are R
I 7→ R

L functions. Power constraints are denoted by the vector P.

Here, ≤ is used to denote a component-wise inequality. The time sharing

condition is defined as:

Definition 6.2.1 Let x∗n and y∗n be optimal solutions to the optimization problem

(6.32) with P = Px, and P = Py, respectively. An optimization problem of the

form (6.32) is said to satisfy the time sharing condition if for any Px and Py and for

any 0 ≤ α ≤ 1, there always exists a feasible solution zn, such that
∑

n∈J fn(z) ≥

α
∑

n∈J fn(x∗) + (1 − α)
∑

n∈J fn(y∗).

The time sharing condition leads to the following theorem [167]:

Theorem 6.2.1 For an optimization problem of the form (6.32), if the optimization

problem satisfies the time sharing property, then it has a zero duality gap regardless

of the concavity of fn(xn) and the convexity of hn(xn). The time sharing condition

for multi-carrier systems is satisfied in the limit as N→∞.

The dual optimization framework for problem (6.30) is much less complex,

with complexity order O(IN) for non-orthogonal transmission as in [154].

The weighted-sum rate maximization problem for the down-link OFDMA

system was solved using the dual approach as in [121]. Theorem 6.2.1 is

used to solve many practical OFDMA resource allocation problems, since

the problem can be solved in the dual domain by efficient numerical algo-

rithms as in [30, 67, 68].
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6.2.3 Two-Band Partition Principle

The two-band partition principle is an interesting approach that is used to

allocate the subcarriers for two users up-link OFDMA system for high SNR

scenarios, aiming to maximize the weighted sum rate. It can be stated by

the following theorem [166].

Theorem 6.2.2 For a two-user i = 1, 2 Gaussian mulitple-access channel for high

SNR on each subcarrier, assume S(m) =
(γ(1)(m))α1

(γ(2)(m))α2
is decreasing in m, then the

optimal frequency partition that maximizes the weighted sum rate consists of two

contiguous frequency bands with user 1 using subcarriers indexed from 1 to CP

in the ordered set, and user 2 using the subcarriers indexed from Cp + 1 to N in

the ordered set. The ordering of the subcarriers is based on
(γ(1)( j))α1

(γ(2)( j))α2
in a decreasing

order, where γ(i)( j) =
|H(i)( j)|2
BNN0

.

Theorem 6.2.2 provides a less complex algorithm for a two user max-

imum weighted sum rate resource allocation problem; i.e. the maximum

number of times required to solve the resource allocation problem (the power

profile for a given subcarrier assignment profile) is O(N) which can be re-

duced using binary search algorithms toO
(

log2(N)
)

. In addition, the sorting

of the subcarriers in the proposed theorem requires O
(

N log2(N)
)

computa-

tions for the worst case and O(N) for the best case. Thus, using the two

bands principle, avoids the need to solve the problem in the dual domain

and find the optimal Lagrangian multipliers, which entails a large number

of iterations using the gradient or subgradient methods [143]. The resource

allocation for multiple users I > 2 uplink OFDM system aiming to maximize

the weighted sum rate, was investigated based on the two bands principle

(the two users case) using an iterative algorithm to exchange the subcarriers

between the users as in [50].
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6.2.4 OFDMA with Cooperative Communications

Power allocation and subcarrier pairing have attracted research attention

in OFDMA cooperative communication systems. The weighted-sum rate

maximization problem for a single relay OFDMA uplink cooperative com-

munication system with subcarrier pairing can be formulated as:

max
PR, PS, Y, X

BN

∑

i∈I
αi

∑

j∈J

∑

k∈J
Yi( j, k)X( j, k)R(i)( j, k), (6.33a)

s.t.
∑

i∈I

∑

k∈J

∑

j∈J
Yi( j, k)X( j, k)P(i)

R
(k) ≤ Pmax

R , (6.33b)

∑

k∈J

∑

j∈J
Y(i)( j, k)X( j, k)P(i)

S
( j) ≤ Pmax

i ,∀i ∈ I, (6.33c)

∑

i∈I
Y(i)( j, k) ≤ 1,∀ j, k ∈ J , (6.33d)

∑

k∈J
X( j, k) = 1, ∀ j ∈ J , (6.33e)

∑

j∈J
X( j, k) = 1, ∀k ∈ J , (6.33f)

P(i)

S
( j) ≥ 0, P(i)

R
(k) ≥ 0, ∀i ∈ I, ∀ j, k ∈ J , (6.33g)

Y(i)( j, k) ∈ {0, 1}, X( j, k) ∈ {0, 1}, ∀i ∈ I, ∀ j, k ∈ J , (6.33h)

where R(i)( j, k) for AF cooperative communication is computed as:

R(i)( j, k) =
1

2
log2

(

1 +
P(i)

S
( j)γ(i)

SD
( j)

Γ
+

γ(i)

SR
( j)γRD(k)P(i)

S
( j)P(i)

R
(k)

Γ(1 + γ(i)

SR
( j)P(i)

S
( j) + γRD(k)P(i)

R
(k))

)

,

(6.34)

and R(i)( j, k) for DF cooperative communication is computed as:

R(i)( j, k) =
1

2
min

{

log2

(

1 +
P(i)

S
( j)γ(i)

SD
( j)

Γ
+
γRD(k)P(i)

R
(k)

Γ
), log2

(

1 +
P(i)

S
(j)γ(i)

SR
(j)

Γ
)
}

.

(6.35)
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Subcarrier j is said to be paired to subcarrier k when X( j, k) = 1, i.e. sub-

carrier j is used for the first-hop transmission and subcarrier k is used for

the second-hop transmission. Y(i)( j, k) = 1 means that the pair of subcarri-

ers ( j, k) is assigned to user i. The constraint (6.33d) means that the pair of

subcarriers ( j, k), ∀ j, k ∈ J can be assigned only to one user. The constraints

(6.33e) and (6.33f) indicate that a subcarrier in the first-hop can be paired

only to one subcarrier in the second-hop.

Problem (6.33) with some simplifications was solved in literature using

the dual approach as in [128], where the maximum sum rate is found (i.e.

αi = 1, ∀i ∈ I) without direct-link communications between the sources and

destination nodes for OFDMA-AF scheme, and using the high SNR approxi-

mation as given in (6.22). The weighted-sum rate maximization problem for

single relay OFDMA-DF was solved using the dual approach and a polyno-

mial time algorithm was proposed as in [48, 96]. The maximum sum rate

down-link resource allocation for OFDM-DF under total power constraint

at the source and relay nodes was solved with the assumption of no direct-

link between the source and destination nodes, the subcarriers were ordered

in the first and second hops and then paired as in [177]. Resource allocation

for DF-OFDM with subcarrier pairing for two way relaying is addressed

in [97]. Resource allocation in DF-OFDMA system with perfect and imper-

fect CSI is addressed in [18]. Resource allocation in multiple relay aided

DF-OFDM system is addressed in [150].

6.3 Conclusions

In this chapter, fundamental concepts of OFDM and OFDMA systems are

explained, some resource allocation problems are formulated. The achiev-

able data rate of an OFDM system with AF/DF cooperative communication

schemes for different resource allocation criteria are compared. Basic theo-

rems for resource allocation for multicarrier systems are reviewed. Resource
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allocation problems for OFDMA with cooperative communications are in-

troduced. In the second part of this dissertation, the emphasis will be in

designing resource allocation algorithms for OFDM and OFDMA systems

with cooperative communications with reduced computational complexity.



CHAPTER7

RELAY MODE SELECTION FOR OFDM SYSTEMS

This chapter investigates resource allocation for a single user relay aided

OFDM cooperative communication system. The objective is to allocate the

resources to maximize the sum rate over one OFDM symbol subject to either

individual power constraint on each node or total power constraint. Three

scenarios are addressed in this chapter; in the first scenario, the relay uses

AF to transmit messages on a set of available subcarriers with diversity, and

the remaining subcarriers are used for direct transmission without diversity.

In the second scenario, the relay uses DF to transmit messages on a set of

available subcarriers with diversity and the remaining subcarriers are used

for direct transmission without diversity. In the third scenario, the relay

uses AF with diversity on a set of available subcarriers, and the remaining

subcarriers are used for DF with diversity.

A low complexity algorithm is proposed based on high SNR approxi-

mation and optimal power profiles at the source and relay nodes for the

three scenarios of O(N) complexity, where N is the number of subcarriers.

Simulation results demonstrate the merits of the proposed algorithm.

Introduction and related works are presented in Section 7.1. In Sec-

tion 7.2, the formulation of the optimization problem for selective AF-OFDM,

and the proposed subcarrier assignment algorithm are presented. In Sec-

tion 7.3, the algorithm is extended for selective DF-OFDM. In Section 7.4, the

algorithm is drawn out for the hybrid AF-DF-OFDM scheme. In Section 7.5,
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AF/DF-OFDM and hybrid AF-DF-OFDM schemes are discussed under to-

tal power constraint. Numerical results are presented and discussed in Sec-

tion 7.6. Finally, conclusions are drawn in Section 7.7.

7.1 Introduction

Efficient management of the relay and source resources becomes a critical

issue for increasing transmission rate in relay-aided OFDM communication

systems. As presented in Chapter 6, power allocation for OFDM cooper-

ative communication can be studied under different criteria, for example,

optimal power allocation at the source and relay nodes as in [49, 126]. In

this chapter, another degree of freedom is explored to increase the transmis-

sion rate by selecting the mode of operation; for example, AF/DF coopera-

tive scheme can be used for some subcarriers, and direct transmission will

be used for the remaining subcarriers, this scheme is denoted as selective

AF/DF-OFDM cooperative communication scheme.

Selective AF-OFDM can be considered as a special case of the improved

AF cooperative communication scheme proposed in Chapter 4, where the

subcarrier can be used either for AF with diversity or for direct transmission

without diversity. In [36], resource allocation for selective AF-OFDM coop-

erative communication scheme under individual node power constraint is

studied, and an iterative algorithm for subcarrier assignment based on the

minimum required relaying power is proposed. In each iteration, the or-

dering of the subcarriers based on the relaying power is recomputed, and

the subcarrier with the highest required relaying power is used for direct

transmission. In [147] resource allocation for selective DF-OFDM coop-

erative communication scheme is investigated under individual node, and

total power constraints based on the dual approach, and an iterative algo-

rithm is developed to assign the subcarriers to the modes of transmission.

The main contribution of this chapter is to develop a low complexity
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algorithm to allocate the resources; power profiles at the source and re-

lay nodes and subcarrier assignment for selective AF-OFDM, selective DF-

OFDM, and hybrid AF-DF-OFDM cooperative communication schemes in

high SNR scenarios. Exploring the structure of each problem after relax-

ing the integer variables leads to the proposed algorithm. The idea is to

search through a subset of frequency partitions and find the partition which

is close to the global optimum. Such an approach was previously consid-

ered in [50, 166] to allocate the subcarriers in OFDMA system without co-

operation. In this chapter, the algorithm is extended to cooperative commu-

nication scenarios. Although, it is based on the same idea, there is a major

difference; the subcarriers in AF/DF-OFDM system after the assignment are

constrained by the source power constraint, whereas in the OFDMA system

after the subcarrier assignment step, each user water-fills its source power

individually. In addition, the subcarriers in this research belong to a single

user, but the subcarrier can be used in one transmission mode (i.e. either

AF/DF relaying or direct transmission). Whereas, in the OFDMA system

the subcarriers are allocated to multiple users.

In this chapter, the proposed algorithm is developed based on optimal

source and relay power profiles; a simple function is used for sorting the

subcarriers and splitting them into two partitions. In selective AF/DF-

OFDM, the first partition is used for AF/DF cooperative communication

with diversity, whereas the second partition is used for direct transmission

without diversity. In hybrid AF-DF-OFDM, the first partition is used for

AF cooperative communication with diversity, whereas the second parti-

tion is used for DF cooperative communication with diversity. The partition

that maximizes the sum rate is searched. The proposed subcarrier assign-

ment algorithm in this chapter is different from the algorithms proposed in

[36, 147], since it is based on an ordering of the subcarriers according to a

function defined in terms of the channel gains, and not on the minimum



207

required relaying power which is computed only once. Besides, the source

and relay power profiles for selective AF-OFDM are found analytically in

a closed form, using the upper bound of the end-to end SNR, without the

need of the iterative two steps procedure to find the power profiles at the

source and relay nodes.

7.2 Selective AF-OFDM Cooperative Communi-

cations

The system under consideration is depicted in Figure 7.1. Sender (Source)

node S communicates with the destination terminal D. We consider a single

relay two-hop multi carrier OFDM system, where the wide-band channel is

divided into N narrow-band subcarriers, the bandwidth of each subcarrier

is BN and the set of subcarriers is defined as J = {1, · · · ,N}. In selective

AF-OFDM transmission, the jth subcarrier can be either used in AF two-

hops transmission with diversity, referred to as mode one (i = 1), or it can

be used for direct transmission without diversity referred to as mode two

(i = 2). The received signals at the relay and destination nodes in the first-

time slot T1 at the jth subcarrier are defined as YR( j) and YD1
( j), respectively,

and can be obtained as:

YR( j) =

√

P(1)

S
( j)HSR( j)X j + nR( j), (7.1a)

YD1
( j) =

√

P(i)

S
( j)HSD( j)X j + nD1

( j), (7.1b)

where P(i)

S
( j) is the source transmit power on the jth subcarrier in the ith

transmission mode for i ∈ {1, 2} in the first-time slot. The transmitted symbol

X j at the jth subcarrier is drawn from a constellation with unit energy, nR( j)

and nD1
( j) are AWGNs in the first-time slot with variance σ2 received at the

relay and destination nodes at the jth subcarrier, respectively. The SNR at
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Figure 7.1 System Model

the jth subcarrier at the destination node is denoted as Γ(i)

SD
( j), which results

from direct transmission between the source-destination pair using the jth

subcarrier, defined as:

Γ
(i)

SD
( j) = γSD( j)P(i)

S
( j), (7.2)

where γSD( j) =
|HSD( j)|2
σ2 . During the second-time slot T2, the relay amplifies

and transmits the received signal at the same subcarrier. Hence, the received

signal YD2
( j) at the jth subcarrier at the destination node is obtained as:

YD2
( j) =G( j)

√

PR( j)HRD( j)YR( j) + nD2
( j), (7.3)

where PR( j) is the relay transmitted power at the jth subcarrier, nD2
( j) is the

AWGN received at the destination node in the second-time slot. G( j) is the

normalization factor at the relay station given as G( j) = 1
√

P
(1)
S

( j)|HSR( j)|2+σ2
. The

end-to-end SNR of the jth subcarrier denoted as ΓAF( j) is given by [4]:

ΓAF( j) =
P(1)

S
( j)PR( j)|HSR( j)|2|HRD( j)|2

σ2(σ2 + P(1)

S
( j)|HSR( j)|2 + PR( j)|HRD( j)|2)

, (7.4)

which can be rewritten in a simplified form as:

ΓAF( j) =
γSR( j)γRD( j)P(1)

S
( j)PR( j)

1 + γSR( j)P(1)

S
( j) + γRD( j)PR( j)

, (7.5)



209

where γSR( j) =
|HSR( j)|2
σ2 , and γRD( j) =

|HRD( j)|2
σ2 . The data rate R(1)( j) of AF

scheme at the destination node with the aid of the relay node in mode 1

and using the MRC technique can be computed as:

R(1)( j) =
BN

2
log2(1 +

Γ
(1)

SD
( j) + ΓAF( j)

Γ
), (7.6)

The data rate R(2)( j) in mode 2 at the destination node is obtained as:

R(2)( j) = BN log2(1 +
Γ

(2)

SD
( j)

Γ
). (7.7)

The objective of the resource allocation problem is to maximize the achiev-

able data rate over the entire OFDM symbol with N subcarriers, which can

be formulated as:

R = max
P,Y

2∑

i=1

∑

j∈J
Y(i)

j
R(i)( j), (7.8a)

s.t.
∑

j∈J
Y(1)

j
PR( j) ≤ Pmax

R , (7.8b)

2∑

i=1

∑

j∈J
Y(i)

j
P(i)

S
( j) ≤ Pmax

S , (7.8c)

2∑

i=1

Y(i)

j
≤ 1, ∀ j ∈ J , (7.8d)

PR( j) ≥ 0, P(i)

S
( j) ≥ 0, Y(i)

j
∈ {0, 1}, ∀ j ∈ J , i = 1, 2, (7.8e)

where P, is the vector of the source and relay power profiles, which includes

P(i)

S
( j) and PR( j), ∀ j ∈ J and i = 1, 2. The vector Y is the carrier assignment

profile with Y(i)

j
= 1 indicates that subcarrier j is used in the ith transmission

mode (i = 1, 2). Constraint (7.8b) means that the total power allocated to for-

ward the data by the relay is constrained to Pmax
R

. Whereas, constraint (7.8c)

indicates that the source power is constrained to Pmax. Constraint (7.8d)

means that the jth subcarrier can be assigned to maximally one mode of
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transmission, either AF relaying (i.e. i = 1, with (Y(1)

j
,Y(2)

j
) = (1, 0)) or direct

transmission (i.e. i = 2, with (Y(1)

j
,Y(2)

j
) = (0, 1)). Problem (7.8) is a mixed

integer constraint optimization problem. First, we will solve the power al-

location problem for a given subcarrier assignment profile, and then we will

use the optimal power allocation profile to find the optimal subcarrier as-

signment profile. For high SNR ΓAF( j) can be approximated by its upper

bound as in [56]:

ΓAF( j) ≈
γSR( j)γRD( j)P(1)

S
( j)PR( j)

γSR( j)P(1)

S
( j) + γRD( j)PR( j)

, (7.9)

which will be used from now on to derive the forthcoming results. With

this approximation, the data rate (7.6) becomes a jointly concave function

with respect to the source and relay power profiles as shown in Appendix

B.1. Thus (7.8) for a given subcarrier assignment profile can be solved using

any convex optimization technique. Here, we seek an analytical solution

by relaxing the power constraints (7.8c) and (7.8e) and by formulating the

Lagrangian function as:

L(P,λ) =
∑

j∈J1

R(1)( j) +
∑

j∈J2

R(2)( j) − λR

( ∑

j∈J1

PR( j) − Pmax
R

)

− λS

( ∑

j∈J1

P(1)

S
( j) +

∑

j∈J2

P(2)

S
( j) − Pmax

S

)

, (7.10)

s.t. λR ≥ 0, λS ≥ 0, P(i)

S
( j) ≥ 0, PR( j) ≥ 0, ∀i = 1, 2, ∀ j ∈ J , (7.11)

where Ji is the set of subcarriers that are assigned to mode i, for i = 1, 2.

Assuming that subcarrier j is used in mode 1, differentiating (7.10) with

respect to P(1)

S
( j) and equating to zero, results in:

Γ + Γ
(1)

SD
( j) + ΓAF( j)

BN/2 ln(2)
=

1

λS
(γSD( j) +

γSR( j)γ2
RD( j)P2

R( j)

(γSR( j)P(1)

S
( j) + γRD( j)PR( j))2

). (7.12)
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Similarly, for the relay power, differentiating (7.10) with respect to PR( j) and

equating to zero results in:

Γ + Γ
(1)

SD
( j) + ΓAF( j)

BN/2 ln(2)
=

γRD( j)γ2
SR

( j)P(1)2

S
( j)

λR

(

γSR( j)P(1)

S
( j) + γRD( j)PR( j)

)2
. (7.13)

Simultaneously, solving (7.12) and (7.13), the optimal source power profile

for mode 1 can be obtained as:

P(1)

S
( j) =

(

K(γSD( j) + A j) − Γ
)+

γSD( j) + B j
, (7.14)

where A j =
γSR( j)γ2

RD
( j)C2

j

(γSR( j)+γRD( j)C j)2 , B j =
γSR( j)γRD( j)C j

γSR( j)+γRD( j)C j
, K = BN

2 ln(2)λS
and C j is computed

as:

C j =

γSR( j)
(

− 1 +
√

1 + (1 +
γSR( j)

γSD( j)
)( λS

λR

γRD( j)

γSD( j)
− 1)

)+

γRD( j)(1 +
γSR( j)

γSD( j)
)

. (7.15)

The optimal relay power profile is obtained as:

PR( j) = C jP
(1)

S
( j). (7.16)

On the other hand, if subcarrier j is used in mode 2, differentiating (7.10)

with respect to P(2)

S
( j) and equating to zero results in:

P(2)

S
( j) =

( BN

ln(2)λS
− Γ

γSD( j)

)+

. (7.17)

The assumption here is that if subcarrier j is assigned to transmission mode

i = 1, 2 then the power profiles at the source and relay nodes are as in (7.14)

and (7.16) for mode 1 and the source power profile for mode 2 is as in (7.17)

with λR, λS are selected to satisfy the power constraints (7.8b) and (7.8b),

respectively. In order to decide on the subcarrier assignment profile, the

problem is an integer problem that is difficult to solve unless an exhaustive
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search is used over all possible Y(i)

j
. To simplify the analysis, the subcarrier

assignment profile is relaxed as 0 ≤ Y(i)

j
≤ 1. Incorporating this into the

Lagrangian function of (7.8), denoting it as L(P,Y,λ)1, then equating the

derivative of L(P,Y,λ) with respect to the relaxed integer Y(i)

j
to zero, results

in:

log2

(

1 +
Γ

(1)

SD
( j) + ΓAF( j)

ΓY(1)

j

)

−
Γ

(1)

SD
( j) + ΓAF( j)

ΓY(1)

j
+ Γ

(1)

SD
( j) + ΓAF( j)

=2 log2

(

1 +
Γ

(2)

SD
( j)

ΓY(2)

j

)

−

2Γ(2)

SD
( j)

ΓY(2)

j
+ Γ

(2)

SD
( j)
. (7.18)

The LHS and RHS of (7.18) can be interpreted as the marginal benefit for

extra bandwidth for mode 1 and mode 2, respectively. If a subcarrier is

shared between the two modes, the marginal benefits for the two modes

should be equal [166]. If the LHS of (7.18) is strictly greater than the RHS of

(7.18), the jth subcarrier should be used in mode 1, i.e. Y(1)

j
= 1, and Y(2)

j
= 0.

Likewise, if the RHS of (7.18) is strictly greater than the LHS of (7.18), the

jth subcarrier should be used in mode 2, i.e. Y(2)

j
= 1, and Y(1)

j
= 0. Based

on this observation, the subcarrier should be assigned to the mode with the

higher marginal benefit. At high SNR
Γ

(1)
SD

( j)+ΓAF( j)

ΓY
(1)
j
+Γ

(1)
SD

( j)+ΓAF( j)
≈ 1, and

Γ
(2)
SD

( j)

ΓY
(2)
j
+Γ

(2)
SD

( j)
≈ 1.

Hence, substituting (7.12) in (7.18), the LHS of (7.18) can be approximated

as:

log2

(

γSD( j) +
γSR( j)γ2

RD( j)P2
R( j)

(γSR( j)P(1)

S
( j) + γRD( j)PR( j))2

)

+ log2(BN/2 ln(2)ΓλS) − 1.

(7.19)

Similarly, substituting (7.17) in (7.18), the RHS of (7.18) can be approximated

as:

2 log2

(

γSD( j)
)

+ 2 log2(BN/ ln(2)ΓλS) − 2. (7.20)

1The formulation of the L(P,Y,λ) for OFDMA is explained in more details in Section 8.2.
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Figure 7.2 Two-Band Partition Assignment for Selective AF-OFDM

Substituting the optimal power profiles at the source and relay nodes given

by (7.14) and (7.16) in (7.19) results in:

log2

(

γSD( j) +
γSR( j)γ2

RD( j)C2
j

(γSR( j) + γRD( j)C j)2

)

+ log2(BN/2 ln(2)ΓλS) − 1. (7.21)

This expression can be further simplified by using 0.5 min(γSR( j), γRD( j)C j)

as a lower bound for
γSR( j)γRD( j)C j

γSR( j)+γRD( j)C j
, and assuming

γSR( j)

γSD( j)
> 1 and

γRD( j)

γSD( j)
> 1,

which are reasonable assumptions in cooperative communications. We take

the difference between (7.21) and (7.20), and define the term that depends

on the channel gains by the function fAF(·) as:

fAF

(

γSD( j), γSR( j)
)

= log2

(γSD( j) + 0.25γSR( j)

γ2
SD

( j)

)

. (7.22)

The approach that we follow to assign subcarriers to the different modes

of operation is accomplished by ordering the subcarriers based on (7.22) in

descent ordering, then searching for the partition that maximizes the sum

rate. We only need to find the boundary subcarrier CP of the ordered set;

i.e. the subcarriers j ≤ CP of the ordered set are assigned to mode 1, and

the subcarriers j > CP of the ordered set are assigned to mode 2 as shown in

Figure 7.2.
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Algorithm 7.1 Two-Band Assignment Algorithm for Selective AF-OFDM
Scheme.

Require: γSD( j), γSR( j), γRD( j), j ∈ J , Pmax
R

, and Pmax
S

.
1: Set J1 = ∅, and J2 = ∅.
2: for j ∈ J do

3: S j ← log2

(
γSD( j)+0.25γSR( j)

γ2
SD

( j)

)

.

4: end for

5: Find Ŝ: The ordered set of S = {S1, · · · ,SN} from largest to smallest such as
Ŝ1 > Ŝ2 > Ŝ j > · · · > ŜN, where the first subcarrier is the subcarrier with the
largest(S j), and the Nth subcarrier is the subcarrier with the smallest(S j), ∀ j ∈ J .

6: for n = 0 : N do

7: Assign mode 1, the set of subcarriers J1(n)← 1 : n.
8: Assign mode 2, the set of subcarriers J2(n)← n + 1 : N.
9: Use (7.14), (7.16) and (7.17) to compute the power profiles at the source and

relay nodes.

10: Compute the sum rate: R(n) =
∑2

i=1

∑

j∈Ji(n) Y
(i)
j

R(i)( j), where Y
(1)
j
= 1, ∀ j ∈

J1(n), and Y
(2)
j
= 1, ∀ j ∈ J2(n).

11: end for

12: Find the partition CP that maximizes the sum rate as: CP ← arg max
n

R(n)

13: Assign mode 1 the subcarriers : J1 ← {1 : CP}.
14: Assign mode 2 the subcarriers: J2 ← {CP + 1 : N}.
15: return J1 ← {1 : CP}, J2 ← {CP + 1 : N}, and R(CP).

7.2.1 Subcarrier Assignment Algorithm

The proposed subcarrier assignment algorithm is illustrated in Algorithm 7.1.

Searching through a set of two-bands partitions, the subcarriers are sorted

in descent ordering based on S j = log2

(
γSD( j)+0.25γSR( j)

γ2
SD

( j)

)

, as Ŝ1 > Ŝ2 > · · · > ŜN,

where Ŝ1 = max(S1,S2, · · · ,SN), and subcarrier 1 is the subcarrier with the

largest S j. Then the partition CP that maximizes the sum rate is sought by

assigning the subcarriers of the ordered set indices from 1 to CP to mode 1,

and the subcarriers of the ordered set indices from CP + 1 to N to mode 2.

The sum rate is computed by using the power profiles given in (7.14), (7.16),

and (7.17).
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7.3 Selective DF-OFDM Cooperative Communi-

cations

In this section, the algorithm is extended to the selective DF-OFDM cooper-

ative scheme, where the jth subcarrier can be either used in DF transmission

with diversity referred to as mode one (i = 1), or it can be used for direct

transmission without diversity referred to as mode two (i = 2).

The data rate R(1)( j) for DF scheme at the destination node with the aid

of the relay node in mode 1 and using the MRC technique can be computed

as:

R(1)( j) =
BN

2
min

{

log2(1 +
Γ

(1)

SD
( j) + ΓRD( j)

Γ
), log2(1 +

Γ
(1)

SR
( j)

Γ
)
}

, (7.23)

where ΓRD( j) = γRD( j)PR( j), and Γ(1)

SR
( j) = γRS( j)P(1)

S
( j). The Resource allo-

cation problem aiming to maximize the achievable data rate over the en-

tire OFDM symbol with N subcarriers for selective DF-OFDM cooperative

schemes can be formulated as in (7.8) with R(1)( j) as given by (7.23).

Following the same lines of AF-OFDM scenario in Section 7.3; by relax-

ing the power constraints at the source and relay nodes and formulating the

Lagrangian function for a given subcarrier assignment profile as in (7.10),

then differentiating with respect to P(1)

S
( j) and equating to zero, the optimal

source power profile can be obtained as:

P(1)

S
( j) =

(KγSD( j)

γSR( j)
− Γ

γSR( j)

)+

(7.24)

with K = BN

2 ln(2)λS
. The optimal relay power profile is obtained as:

PR( j) = C jP
(1)

S
( j), (7.25)
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where C j is computed as:

C j =

(

γSR( j) − γSD( j)
)+

γRD( j)
. (7.26)

Similar to selective AF-OFDM scenario, the approach that we follow to as-

sign subcarriers to the two different modes of operation is accomplished

by ordering the subcarriers in descent ordering, based on f DF(γSD( j), γSR( j)),

which is defined as:

fDF

(

γSD( j), γSR( j)
)

= log2

(γSR( j)

γ2
SD

( j)

)

, (7.27)

then searching for the partition that maximizes the sum rate. We only need

to find the boundary subcarrier CP of the ordered set; i.e. the subcarriers

j ≤ CP of the ordered set are assigned to mode 1, and the subcarriers j > CP

of the ordered set are assigned to mode 2.

Algorithm 7.1 can be used to find the mode of transmission for selective

DF-OFDM by replacing S j = log2

(
γSD( j)+0.25γSR( j)

γ2
SD

( j)

)

by S j = log2

(
γSR( j)

γ2
SD

( j)

)

, using

(7.24) and (7.25) instead of (7.14) and (7.16) to compute the power profiles at

the source and relay nodes, and using (7.23) instead of (7.6) to calculate the

rate of subcarrier j using mode 1.

7.4 Hybrid OFDM Cooperative Communications

In this section, in order to save the energy of the source node, restrictions

apply to the source transmission in the second time slot. In this regard,

subcarrier j can be used either in AF cooperative transmission with diversity

referred to as mode one (i = 1), or it can be used in DF transmission with

diversity referred to as mode two (i = 2).

The data rate R(1)( j) for AF scheme at the destination node with the aid

of the relay node in mode 1 and using the MRC technique can be computed
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as:

R(1)( j) =
BN

2
log2(1 +

Γ
(1)

SD
( j) + Γ(1)

AF
( j)

Γ
). (7.28)

The data rate R(2)( j) for DF scheme at the destination node with the aid of

the relay node in mode 2 and using the MRC technique can be computed as:

R(2)( j) =
BN

2
min

{

log2(1 +
Γ

(2)

SD
( j) + Γ(2)

RD
( j)

Γ
), log2(1 +

Γ
(2)

SR
( j)

Γ
)
}

. (7.29)

Following the same lines as in selective AF/DF-OFDM, the power profile

for mode 1 at the source and relay nodes can obtained as in (7.14) and (7.16),

respectively. Whereas, the power profile for mode 2 at the source and relay

nodes can be obtained as in (7.24) and (7.25), respectively. The approach

that we follow to assign the subcarriers to the different modes of operation

is accomplished by sorting the subcarriers in a descent ordering based on

the function fH

(

γSD( j), γSR( j)
)

given as:

fH

(

γSD( j), γSR( j)
)

= log2

(γSD( j) + 0.25γSR( j)

γSR( j)

)

, (7.30)

Algorithm 7.1 can be used to find the mode of transmission for the hy-

brid OFDM Cooperative relaying by replacing the ordering function S j =

log2

(
γSD( j)+0.25γSR( j)

γ2
SD

( j)

)

by S j = log2

(
γSD( j)+0.25γSR( j)

γSR( j)

)

, using (7.25), (7.24), (7.16), and

(7.14) to find the power allocation profiles, and using (7.28) and (7.29) to

compute the data rate for mode 1 and mode 2, respectively.

7.5 OFDM Cooperative Communications with To-

tal Power Constraint

Resource allocation for selective AF-OFDM, and selective DF-OFDM schemes

under total power constraint, can be investigated by replacing (7.8b) and
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(7.8c) in (7.8) by:

∑

j∈J
(Y(1)

j
P(1)

S
( j) + 2Y(2)

j
P(2)

S
( j) + Y(1)

j
PR( j)) ≤ PT. (7.31)

and the resource allocation for hybrid cooperative OFDM scheme under

total power constraint, can be studied by replacing constraints (7.8b) and

(7.8c) in (7.8) by:

2∑

i=1

∑

j∈J
(Y(i)

j
P(i)

S
( j) + Y(i)

j
P(i)

R
( j)) ≤ PT. (7.32)

The interesting result is that the proposed algorithms can be used also to

select the mode of operation under total power constraint without changing

the developed ordering functions. The only difference is that in the source

and relay power profiles (7.17), (7.14), and (7.16) for selective AF-OFDM,

and (7.17), (7.24), and (7.25) for selective DF-OFDM, λR, and λS are replaced

by λT, which is selected to satisfy the total power constraint.

7.6 Simulation Results and Discussion

We model the subcarrier channel coefficient between any two nodes with

a separating distance d as H( j) ∼ CN(0, 1
L(1+d)α

), α = 4 is the propagation

loss factor, and L = 4 is the number of channel taps as in [49]. The system

consists of a source S, a relay R and a destination D. The distance between

the source and destination dSD is set to 100m and the relay is set at equal

distance from the source and destination nodes, i.e. dSR = 50, and dRD = 50,

this setting is selected since AF-OFDM scenario achieves maximum capac-

ity when the relay is located midway between the source and distention

nodes. However, it was noticed that selective AF/DF-OFDM relaying im-

proves the capacity for all positions. The subcarrier noise power σ2 is set

at 4 × 10−11Watt. The source maximum transmit power is Pmax
S
= 1Watt.
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Figure 7.3 The Achievable Sum Rate for Different Scenarios and Algorithms
as a Function of the Relay Maximum Transmit Power Pmax

R
.

The subcarrier bandwidth BN = 4KHz, the capacity gap is set to 1. The

achievable sum rate and the subcarrier assignment of the proposed algo-

rithm for selective AF-OFDM, selective DF-OFDM, hybrid-OFDM are com-

pared with the achievable sum rate and the subcarrier assignment using

exhaustive search algorithm for N = 8. The results of the two algorithms

coincide as shown in Figure 7.3. The comparison was carried out for a large

number of random channel realizations and for different maximum trans-

mit power constraints. In all of these realizations, the proposed algorithm

for subcarrier assignment coincides with that obtained by exhaustive search

algorithm. However, the proposed subcarrier assignment algorithm is of

much lower complexity than the exhaustive search algorithm. The maxi-

mum number of computations to find the optimal subcarrier assignment is

O(N) for the proposed algorithm, which can be further improved by using

binary search algorithms to O
(

log2(N)
)

compared to O(2N) for exhaustive

search algorithms.

Further dimension is investigated by allowing the OFDM symbol to con-

tain AF with diversity transmission, DF with diversity transmission and di-
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Figure 7.4 Comparison of the Achievable Sum Rate for Different Scenarios
and Algorithms as a Function of the Relay Maximum Transmit Power Pmax
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.

rect transmission without diversity, known as the three modes (3M) scheme.

This can be achieved by splitting the subcarriers between AF and DF us-

ing hybrid OFDM cooperative transmission, then splitting the first group of

subcarriers, using selective AF-OFDM transmission between AF and direct

transmission. Similarly, the second group of subcarriers can be split using

selective DF-OFDM transmission between DF and direct transmission. Al-

gorithm 7.1 needs to be applied three times using the three different order-

ing functions (7.30), (7.27), and (7.22). It is clear from Figure 7.3 that there

is no gain from using the 3M scheme, the sum rate coincides with the sum

rate of selective DF-OFDM scheme. This is because it is better to use DF

transmission for the subcarriers with good channel gains, and to use direct

transmission for the remaining subcarriers. The sum rate of the 3M scheme

using the proposed algorithm coincides with the sum rate using exhaustive

search as shown in Figure 7.3.

Figure 7.4 compares the sum rate of the proposed algorithm and the sum

rate of AF, using all subcarriers as a function of the relay’s maximum trans-

mit power for a fixed source maximum transmit power Pmax
S
= 1Watt with

N = 64. Clearly, as the relay’s maximum transmit power Pmax
R

increases,

the achievable data rate increases. The achievable sum rate of the proposed
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Figure 7.5 Comparison of the Achievable Sum Rate for Different Scenarios
and Algorithms as a Function of the Relay Maximum Transmit Power Pmax

R
.

algorithm is higher than the achievable sum rate of AF using all subcarri-

ers and higher than the achievable sum rate of direct transmission using all

subcarriers. In addition, Figure 7.4 shows the achievable sum rate of AF us-

ing all subcarriers using (7.14), (7.16) and (7.17) and the achievable sum rate

of AF using all subcarriers using the iterative algorithm proposed in [36].

Clearly, the two curves coincide with negligible difference for different re-

lay’s maximum transmit power. However, our proposed algorithm requires

less computational complexity: In the proposed algorithm the ordering is

done only once based on (7.22), whereas the ordering is done iteratively in

[36] based on the minimum required relaying power. In addition, the power

profiles are allocated using (7.14) and (7.16), no iterations are required to

find the source and relay power profiles as in [36].

Figure 7.5 compares the sum rate of the proposed algorithm for selective

DF-OFDM and the sum rate of DF-OFDM using all subcarriers as a function

of the relay’s maximum transmit power for a fixed source maximum trans-

mit power Pmax
S
= 1Watt with N = 64. It is clear that the sum rate of selective

DF-OFDM scheme is higher than the sum rate of DF-OFDM.
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Figure 7.6 compares the sum rate of the proposed algorithm for hybrid

AF-DF-OFDM and the sum rate of AF-OFDM/DF-OFDM using all subcar-

riers as a function of the relay’s maximum transmit power for a fixed source

maximum transmit power Pmax
S
= 1Watt with N = 64. It is clear that the

sum rate of Hybrid AF-DF-OFDM scheme is higher than the sum rate of

AF-OFDM and DF-OFDM cooperative schemes.

Figure 7.7 compares the sum rate of the proposed algorithms for AF/DF-

OFDM and Hybrid-OFDM with exhaustive search under total power con-

straint. The sum rate of the proposed algorithms coincides with the sum

rate of the exhaustive search algorithm.

Table 7.1 shows the number of subcarriers (NAF/NDF) used for AF/DF

relaying as a function of the relay’s maximum transmit power Pmax
R

under

individual power constraint at the source and relay nodes. Clearly, the re-

lation between increasing Pmax
R

and the number of subcarriers assigned to

AF/DF is an increasing function until it goes to saturation for high relay

maximum power, which confirms that selective DF/AF-OFDM achieves a

higher data rate compared to DF/AF-OFDM, even with high maximum
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Table 7.1 Number of Subcarriers Used for Relaying Using the Proposed Al-
gorithm.

Pmax
R

[Watt] 0.01 0.05 0.1 1.0 5.0 10.0 50.0 100

NAF 31 34 39 43 45 51 51 52

NDF 25 33 41 44 51 52 53 53

transmit power at the relay node.

7.7 Conclusions

In this chapter, we investigate joint resource allocation for selective AF/DF-

OFDM and hybrid AF-DF-OFDM cooperative communication systems, in

the presence of a direct link between the source and destination nodes. The

objective is to maximize the sum rate over one OFDM symbol under either

individual node power constraint on each node or total power constraint.

The subcarrier assignment is a combinatorial problem that can be solved by

means of exhaustive search to get the optimal subcarrier assignment, and

the source and relay power profiles. In this sense, we propose a suboptimal
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low complexity algorithm for subcarrier assignment, and develop analyti-

cal expressions for both the source and relay power profiles for AF and DF

cooperative schemes and direct transmission. The proposed algorithm is

based on high SNR approximation, and optimal power profiles at the source

and relay nodes. The maximum number of computations of the proposed

algorithm is proportional to the number of subcarriers O(N), which can be

reduced using binary search algorithms to O
(

log2(N)
)

.



CHAPTER8

RESOURCE ALLOCATION FOR AF/DF-OFDMA

RELAY NETWORKS

This chapter addresses joint subcarrier assignment and power allocation at

the source and relay nodes for both relaying schemes AF and DF with mul-

tiple users using OFDMA. The resource allocation problem aims at max-

imizing the weighted sum rate subject to individual power constraint on

each node. We formulate such a problem as subcarrier based resource al-

location 1 that seeks joint optimization of subcarrier assignment and power

profiles at the source and relay nodes. The formulated optimization prob-

lem is a MINLP, which is difficult to solve. In this sense, using high SNR

approximation, two algorithms are proposed based on channel gains order-

ing. In the first algorithm, the first partition is assigned to one of the users,

whereas, the second partition is assigned to the remaining users. The al-

gorithm is applied repeatedly in a nested fashion by splitting each second

partition into two partitions until the last partition is separated between the

last two users. The optimal partitions that maximize the weighted sum rate

are then sought. The computational complexity of finding the subcarrier as-

signment that maximizes the weighted sum rate for I users, and N subcarri-

ers AF-OFDMA or DF-OFDMA scenarios is of O
(

NI−1
)

. A second algorithm

is proposed to further reduce the computational complexity, which consists

1Joint resource allocation with subcarrier pairing is a topic for further research.
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of two stages: a basic stage, and a transfer stage. In the basic stage, each

user is assigned a subset of the subcarriers based on an ordering function

of the user channel gain to the other users channel gains. In the transfer

stage, some boundary subcarriers are transferred among users to maximize

the weighted sum rate.

This chapter is organized as follows. Introduction and related works

are presented in Section 8.1. In Section 8.2, AF-OFDMA cooperative com-

munication system model, formulation of the optimization problem, and

the proposed algorithms for subcarrier assignment are described. The pro-

posed algorithms are extended to DF-OFDMA as explained in Section 8.3.

Numerical results are presented and discussed in Section 8.4. Conclusions

are drawn in Section 8.5.

8.1 Introduction

Joint subcarrier assignment and power allocation in AF/DF-OFDMA coop-

erative communication systems is a MINLP and difficult to solve. Thanks

to zero duality principle presented in Theorem 6.2.1, the resource allocation

problem can be solved in the dual domain. However, using the dual domain

requires a large number of iterations2 to find the correct Lagrange multipli-

ers, and even uses methods that exploit the structure of the problem, e.g.,

the ellipsoid method [19].

This chapter is motivated by the results of [50, 153, 166], where the sub-

carrier assignments for two users OFDMA system at high SNR is a two-

band partition. In this chapter, we follow the same argument to prove that

the subcarrier assignment is also a two-band partition for two users AF/DF-

OFDMA cooperative communication system at high SNR in the presence

of a direct link between the source and destination nodes. We develop an

2For uplink scenarios and under individual node constraints, where the number of La-
grange multipliers is I + 1. For downlink scenarios and total power constraint, it requires
less number of iterations since there is only one Lagrange multiplier.
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ordering function to split the subcarriers into a two-band partition based

on optimal power profiles at the source and relay nodes, where the power

profiles are allocated to maximize the weighted sum rate under individual

power constraint at the source nodes, as well as at the relay node.

Resource allocation for uplink AF/DF-OFDMA differs from resource al-

location for uplink OFDMA. Subcarriers in AF/DF-OFDMA systems af-

ter subcarrier assignment are connected by the relaying power constraint,

whereas in OFDMA systems after the subcarrier assignment, each user wa-

ter fills her source power individually. One more characteristic of the re-

source allocation for uplink AF/DF-OFDMA is that the two band partition

applies either if all subcarriers are allocated non-zero relaying power, or all

subcarriers are allocated zero relaying power. In case some subcarriers are

allocated zero relaying power, four band partition is noticed, which requires

reassignment of these subcarriers using a different ordering function.

For more than two users (I > 2), resource allocation for AF/DF-OFDMA

cooperative communication systems can be studied based on the two users

case, where the two band partition principle can be applied repeatedly be-

tween a user and the remaining users in the system. In addition, a simplified

algorithm is proposed to reduce the computations that result from applying

the algorithm repeatedly, which consists of two stages; basic and transfer.

In the basic stage, each subcarrier is assigned to the user that achieves the

maximum benefit using that subcarrier compared to all other users. In the

transfer stage, subcarriers can be transferred from one user to another user

in order to maximize the weighted sum rate.
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Figure 8.1 System Model.

8.2 AF-OFDMA Cooperative Communication Sys-

tems

The system under consideration is depicted in Figure 8.1 which finds plenty

of promising applications when it is difficult to install multiple antennas at

the same radio equipment [86]. This system has been considered in the lat-

est standards as IEEE 802.16j and long-term-evolution-advanced (LTE-A)

standard [35]. Let I = {1, 2, · · · , I} be the set of active users, sender (source)

nodes Si for i ∈ I communicate with a destination terminal D. We con-

sider a single relay two-hop OFDMA system. The available bandwidth W

is divided into N subcarriers, each subcarrier bandwidth is BN, in which the

channel coefficient is assumed to be frequency flat. In the first hop, the chan-

nel coefficients of the ith user between the source and destination nodes, and

the source and relay nodes at the jth subcarrier are denoted by H(i)

SD
( j), and

H(i)

SR
( j), respectively. In the second hop, the channel coefficient between the

relay and the destination nodes at the jth subcarrier is denoted by HRD( j).

The received signals at the destination and relay nodes in the first time slot

T1 for user i on the jth subcarrier are defined as Y(i)
D1

( j) and Y(i)
R

( j) respectively,
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and obtained as:

Y(i)
D1

( j) =

√

P̂(i)

S
( j)H(i)

SD
( j)X(i)

j
+ n(i)

D1
( j), (8.1a)

Y(i)
R

( j) =

√

P̂(i)

S
( j)H(i)

SR
( j)X(i)

j
+ n(i)

R
( j), (8.1b)

where P̂(i)

S
( j) is the ith user transmitted power on the jth subcarrier in the

first time slot. The ith user transmitted symbol at the jth subcarrier is de-

noted as X(i)

j
, which is drawn from a constellation with unit energy, and

n(i)
D1

( j) and n(i)
R

( j) are AWGNs with variance σ2 received at the destination and

relay nodes on the jth subcarrier, respectively. Let Γ̂(i)

SD
( j) denote the SNR for

the ith user at the jth subcarrier at the destination node, which results from

direct transmission between the ith source-destination pair in the first time

slot T1, and can be expressed as Γ̂(i)

SD
( j) = γ(i)

SD
( j)P̂(i)

S
( j), with γ(i)

SD
( j) =

|H(i)
SD

( j)|2
σ2 .

During the second time slot T2, the relay amplifies and transmits the

received signal at the same subcarrier. The received signal Y(i)
D2

( j) of the ith

user at the jth subcarrier at the destination node is obtained as:

Y(i)
D2

( j) =G(i)( j)

√

P̂(i)
R

( j)HRD( j)Y(i)
R

( j) + n(i)
D2

( j), (8.2)

where P̂(i)
R

( j) is the relay transmitted power for the ith user at the jth subcar-

rier, n(i)
D2

( j) is the AWGN with variance σ2 received at the destination node.

G(i)( j) is the normalization factor at the relay node at the jth subcarrier given

as G(i)( j) = 1
√

P̂
(i)
S

( j)|H(i)
SR

( j)|
2
+σ2

. The noise variance is expressed as σ2 = N0BN,

where N0 is the PSD of AWGN. The end-to-end SNR of the ith user Γ̂(i)

AF
( j)

using the relay link is given by [125]:

Γ̂
(i)

AF
( j) =

P̂(i)

S
( j)P̂(i)

R
( j)|H(i)

SR
( j)|2|HRD( j)|2

σ2(σ2 + P̂(i)

S
( j)|H(i)

SR
( j)|2 + P̂(i)

R
( j)|HRD( j)|2)

, (8.3)
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which can be written in a simplified form as:

Γ̂
(i)

AF
( j) =

γ(i)

SR
( j)γRD( j)P̂(i)

S
( j)P̂(i)

R
( j)

1 + γ(i)

SR
( j)P̂(i)

S
( j) + γRD( j)P̂(i)

R
( j)
, (8.4)

where γ(i)

SR
( j) =

|H(i)
SR

( j)|2
σ2 , and γRD( j) =

|HRD( j)|2
σ2 .

The data rate R(i)

AF
( j) at the destination node using subcarrier j for user i

with the aid of the relay node and after using the MRC technique, is com-

puted as:

R(i)

AF
( j) =

BN

2
log2

(

1 +
Γ̂

(i)

SD
( j) + Γ̂(i)

AF
( j)

Γ

)

. (8.5)

The data rate R(i)

AF
( j) is not a jointly concave function in P̂(i)

S
( j) and P̂(i)

R
( j) as

can be proved by the second order derivative test introduced in Appendix

B.1. To make the analysis more tractable, we use the approximation Γ̂(i)

AF
( j) ≈

γ(i)
SR

( j)γRD( j)P̂
(i)
S

( j)P̂
(i)
R

( j)

γ(i)
SR

( j)P̂
(i)
S

( j)+γRD( j)P̂
(i)
R

( j)
, which is tight for high SNR. This approximation has been

commonly used in literature [30, 56, 139]. It is proved that even in the low

SNR regime, this approximation can reach optimal capacity very closely

[139]. With this approximation the data rate is a jointly concave function

in P̂(i)

S
( j) and P̂(i)

R
( j) as proved in Appendix B.1. From now on, Γ̂(i)

AF
( j) will be

substituted for by its approximation.

One criterion for resource allocation is to maximize the weighted sum

of the data rate. This criterion sometimes denoted as throughput prefer-

ence maximizer, which appears in applications where users have different

priorities. In addition, this criterion can be used to find the Pareto optimal

boundary of a convex rate region by changing the weights. Therefore, the

resource allocation problem can be formulated as follows:

max
P̂R,P̂S,Y

BN

2

∑

i∈I
αi

∑

j∈J
Y(i)

j
log2

(

1 +
Γ̂

(i)

SD
( j) + Γ̂(i)

AF
( j)

Γ

)

, (8.6a)

s.t.
∑

i∈I

∑

j∈J , i∈I
Y(i)

j
P̂(i)

R
( j) ≤ Pmax

R , (8.6b)
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∑

j∈J
Y(i)

j
P̂(i)

S
( j) ≤ Pmax

i ,∀i ∈ I, (8.6c)

∑

i∈I
Y(i)

j
≤ 1,∀ j ∈ J , (8.6d)

P̂(i)

S
( j) ≥ 0, P̂(i)

R
( j) ≥ 0, Y(i)

j
∈ {0, 1}, ∀i ∈ I, ∀ j ∈ J , (8.6e)

where the setJ = {1, 2, · · · ,N} denotes the set of subcarriers, P̂S is the power

profile matrix at the source node with [P̂S]i, j = P̂(i)

S
( j), ∀i ∈ I and ∀ j ∈ J .

Similarly, P̂R is the power profile matrix at the relay node with [P̂R]i, j =

P̂(i)
R

( j), ∀i ∈ I and ∀ j ∈ J . The matrix Y is the subcarrier assignment profile

with [Y]i, j = Y(i)

j
∈ {0, 1}, ∀i ∈ I, ∀ j ∈ J , Y(i)

j
= 1 indicates that subcarrier j is

assigned to user i, and αi’s are the relative priority for each user. Constraint

(8.6b) means that the total power allocated to forward the data from all users

assisted by the relay is limited to Pmax
R

, and constraint (8.6c) indicates that the

source power for user i is limited to Pmax
i

. Constraint (8.6d) means that the

jth subcarrier can be assigned to only one user, i.e. if Y(i)

j
= 1, then Y(k)

j
= 0,

∀k ∈ I, and k , i.

Problem (8.6) is a mixed integer constrained optimization problem. The

traditional approach to solve such optimization problems is to perform an

exhaustive search over the I users and N subcarriers. Hence, there are IN

possible subcarrier assignments. For each subcarrier assignment, the source

and relay power profiles are allocated to maximize the weighted sum rate.

In this sense, the optimal solution is the subcarrier assignment with its asso-

ciated source and relay power profiles that maximize the objective function

while satisfying all the constraints. However, this method is computation-

ally intensive with complexity of O(IN).

Another approach is to solve (8.6) by relaxing the binary variables as

Y(i)

j
∈ [0, 1], ∀i ∈ I and ∀ j ∈ J . In this sense, Y(i)

j
is a time sharing factor

of the jth subcarrier that indicates the portion of time where subcarrier j is

assigned to user i. Using the time sharing principle, (8.6) can be transformed
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into a convex optimization problem as:

max
PR,PS,Y

BN

2

∑

i∈I
αi

∑

j∈J
Y(i)

j
log2

(

1 +
Γ

(i)

SD
( j) + Γ(i)

AF
( j)

ΓY(i)

j

)

, (8.7a)

s.t.
∑

i∈I

∑

j∈J
P(i)

R
( j) ≤ Pmax

R , (8.7b)

∑

j∈J
P(i)

S
( j) ≤ Pmax

i , ∀i ∈ I, (8.7c)

∑

i∈I
Y(i)

j
≤ 1, ∀ j ∈ J , (8.7d)

P(i)

S
( j) ≥ 0, P(i)

R
( j) ≥ 0, 0 ≤ Y(i)

j
≤ 1, ∀i ∈ I, ∀ j ∈ J , (8.7e)

where PS is the power profile matrix at the source node with [PS]i, j = P(i)

S
( j),

∀i ∈ I and ∀ j ∈ J , where P(i)

S
( j) = P̂(i)

S
( j)Y(i)

j
. Similarly, PR is the power profile

matrix at the relay node with [PR]i, j = P(i)
R

( j), where P(i)
R

( j) = P̂(i)
R

( j)Y(i)

j
. Γ(i)

AF
( j),

and Γ(i)

SD
( j) are similar to Γ̂(i)

AF
( j), and Γ̂(i)

SD
( j), but are in terms of P(i)

S
( j) and

P(i)
R

( j). This transformation leads to linear constraints as in [102]. It can be

easily proved that (8.7) is a convex optimization problem; since the objective

function is a jointly concave function in PR, PS, and Y as can be proved using

the perspective property of concave functions given in (2.59), and the con-

straints are linear. Thus, (8.7) can be solved using any convex optimization

technique. Although convex programming algorithms are numerically sta-

ble and can be solved with less complexity compared to exhaustive search

algorithms, its computational complexity still depends on the number of

optimization variables and the number of constraints, which are large if the

number of users and subcarriers are large, e.g., in (8.7) the number of vari-

ables is 3NI and the number of constraints is 3NI + N + I + 1. In addition,

the optimal subcarrier assignment profile Y which is obtained using convex

programing may contain real variables (not binary). In this sense, we will

develop a subcarrier assignment algorithm that results in further reduction

in the problem dimensionality and run-time complexity, which are impor-
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tant if the subcarrier allocation is to be performed dynamically. In addition,

our aim is to solve (8.6) not (8.7), but we use (8.7) as a tool to explore the

solution. First we will solve the power allocation profiles at the source and

relay nodes, and then we will use the optimal power allocation profiles to

find the optimal subcarrier assignment profile. Here, we will find an analyt-

ical solution for (8.7) based on the KKT conditions which are sufficient and

necessary optimality conditions. The Lagrangian function is formulated as:

L(PR,PS,Y,λ) =
BN

2

∑

i∈I
αi

∑

j∈J
Y(i)

j
log2

(

1 +
Γ

(i)
SD

( j) + Γ(i)
AF

( j)

ΓY(i)
j

)

−
∑

i∈I
λi(

∑

j∈J
P(i)

S
( j) − Pmax

i )−

λR(
∑

i∈I

∑

j∈J
P(i)

R
( j) − Pmax

R ) −
∑

j∈J
λY

j (
∑

i∈I
Y(i)

j
− 1), (8.8a)

s.t. P(i)
R

( j) ≥ 0, P(i)
S

( j) ≥ 0, Y(i)
j
≥ 0, λR ≥ 0, λi ≥ 0, λY

j ≥ 0, ∀i ∈ I, ∀ j ∈ J , (8.8b)

where λ contains the Lagrange multipliers [λR, λi, · · · , λI, λY
1
, · · · , λY

N
]. Dif-

ferentiating (8.8a) with respect to P(i)

S
( j) and equating to zero results in:

Y(i)

j
Γ + Γ

(i)

SD
( j) + Γ(i)

AF
( j)

Y(i)

j
αiBN/(2 ln(2))

=
1

λi

(

γ(i)

SD
( j) +

γ(i)

SR
( j)γ2

RD( j)P(i)2
R

( j)

(γ(i)

SR
( j)P(i)

S
( j) + γRD( j)P(i)

R
( j))2

)

. (8.9)

Similarly, differentiating (8.8a) with respect to P(i)
R

( j) and equating to zero

results in:

Y(i)

j
Γ + Γ

(i)

SD
( j) + Γ(i)

AF
( j)

Y(i)

j
αiBN/(2 ln(2))

=
γRD( j)γ(i)2

SR
( j)P(i)2

S
( j)

λR(γ(i)

SR
( j)P(i)

S
( j) + γRD( j)P(i)

R
( j))2
. (8.10)

Differentiating the Lagrangian function (8.8a) with respect to the relaxed
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integer Y(i)

j
3 and equating to zero results in:

αi log2

(

1 +
Γ

(i)
SD

( j) + Γ(i)
AF

( j)

ΓY(i)
j

)

−
αi(Γ

(i)
SD

( j) + Γ(i)
AF

( j))

ΓY(i)
j
+ Γ

(i)
SD

( j) + Γ(i)
AF

( j)
=

λY
j

BN/(2 ln(2))
, if P(i)

R
( j) > 0,

(8.11a)

and

αi log2

(

1 +
Γ

(i)
SD

( j)

ΓY(i)
j

)

−
αi(Γ

(i)
SD

( j))

ΓY(i)
j
+ Γ

(i)
SD

( j)
=

λY
j

BN/(2 ln(2))
, if P(i)

R
( j) = 0.

(8.11b)

Simultaneously solving (8.9) and (8.10), the optimal source power profile

can be obtained as:

P(i)

S
( j) =





Y(i)

j

(Ki(γ
(i)
SD

( j)+A
(i)
j

)−Γ

γ(i)
SD

( j)+B
(i)
j

)+

if P(i)
R

( j) > 0,

Y(i)

j

(

Ki − Γ

γ(i)
SD

( j)

)+

if P(i)
R

( j) = 0,

(8.12)

where (x)+ = max{x, 0}, A(i)

j
=

γ(i)
SR

( j)γ2
RD

( j)C
(i)2
j

(γ(i)
SR

( j)+γRD( j)C
(i)
j

)2
, B(i)

j
=
γ(i)

SR
( j)γRD( j)C

(i)
j

γ(i)
SR

( j)+γRD( j)C
(i)
j

, Ki =
αiBN

2 ln(2)λi
,

and C(i)

j
is computed as:

C(i)

j
=

γ(i)

SR
( j)

(

− 1 +

√

1 + (1 +
γ(i)

SR
( j)

γ(i)
SD

( j)
)( λi

λR

γRD( j)

γ(i)
SD

( j)
− 1)

)+

γRD( j)(1 +
γ(i)

SR
( j)

γ(i)
SD

( j)
)

, (8.13)

where λR and λis are selected to satisfy the total power constraints (8.7b)

and (8.7c). The optimal relay power profile can be obtained as:

P(i)
R

( j) = C(i)

j
P(i)

S
( j). (8.14)

It is worth noting that our aim is not to find the solution of (8.9)-(8.11)

3There is a singularity when Y(i)
j
= 0, the condition should be interpreted in the limiting

sense. Note that Y(i)
j
= 0 implies that P(i)

S
( j) = 0 and P(i)

R
( j) = 0. A rigorous condition can be

obtained by replacing the constraints Y(i)
j
≥ 0 with Y(i)

j
≥ ǫ, and letting ǫ goes to zero [166].
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using convex optimization techniques; the optimal solutions require a lot

of computations and may lead to sharing some of the subcarriers, that is,

∃ Y(i)

j
< {0, 1}. We aim to use the characteristics of the solution of (8.7) with-

out the need to solve (8.9)-(8.11) to find the subcarrier allocation such as

Y(i)

j
∈ {0, 1}, ∀i ∈ I, ∀ j ∈ J .

8.2.1 Two Users Scenario

In order to select the subcarrier assignment profile Y and particularly for the

two users case, we first need to characterize the subcarrier(s) that are shared

between the two users, that is, for some subcarriers Y(1)

j
> 0, and Y(2)

j
> 0 .

In this regards, (8.11) can be written as:

α1 log2

(

1 +
Γ

(1)

SD
( j) + Γ(1)

AF
( j)

ΓY(1)

j

)

−
α1(Γ(1)

SD
( j) + Γ(1)

AF
( j))

ΓY(1)

j
+ Γ

(1)

SD
( j) + Γ(1)

AF
( j)
=

α2 log2

(

1 +
Γ

(2)

SD
( j) + Γ(2)

AF
( j)

ΓY(2)

j

)

−
α2(Γ(2)

SD
( j) + Γ(2)

AF
( j))

ΓY(2)

j
+ Γ

(2)

SD
( j) + Γ(2)

AF
( j)
, if P(i)

R
( j) > 0, (8.15a)

and

α1 log2

(

1 +
Γ

(1)

SD
( j)

ΓY(1)

j

)

−
α1Γ

(1)

SD
( j)

ΓY(1)

j
+ Γ

(1)

SD
( j)
= α2 log2

(

1 +
Γ

(2)

SD
( j)

ΓY(2)

j

)

−
α2Γ

(2)

SD
( j)

ΓY(2)

j
+ Γ

(2)

SD
( j)
,

if P(i)
R

( j) = 0. (8.15b)

This equation can be used to describe three cases for subcarrier allocation:

Case one, which is characterized by adequate relaying power for all sub-

carriers i.e. C(i)

j
> 0, ∀ j ∈ J . In this case, (8.15a) is used to determine the

subcarrier assignment profile between the two users as follows. The subcar-

riers which make the LHS of (8.15a) greater than the RHS, are allocated to

user 1. Whereas, the subcarriers that make the LHS of (8.15a) smaller than

the RHS are assigned to user 2, and the subcarrier that makes the two sides

equal is shared between the two users.
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Case two, which is characterized by zero relaying power, (8.15b) is then

used to determine the subcarrier assignment profile between the two users

as follows. The subcarriers which make the LHS of (8.15b) greater than the

RHS, are allocated to user 1. Whereas, the subcarriers that make the LHS of

(8.15b) smaller than the RHS are assigned to user 2, and the subcarrier that

makes the two sides equal is shared between the two users.

Case three, where some subcarriers are used with AF relaying and the

remaining subcarriers are used without relaying, both equations (8.15a) and

(8.15b) are used to assign the subcarriers between the two users by splitting

the subcarriers into two sets; one set is treated as in case one, and the other

set is treated as in case two.

In conclusion, the subcarrier assignment profile in (8.6) can be obtained

by finding the subcarriers that make the LHS of (8.15) greater than the RHS,

those subcarriers are allocated to user 1. Whereas, the subcarriers that make

the LHS of (8.15) smaller than the RHS are assigned to user 2, and the sub-

carrier that makes the two sides of (8.15) equal is assigned to the user with

the highest data rate using that subcarrier, this can be formulated by the

following theorem.

Theorem 8.2.1 The optimal subcarrier assignment maximizer of the weighted sum

rate for a two users AF-OFDMA system at high SNR at each subcarrier (using the

approximated SNR) consists of two contiguous frequency bands where each user

is allocated exclusively one frequency band if all subcarriers are allocated non-zero

relaying power. And it consists of four frequency bands if some of the subcarriers

are allocated zero relaying power. The contiguous frequency bands are determined

based on the ordering of the subcarriers’ channel gains as explained next.

Ordering the subcarriers using the difference between the LHS and the RHS

of (8.15) can be used to determine the subcarrier allocation. Substituting for

the source and relay power profiles using the optimal power profiles P(i)

S
( j)
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and P(i)
R

( j) obtained in (8.12) and (8.14) respectively, reduces (8.15) to:

α1 log2(K1g1, j)+
α1

K1g1, j
− α1 = α2 log2(K2g2, j) +

α2

K2g2, j
− α2, (8.16)

where

gi, j =





γ(i)

SD
( j) + A(i)

j
, if P(i)

R
( j) > 0

γ(i)

SD
( j), if P(i)

R
( j) = 0

(8.17)

Then (8.16) is similar to the weighted sum maximization in [166], with gi, j is

replaced by γ(i)

SD
( j)+A(i)

j
if P(i)

R
( j) > 0 and gi, j is replaced by γ(i)

SD
( j) if P(i)

R
( j) = 0,

for i ∈ {1, 2}, and j ∈ J . With simple algebraic manipulation, the source

power profile (8.12) can be written in the form of a (modified) water filling

as:

P(i)

S
( j)

Y(i)

j

(γ(i)

SD
( j) + B(i)

j

γ(i)

SD
( j) + A(i)

j

)

+
Γ

γ(i)

SD
( j) + A(i)

j

= Ki, if P(i)
R

( j) > 0, (8.18a)

P(i)

S
( j)

Y(i)

j

+
Γ

γ(i)

SD
( j)
= Ki, if P(i)

R
( j) = 0. (8.18b)

We follow a similar argument as in [166] to prove Theorem 8.2.1.

Starting with the case of enough relaying power for all subcarriers, we

consider the following.

1. Assume that the two users have the same channel gains g1, j = g2, j = g j,

Γ = 1, and α1 , α2. The difference between the LHS and RHS can be

written as a function of x = 1
g j

as:

f (x) = (α2 −α1) log2(x)+ x(
α1

K1
− α2

K2
)+α1 log2(K1)−α2 log2(K2)−α1 +α2,

(8.19)

• The subcarriers are sorted based on x = 1/g j and the set S is de-

fined as the set of the ordered subcarriers, where 1 is the index
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of the subcarrier with the smallest 1/g j and N is the index of the

subcarrier with the largest 1/g j.

• There exists a subcarrier with index L1 in the ordered set such

that f (1/g j) < 0 for j < L1 and f (1/g j) > 0 for j > L1. Hence, the

subcarriers 1 < j < L1 in the ordered set are used exclusively by

user 2. Subcarrier L1 is shared by both users, and user 1 will use

the subcarriers with indices from L1 + 1 to N in the ordered set.

• The value x is upper bounded by K2 as can be inferred from (8.18),

because user 2 can only use subcarrier j with 1/g j is less than K2.

• To show that f (x) can have only one root in the range 0 < x < K2,

we differentiate f (x) with respect to x. The sign of the derivative

in the range 0 < x < K2 shows that it is an increasing function and

can have only one root when α1

K1
− α2

K2
> 0 and α2 − α1 > 0. For the

case when α1

K1
− α2

K2
< 0 and α2−α1 > 0, the function is increasing in

the first segment, and decreasing in the second segment, in which

it could not reach zero. Once again, the function can have only

one root. Hence, the subcarriers j = 1, · · · ,L1−1 in the ordered set

are assigned to user 2, and the subcarriers j = L1 + 1, · · · ,N in the

ordered set are assigned to user 1. Subcarrier L1 in the ordered

set is shared by both users.

2. For the case of different channel gains g1, j , g2, j.

• At high SNR, the fraction
Γ

(i)
SD

( j)+Γ
(i)
AF

( j)

Γ+Γ
(i)
SD

( j)+Γ
(i)
AF

( j)
on either side of (8.15) can

be approximated by 1.

• The difference between the LHS and RHS of (8.16) can be defined

by the function f (gα1

1, j/g
α2

2, j) as:

f
(gα1

1, j

gα2

2, j

)

≈ log2

(gα1

1, j

gα2

2, j

)

+ log2

(Kα1

1

Kα2

2

)

+ α2 − α1. (8.20)
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• By sorting the subcarriers based on gα1

1, j/g
α2

2, j and defining S as the

set of ordered subcarriers, where 1 is the index of the subcarrier

with the largest gα1

1, j/g
α2

2, j, and N is the index of the subcarrier with

the smallest gα1

1, j/g
α2

2, j, there exists a subcarrier with index L1 such

that f (gα1

1, j/g
α2

2, j) > 0 for j < L1 and f (gα1

1, j/g
α2

2, j) < 0 for j > L1. The

subcarriers in the ordered set j < L1 are used by user 1, and the

subcarriers in the ordered set j > L1 are used by user 2. This

implies that the optimal subcarrier assignment is a two-band so-

lution.

The case of inadequate relaying power for all subcarriers may appear in

some scenarios. In this situation, the subcarriers with zero relaying power

are removed from the allocation and reordered again based on f
( (γ(1)

SD
( j))α1

(γ(2)
SD

( j))α2

)

=

log2

( (γ(1)
SD

( j))α1

(γ(2)
SD

( j))α2

)

and the partition boundary that maximizes the weighted sum

rate is sought. Once again, this is a two-band partition as proved in [166].

8.2.2 Multiple Users I > 2 Scenario

In order to allocate the subcarriers ∀ j ∈ J among multiple users I > 2, we

extend the two users case to multiple users by partitioning the subcarriers

between user i and the group of users I−{i}, with I−{S} defined as I−{S} = I\S.

With some algebraic manipulation and assuming enough relaying power

for all subcarriers, (8.11a) can be written as:

α1 log2

(

1 +
Γ

(1)

SD
( j) + Γ(1)

AF
( j)

ΓY(1)

j

)

−
α1(Γ(1)

SD
( j) + Γ(1)

AF
( j))

ΓY(1)

j
+ Γ

(1)

SD
( j) + Γ(1)

AF
( j)
=

1

(I − 1)

( ∑

i∈I−{1}

αi log2

(

1 +
Γ

(i)

SD
( j) + Γ(i)

AF
( j)

ΓY(i)

j

)

−
αi(Γ

(i)

SD
( j) + Γ(i)

AF
( j))

ΓY(i)

j
+ Γ

(i)

SD
( j) + Γ(i)

AF
( j)

)

. (8.21)

The LHS and RHS of (8.21) can be interpreted as the marginal benefit for

extra bandwidth for user 1 and the average marginal benefit for extra band-

width for the group of users I−{1}, respectively. If a subcarrier is shared
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between user 1 and the group of users I−{1}, the marginal benefits should be

equal. If a subcarrier is solely used by user 1, that is, Y(1)

j
= 1, and Y(i)

j
= 0,

∀i ∈ I−{1} the LHS of (8.21) should be strictly greater than the RHS. Like-

wise, if a subcarrier is used by I−{1}, that is, ∃i ∈ I−{1}, such that Y(i)

j
= 1,

and Y(k)

j
= 0, k , i where the RHS of (8.21) is strictly greater than the LHS.

Based on these observations, the carrier should be assigned to either user 1

or to I−{1} whichever has higher marginal benefit (LHS or RHS of (8.21)). By

using the high SNR approximation, that is,
Γ

(i)
SD

( j)+Γ
(i)
AF

( j)

ΓY
(i)
j
+Γ

(i)
SD

( j)+Γ
(i)
AF

( j)
≈ 1, ∀i ∈ I, the ith

user terms in (8.21) can be simplified as:

αi log2

(

1 +
Γ

(i)
SD

( j) + Γ(i)
AF

( j)

ΓY(i)
j

)

−
αi(Γ

(i)
SD

( j) + Γ(i)
AF

( j))

ΓY(i)
j
+ Γ

(i)
SD

( j) + Γ(i)
AF

( j)
� αi log2

(

1 +
Γ

(i)
SD

( j) + Γ(i)
AF

( j)

ΓY(i)
j

)

− αi.

(8.22)

Substituting the optimal source and relay power profiles obtained in (8.12)

and (8.14) in (8.22) results in:

αi log2

(

1 +
Γ

(i)

SD
( j) + Γ(i)

AF
( j)

ΓY(i)

j

)

− αi = αi log2

(

γ(i)

SD
( j) + A(i)

j

)

+ αi log2(Ki) − αi.

(8.23)

The expression can be further simplified by using the approximation:

A(i)

j
≈

min2(γ(i)

SR
( j), γRD( j)C(i)

j
)

4γ(i)

SR
( j)

≈
γ(i)

SR
( j)

4
, (8.24)

where 1
2

min(γ(i)

SR
( j), γRD( j)C(i)

j
) can be used as a lower bound for

γ(i)
SR

( j)γRD( j)C
(i)
j

γ(i)
SR

( j)+γRD( j)C
(i)
j

.

The assumptions that
γ(i)

SR
( j)

γ(i)
SD

( j)
> 1 and

γRD( j)

γ(i)
SD

( j)
> 1, which are reasonable assump-

tions in cooperative communications are used to set γ(i)

SR
( j) as a lower bound

for γRD( j)C(i)

j
in A(i)

j
i.e. γ(i)

SR
( j) < γRD( j)C(i)

j
.

This leads us to assign the subcarriers for multiple users by ordering

the subcarriers from largest to smallest based on the difference between the
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Figure 8.2 Multi-Users Two-Bands Subcarriers’ Assignment Approach.

LHS and RHS of (8.21) using I − 1 ordering levels. The ordering function at

level l, for l = 1, · · · , I − 1 denoted as f (l)

AF
(γγγ(l)

SD
( j),γγγ(l)

SR
( j)) is defined as:

f (l)

AF

(

γγγ(l)

SD
( j),γγγ(l)

SR
( j)

)

= log2

(

(

γ(l)

SD
( j) + 0.25γ(l)

SR
( j)

)αl

∏

k∈I−{1,··· ,l}

(

γ(k)

SD
( j) + 0.25γ(k)

SR
( j)

) αk
I−l

)

. (8.25)

where γγγ(l)

SD
( j) = [γ(l)

SD
( j), · · · , γ(I)

SD
( j)], and γγγ(l)

SR
( j) = [γ(l)

SR
( j), · · · , γ(I)

SR
( j)] are vec-

tors of all users source-destination channel gains and source-relay channel

gains, respectively.

The boundary profile CP = [CP1
,CP2
, · · · ,CPI−1

] that maximizes the weighted

sum rate is sought in a nested hierarchical fashion. Then the subcarriers

CPl−1
< j ≤ CPl

, for l = 1, · · · , I − 1 are assigned to user l, subcarriers j ≤

CP1
are assigned to user 1, and the subcarriers j > CPI−1

are assigned to

user I. The procedure of reordering and searching for the partition bound-

aries is shown in Figure 8.2. The proposed subcarrier assignment algo-

rithm is illustrated in Algorithm 8.1. It is based on searching the partition

boundaries CP1
,CP2
, · · · ,CPI−1

that maximize the weighted sum rate. I − 1

levels are required to split the subcarriers between the users and search

the partition boundaries. ORD-DES(M,l) is used to order the subcarriers

in the set M, where l is the ordering level l = 1, · · · , I − 1, and S( j) =
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log2

( (γ(l)
SD

( j)+0.25γ(l)
SR

( j))αl

∏

k∈I−{1,··· ,l} (γ
(k)
SD

( j)+0.25γ(k)
SR

( j))
αk
I−l

)

is used to order the subcarriers in descent or-

dering. The function ORD-DES(M,l) returns the index vector OS =

[

OS(1), · · · ,

OS(|M|)
]

of the ordered setM such that S(OS(1)) > S(OS(2)) > S( j) > · · · >

S(OS(|M|)), where |M| is the cardinality of the setM. The set of subcarriers

that is assigned to user l at level l for l = 1, · · · , I−1 is denoted asJl. At level

l, the set of subcarriers Gl−1 = J − ∪l−1
k=1
Jk which is assigned to I−{1,··· ,l−1} is

reordered using Ol =ORD-DES(Gl−1,l), and then sliding the subcarrier index

0 ≤ jl ≤ |Ol| and using the function TWO-PAR(Ol, jl) to assign the subcarri-

ers with index j ≤ jl of the ordered set Ol to user l asJl, and the subcarriers

with index j > jl of the ordered set Ol are assigned to I−{1,··· ,l} as Gl. The algo-

rithm, then proceeds in a similar fashion until level I−1. The weighted sum

rate R( j1, j2, · · · , jI−1) =
∑

i∈I αi

∑

j∈Ji
R(i)

AF
( j) is computed with the subcarrier

assignment profiles Ji , ∀i ∈ I. The optimal power profiles at the source

and relay nodes are computed as in (8.12) and (8.14). The partition vector

CP is determined as CP = arg max
j1, j2,··· , jI−1

R( j1, j2, · · · , jI−1).

For all subcarriers that are allocated zero relaying power, a second phase

is required. In this phase, these subcarriers are removed from the users’

assignment profile and added to a set L with cardinality |L|. Similar to Al-

gorithm 8.1, I − 1 levels are performed for searching the partitions. The

differences between the two phases are (1) the use of the function ORD-

DES-M(M,l) instead of ORD-DES(M,l) to order the subcarriers in the sec-

ond phase. In ORD-DES-M(M,l), the subcarriers inM at level l are ordered

from largest to smallest based on SM( j) = log2

( (γ(l)
SD

( j))αl

∏

k∈I−{1,··· ,l} (γ
(k)
SD

( j))
αk
I−k

)

. (2) The

subcarrier assignment in Algorithm 8.1 is for the set J , whereas the sub-

carrier assignment in Algorithm 8.2 is only for the subcarriers with zero

relaying power grouped in the set L. The computational complexity4 of

Algorithm 8.1 is of O(NI−1) compared to O(IN) for the exhaustive search al-

gorithm. The proposed algorithm is suitable for large number of subcarri-

4For Algorithm 8.2, the computational complexity is of O(|L|I−1).
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Algorithm 8.1 Subcarrier Assignment Algorithm for I Users AF-OFDMA.

Require: Pmax
R

, αi, γ
(i)
SD

( j), γ(i)
SR

( j), γRD( j), Pmax
i

, ∀i ∈ I, and ∀ j ∈ J .
1: Set Ji = ∅, ∀i ∈ I.
2: Ol ← ORD-DES(Gl−1, l), for l = 1, · · · , I − 1.
3: Jl, Gl ← TWO-PAR(Ol, jl), for jl = 0, · · · , |Ol|, and l = 1, · · · , I − 1.

4: R( j1, j2, · · · , jI−1) =
∑

i∈I αi
∑

j∈Ji
R

(i)
AF

( j), for jl = 0, · · · , |Ol|, and l = 1, · · · , I − 1.
5: CP ← arg max

j1, j2,··· , jI−1

R( j1, j2, · · · , jI−1).

6: Find Ji, ∀i ∈ I corresponding to CP.
7: Return Ji, ∀i ∈ I.
8: function ORD-DES(M, l)

9: S( j)← log2

( (γ(l)
SD

( j)+0.25γ(l)
SR

( j))αl

∏I
k=l+1(γ(k)

SD
( j)+0.25γ(k)

SR
( j))

αk
I−l

)

, ∀ j ∈ M .

10: Sort(S( j),∀ j ∈ M, Descent).
11: Find the index vector OS = [OS(1), · · · ,OS(|M|)], where S(OS(1)) >

S(OS(2)) > S( j) > · · · > S(OS(|M|)).
12: Return OS.
13: end function

14: function TWO-PAR(Ol, jl)
15: Jl ← Ol(0 : jl).
16: Gl ← Ol( j1 + 1 : |Ol|).
17: Return Jl, Gl.
18: end function

ers and small number of users. The computational complexity comes from

searching the boundaries in a nested fashion. To reduce further the compu-

tational complexity, we develop a simplified heuristic algorithm to assign

the subcarriers to the users aiming to maximize the weighted sum rate with-

out the need to search the boundaries in a nested fashion. The main idea is

to assign each subcarrier to the user with the maximum marginal benefits

(based on the channel gains) and construct a frequency partition for each

user. Based on the weighted sum rate, the boundaries of the partition are

then tuned to improve the weighted sum rate. The simplified algorithm

contains two stages; basic assignment stage and subcarrier transfer stage.

The basic assignment stage is based on assigning each subcarrier to the user

with the maximum marginal benefit. User i marginal benefit of subcarrier j
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Algorithm 8.2 The Second Phase of the Subcarrier Assignment Algorithm
for I Users AF-OFDMA.

Require: Pmax
R

, Pmax
i

, αi, γ
(i)
SD

( j), γ(i)
SR

( j), γRD( j), P
(i)
R

( j), ∀i ∈ I, j ∈ J , Ji, ∀i ∈ I and
L = ∅.

1: if P
(i)
R

( j) = 0, j ∈ J then

2: L ← {L, j}.
3: end if

4: Ji ← Ji − L, ∀i ∈ I.
5: OM

l
← ORD-DES-M(GM

l−1
, l), l = 1 : I − 1.

6: JM
l

, JM
−{1,··· ,l} ← TWO-PAR(OM

l
, jl), jl = 0 : |OM

l
|, l = 1 : I − 1, ∀i ∈ I.

7: JM
i
← Ji ∪JM

i
.

8: R( j1, j2, · · · , jI−1) =
∑

i∈I αi
∑

j∈JM
i

R
(i)
AF

( j), jl = 0 : |OM
l
|, l = 1 : I − 1.

9: CP ← arg max
j1, j2,··· , jI−1

R( j1, j2, · · · , jI−1)

10: Find JM
1

, JM
2

, · · · , JM
I

corresponding to CP.

11: Return JM
1

, JM
2

, · · · , JM
I

.
12: function ORD-DES-M(M, l)

13: S( j)← log2

( (γ(l)
SD

( j))αi

∏I
k=l+1(γ(k)

SD
( j))

αk
I−l

)

, ∀ j ∈ M .

14: Sort(S( j),∀ j ∈ M, Descent).
15: Find the index vector OS = [OS(1), · · · ,OS(|M|)], where S(OS(1)) >

S(OS(2)) > S( j) > · · · > S(OS(|M|)).
16: Return OS.
17: end function

can be defined based on (8.21) as:

f AF
i, I−{i}

(

γγγ(1)

SD
( j),γγγ(1)

SR
( j)

)

= log2

( (γ(i)

SD
( j) + 0.25γ(i)

SR
( j))αi

∏

k∈I−{i}(γ
(k)

SD
( j) + 0.25γ(k)

SR
( j))

αk
I−1

)

. (8.26)

Subcarrier j ∈ J is assigned to user i∗ such that i∗ = arg max
i

f AF
i, I−{i}

(

γγγ(1)

SD
( j),γγγ(1)

SR
( j)

)

.

The set of subcarriers assigned to user i based on the marginal benefit is de-

fined as Ji. The initial weighted sum rate R0 is computed as R0 =

∑

i∈I αi

∑

j∈Ji
R(i)

AF
( j), where the optimal power profiles at the source and relay

nodes are computed as in (8.12) and (8.14).

In the transfer stage, users in turns are allowed to transfer subcarriers

aiming to maximize the weighted sum rate R0; user i in her turn is allowed

to transfer subcarrier(s) starting with the subcarrier that has the minimum

marginal benefit in the set Ji obtained as j∗ = arg min
j∈Ji

f AF
i, I−{i}

(

γγγ(1)

SD
( j),γγγ(1)

SR
( j)

)

to

user i∗ as i∗ = arg max
k∈I,k,i

f AF
k, I−{k}

(

γγγ(1)

SD
( j∗),γγγ(1)

SR
( j∗)

)

with the next highest benefit
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Algorithm 8.3 Basic Stage of The Simplified Subcarrier Assignment Algo-
rithm for I Users AF-OFDMA.

Require: Pmax
R

, αi, γ
(i)
SD

( j), γ(i)
SR

( j), Pmax
i
∀i ∈ I, and ∀ j ∈ J .

1: Set Ji = ∅, ∀i ∈ I.

2: Compute f AF
i, I−{i}

(γγγ(1)
SD

( j),γγγ(1)
SR

( j)) = log2

( (γ(i)
SD

( j)+0.25γ(i)
SR

( j))αi

∏

k∈I−{i} (γ
(k)
SD

( j)+0.25γ(k)
SR

( j))
αk
I−1

)

, ∀i ∈ I, ∀ j ∈ J .

3: for j ∈ J do

4: Find i∗ = arg max
i

f AF
i, I−{i}

(γγγ(1)
SD

( j),γγγ(1)
SR

( j)).

5: Update Ji∗ ← Ji∗ ∪ j.
6: end for

7: Compute R0 =
∑

i∈I αi
∑

j∈Ji
R

(i)
AF

( j).

conditioned on increasing the weighted sum rate. The algorithm then pro-

ceeds to the next subcarrier in the set Ji until the weighted sum rate could

not be increased further. The algorithm proceeds to the next user in the

same way. The algorithm can be applied for a number of iterations to en-

sure no further improvement in the weighted sum rate can be gained. This

basic stage of the simplified algorithm is illustrated in Algorithm 8.3.

8.3 DF-OFDMA Cooperative Communications

In this section, we extend the subcarrier assignment algorithms to DF-OFDMA

cooperative communication scheme. The achievable data rate of the ith user

at the jth subcarrier R(i)
DF

( j) for DF-OFDMA scheme at the destination node

with the aid of the relay node and after using MRC technique is computed

as [86]:

R(i)
DF

( j) =
BN

2
min

{

log2

(

1+
γ(i)

SR
( j)P̂(i)

S
( j)

Γ
), log2

(

1+
γ(i)

SD
( j)P̂(i)

S
( j) + γRD( j)P̂(i)

R
( j)

Γ

)}

.

(8.27)

The weighted sum rate resource allocation problem can be formulated as:

max
P̂R,P̂S,Y

BN

2

∑

i∈I
αi

∑

j∈J
Y(i)

j
log2

(

1 +
γ(i)

SD
( j)P̂(i)

S
( j) + γRD( j)P̂(i)

R
( j)

Γ

)

, (8.28a)

s.t. log2

(

1 +
γ(i)

SD
( j)P̂(i)

S
( j) + γRD( j)P̂(i)

R
( j)

Γ

)

≤ log2

(

1 +
γ(i)

SR
( j)P̂(i)

S
( j)

Γ

)

,
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∀ j ∈ J ,∀i ∈ I, (8.28b)
∑

i∈I

∑

j∈J
Y(i)

j
P̂(i)

R
( j) ≤ Pmax

R , (8.28c)

∑

j∈J
Y(i)

j
P̂(i)

S
( j) ≤ Pmax

i ,∀i ∈ I, (8.28d)

∑

i∈I
Y(i)

j
≤ 1, ∀ j ∈ J , (8.28e)

P̂(i)

S
( j) ≥ 0, P̂(i)

R
( j) ≥ 0, Y(i)

j
∈ {0, 1}, ∀i ∈ I, ∀ j ∈ J , (8.28f)

constraints (8.28c)-(8.28e) can be interpreted as (8.6b)-(8.6d) in Section 8.2,

respectively.

Problem (8.28) is similar to (8.6) in that it is a mixed integer constrained

optimization problem. The same approach used to solve (8.6) can also be

followed here. The problem can be transformed into a convex optimization

problem by relaxing the binary variables as Y(i)

j
∈ [0, 1], ∀i ∈ I, and ∀ j ∈ J .

Using the time sharing principle, problem (8.28) is transformed into:

max
PR,PS,Y

BN

2

∑

i∈I
αi

∑

j∈J
Y(i)

j
log2

(

1 +
γ(i)

SD
( j)P(i)

S
( j) + γRD( j)P(i)

R
( j)

ΓY(i)

j

)

, (8.29a)

s.t.
∑

i∈I

∑

j∈J
P(i)

R
( j) ≤ Pmax

R , (8.29b)

∑

j∈J
P(i)

S
( j) ≤ Pmax

i ,∀i ∈ I, (8.29c)

∑

i∈I
Y(i)

j
≤ 1,∀ j ∈ J , (8.29d)

(

γ(i)

SD
( j) − γ(i)

SR
( j)

)

P(i)

S
( j) + γRD( j)P(i)

R
( j) ≤ 0, ∀ j ∈ J , ∀i ∈ I, (8.29e)

P(i)

S
( j) ≥ 0, P(i)

R
( j) ≥ 0, Y(i)

j
∈ {0, 1}, ∀i ∈ I, ∀ j ∈ J . (8.29f)

It can be proved easily that (8.29) is a convex optimization problem. The

objective function is a jointly concave function with respect to PR, PS, and Y

as can be proved by the second order derivative test and the constraints are

linear. Similar to AF-OFDMA, we will find an analytical solution based on
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the KKT conditions which are sufficient and necessary optimality conditions

for this problem. The Lagrangian function can be formulated as:

L(PS,PR,Y,λ) =
BN

2

∑

i∈I
αi

∑

j∈J
Y(i)

j
log2

(

1 +
γ(i)

SD
( j)P(i)

S
( j) + γRD( j)P(i)

R
( j)

ΓY(i)

j

)

−

∑

i∈I
λi(

∑

j∈J
P(i)

S
( j) − Pmax

i ) − λR(
∑

i∈I

∑

j∈J
P(i)

R
( j) − Pmax

R ) −
∑

j∈J
λY

j (
∑

i∈I
Y(i)

j
− 1),

(8.30a)

s.t. P(i)
R

( j) ≥ 0, P(i)

S
( j) ≥ 0, Y(i)

j
≥ 0, λR ≥ 0, λi ≥ 0, λY

j ≥ 0, ∀ j ∈ J , ∀i ∈ I,

(8.30b)

where λR, λis, for i ∈ I and λY
j
, for j ∈ J are Lagrange multipliers. The

achievable weighted sum rate for DF-OFDMA is maximized when con-

straint (8.29e) is satisfied with equality, that is

γ(i)

SR
( j)P(i)

S
( j) = γ(i)

SD
( j)P(i)

S
( j) + γRD( j)P(i)

R
( j), ∀ j ∈ J ,∀i ∈ I. (8.31)

Hence, the relaying power P(i)
R

( j) can be obtained as:

P(i)
R

( j) = C(i)

j
P(i)

S
( j), (8.32)

with C(i)

j
=

(

γ(i)
SR

( j)−γ(i)
SD

( j)

)+

γRD( j)
.

Differentiating (8.30a) with respect to P(i)

S
( j) and equating to zero results

in:

1 +
γ(i)

SD
( j)P(i)

S
( j) + γRD( j)P(i)

R
( j)

Y(i)

j
Γ

=





αiγ
(i)
SD

( j)BN/(2 ln(2))

Γλi
, if P(i)

R
( j) = 0,

αiγ
(i)
SR

( j)BN/(2 ln(2))

Γλi
, if P(i)

R
( j) > 0.

(8.33)
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Substituting (8.32) in (8.33) results in:

P(i)

S
( j) =





Y(i)

j

(Kiγ
(i)
SD

( j)

γ(i)
SR

( j)
− Γ

γ(i)
SR

( j)

)+

if P(i)
R

( j) > 0,

Y(i)

j

(

Ki − Γ

γ(i)
SD

( j)

)+

, if P(i)
R

( j) = 0,

(8.34)

where Ki =
αiBN

2 ln(2)λi
. Following the same approach adapted for AF-OFDMA

scenario in Section 8.2, differentiating the Lagrangian function (8.30a) with

respect to the relaxed integer Y(i)

j
and equating to zero results in:

αi log2

(

1 +
γ(i)

SD
( j)P(i)

S
( j) + γRD( j)P(i)

R
( j)

ΓY(i)

j

)

−
αi(γ

(i)

SD
( j)P(i)

S
( j) + γRD( j)P(i)

R
( j))

ΓY(i)

j
+ γ(i)

SD
( j)P(i)

S
( j) + γRD( j)P(i)

R
( j)
=

λY
j

BN/(2 ln(2))
. (8.35)

In a two users case, if Y(1)

j
> 0 and Y(2)

j
> 0, using high SNR approximation,

i.e.
γ(i)

SD
( j)P

(i)
S

( j)+γRD( j)P
(i)
R

( j)

Γ+γ(i)
SD

( j)P
(i)
S

( j)+γRD( j)P
(i)
R

( j)
≈ 1, and using (8.33) results in:

α1 log2(K1g1, j)+
α1

K1g1, j
− α1 = α2 log2(K2g2, j) +

α2

K2g2, j
− α2, (8.36)

where

gi, j =





γ(i)

SR
( j), if P(i)

R
( j) > 0,

γ(i)

SD
( j), if P(i)

R
( j) = 0.

(8.37)

This shows that the frequency partitions principle for the two user sub-

carrier allocation introduced in Theorem 8.2.1 is also applicable for DF-

OFDMA cooperative scheme. The only difference between OFDMA-AF and

OFDMA-DF is in the ordering function. Extending the resource allocation to

multiple users scenario can be done in a similar fashion to the AF-OFDMA

scenario, by partitioning the subcarriers between user i and the group of

users I−{1,··· ,i} for 1 ≤ i ≤ I − 1 in a nested fashion, and searching for the
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partitions that maximize the weighted sum rate.

With some algebraic manipulation and using the high SNR approxima-

tion in (8.35), the lth level ordering function for DF-OFDMA cooperative

communications f DF
l

(·) can be computed as:

f (l)
DF

(

γγγ(l)

SR
( j)

)

= log2

( (γ(l)

SR
( j))αl

∏

k∈I−{1,··· ,l}(γ
(k)

SR
( j))

αk
(I−l)

)

. (8.38)

Hence, Algorithm 8.1 can be used for DF-OFDMA subcarrier assignment,

by replacing f (l)

AF
(γγγ(l)

SD
( j),γγγ(l)

SR
( j)) by f (l)

DF
(γγγSR( j)) in ORD-DES(M, i). The weighted

sum data rate is now computed as: R( j1, j2, · · · , jI−1) =
∑

i∈I αi

∑

j∈Ji
R(i)

DF
( j).

Similar to the AF-OFDMA scenario, a second phase might be required if

some of the subcarriers are allocated zero relaying power. In the second

phase, Algorithm 8.2 can be used to allocate the subcarriers of zero relaying

power grouped in the set L.

The simplified assignment Algorithm 8.3 can also be used for DF-OFDMA

subcarrier assignment, by replacing f (AF)

i, I−{i}

(

γγγ(l)

SD
( j),γγγ(l)

SR
( j)

)

by f DF
i, I−{i}

(

γγγ(l)

SR
( j)

)

com-

puted as:

f DF
i, I−{i}

(

γγγ(1)

SR
( j)

)

= log2

( (γ(i)

SR
( j))αi

∏

k∈I−{i}(γ
(k)

SR
( j))

αk
K−1

)

. (8.39)

8.4 Simulation Results and Discussion

The same setup used in Chapters 6 and 7 is replicated here, where the sub-

carrier channel coefficients between any two nodes with a separating dis-

tance d are modeled as H( j) ∼ CN(0, 1
L(1+d)α

), the propagation loss factor

α = 4, and the number of channel taps L = 4 as in [49].

The scenario under consideration consists of I users (sources) (S1, S2, · · · ,

SI), one relay and a common destination node D as shown in Figure 8.3.

The distance between the relay and the destination nodes is dRD = 50m.
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D

S1

S2

Si

SI

50m

R

Figure 8.3 Sources, Relay and Destination Nodes Positions.

The sources are uniformly distributed in the shaded area. This scenario is

considered to obtain source-relay and relay-destination channel gains better

than the source-destination channel gains (i.e. dSiD > dSiR and dSiD > dRD) as

in [131].

The subcarrier noise power σ2 is set at 4 × 10−11Watt. The source max-

imum transmit power is Pmax
i
= 1Watt, and the relay maximum transmit

power is Pmax
R
= 10Watt, unless otherwise specified. The subcarrier spacing

is BN = 4KHz, and the capacity gap is Γ = 1.

The achievable weighted sum rate and the subcarrier assignment of Al-

gorithm 8.1 / Algorithm 8.2 for AF/DF-OFDMA are compared with the

achievable weighted sum rate and the subcarrier assignment of the exhaus-

tive search algorithm for N = 8 subcarriers5 and I = 2 and 3 users, respec-

tively. The comparison was carried out for a large number of random chan-

nel realizations and for different maximum transmit source and relay power

constraints. The computational complexity of the proposed algorithm for

the two users case is O(N) compared to O(2N) for the exhaustive search al-

gorithm. The complexity of the proposed algorithm can be further reduced

to O(log2 N) for the two users case using binary search algorithms. In addi-

tion, sorting the subcarriers in the proposed algorithm requires O(N log N)

5Note that the complexity of the exhaustive search becomes prohibitive for large num-
ber of subcarriers or large number of users.
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(a) The Sum Rate for I=2
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(b) The Sum Rate for I=3

Figure 8.4 The Sum Rate for Algorithm 8.1 / Algorithm 8.2 and the Exhaus-
tive Search Algorithm
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Figure 8.5 The Sum Rate for Algorithm 8.1 and the Exhaustive Search Al-
gorithm.

computations for the worst case and O(N) for the best case. Figure 8.4(a)

and Figure 8.4(b) compare the achievable sum rate using Algorithm 8.1

/ Algorithm 8.2 and the achievable sum rate using exhaustive search for

AF/DF-OFDMA as a function of the relay’s maximum power Pmax
R

. Clearly,

the achievable sum rate for I = 2, 3 of the proposed algorithm coincides with

the achievable sum rate of the exhaustive search algorithm with negligible

difference.

Figure 8.5 shows the sum data rate for a two users AF-OFDMA scenario

as a function of the SNR (by varying the noise power) for three algorithms:

Algorithm 8.1 / Algorithm 8.2, exhaustive search algorithm using the high

SNR approximation, and exhaustive search algorithm based on exact SNR.

The power allocation profiles for the exhaustive search algorithm based on

the exact SNR are obtained for a given subcarrier assignment profile by an

iterative algorithm; alternating between two steps. In step I, the relay power

profile is computed for a given source power profile. In step II, the source

power profile is computed for a given relay power profile. The algorithm

is repeated until convergence. The average SNR is computed as E[
Pc

S
|HSD |2
σ2 +
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Figure 8.6 The Sum Rate of Algorithm 8.1 / Algorithm 8.2 as a Function of
the Relay Maximum Transmit Power.

Pc
S
|HSR|2Pc

R
|HRD|2

σ2(σ2+Pc
S
|HSR|2+Pc

R
|HRD|2)

]. The average subcarrier source and relay power profiles

are defined as Pc
S
=

Pmax
i

N
, and Pc

R
=

Pmax
R

N
, respectively. The channel gains

H(i)

SR
( j), H(i)

RD
( j) and H(i)

SD
( j), for i = 1, 2 and j ∈ J are generated with H( j) ∼

CN(0, 1
L(1+d)n ) with the following separation distances dSiR = 50m, dRD = 50m

and dSiD = 100m, for i = 1, 2 respectively. It is clear that the difference in the

sum rate using the high SNR approximation Γ(i)

AF
( j) ≈ γ(i)

SR
( j)γRD( j)P

(i)
S

( j)P
(i)
R

( j)

γ(i)
SR

( j)P
(i)
S

( j)+γRD( j)P
(i)
R

( j)
and

using the exact SNR, Γ(i)

AF
( j) =

γ(i)
SR

( j)γRD( j)P
(i)
S

( j)P
(i)
R

( j)

1+γ(i)
SR

( j)P
(i)
S

( j)+γRD( j)P
(i)
R

( j)
is negligible. The sum rate

of the three algorithms is the same for SNR> 0dB.

Figure 8.6 shows the sum rate using Algorithm 8.1 / Algorithm 8.2 as

a function of the relay’s maximum transmit power for fixed sources max-

imum transmit power for AF/DF-OFDMA with I = 2 users and N = 64

subcarriers. As the relay’s maximum transmit power Pmax
R

increases, the

achievable data rate increases. In addition, by increasing Pmax
R

for AF/DF-

OFDMA scenario we could identify three regions based on the maximum

relaying power. In the first-region where Pmax
R

is small, there is no-relaying

and the subcarriers are assigned to the users based on descent ordering of

log2

(γ(1)
SD

( j)

γ(2)
SD

( j)

)

. In the second-region when Pmax
R

is less than some threshold
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value Pth, part of the subcarriers are assigned based on descent ordering

of log2

( (γ(1)
SD

( j)+0.25γ(1)
SR

( j))

(γ(2)
SD

( j)+0.25γ(2)
SR

( j))

)

for AF-OFDMA and log2

(γ(1)
SR

( j)

γ(2)
SR

( j)

)

for DF-OFDMA, and

the other part of the subcarriers are assigned based on descent ordering

of log2

(γ(1)
SD

( j)

γ(2)
SD

( j)

)

. In the third-region where is Pmax
R
> Pth, the subcarriers are

assigned based on descent ordering of log2

( (γ(1)
SD

( j)+0.25γ(1)
SR

( j))

(γ(2)
SD

( j)+0.25γ(2)
SR

( j))

)

for AF-OFDMA

and log2

(γ(1)
SR

( j)

γ(2)
SR

( j)

)

for DF-OFDMA.

Figure 8.7 compares the achievable rate region of AF/DF-OFDMA sce-

narios with the achievable rate region of OFDMA without relaying for N =

64 subcarriers for I = 2 users using Algorithm 8.1 / Algorithm 8.2. Both

curves are obtained by varying α1 from 0 to 1, and setting α2 = 1 − α1. The

source and relay powers are set Pmax
i
= 1 and 10Watt, Pmax

R
= 1, 5 and 10Watt,

respectively. For OFDMA without relaying scenario the source power is set

to obtain an overall equivalent average power computed as P
Eq

i
=

2Pmax
i
+Pmax

R

4
.

The corresponding equivalent average power constraints are P
Eq

i
= 1.75,

3, and 7.5Watt. Clearly, AF/DF-OFDMA cooperative communication ex-

pands the achievable rate region beyond that of the achievable rate region

for OFDMA under the equivalent average power constraint.
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Figure 8.8 The Sum Rate as a Function of the Relay Maximum Transmit

Power for P
Eq

i
= 3Watt.

The sum rate for AF/DF-OFDMA scenarios using Algorithm 8.1 / Al-

gorithm 8.2 as a function of the maximum relay power Pmax
R

with a fixed

average power constraint P
Eq

i
= 3Watt are shown in Figure 8.8. AF/DF-

OFDMA cooperative communications are beneficial only for certain ranges

of Pmax
R

and Pmax
i

for a fixed average power constraint, e.g., 1 < Pmax
R
< 10

for AF-OFDMA, and 1 < Pmax
R
< 11 for DF-OFDM, since as shown in (8.14)

and (8.32) the relation between the optimal source and relay power profile

is P(i)
R

( j) = C(i)

j
P(i)

S
( j) with P(i)

S
( j) is in the form of a water-filling profile or

a modified-water-filling profile. Hence, decreasing Pmax
i

affects the water

level, which consequently affects the optimal relaying power profile. There-

fore, for a fixed average power constraint, there is an optimal power divi-

sion between the source and relay nodes.

Problem (8.7) for I = 3 users, and N = 16 subcarriers is studied for

three cases. In case 1, the integer variables Y(i)

j
∈ [0, 1], ∀i ∈ I, ∀ j ∈ J

are relaxed. The problem is solved then using convex optimization (interior

point) method. In case 2, the problem is relaxed and constraints on the sub-

carriers that are assigned to S1 are added. m ∈ {0, 1, 2, · · · , 16} means only



256

Table 8.1 Sum Data Rate for AF-OFDMA for I = 3 Users and N = 16 Sub-
carriers.

Added Constraints on the Subcarrier Assignment of S1

m = 0 m = 1 m = 2 m = 3 m = 4 m = 5 m > 5

Sum Rate
202.35 205.33 207.63 209.29 211.36 209.86 < 209.44

in [kbps]

Comments May Exist Some Subcarriers that are Shared Between Users

S2&S3.

Problem (8.7) Algorithm 8.1

Sum Rate
212.92 211.36

in [kbps]

Comments Shared Subcarriers. No Sharing.

the first mth subcarriers of the ordered set O1 are assigned to S1. The subcar-

riers in O1 are ordered based on log2

( (γ(1)
SD

( j)+0.25γ(1)
SR

( j))2

(γ(2)
SD

( j)+0.25γ(2)
SR

( j))(γ(3)
SD

( j)+0.25γ(3)
SR

( j))

)

in descent

order, where m = 0 means no subcarrier is assigned to S1. Problem (8.7) with

the added constraints is solved using the interior point method. In case 3,

Algorithm 8.1 is used to obtain the subcarrier assignment profile and the

power profiles at the source and relay nodes. The results for the three cases

are shown in Table 8.1. The difference in the sum rate between case 1 and

case 3 is due to the sharing of some subcarriers in case 1. For case 2, the sum

rate increases by adding subcarriers m = 0, 1, · · · , 4 from the ordered set O1

to the assignment of user S1, until reaching the optimal assignment m = 4.

Adding more subcarriers m > 4 from the ordered set O1 decreases the sum

rate, which coincides with the trends and the assignment of Algorithm 8.1.

The computational complexity of Algorithm 8.3 for AF-OFDMA for the

optimal subcarrier allocation is compared to the computational complexity

of the optimal subcarrier allocation of Algorithm 8.1, for a different number

of users I with Pmax
i
= 1, Pmax

R
= 10, and N = 64 subcarriers. The number

of computations are shown in Table 8.2. Computational complexity means

here the number of times required to solve the optimal power profiles at the

source and relay nodes for a given subcarrier assignment profile. Clearly,
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Figure 8.9 The Sum Rate as a Function of the Number of Users for the Pro-
posed Algorithms

Table 8.2 Computational Complexity.

Number of Users I

2 4 6 8

Algorithm 8.1 64 4225 8385 12545

Algorithm 8.3 7 10 24 25

the computational complexity of Algorithm 8.3 isO(N) compared toO(NI−1)

for Algorithm 8.1.

The sum rate using Algorithm 8.1 and Algorithm 8.3 for AF/DF-OFDMA

cooperative schemes is shown in Figure 8.9. It was noted that Algorithm 8.1

may require a tuning stage to adjust some of the subcarriers, especially if

the number of users is large. In this tuning stage, the boundary between

any two users i, k ∈ I, i , k can be adjusted by transferring subcarrier j∗ =

arg min
j∈Ji

log2

( (γ(i)
SD

( j)+0.25γ(i)
SR

( j))αi

(γ(k)
SD

( j)+0.25γ(k)
SR

( j))αk

)

for AF-OFDMA scheme, and for DF-OFDMA

scheme as j∗ = arg min
j∈Ji

log2

( (γ(i)
SR

( j))αi

(γ(k)
SR

( j))αk

)

to the assignment of user k as Jk =

Jk ∪ j∗ if the weighted sum rate increases.

Figure 8.10 compares the sum rate using Algorithm 8.3 for AF/DF-OFDMA
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scenarios as a function of the number of users with Pmax
R
= 10Watt, Pmax

i
=

1Watt and N = 64 subcarriers with the achievable sum rate obtained by

solving the dual problem based on the assumption of zero duality gap as in

[30]. The dual approach transforms the problem into I distinct single-user

problems, and each per user problem can be separated into N subcarrier

problems, as explained in Appendix B.2. Clearly, the proposed algorithm

asymptotically achieves the sum rate of the dual approach, with less compu-

tational complexity, since solving the dual problem requires a large number

of iterations to find the correct Lagrange multipliers. In general, the compu-

tational complexity of the subgradient method is not known [48]. We use the

subgradient method to solve the dual problem with a diminishing step size

policy as ǫ = 0.01√
t
, about 100, 000 λ-evaluations are required. We notice that

as the number of subcarriers or users increases, the number of evaluations

required to find the optimal Lagrange multipliers increases. In addition,

we use the elliptical method to solve the dual problem, but the difficulty

lies in finding the initial ellipsoid. Besides using the dual approach at each

iteration, we need to assign each subcarrier to the user who achieves the

maximum rate on that subcarrier before updating the Lagrange multipliers,

as shown in Appendix (B.6).

An alternative approach can be followed to assign the subcarriers for

I users AF/DF-OFDMA scenarios aiming to maximize the weighted sum

rate based on an iterative subcarrier exchange between a pair of users. At

the first step, the subcarriers are assigned randomly to the users, then each

user achievable data rate is calculated. A pair-assignment problem is then

formulated to find the pairs of users that maximize the weighted sum rate.

Each pair of users will perform subcarrier exchange based on (8.25)/(8.38)

for I = 2; the two users pool their initial assigned subcarriers and relaying

power, then this group of subcarriers are exchanged between the two users

to maximize the weighted sum rate based on Algorithm 8.1 / Algorithm 8.2
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Figure 8.10 The Sum Rate as a Function of the Number of Users for the
proposed and the Dual-Based Algorithms

for the special case of two users. The cost function for the assignment prob-

lem is calculated as bn,m = max{(αnR̂n + αmR̂m) − (αnRn + αmRm), 0}, where

R̂i, and Ri for i ∈ n,m are the user data rate after and before the subcarrier

exchange.

The pair assignment problem can be formulated as:

max
X

I∑

n=1

I∑

n=1

Xnmbnm, (8.40a)

s.t.

I∑

n=1

Xnm = 1, m = 1, · · · , I, (8.40b)

I∑

m=1

Xnm = 1, n = 1, · · · , I, (8.40c)

Xnm ∈ {0, 1}, ∀n,m, (8.40d)

where X is a matrix of the assignment profile with [X]n,m = Xnm and Xnm = 1

if user n is paired with user m. Problem (8.40) can be solved using the Hun-

garian method as in [50]. The procedure is repeated until no further im-

provement can be achieved in the weighted sum rate. We notice that, the
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Figure 8.11 The Sum Rate as a Function of the Number of Users for the
Proposed and the Hungarian Based Algorithms.

performance of the algorithm depends on the initial subcarrier assignment

in contrast to the proposed algorithms. Each step, requires finding the cost

matrix and applying the Hungarian method, which entails O(I3) computa-

tions. The cost matrix is a symmetric zero diagonal matrix. Each entry (from

the I2

2
− I entries) requires applying the two users subcarrier assignment al-

gorithm. We notice that the algorithm converges in less than 8 iterations,

but the algorithm may fall into a local minimum. To have a fair comparison

with Algorithm 8.3, we apply the iterative pairs based algorithm with an

initial assignment obtained from the basic phase of the simplified algorithm

as in Algorithm 8.3. We notice that the algorithm converges in less than

three iterations. Figure 8.11 shows the sum rate for AF/DF-OFDMA sce-

narios based on iterative subcarrier exchange between a pair of users as a

function of the number of users for Pmax
R
= 10Watt, Pmax

i
= 1Watt and N = 64

subcarriers.

The proposed algorithm can be extended to the case of M-relays assisting

the sources in orthogonal fashion as in the scenario described in [86]. The

subcarriers for AF-OFDMA for the two users case will be ordered based on
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Figure 8.12 The Sum Rate as a Function of Pmax
R

for Two Relays Two Sources
Scenario.

log2

(γ(1)
SD

( j)+
∑M

m=1 0.25γ(1)
SRm

( j)

γ(2)
SD

( j)+
∑M

m=1 0.25γ(2)
SRm

( j)

)

, and the subcarriers for DF-OFDMA for two users

case will be ordered based on log2

(∑M
m=1 γ

(1)
SRm

( j)−(M−1)γ(1)
SD

( j)
∑M

m=1 γ
(2)
SRm

( j)−(M−1)γ(2)
SD

( j)

)

to maximize the sum

rate. Figure 8.12 compares the sum rate of AF/DF-OFDMA of the proposed

algorithm with the sum rate of AF/DF-OFDMA using the exhaustive search

algorithm for the case of two-relays assisting two sources in an orthogonal

fashion for N = 8 subcarriers. The sum rate of the proposed algorithm for

AF/DF-OFDMA coincides with the sum rate of the exhaustive search.

8.5 Conclusions

In this chapter, we investigate joint resource allocation for multiple users

single relay AF/DF-OFDMA cooperative communication systems, in the

presence of a direct link between the source and destination nodes. The ob-

jective is to maximize the weighted sum rate. The subcarrier assignment is a

combinatorial problem that can be solved by means of an exhaustive search

to get the optimal subcarrier assignment, and the sources and relay power

profiles. In this sense, we propose suboptimal low complexity algorithms
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for subcarrier assignment, and develop analytical expressions for both the

source and relay power profiles. The proposed algorithms are based on high

SNR approximation. The sum rate of the proposed algorithms for I = 2, 3

users coincides with the sum rate of the exhaustive search algorithm. The

sum rate of the proposed algorithms are asymptotically similar to the sum

data rate using the dual approach, without the need to solve the dual prob-

lem iteratively. In addition, using the dual approach at each iteration re-

quires the determination of the user who achieves the maximum data rate

in that subcarrier before updating the Lagrange multipliers.



CHAPTER9

AUCTION FRAMEWORK FOR RESOURCE

ALLOCATION IN AF-OFDMA RELAY NETWORKS

In this chapter, competition based resource allocation is proposed to allo-

cate the subcarriers in AF-OFDMA system based on optimal power profiles

at the source and relay nodes. Two auction algorithms are developed. The

first algorithm is based on sequential single item auction, where each user

submits a bid based on either the marginal increase or the relative marginal

increase of the data rate, after using that subcarrier. The first bidding strat-

egy aims to maximize the sum data rate, whereas the second bidding strat-

egy aims to maximize the fairness index. In both cases, the subcarrier is as-

signed to the user who submits the highest bid. The algorithm proceeds in a

sequential fashion until all subcarriers are assigned. Both bidding strategies

require synchronized interactions between the base-station and the users

for each subcarrier. To reduce the interactions between the base-station and

the users, we propose a one-shot auction algorithm, where each user sub-

mits bids for all subcarriers at once based on the Shapley value, a well-

known cooperative-game theoretic concept. The user evaluates each sub-

carrier based on an estimate of the Shapley value. The subcarriers are then

allocated based on the submitted bids using an iterative algorithm that max-

imizes the fairness index.

The ntroduction and related research are presented in Section 9.1. In
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Section 9.2, the AF-OFDMA single relay cooperative communication sys-

tem model, the formulation of the optimization problems and the proposed

resource allocation algorithms are presented. The proposed algorithms are

extended to multiple relays scenario, as explained in Section 9.3. The perfor-

mance measures are defined in Section 9.4. Numerical results are presented

and discussed in Section 9.5. Finally, conclusions are drawn in Section 9.6.

9.1 Introduction

In Chapter 8, joint resource allocation for AF-OFDMA is considered based

on a centralized approach, where an optimization problem is formulated

and a low complexity algorithm is proposed to assign the subcarriers and

allocate the power profiles at the source and relay nodes. In this chapter,

user competition is utilized to devise distributed algorithms to allocate the

subcarriers based on auction theory.

Recently, auction theory has been considered for resource allocation for

wireless communication systems to handle the problem of resource com-

petition among selfish users as in [33, 83, 137, 148, 173]. In [137], the au-

thors proposed a channel allocation algorithm based on the second-price

auction mechanism to allow users to compete for a wireless fading chan-

nel, but they did not consider multi-carrier systems. In [148], an auction

algorithm for sub-channel allocation is proposed, using the difference of the

throughput among sub-channels to allow users to compete through bid-

ding. In [83], the authors proposed an auction-based scheduling algorithm

for OFDMA communication system, to achieve proportional fair resource

allocation. In [33], an auction algorithm is proposed for the subcarrier allo-

cation to balance efficiency and fairness with service differentiation in AF-

OFDMA relay networks. The bidding strategy considers the users’ mini-

mum rate requirements and their different willingness to pay for hetero-

geneous services. Using an auction framework for resource allocation for



265

wireless communications is reviewed in [173]. Optimal power allocation at

the source and relay nodes was not considered in determining the bidding

strategy in [33, 83, 148].

In this chapter, subcarrier assignment algorithms are developed based

on either sequential or one-shot auctions. For sequential-auction based al-

gorithms, at each step the user evaluates the worth of the subcarrier as ei-

ther the difference or the relative difference between the achievable data

rate before and after using the subcarrier with optimal power allocation at

the source and relay nodes. This evaluation is used as the bidding strat-

egy, and sequentially one subcarrier is assigned to the user with the highest

bid. The base-station collects the bids from all users at each iteration for

a given subcarrier and then assigns it to the user with the highest bid and

informs her before proceeding to the next iteration (subcarrier assignment

step). This, however, requires a lot of synchronized interactions between

the base-station and the users. To proceed, the user needs to know if the

subcarrier is assigned to her or not to determine the bid for the next sub-

carrier. As a result, we propose the one-shot auction algorithm, where the

user evaluates the worth of all subcarriers based on the Shapley value at

once. The worth of the subcarrier using the Shapley value represents the

average marginal contribution of that subcarrier for all coalitions of sub-

carriers that can be assigned to the user with optimal power profiles at the

source and relay nodes. The Shapley value allows the users to determine

the most influential subcarriers and to bid on them, i.e. the Shapley value

allows the users to quantify accurately the contribution of each subcarrier

towards the full achievable data rate (using all subcarriers). The compu-

tational complexity of calculating the Shapley value is avoided by using a

sampling method to approximate it with reasonable accuracy.
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Figure 9.1 System Model.

9.2 Problem Formulation for Single Relay Sce-

nario

The system under consideration is depicted in Figure 9.1. LetI = {1, 2, · · · , I}

be the set of active users, sender (source) nodes Si for i ∈ I communicate

with a destination terminal D (that is, base-station, or access-point). We

consider a single relay two-hop multi-carrier OFDMA system, for multiple

relays see Section 9.3. The available bandwidth W is divided into N subcar-

riers, the bandwidth of each subcarrier is BN, in which the channel coeffi-

cients is assumed to be frequency flat. The set of subcarriers in the system

is denoted as J = {1, 2, · · · ,N}. The first-hop channel coefficients of the ith

user between the source and destination nodes, and the source and relay

nodes at the jth subcarrier are denoted by H(i)

SD
( j), and H(i)

SR
( j), respectively.

The second-hop channel coefficient between the relay and the destination

nodes at the jth subcarrier is denoted by HRD( j).

The achievable data rate R(i)

AF
( j) of user i using subcarrier j at the destina-

tion node with the aid of the relay node and after using the MRC technique
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is computed using (8.1)-(8.4) as:

R(i)

AF
( j) =

BN

2
log

(

1 +
Γ

(i)

SD
( j) + Γ(i)

AF
( j)

Γ

)

, (9.1)

where Γ(i)

SD
( j) = γ(i)

SD
( j)P(i)

S
( j), Γ(i)

AF
( j) =

γ(i)
SR

( j)γRD( j)P
(i)
S

( j)P
(i)
R

( j)

1+γ(i)
SR

( j)P
(i)
S

( j)+γRD( j)P
(i)
R

( j)
, and P(i)

S
( j), and

P(i)
R

( j) are the ith user transmit power profiles on the jth subcarrier at the

source and relay nodes, respectively. In this chapter, we consider the prob-

lem of uplink resource allocation for AF-OFDMA wireless access system1.

During each OFDM symbol, the scheduler at the base station needs to make

the following resource allocation decision: how to allocate the subcarriers

to the users and the corresponding power profiles at the source and relay

nodes to achieve a certain objective (for example, maximum sum data rate,

or maximum rate fairness).

The maximum sum rate resource allocation problem can be formulated

as:

max
P, Y

∑

i∈I

∑

j∈J
Y(i)

j
R(i)

AF
( j), (9.2a)

s.t.
∑

i∈I

∑

j∈J
Y(i)

j
P(i)

R
( j) ≤ Pmax

R , (9.2b)

∑

j∈J
Y(i)

j
P(i)

S
( j) ≤ Pmax

i ,∀i ∈ I, (9.2c)

∑

i∈I
Y(i)

j
≤ 1,∀ j ∈ J , (9.2d)

P(i)

S
( j) ≥ 0, P(i)

R
( j) ≥ 0,Y(i)

j
∈ {0, 1},∀ j ∈ J ,∀i ∈ I, (9.2e)

where P = (PS,PR) is the vector of the source and relay power profiles, with

[PS]i, j = P(i)

S
( j) and [PR]i, j = P(i)

R
( j), ∀i ∈ I and ∀ j ∈ J . Y is the subcarrier

assignment profile with [Y]i, j = Y(i)

j
∈ {0, 1}, and Y(i)

j
= 1 indicates that sub-

carrier j is assigned to user i. Constraint (9.2b) means that the total power

allocated to forward the data from all users assisted by the relay is limited

1Resource allocation for uplink DF-OFDMA scheme can be treated in a similar fashion.
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to Pmax
R

, whereas, constraint (9.2c) indicates that the source power for user

i is limited to Pmax
i

. Constraint (9.2d) means that the jth subcarrier can be

assigned to maximally one user.

The resource allocation that aims at maximizing the rate fairness2 using

the max-min fairness criteria, can be formulated as:

max
P, Y

Rmin, (9.3a)

s.t.
∑

j∈J
Y(i)

j
R(i)

AF
( j) ≥ Rmin,∀i ∈ I, (9.3b)

∑

i∈I

∑

j∈J
Y(i)

j
P(i)

R
( j) ≤ Pmax

R , (9.3c)

∑

j∈J
Y(i)

j
P(i)

S
( j) ≤ Pmax

i ,∀i ∈ I, (9.3d)

∑

i∈I
Y(i)

j
≤ 1,∀ j ∈ J , (9.3e)

P(i)

S
( j) ≥ 0, P(i)

R
( j) ≥ 0,Y(i)

j
∈ {0, 1},∀ j ∈ J ,∀i ∈ I. (9.3f)

Constraint (9.3b) means that the minimum achievable data rate for any user

is Rmin needs to be maximized, and constraints (9.3c)-(9.3f) can be inter-

preted similar to (9.2b)-(9.2e).

Jain’s fairness index can be used to measure the rate fairness of the re-

source allocation problem, which is defined as:

FI =
(
∑

i∈I Ri)
2

|I|∑i∈I R2
i

, (9.4)

where Ri =
∑

j∈J Y(i)

j
R(i)

AF
( j) is the achievable data rate of user i, a value of

fairness index FI closer to 1 means a better rate fairness.

Problem (9.2) and (9.3) can be solved using a centralized approach, which

has two disadvantages: (1) users are forced to reveal all local information;

such as channel gains and power capabilities to the scheduler at the des-

2Other rate fairness criterion such as proportional fairness and Nash bargaining fairness
can be considered in formulating the optimization problem as in [50].
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tination (base-station), which may not be desirable due to overheads and

privacy, (2) the centralized scheduler needs to have sophisticated computa-

tional capabilities to solve a complicated MINLP problem in a short time3.

One of the key factors to a successful subcarrier allocation in the forth-

coming wireless communication systems is the possibility of a distributed

implementation. In this chapter, we use the auction framework to devise

distributed solutions to the resource allocation problem which reduces the

computation complexity at the scheduler. In addition, an auction frame-

work can capture the users’ competition. Users bid for the subcarrier based

on its worth; the worth of the subcarrier is not the same for all users, since

the channel gains are different. The subcarrier is then assigned to the user

with the highest bid. The main point towards a distributed allocation of the

resources in an AF-OFDMA system is to construct a utility function that can

be used to evaluate the worth of the subcarrier(s) per user. This utility func-

tion should depend only on the user’s information, such as channel gains,

maximum total power, etc. A common value broadcasted from the base-

station to the users can also be included in the design of the utility function

to disclose information regarding the availability of the relay resources, that

is, the maximum transmit relay power. Furthermore, the utility function

needs to reflect a physical meaning quantity to the user; for example, the

achievable data rate, and the utility function needs to allow the user to uti-

lize all degrees of freedom available to her by allocating optimally the power

profiles at the source and relay nodes.

A utility function of the ith user for a given subset of subcarriersJi ⊆ J

and a common value λR denoted as Ui(Pi, λR) is designed to include the

abovementioned rationales for AF-OFDMA system as:

Ui(Pi, λR) =
∑

j∈Ji

R(i)

AF
( j) − λR

(∑

j∈Ji

P(i)
R

( j)
)

, (9.5)

3Algorithm 8.1/ Algorithm 8.2 and Algorithm 8.3 proposed in Chapter 8 can be used
to solve the problem in a centralized fashion.



270

where Pi = (Pi
S,P

i
R) is the vector of the source and relay power profiles for

user i, with [Pi
S] j = P(i)

S
( j) and [Pi

R] j = P(i)
R

( j), ∀ j ∈ Ji. The first summation

in (9.5) represents the achievable data rate using the set of subcarriers Ji,

whereas the second summation limits the requests for excess relay power

demands. Note that: the utility function Ui(Pi, λR) depends only on users

i channel gains and does not depend on other users channel gains, since

the worth of the subcarrier to the user depends only on her own channel

gains and the allocated power profiles. The relay-destination channel gain

HRD( j), ∀ j ∈ J and λR are common information broadcasted from the base-

station (or relay) node to all users. λR is used as a control parameter for the

relaying power profiles, since the relay node has a limited power. We expect

a higher value of λR if the number of users is large, or the available P(max)
R

is

small. Updating λR by the base-station or relay node is explained in detail

in Section 9.4.

The data rate R(i)

AF
( j) given in (9.1) is not jointly concave function in P(i)

S
( j)

and P(i)
R

( j), as can be proved by the second-order derivative test. To make the

analysis more tractable, we use the approximation Γ(i)

AF
( j) ≈ γ(i)

SR
( j)γRD( j)P

(i)
S

( j)P
(i)
R

( j)

γ(i)
SR

( j)P
(i)
S

( j)+γRD( j)P
(i)
R

( j)
,

which is tight for high SNR. This approximation has been used commonly

in literature [30, 56, 139]. Using this approximation, the data rate is jointly

concave in P(i)

S
( j) and P(i)

R
( j) as can be proved by the second-order deriva-

tive test. Henceforth, we will use this approximation value for computing

R(i)

AF
( j).

For a given λR > 0 and Ji, user i aims to maximize her utility function

Ui(Pi, λR) by allocating the power profiles at the source and relay nodes by
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solving:

max
Pi

Ui(Pi, λR), (9.6a)

s.t.
∑

j∈Ji

P(i)

S
( j) ≤ Pmax

i , (9.6b)

P(i)

S
( j) ≥ 0, P(i)

R
( j) ≥ 0,∀ j ∈ Ji. (9.6c)

Problem (9.6) is now convex optimization problem which can be solved an-

alytically by relaxing the source power constraint (9.6b) and formulating the

Lagrangian function as:

Li(Pi, λR, λi) = Ui(Pi, λR) − λi

(∑

j∈Ji

P(i)

S
( j) − Pmax

i

)

. (9.7)

Differentiating (9.7) with respect to P(i)

S
( j) and equating to zero results in:

Γ + Γ
(i)

SD
( j) + Γ(i)

AF
( j)

BN/(2 ln(2))
=

1

λi
(γ(i)

SD
( j) +

γ(i)

SR
( j)γ2

RD( j)P(i)2
R

( j)

(γ(i)

SR
( j)P(i)

S
( j) + γRD( j)P(i)

R
( j))2

). (9.8)

Similarly, differentiating (9.7) with respect to P(i)
R

( j) and equating to zero re-

sults in:

Γ +
Γ

(i)

SD
( j) + Γ(i)

AF
( j)

BN/(2 ln(2))
=

γRD( j)γ(i)2

SR
( j)P(i)2

S
( j)

ΓλR(γ(i)

SR
( j)P(i)

S
( j) + γRD( j)P(i)

R
( j))2
. (9.9)

Simultaneously solving (9.8) and (9.9), optimal source power profile for j ∈

Ji can be obtained as:

P(i)

S
( j) =





(

Ki(γ
(i)
SD

( j)+A
(i)
j

)−Γ
)+

γ(i)
SD

( j)+B
(i)
j

if P(i)
R

( j) > 0,

(

Ki − Γ

γ(i)
SD

( j)

)+

if P(i)
R

( j) = 0,

(9.10)

where A(i)

j
=

γ(i)
SR

( j)γ2
RD

( j)C
(i)2
j

(γ(i)
SR

( j)+γRD( j)C
(i)
j

)2
, B(i)

j
=

γ(i)
SR

( j)γRD( j)C
(i)
j

γ(i)
SR

( j)+γRD( j)C
(i)
j

, Ki =
BN

2λi ln(2))
, and C(i)

j
is com-
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puted as:

C(i)

j
=

γ(i)

SR
( j)

(

− 1 +

√

1 + (1 +
γ(i)

SR
( j)

γ(i)
SD

( j)
)( λi

λR

γRD( j)

γ(i)
SD

( j)
− 1)

)+

γRD( j)
(

1 +
γ(i)

SR
( j)

γ(i)
SD

( j)

)
, (9.11)

with the per user Lagrangian multiplier λi is selected to satisfy the source

power constraint
∑

j∈Ji
P(i)

S
( j) = Pmax

i
. The user i optimal relay power profile

for j ∈ Ji can be obtained as:

P(i)
R

( j) = C(i)

j
P(i)

S
( j). (9.12)

The achievable data rate for user i for a given λR > 0 andJi , ∅ denoted as

vi(Ji, λR), is computed using (9.10) and (9.12) as:

vi(Ji, λR) =
∑

j∈Ji

R(i)∗
AF

( j). (9.13)

The overall system throughput can be computed as
∑

i∈I vi(Ji, λR), with

∪i∈IJi = J and Jî ∩Ji = ∅ for î , i, ∀i, î ∈ I.

In order to select the per user subcarrier assignment profile Ji, the com-

petition and the intelligent of the users can be exploited using the proposed

utility function and the auction framework. In this regard, we propose two

auction based subcarrier assignment algorithms: a sequential based subcar-

rier assignment, and a one-shot subcarrier assignment.

9.2.1 Sequential Subcarrier Assignment

In sequential assignment, the subcarriers are assigned in a sequential fash-

ion based on the bids submitted by the users. At each step, the user submits

a bid for the current subcarrier, that depends on the previous allocations;

the user needs to know her allocated subcarriers before bidding on the next

subcarriers. The bid of the current subcarrier equals the worth of that sub-
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carrier to the user. Bidding strategies based on higher or lower than the

worth of the subcarrier is out of the scope of this work and a topic of future

work. The worth of subcarrier j for user i is constructed based on the objec-

tive of the resource allocation problem. If the objective is to maximize the

overall system throughput (sum data rate), the worth of subcarrier j for user

i is based on the marginal contribution of subcarrier j denoted as M(i)
c ( j, λR).

It is computed as M(i)
c ( j, λR) = vi(Ji ∪ j, λR) − vi(Ji, λR), with j ∩Ji = ∅, and

vi(·, ·) is computed as in (9.13) based on maximizing the ith user utility func-

tion (9.6) with optimal source and relay power profiles. It can be proven

that the bidding strategy based on the marginal contribution of the data

rate using the subcarrier for the sequential auction, maximizes the system

throughput. Adding the sum data rate of the previous allocation to each

user current bid and allocating the subcarrier to the user with the highest

bid, results in maximizing the new sum data rate. Hence, the the sum data

rate is maximized at each step.

On the other hand, if the objective is to maximize the fairness index, the

worth of subcarrier j for user i is based on the relative increase of the data

rate (relative marginal contribution) using subcarrier j which is computed

as
M

(i)
c ( j,λR)

vi(Ji∪ j,λR)
. The user submits a bid equal to the worth of the subcarrier,

and the subcarrier is allocated to the user with the highest bid. Clearly, this

bidding strategy achieves a proportional fair rate allocation, as was proven

in [22].

Algorithm 9.1, illustrates the sequential subcarrier assignment auction.

In this algorithm, the objective (obj) of the resource allocation problem can

be selected either as obj = s or obj = f to maximize either the sum data rate

or the fairness index, respectively. The base-station or the relay announces

the relay destination channel gain HRD( j), ∀ j ∈ J and the common value λR,

which allows the user to compute the optimal power profiles at the source

and relay nodes as in (9.10) and (9.12). The rule of the common value λR is
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Algorithm 9.1 AF-OFDMA Sequential Subcarrier Assignment Auction.

Require: γ(i)

SD
( j), γ(i)

SR
( j), γRD( j), Pmax

i
, ∀ j ∈ J ,∀i ∈ I, λR, and the objective

obj ∈ { f , s}.
1: Ji ← ∅, and vi(Ji, λR)← 0, ∀i ∈ I.
2: for l = 1 : N do
3: Calculate M(i)

c (l, λR) = vi(Ji ∪ l, λR) − vi(Ji, λR), ∀i ∈ I.
4: if obj = s then

5: b(i)

obj
(l)←M(i)

c (l, λR), ∀i ∈ I .

6: else

7: b(i)

obj
(l)← M

(i)
c (l,λR)

vi(Ji∪ l,λR)
, ∀i ∈ I.

8: end if
9: Find i∗ = arg max

i
b(i)

obj
(l).

10: Ji∗ ← Ji∗ ∪ l.
11: end for
12: return Ji, ∀i ∈ I.

discussed in Section 9.4.

Initially, all subcarriers are not assigned to any user, i.e. Ji = ∅, and the

corresponding achievable data rate is set to vi(Ji, λR) = 0, ∀i ∈ I. At the lth

stage for l = 1, · · · ,N, each user i ∈ I determines the worth of subcarrier

l based on the objective function obj ∈ { f , s} and the previously allocated

subcarriersJi and submits its bid b(i)

obj
(l), which is computed either as b(i)

s (l) =

vi(Ji ∪ l, λR) − vi(Ji, λR), or b(i)

f
(l) = vi(Ji∪ l,λR)−vi(Ji,λR)

vi(Ji∪ l,λR)
. The winner user i∗ of

subcarrier l is determined as: i∗ = arg max
i

b(i)

obj
(l) and the set Ji∗ is updated

as Ji∗ = Ji∗ ∪ l. The algorithm proceeds iteratively until all subcarriers are

allocated.

9.2.2 One-Shot Subcarrier Assignment

Sequential auction requires synchronized interactions between the users

and the scheduler at the base-station. The user needs to know the subcarri-

ers allocated to her before bidding for the current subcarrier and the sched-

uler needs to receive the bids for the current subcarrier from all users in the

same time window to allocate the subcarrier properly. To reduce these in-

teractions, a one-shot multiple-item auction can be used, in which each user



275

submits bids for all subcarriers at once. To evaluate the worth of the sub-

carrier for each user in a one-shot auction, it is important to be aware of the

following: (1) The worth of the subcarrier depends on all possible subsets

that contain the subcarrier with optimal power profiles at the source and

relay nodes. Evaluating the worth of the subcarrier based on its achievable

rate assuming that Ji = J and using optimal power profiles at the source

and relay nodes will not reveal the actual valuation, (2) bidding based on

the channel gains without optimal power profiles at the source and relay

nodes, disregards one degree of freedom that can be utilized. In addition, it

is difficult to find a function to order the subcarriers4 (evaluate the worth)

based on the channel gains, since the data rate depends on the source des-

tination, source relay, and relay destination channel gains, and the power

profiles at the source and relay nodes5, (3) the shortage of feedback informa-

tion to adjust the worth of the subcarrier in contrast to a sequential auction

where feedback information (history of the allocated subcarriers) is used to

evaluate the worth of the current subcarrier. Towards this end, the Shap-

ley value can be used to evaluate the worth of the subcarriers. The Shapley

value of a subcarrier represents the average marginal contribution of that

subcarrier using all possible combinations (subsets) of subcarriers that can

be assigned to the user with optimal power profiles at the source and relay

nodes. Hence, the possibility of gaining a subset of the subcarriers without

feedback is captured by the Shapley value and the optimal power profiles

at the source and relay nodes. Note that, the average marginal contribu-

tion of the subcarrier using the Shapley value encompasses the possibility

of gaining more than one subcarrier by taking the average over all possible

combinations, whereas the marginal contribution in the sequential auction

is with respect to the previous allocation of subcarriers only. Before defining

4The ordering functions that are developed in Chapter 8 represent base-station prefer-
ence not user’s preference.

5Here, we assume that the worth of subcarrier j for user i is independent of the worth
of subcarrier j for user k, ∀k ∈ I, i , k.
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the bidding strategy for the one-shot auction, we will define AF-OFDMA co-

operative game based on terminologies from cooperative game as follows.

Definition 9.2.1 An AF-OFDMA cooperative game for the ith user (AF-OFDMA-

CG-i) with transferable utility (TU) is defined by the pair (J ,vi), where the set of

subcarriers J = {1, · · · ,N} is called the grand coalition, and vi : Ji → R is a real

valued mapping of Ji which is called the ith user characteristic function or the ith

user value function. The subset Ji represents one of the 2N possible subsets of J .

For AF-OFDMA-CG-i, the value function vi(Ji, λR) represents the achiev-

able data rate using the set Ji of subcarriers and a common value λR. It is

defined as in (9.13), with vi(∅, λR) = 0. The achievable data rate of user i by

using all subcarriers J with optimal power profiles at the source and relay

nodes denoted as vi(J , λR) is called the value of the grand coalition for user

i.

There are many solution concepts for TU games such as; the core, kernel,

nucleolus, and the Shapley value that can be used to evaluate the worth of

the subcarrier to the user. We choose the Shapley value, since as discussed

in Subsection 2.5.5, it always uniquely exists and can be obtained using a

closed form expression.

The Shapley value Φi
j

of a subcarrier j for user i can be interpreted in

terms of the average marginal contribution of subcarrier j that makes to any

coalition (subset) ofJ subcarriers, assuming all orderings are equally likely.

The Shapley value of a subcarrier accurately reflects the bargaining power

of that subcarrier and the marginal contribution that the subcarrier brings

to the ith user. LetΦ(i)
=

(

Φ
(i)

1
,Φ(i)

2
, · · · ,Φ(i)

N

)

denote the Shapley value vector

for user i. The Shapley value Φ(i)

j
of subcarrier j for user i is computed as:

Φ
(i)

j
=

1

N!

∑

π∈Ω
vi(C j(π) ∪ j, λR) − vi(C j(π), λR), (9.14)
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where Ω is the set of all possible N! permutations on J , π is a permutation

in Ω, and C j(π) is the set of subcarriers that precede subcarrier j in the per-

mutation π. vi(C j(π) ∪ j, λR) − vi(C j(π), λR) represents the ith user marginal

contribution M(i)
c (π, j;λR) of subcarrier j to the set C j(π) ∪ j of subcarriers.

It is clear that (9.14) requires N! permutations onJ to compute the aver-

age marginal contribution of the subcarriers which is computationally com-

plex especially for a large N. Hence, the direct approach for computing the

Shapley value of a subcarrier is not tractable. The Shapley value can be

computed approximately using a sampling-based approach that works in

polynomial time [23].

The estimation of the Shapley value is illustrated in Algorithm 9.2. The

populationΩ of the sampling process P will be the set of N! permutations of

J , i.e. P ∈ Ω. The sampling process P contains M samples (permutations),

each is obtained from Ω with replacement, i.e. each with 1
N!

probability. A

sample of the process P is denoted as πm for m = 1, · · · ,M. The marginal

contribution of subcarrier j for user i using permutation πm denoted as

M(i)
c (πm, j;λR) is computed as M(i)

c (πm, j;λR) = vi(C j(πm)∪ j, λR)−vi(C j(πm), λR).

The estimate of the Shapley value vector for user i is denoted as Φ̂
(i)
=

(Φ̂(i)

1
, Φ̂(i)

2
, · · · , Φ̂(i)

N
), where Shapley value of subcarrier j for user i is estimated

as Φ̂(i)

j
=

1
M

∑M
m=1 M(i)

c (πm, j;λR).

In the one-shot auction scenario, the requirement of multiple interac-

tions between the users and the base-station is minimized. Each user sub-

mits bids on all subcarriers at once, that equal the worth of the subcarriers.

Similar to the sequential auction, the user requires the knowledge of the

relay-destination channel gain HRD( j), ∀ j ∈ J and the common value λR

which is discussed in more detail in Section 9.4.

Let b(i)

Sh
= (b(i)

Sh
(1), b(i)

Sh
(2), · · · , b(i)

Sh
(N)) denote the bidding strategy of user i

on the setJ . The bidding strategy of user i on subcarrier j ∈ J is computed

based on the approximated Shapley value as b(i)

Sh
( j) =

Φ̂
(i)
j

∑

j∈J Φ̂
(i)
j

, ∀ j ∈ J . By
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Algorithm 9.2 Estimation of the Shapley Value Φ̂
(i)

Using the Sampling
Approach.

Require: M, γ(i)

SD
( j), γ(i)

SR
( j), γRD( j), ∀ j ∈ J , λR, Pmax

i
.

1: Φ̂
(i)

j
← 0, ∀ j ∈ J .

2: for m = 1 : M do
3: Generate a sample πm ∈ Ωwith probability 1

N!
.

4: for j = 1 : N do
5: Find the set C j(πm).
6: Compute vi(C j(πm) ∪ j, λR) and vi(C j(πm), λR) using (9.13).

7: Compute M(i)
c (πm, j;λR) = vi(C j(πm) ∪ j, λR) − vi(C j(πm), λR).

8: Compute Φ̂(i)

j
= Φ̂

(i)

j
+M(i)

c (πm, j;λR).

9: end for
10: end for

11: Φ̂
(i)

j
=
Φ̂

(i)
j

M
, ∀ j ∈ J .

12: return Φ̂
(i)

.

using this bidding strategy, we ensure that the users submit bids based on

the relative worth rather than the actual worth. Hence, all users will abide

to a common scale, which in a way will ensure fairness. The bid b(i)

Sh
( j) repre-

sents the relative importance (worth) of subcarrier j to user i. b(i)

Sh
( j) =

Φ
(i)
j

∑

j∈J Φ
(i)
j

After all users submit their bids, the base-station formulates a mixed integer

programing problem to assign the subcarriers to the users aiming at maxi-

mizing the rate fairness as:

max
Y

C, (9.15a)

s.t.
∑

j∈J
Y(i)

j
b(i)

Sh
( j) ≥ C,∀i ∈ I, (9.15b)

∑

i∈I
Y(i)

j
= 1,∀ j ∈ J , (9.15c)

Y(i)

j
∈ {0, 1},∀ j ∈ J ,∀i ∈ I, (9.15d)

where Y(i)

j
is the subcarrier assignment indicator; Y(i)

j
= 1 means that sub-

carrier j is assigned to user i. Constraint (9.15b) represents the fairness cri-

terion for the base-station subcarrier assignment. Each user is assigned at

least a worth of C, whereas constraint (9.15c) means that each subcarrier is
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assigned to exactly one user. The optimization problem (9.15) can be solved

by using linear integer programing algorithms [129].

The cost value C is initialized to some C0, and the optimal subcarrier as-

signment is obtained. The value C is increased gradually until no feasible

solution can be found. The highest value of C and its corresponding sub-

carrier assignment with a feasible solution is considered as the solution to

the subcarrier assignment problem. Problem (9.15) differs from (9.3) in that

(9.15) requires only the bids to find the solution and it is a MILP, whereas

(9.3) requires all the users information; such as channel gains and maximum

source power. Even though (9.15) is a MILP, and there are many methods

to solve it, it entails high computational complexity. To assign the subcarri-

ers to the users with less computational complexity, we propose an iterative

algorithm, where one subcarrier is assigned at each iteration based on the

difference between the submitted bid and the accumulated worth of previ-

ous iterations. The algorithm proceeds until all subcarriers are assigned.

Initially all subcarriers are not assigned to any user; i.e. Ji ← ∅, ∀i ∈ I

and the accumulative worth of the subcarriers for user i is set to V(i)

AC
= 0,

∀i ∈ I. At stage l for l = 1, · · · ,N the difference between the bidding b(i)

Sh
(l)

and the accumulative worth V(i)

AC
denoted as V(i)

D
(l) is computed as V(i)

D
(l) =

b(i)

Sh
(l) − V(i)

AC
for ∀i ∈ I. The winner user of subcarrier l is determined as

i∗ = arg max
i

V(i)
D

(l) and the accumulative worth for user i∗ is updated as

V(i∗)
AC
= V(i∗)

AC
+ b(i∗)

Sh
(l) and the set Ji∗ is updated as Ji∗ = Ji∗ ∪ l. The algorithm

proceeds until all subcarriers are allocated as shown in Algorithm 9.3. The

source and relay power profiles with the assignment profile Ji, ∀i ∈ I are

determined using (9.10) and (9.12).

Algorithm 9.1 and Algorithm 9.3 differ in that, in Algorithm 9.3 the

user bid depends only on b(i)

sh
(l), ∀i ∈ I and there is no need to calculate

the rate based on the updated assignment at each iteration. The data rate

and optimal source and relay power profiles are calculated once after all the
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Algorithm 9.3 AF-OFDMA Iterative Subcarrier Assignment Algorithm for
the One-Shot Auction.

Require: b
(i)

Sh
, ∀i ∈ I.

1: Ji ← ∅, and V
(i)
AC
← 0, ∀i ∈ I.

2: for l = 1 : N do

3: Calculate V
(i)
D

(l) = b
(i)

Sh
(l) − V

(i)
AC

, ∀i ∈ I.

4: Find i∗ = arg max
i

V
(i)
D

(l).

5: Update Ji∗ ← Ji∗ ∪ l.

6: Update V
(i∗)
AC
← V

(i∗)
AC
+ b

(i∗)
Sh

(l)
7: end for

8: return Ji, ∀i ∈ I.

subcarriers are assigned, whereas in Algorithm 9.1, the bid of the subcarrier

depends on the marginal contribution or the relative marginal contribution

of the data rate before and after using that subcarrier and needs to be cal-

culated after each subcarrier assignment step which requires synchronized

interactions at each step between the base station and the users.

9.3 Resource Allocation for Multiple Relays

In this section, we extend the resource allocation solution using the auction

framework to multiple-relays AF-OFDMA cooperative communication sys-

tems. The system under consideration consists of I users, K relays, and a

common destination D. In this setting, another degree of freedom is ex-

plored, where the relay assignment profile needs to be determined for each

subcarrier as well as the user assignment profile (subcarrier assignment)

with optimal power profiles at the source and relay nodes. A subcarrier

j ∈ J is allowed to be used maximally by one user i ∈ I using one re-

lay k ∈ K , where K = {1, 2, · · · ,K} is the set of relays in the AF-OFDMA

cooperative communication system. Following the lines of the single relay

scenario and using the notations summarized in Table 9.1, the utility func-

tion Ui(Pi,λR) of user i for a given subset of subcarriersJi,k ∈ JJJ i per relay k,

and a given common value λRk
∈ λR per relay k, ∀k ∈ K can be formulated
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8
1

Table 9.1 Multiple Relay Scenario Summary of Parameters

Symbol Description/ Value Symbol Description/Value

H
(i,k)
SR

( j) The channel gain between source i and relay k γ(i,k)
SR

( j)
|H(i,k)

SR
( j)|2
σ2

at subcarrier j.

H
(k)
RD

( j) The channel gain between relay k and the destination γ(k)
RD

( j)
|H(k)

RD
( j)|2
σ2

at subcarrier j.

Pmax
Rk

The maximum transmitted power of relay k. P
(i,k)
R

( j) The power transmitted by relay k for user i

at subcarrier j.

P
(i,k)
s ( j) The power transmitted by user i at subcarrier j and Γ

(i,k)
SD

( j) γ(i)
SD

( j)P
(i,k)
s ( j)

amplified and forwarded by relay k.

Γ
(i,k)
AF

( j)
γ(i,k)

SR
( j)γ(k)

RD
( j)P

(i,k)
S

( j)P
(i,k)
R

( j)

γ(i,k)
SR

( j)P
(i,k)
S

( j) + γ(k)
RD

( j)P
(i,k)
R

( j)
R

(i,k)
AF

( j) BN

2 log
(

1 +
Γ

(i,k)
SD

( j) + Γ
(i,k)
AF

( j)

Γ

)

Ji,k The set of subcarriers assigned to user i using relay k λRk
The common value of relay k

JJJ i [Ji,1, · · · ,Ji,K] λR [λR1
, · · · , λRK ]

Pi (Pi
S,P

i
R) [Pi

S] j,k P
(i,k)
S

( j)

HRD( j) [H
(1)
RD

( j), · · · ,H(K)
RD

( j)] [Pi
R] j,k P

(i,k)
R

( j)
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as:

Ui(Pi,λR) =
∑

k∈K

∑

j∈Ji,k

R(i,k)

AF
( j) −

∑

k∈K
λRk

∑

j∈Ji,k

P(i,k)
R

( j). (9.16)

The optimal source and relay power profiles for j ∈ Ji,k can be obtained by

maximizing the utility function Ui(Pi,λR) with a maximum source power

constraint expressed as
∑

k∈K
∑

j∈Ji,k
P(i,k)

S
( j) ≤ Pmax

i
. Similar to (9.6)-(9.9), the

source power profile can be obtained as:

P(i,k)

S
( j) =





(

Ki(γ
(i)
SD

( j)+A
(i,k)
j

)−Γ
)+

γ(i)
SD

( j)+B
(i,k)
j

if P(i,k)
R

( j) > 0,

(

Ki − Γ

γ(i)
SD

( j)

)+

if P(i,k)
R

( j) = 0,

(9.17)

where A(i,k)

j
=

γ(i,k)
SR

( j)γ(k)2
RD

( j)C
(i,k)2
j

(γ(i,k)
SR

( j)+γ(k)
RD

( j)C
(i,k)
j

)2
, B(i,k)

j
=

γ(i,k)
SR

( j)γ(k)
RD

( j)C
(i,k)
j

γ(i,k)
SR

( j)+γ(k)
RD

( j)C
(i,k)
j

, Ki =
BN

2 ln(2)λi
and C(i,k)

j
is

computed as:

C(i,k)

j
=

γ(i,k)

SR
( j)

(

− 1 +

√

1 + (1 +
γ(i,k)

SR
( j)

γ(i)
SD

( j)
)( λi

λRk

γ(k)
RD

( j)

γ(i)
SD

( j)
− 1)

)+

γ(k)
RD

( j)(1 +
γ(i,k)

SR
( j)

γ(i)
SD

( j)
)

, (9.18)

with the per user Lagrangian multiplier λi is selected to satisfy the source

power constraint
∑

k∈K
∑

j∈Ji,k
P(i,k)

S
( j) = Pmax

i
. The optimal relay power profile

for j ∈ Ji,k can be obtained as:

P(i,k)
R

( j) = C(i,k)

j
P(i,k)

S
( j). (9.19)

The achievable data rate for the ith user for a given λRk
> 0 andJi,k , ∀k ∈ K

is computed as:

vi(JJJ i,λR) =
∑

k∈K
v(k)

i
(Ji,k, λRk

), (9.20)

where v(k)

i
(Ji,k, λRk

) is obtained as:

v(k)

i
(Ji,k, λRk

) =
∑

j∈Ji,k

R(i,k)∗
AF

( j), (9.21)
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with R(i,k)∗
AF

( j) is the data rate obtained by using the optimal power profiles

P(i,k)

S
( j) and P(i,k)

R
( j) computed as in (9.17) and (9.19), respectively. The over-

all system throughput of the multiple relays scenario can be obtained as
∑

i∈I vi(JJJ i,λR). Similar to the one relay AF-OFDMA scenario, the auction

framework is used to find the subcarrier assignment profiles JJJ i, ∀i ∈ I

based on the sequential subcarrier assignment algorithm as well as on the

one-shot subcarrier assignment algorithm.

9.3.1 Sequential Subcarrier Assignment

The subcarriers and the corresponding relays are assigned in a sequential

fashion based on the bids submitted by the users. At each step, the user sub-

mits a bid for the current subcarrier and selects the corresponding relay. If

the objective is to maximize the system throughput (sum rate), the worth of

subcarrier j is the maximum marginal increase of the data rate using subcar-

rier j assisted by relay k computed as M(i)
c ( jk,λR) = vi(JJJ i∪ jk,λR) − vi(JJJ i,λR),

with jk∩JJJ i = ∅, where jk means that subcarrier j is assisted by relay k. vi(·, ·)

is computed as in (9.20) based on maximizing the utility function defined in

(9.16).

If the objective is to maximize the fairness index, the worth of subcarrier

j is the maximum relative marginal increase of the data rate using subcarrier

j assisted by relay k computed as
M

(i)
c ( jk,λR)

vi(JJJ i∪ jk,λR)
.

Algorithm 9.4, illustrates the sequential subcarrier assignment for mul-

tiple relays AF-OFDMA cooperative communications system. The base-

station announces the common value vector λR, and relay destination chan-

nel gain vector HRD( j) which allows the users to compute the optimal power

profiles at the source and relay nodes as in (9.17) and (9.19). The value and

the update of λR are discussed in Section 9.4.

Initially, all subcarriers are not assigned to any user, Ji,k = ∅, and the

corresponding achievable data rate is set to vi(Ji,k, λRk
) = 0, ∀i ∈ I and ∀k ∈
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Algorithm 9.4 AF-OFDMA Multiple Relays Sequential Subcarrier Assign-
ment Auction.

Require: γ(i)
SD

( j), γ(i,k)
SR

( j), γ(k)
RD

( j), λR, Pmax
i

, ∀ j ∈ J , ∀i ∈ I, ∀k ∈ K , and obj ∈ {s, f }.
1: Ji,k ← ∅, and vi(Ji,k,λR)← 0, ∀k ∈ K , and ∀i ∈ I.
2: JJJ i = {Ji,1, · · · ,Ji,K} ,∀i ∈ I.
3: for l = 1 : N do

4: Calculate M
(i)
c (lk,λR) = vi(JJJ i∪ lk,λR) − vi(JJJ i,λR), ∀i ∈ I, ∀k ∈ K .

5: if obj = s then

6: Find k∗
i
= arg max

k
M

(i)
c (lk,λR), ∀i ∈ I.

7: b
(i)

obj
(lk∗

i
)←M

(i)
c (lk∗

i
,λR), ∀i ∈ I.

8: else

9: Find k∗
i
= arg max

k

M
(i)
c (lk,λR)

vi(JJJ i∪ lk,λR) , ∀i ∈ I.

10: b
(i)

obj
(lk∗

i
)←

M
(i)
c (lk∗

i
,λR)

vi(JJJ i∪ lk∗
i
,λR) , ∀i ∈ I.

11: end if

12: Find i∗ = arg max
i

b
(i)

obj
(lk∗

i
).

13: Ji∗,k∗ ← Ji∗,k∗ ∪ lk∗
i∗

.

14: JJJ i∗ = {Ji∗,1, · · · ,Ji∗,K}.
15: end for

16: returnJJJ i, ∀i ∈ I.

K . At the lth stage for l = 1, · · · ,N, each user i ∈ I determines the worth

of subcarrier l using relay k based on the objective function obj ∈ { f , s} and

the previously allocated subcarriers and their corresponding relaysJJJ i and

submits its bid either as b(i)
s (l) = M(i)

c (lk∗
i
,λR), or b(i)

f
(l) =

M
(i)
c (lk∗

i
,λR)

vi(JJJ i∪lk∗
i
,λR)

for obj = s

and obj = f , respectively. k∗
i

is the relay that achieves either the maximum

marginal contribution or maximum relative marginal contribution for user

i using subcarrier l, and is determined as k∗
i
= arg max

k
M(i)

c (lk,λR) for obj = s,

and as k∗
i
= arg max

k

M
(i)
c (lk,λR)

vi(JJJ i∪lk,λR)
for obj = s. The winner user i∗ of subcarrier l

using relay k∗
i∗ is determined as: i∗ = arg max

i
b(i)

obj
(l). The set Ji∗,k∗ is updated

as Ji∗,k∗ = Ji∗,k∗ ∪ lk∗
i∗
. The algorithm proceeds iteratively until all subcarriers

are allocated.

9.3.2 One-Shot Subcarrier Assignment

In AF-OFDMA multiple relays one-shot auction, each user submits bids

for all subcarriers and the corresponding relays based on an estimate of



285

the Shapley value, where Algorithm 9.3 can be used to assign the sub-

carriers to the users. To capture the possibility of different relay assign-

ments to each subcarrier, a random relay assignment approach is adopted,

in which ςm represents a random assignment of the relays to the subcar-

riers, e.g., ςm = [1 2 1 2] means that subcarriers {1, 3} are assigned to re-

lay 1 and subcarriers {2, 4} are assigned to relay 2 and so forth. The ele-

ments in the random assignment ςm are generated from independent and

identically distributed random variables. The value of each element is an

integer k ∈ {1, · · · ,K} occurs with equal probability 1
K

. The set of subcar-

riers precedes subcarrier j in the permutation πm and their correspond-

ing relay assignment in ςm is denoted by C j(πm, ςm). The relay assigned

to subcarrier j in permutation πm and assignment ςm is represented by r j.

The marginal contribution M(i)
c (πm, ςm; j, k;λR) of subcarrier j assisted by re-

lay k of user i in the permutation πm and assignment ςm is computed as

M(i)
c (πm, ςm; j, k;λR) = vi(C j(πm, ςm) ∪ ( j, k),λR) − vi(C j(πm, ςm),λR). The esti-

mate of the Shapley value for user i is denoted as Φ̂
(i)
= (Φ̂(i)

1,1, · · · , Φ̂
(i)
J,K),

where Φ̂(i)

j,k
is computed as 1

M

∑M
m=1 M(i)

c (πm, ςm; j, k;λR), where M is number of

samples.

Algorithm 9.5 illustrates the estimation of the Shapley value for AF-

OFDMA multiple relays scenario based on a sampling approach.

Let b(i)

Sh
= (b(i)

Sh
(1), b(i)

Sh
(2), · · · , b(i)

Sh
(N)) denote the bidding strategy of user i

on the setJ . The bidding strategy of user i on subcarrier j ∈ J is computed

as: b(i)

Sh
( j) =

max
k
Φ̂

(i)
j,k

∑

j∈J max
k
Φ̂

(i)
j,k

. The corresponding relay assignment profile of user

i defined as R(i)
s = (R(i)

s (1), · · · ,R(i)
s (N)) is obtained as R(i)

s ( j) = arg max
k
Φ̂

(i)

j,k
,

where R(i)
s ( j) ∈ {1, · · · ,K}. b(i)

Sh
( j) =

max
k
Φ

(i)
j,k

∑

j∈J max
k
Φ

(i)
j,k

.

Similar to the single relay scenario; after all users submit their bids, the

base-station assigns the subcarriers and their corresponding relays to the

users using Algorithm 9.3. Then the source and relay power profiles are

computed using (9.17) and (9.19).
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Algorithm 9.5 Estimation of the Shapley Value Φ̂
(i)

for Multiple Relays
Scenario.

Require: M, γ(i)
SD

( j), γ(i,k)
SR

( j), γ(k)
RD

( j), λR, Pmax
i

, ∀ j ∈ J , ∀k ∈ K .

1: Φ̂
(i)

j,k
← 0, ∀ j ∈ J and ∀k ∈ K .

2: for m = 1 : M do

3: Generate a sample πm ∈ Ωwith probability 1
N! .

4: Generate a sample ςm of N elements; each element is a random integer from
{1, · · · ,K} with probability 1

K .
5: for j ∈ J do

6: for k ∈ K do

7: Find the set C j(πm, ςm).
8: Find the relay r j which is assigned to subcarrier j in ςm.
9: Find vi(C j(πm, ςm) ∪ ( j, r j),λR) and vi(C j(πm, ςm),λR) using (9.20).

10: if k = r j then

11: M
(i)
c (πm, ςm; j, k;λR) = vi(C j(πm, ςm) ∪ ( j, k),λR) − vi(C j(πm, ςm),λR).

12: else

13: M
(i)
c (πm, ςm; j, k;λR) = 0.

14: end if

15: Calculate Φ̂
(i)

j,k
= Φ̂

(i)

j,k
+M

(i)
c (πm, ςm; j, k;λR).

16: end for

17: end for

18: end for

19: Φ̂
(i)

j,k
=
Φ̂

(i)
j,k

M , ∀ j ∈ J , ∀k ∈ K .

20: return Φ̂
(i)

.

9.4 Performance Comparison

A key factor in determining the subcarrier assignment profiles of the pro-

posed auction algorithms is the common value λR for the one relay scenario

and the common value vector λR for multiple relays scenario. Changing the

value of λR, or λRk
∈ λR has a direct impact on the power profiles as clear

from (9.10), (9.12), (9.17), and (9.19). Hence, it has an indirect impact on the

submitted bids. In this chapter, we prefer to use the term common value

instead of the pricing. Pricing is a commonly used concept in game theory

framework as in [115, 149], to emphasize that this value is common to all

users and it is announced by the base-station or relay to control the relay-

ing power demands, and it is not used to charge the users. The common

value is used to disclose information about the relay resources. It used in
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Broadcast:  

Each user evaluates the worth
of the subcarriers using

Shapley value.

BS: Collect bids from all users.

BS: Assigns the subcarriers to
the users using Algorithm 9.3.

Each user determines the 
required

relaying power on the assigned 
subcarriers.

BS:  
Update Rλ

End

BS: Is
( ) max( )i

R R
i j

P j P=∑∑
No

Yes

Rλ

Figure 9.2 Flowchart of the One-Shot Auction Algorithm.

the design of the ith user utility function (9.5) to allow the user to determine

her relaying power profiles. In this regard, if the total relaying power which

results from the auction assignment differs from Pmax
R

, the base-station an-

nounces an updated value of λR to the users. The common value 6 λR can

be adjusted iteratively until the relay power constraint is satisfied using the

gradient or sub-gradient methods as in [21]:

λ(t+1)
R
=

(

λ(t)
R
− ǫ

(

Pmax
R −

∑

i∈I

∑

j∈Ji

P(i)
R

( j)
))+

, (9.22)

where ǫ is a small step size, t is the iteration index, P(i)
R

( j) is the optimal

power profile computed as in (9.12) using λR = λ
(t)
R

, and Ji is determined

by using one of the proposed auction algorithms. The auction algorithm is

applied repeatedly until the total power constraint is satisfied as shown in

Figure 9.3 and Figure 9.2 for the sequential and one-shot auctions, respec-

tively.

Let λ∗R be the relay common value that satisfies the power constraint

6For multiple relays scenario a similar approach can be followed to update λR.
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Each user evaluates the marginal 
contribution of subcarrier l.

Each user submits bid for subcarrier l
based on the objective function
and the marginal contribution.

BS: Collects bids from all users.

BS: Assigns subcarrier l to
the user with the highest bid.

Each user determines the 
required relaying power.

Rλ

End

Are 
all  subcarriers are

allocated.

( ) max( )i
R R

i j

P j P=∑∑

No

Yes

BS:  
Update 

BS:  
l=l+1

Rλ

Yes

No
IS

Broadcast      ,  l=1 

Figure 9.3 Flowchart of the Sequential Auction Algorithm.

∑

i∈I
∑

j∈J ∗
i

P(i)
R

( j) = Pmax
R , andJ ∗

i
be the corresponding subcarrier assignment

using the selected auction algorithm for i ∈ I. Then, the system throughput

index TI is defined using λ∗R and J ∗
i

as:

TI =

∑

i∈I vi(J ∗i , λ∗R)
∑

i∈I v̂i
, (9.23)

where
∑

i∈I v̂i is the allocation of subcarriers, source and relay power profiles

that maximizes the sum rate in (9.2). In order to find
∑

i∈I v̂i, we solve the

dual problem based on the assumption of zero duality gap, since OFDMA

systems satisfy the time sharing property for a large number of subcarriers,

as was proven in [30]. The dual approach transforms the problem into I

distinct single-user problems, then a per user problem can be separated into

N subcarrier problems as explained, in Appendix B.2.



289

D

S1

S2

Si

SI

50m

R

(a) Scenario One.
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(b) Scenario Two.

Figure 9.4 Sources, Relays and Destination Nodes Positions.

For the purpose of comparison, Jain’s fairness index FI is used with the

optimal λ∗R and J ∗
i
.

9.5 Simulation Results and Discussion

We model the subcarrier channel coefficient between any two nodes with

a separating distance d as H( j) ∼ CN(0, 1
L(1+d)α

), where, α = 4 is the propa-

gation loss factor, and L = 4 is the number of channel taps as in [49]. The

subcarrier noise power σ2 is set at 4×10−11Watt. The source maximum trans-

mit power Pmax
i
= 1Watt, and the relay maximum transmit power Pmax

R
=

10Watt, unless otherwise specified. The number of subcarriers N = 32, the

subcarrier bandwidth BN = 4KHz, and the capacity gap Γ = 1.

9.5.1 Single Relay Scenario

The scenario under consideration consists of I users (S1, S2, · · · , SI), one

relay and a common destination D as shown in Figure 9.4(a). The distance

between the relay and the destination nodes is dRD = 50m. The users are

uniformly distributed in the shaded area.

Figure 9.5 shows the sum data rate, the throughput, and the fairness
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indices as a function of the number of users for a single relay scenario for

the sequential subcarrier assignment auction for the two bidding strategies

(aiming either to maximize the sum data rate, or to maximize the fairness

index) with optimal and uniform power allocation profiles at the source and

relay nodes for Pmax
R
= 10Watt. Uniform (equal) power allocation profile

means that the relaying power for each subcarrier is set at Pmax
R /N and the

user’s maximum transmitted power Pmax
i

is allocated equally between the
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Figure 9.5 The Sum Data Rate, TI, and FI for the Proposed Sequential Algo-
rithm.

subcarriers assigned to her.

The bidding based on b(i)
s ( j) achieves higher sum data rate compared to

the bidding based on b(i)

f
( j) as shown in Figure 9.5(a). The bidding based

on optimal power allocation at the source and relay nodes achieves higher

sum data rate compared to the bidding based on uniform power allocation

profile as expected. The throughput index TI is shown Figure 9.5(b). The

maximum data rate
∑

i∈I v̂i is obtained with the assumption of zero duality

gap and obtained by solving the dual problem (B.5).

Clearly, the proposed sequential auction algorithm with optimal power

allocation using b(i)
s ( j) as a bidding strategy asymptotically achieves the max-

imum sum rate. The difference in the achievable data rate is less than 2%

compared to the sum data of (B.5) as illustrated by the throughput index,

with less computational complexity for the proposed algorithm, since solv-

ing the dual problem requires large number of iterations to find the La-

grange multipliers. We use the subgradient method with three step sizes;

a fixed step size with ǫ = .01, about 200, 000 λ-evaluations are required, the
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diminishing step size ǫ = 0.01√
t
, about 10, 000 λ-evaluations are required, and

with a step size as in [143] 2, 000 λ-evaluations are required. The fairness

index FI is shown in Figure 9.5(c). Clearly, the bidding based on b(i)

f
( j) with

optimal and uniform power allocation profiles achieves a very high fairness

index independent of the number of users, and achieves a higher fairness in-

dex compared to the bidding based on b(i)
s ( j). In addition, the fairness index

of the maximum sum rate is shown for comparison purposes.
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Figure 9.6 The Sum Rate, TI, and FI for the Proposed One-shot Algorithm.
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Figure 9.6 shows the sum data rate, the throughput, and the fairness in-

dices as a function of the number of users for a single relay scenario for the

one-shot subcarrier assignment auction with optimal and uniform power

allocation profiles at the source and relay nodes for Pmax
R = 10Watt. The

sum data rate for the one-shot auction with optimal power allocation is

higher than the sum data rate with uniform power allocation as shown in
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Figure 9.7 The Sum Rate, and FI for the Proposed Auction Algorithms as a
Function of the Relay Maximum Transmitted Power Pmax

R
for I = 8 Users.
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Figure 9.6(a).

The one-shot auction using optimal power allocation achieves a through-

put index TI ≥ 90% as shown in Figure 9.6(b). The proposed one-shot auc-

tion algorithm achieves a very high fairness index FI ≥ 95% with optimal

and uniform power allocation profiles as shown in Figure 9.6(c).

Figure 9.7 shows the sum rate and fairness index for I = 8 users as a
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Figure 9.8 TI and FI for the Proposed Auction Algorithms with Optimal
Power Profiles.

function of the relay maximum transmit power Pmax
R . The sum rate increases

with the increase in the maximum transmit power Pmax
R for all bidding strate-

gies as shown in Figure 9.7(a). The increase of the relay maximum transmit

power Pmax
R has marginal effect on the fairness index based on the bidding

strategies b(i)

f
( j) and b(i)

sh
( j) as shown in Figure 9.7(b). In addition, increas-

ing the relay maximum transmit power Pmax
R has a non-increasing effect on

the fairness index for the bidding strategy b(i)
s ( j). This is because the extra

power will be allocated to the subcarriers with better channel conditions.

The benefits of increasing Pmax
R to the users with bad channel conditions are

marginal.

Figure 9.8 compares the throughput and fairness indices as a function of

the number of users with optimal power profiles for the bidding strategies

b(i)

f
( j) and b(i)

sh
( j). Clearly, the difference in the fairness index is less than 2%

and the difference in the throughput index is less than 5% for all cases (that

is, different numbers of users).
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9.5.2 Multiple Relays Scenario

The scenario under consideration consists of I sources (S1, S2, · · · , SI), 2 re-

lays (R1, R2) and a common destination D as shown in Figure 9.4(b). For the

two relays scenario: relay R1 is set at (0, 0) and relay R2 is set at (0, 25)m. The

sources are distributed uniformly in the shaded area. The kth relay maxi-

mum transmit power is Pmax
Rk
= 5Watt, k ∈ {1, 2}.
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Figure 9.9 The Sum Rate, TI, and FI for the Proposed Sequential Algorithm
for Two Relays Scenario.
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Figure 9.9 shows the sum data rate, the throughput, and the fairness

indices as a function of the number of users for a two relays scenario for

the proposed sequential subcarrier assignment auction for the two bidding

strategies (aiming either to maximize the sum data rate, or to maximize the

fairness index) with optimal and uniform power allocation profiles at the



298

2 4 6 8 10 12 14 16
0.7

0.75

0.8

0.85

0.9

0.95

1

Number of Users

T
I

  

 

 

Optimal Power
Equal Power

b
sh
(i) (j)

Max−Sum

(b) Throughput Index T1

2 4 6 8 10 12 14 16
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Number of Users

F
I

 
 
  

 

 

Optimal Power
Equal Power

b
sh
(i) (j)

Max−Sum

(c) Fairness Index F1

Figure 9.10 The Sum Rate, TI, and FI for the Proposed One-Shot Algorithm
for Two Relays Scenario.

source and relay nodes. Similar to the single relay scenario, the bidding

based on b(i)
s ( j) achieves a higher sum data rate and throughput index com-

pared to the bidding based on b(i)

f
( j) as shown in Figure 9.9(a), and Fig-

ure 9.9(b), respectively. The bidding strategy b(i)

f
( j) achieves a very high

fairness index with optimal and uniform power profiles similar to the one

relay scenario as shown in Figure 9.9(c).
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Figure 9.11 TI and FI for the Proposed Auction Algorithm with Optimal
Power Profiles for Two Relays.

Figure 9.10 shows the sum data rate, the throughput and fairness indices

as a function of the number of users for two relays scenario for the one-shot

subcarrier assignment auction with optimal and uniform power allocation

profiles at the source and relay nodes. The sum data rate and the throughput

index for the one-shot auction with optimal power allocation is higher than

the sum data rate with uniform power allocation as shown in Figure 9.10(a)
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and Figure 9.10(b), respectively. The bidding strategy b(i)

Sh
( j) achieves a very

high fairness index similar to the one relay scenario as shown Figure 9.10(c).

Figure 9.11 compares the throughput and fairness indices as a function

of the number of users for the two relays scenario with optimal power pro-

files for the bidding strategies b(i)

f
( j) and b(i)

sh
( j). Similar to the single relay

scenario, the difference in the fairness index is less than 2% and the differ-

ent in the throughput index is less than 5% for all cases.

9.6 Conclusions

In this chapter, we investigate joint resource allocation for multiple users

multiple relays AF-OFDMA cooperative communication systems in the pres-

ence of a direct link between the source and destination nodes. The sub-

carriers are assigned based on the auction framework. We propose subcar-

rier assignment algorithms based on the sequential auction framework. The

base-station receives bids from all the users for the subcarrier, then the sub-

carrier is assigned to the user with the highest bid. Sequentially, the assign-

ment progresses until all subcarriers are allocated. The bidding strategies

of these algorithms are designed either to maximize the sum data rate or

maximize the fairness index. Furthermore, we propose a subcarrier assign-

ment algorithm based on a one-shot auction. The user submits bids to the

base-station for all subcarriers at once based on an estimate of the Shap-

ley value. An iterative algorithm is then used at the base-station to assign

the subcarriers to the users to achieve rate fairness. Numerical simulation

results show that the proposed algorithms achieve the proposed objective

with high-performance measures; high-throughput index for maximizing

the sum data rate and high fairness index for maximizing the fairness in-

dex. Uniform and optimal power allocation at the source and relay nodes

are used within the auction framework. The throughput and the fairness in-

dices for the uniform power allocation show similar trends to the through-
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put and the fairness indices of optimal power allocation.



CHAPTER10

CONCLUSIONS AND FURTHER RESEARCH

In this chapter, conclusions are drawn in Section 10.1, and some suggestions

for further research are introduced in Section 10.2.

10.1 Conclusions

In this dissertation, we investigate many resource allocation problems in

relay aided cooperative communication systems. The main conclusions are

summarized below.

• Sharing the two best ordered relays with equal power and equal band-

width between the two users over Rayleigh flat fading channels achieves

full diversity order for both users. Closed form expressions for the out-

age probability, and BEP performance measures for both AF and DF

cooperative schemes are developed for different scenarios; AF/DF-

orthogonal three time slots, AF-BF, DF-BF, and DF-STBC.

• Joint power and bandwidth allocation is proposed to maximize the

sum rate for multi user single relay improved AF cooperative schemes.

The improved AF cooperative communication scheme with optimal

power and bandwidth profiles achieves a higher sum rate compared

to full bandwidth relaying with optimal power allocation. A recur-

sive algorithm alternating between a power allocation step for a given
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power profile and a bandwidth allocation step for a given power pro-

file is developed to solve the difficult joint optimization problem (non-

convex). The proposed algorithm is extended to allocate the power

and bandwidth profiles for the improved AF cooperative communica-

tion scheme over frequency selective fading channels.

• Stackelberg game is proposed to model the interactions between the

users and the relay in AF cooperative communication systems, where

the relay aims to maximize its benefits from selling its resources power

and bandwidth to competing users, and the users aim to maximize

their utility functions by selecting the power and bandwidth demands.

The existence and uniqueness of Stackelberg Nash Equilibrium are

proved for the proposed game. A distributed algorithm to reach the

Stackelberg Nash Equilibrium is proposed. The stability conditions of

the proposed algorithm are investigated.

• A low complexity algorithm is developed to select the mode of oper-

ation to maximize the sum rate over one OFDM symbol at high SNR

regime for three scenarios: selective AF/OFDM, selective DF/OFDM,

and hybrid AF-DF-OFDM scenarios, under two power constraint cri-

teria; individual power constraint at the source node as well as the

relay node, and total power constraint. The computation complexity

of the proposed algorithm is of O(N), which can be reduced further

to O(log2(N)), using binary search algorithms compared to O(2N) for

exhaustive search algorithm.

• The two band partition principle for two users OFDMA system can

be applied to allocate subcarriers for two users AF/DF-OFDMA co-

operative communication systems aiming to maximize the weighted

sum rate. Low complexity algorithms are developed based on the

two users scenario to allocate the subcarriers for multi user AF/DF-
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OFDMA cooperative communication systems. Numerical simulations

show that the proposed algorithms achieve approximately the sum

rate of the dual approach with less computations.

• Sequential auction algorithm is proposed to allocate the subcarriers for

multi relay multi user AF-OFDMA communication system, aiming to

maximize either the sum rate or the fairness index in a competition

fashion. The biding strategy is based on optimal power profiles at the

source and relay nodes. The algorithm proceeds in a sequential fash-

ion until all subcarriers are assigned. The subcarrier is assigned to

the user who submits the highest bid. Numerical simulation results

show that the proposed algorithm achieves the proposed objective

with high-performance measures; high-throughput index for maxi-

mizing the sum data rate and high fairness index for maximizing the

fairness index. To reduce the required synchronized interactions be-

tween the base-station and the users in sequential auction algorithms

one-shot auction algorithm is devised to allocate the subcarriers for

multi relay multi user AF-OFDMA communication system, aiming to

maximize the fairness index. The biding strategy is based on optimal

power profiles at the source and relay nodes. The user determines the

most influential subcarriers based on an estimate of the Shapley value

and bids on all subcarriers at once. The subcarriers are then allocated

at the base station based on the submitted bids using an iterative algo-

rithm developed to maximize the fairness index.

10.2 Further Research

This thesis opens promising doors for further research in wireless relay net-

works. Here, are some directions.

• Optimal Resource Allocation for AF cooperative communication with Uncer-
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tainty in the Channel Gains

In Chapter 4, joint power and bandwidth allocation is performed with

perfect CSI. It is also interesting to address joint power and bandwidth

allocation with imperfect CSI.

• Differential/ Dynamic Games for Resource Allocation

In Chapter 5, using Stackelberg framework, we assume a static model,

i.e. the number of users do not change, channel gains do not vary,

and the users do not move. It is interesting to extend the model to

encompass the following:

– The number of users is changing in the system; entering or leav-

ing the system.

– The user is moving with a certain speed.

– The resources which are allocated to the user are changing based

on the density of users and their class of service.

– The channel is time variant.

– The user can churn between different wireless networks.

– The user can select different relays based on availability of re-

sources or service prices.

In this sense, the fit between differential games and resource manage-

ment in a dynamic system is a promising one for further research.

• Two Bands Partition with Subcarrier Pairing

In Chapter 8, the developed ordering function for AF/DF- OFDMA

for subcarrier assignment is based on the assumption that the infor-

mation at subcarrier j in the first time slot is forwarded on the same

subcarrier in the second time slot. To utilize all available degrees of

freedoms, further research is needed to find or modify the ordering
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function to entail the possibility of using a different subcarrier to for-

ward the information in the second time slot.

• Two Bands Partition for low SNR for AF/DF-OFDMA Scenarios

In Chapter 8 and Chapter 7, the developed ordering function for AF/DF-

OFDMA for subcarrier assignment is based on high SNR approxima-

tion. Further research is needed to explore the two-band partition ap-

proach for low SNR AF/DF-OFDM scenarios, and the possibility of

developing an ordering function in this regime.

• Two Bands Partition Principle with Beamforming

Further research is needed to explore the two band partition principle

for multi relays with beamforming for AF/DF-OFDMA scenarios and

developing the ordering function.

• Resource allocation for AF/DF-OFDMA Multi User Two Way Relaying

Investigating subcarrier assignment and power allocation at the source

and relay nodes for two way relaying AF/DF-OFDMA systems using

auction framework is an interesting direction for further research.

• Bundle Auction for AF/DF-OFDMA Relay Networks

In Chapter 9, each user submits bids either on a single subcarrier in

the proposed sequential auction algorithm, or on all subcarriers in the

proposed one-shot auction algorithm. Both algorithms are based on

assigning one subcarrier at each step. It is interesting to develop auc-

tion algorithms where each user submits a bundle of bids based on op-

timal power profiles at the source and relay nodes. Bundling based on

the Shapley value, is one promising direction for further investigation.

The effect of the number of submitted bundles, and the characteristics

of the submitted bundles on the throughput and fairness indices need

to be investigated. Developing low complexity algorithms for bundle
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auction AF/DF-OFDMA to solve the winner determination problem

need to be explored further.



APPENDIXA

POWER AND BANDWIDTH ALLOCATION

The objective function for the exterior penalty method can be formulated as

[109]:

θ(µ,P,W) =
∑

i∈I
R(i) − µ

∑

i∈I
(max{0,−Pi})2 − µ

∑

i∈I
(max{0,−Wi})2−

µ
∑

i∈I
(max{0,Wi −W})2 − µ(max{0, (

∑

i∈I
Pi − Pmax}))2. (A.1)

The dual problem can be formulated as [32]:

D = min
λ�0

max
P,W

∑

i∈I
R(i) − λ(P)

sum(
∑

i∈I
Pi − Pmax)+

∑

i∈I
λ(P)

i
Pi +

∑

i∈I
λ(WL)

i
Wi −

∑

i∈I
λ(WU)

i
(Wi −W), (A.2)

where λ = [λ(P)
sum, λ

(P)

i
, · · · , λ(P)

I
, λ(WL)

i
, · · · , λ(WL)

I
, λ(WU)

i
, · · · , λ(WU)

I
].
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APPENDIX AF-OFDMA

B.1 Proof of Concavity

Define the function R(PS,PR) as:

R(PS,PR) = log
(

1 + aPS +
PSPR

bPs + dPR

)

, (B.1)

where a, b, and d are positive constants.

The second derivative test (Hessian) is used to show that R(PS,PR) is a

concave function [20]. The second partial derivative of R(PS,PR) with re-

spect to PS is computed as:

∂2R(PS,PR)

∂P2
S

=
−2bdP2

R

(1 + aPs +
PSPR

bPS+dPR
)(bPS + dPR)3

−
(a +

dP2
R

(bPS+dPR)2 )2

(1 + aPS +
PSPR

bPS+dPR
)2
, (B.2)

the second partial derivative of R(PS,PR) with respect to PR is computed as:

∂2R(PS,PR)

∂P2
R

=
−2bdP2

S

(1 + aPs +
PSPR

bPS+dPR
)(bPS + dPR)3

−
(bP2

S
)2

(bPS + dPR)2(1 + aPS +
PSPR

bPS+dPR
)2
,

(B.3)
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and the second partial derivative with respect to PR and PS is computed as:

∂2R(PS,PR)

∂PR∂PS
=

2dbPSPR(bPS + dPR)(1 + aPS +
PSPR

bPS+dPR
) − bP2

S
(bPS + dPR)(a +

dP2
R

(bPS+dPR)2 )

(bPS + dPR)3(1 + aPS +
PSPR

bPS+dPR
)2

.

(B.4)

It is clear from (B.2) and (B.3) that ∂
2R(PS,PR)

∂P2
S

< 0 and ∂2R(PS,PR)

∂P2
R

< 0, respectively.

And it can be proved easily that ∂
2R(PS,PR)

∂P2
S

∂2R(PS,PR)

∂P2
R

−
(
∂2R(PS,PR)

∂PR∂PS

)2
> 0. This

proves the concavity of R(PS,PR) in PS and PR.

B.2 Dual Problem

For AF-OFDMA scenario, the optimization problem after relaxing the total

power constraints can be written as:

max
PS, PR, Y, λ

R(P,Y,λ) =
W

2N

∑

i∈I

∑

j∈J
Y(i)

j
log

(

1 +
Γ

(i)

SD
( j) + Γ(i)

AF
( j)

ΓY(i)

j

)

−

∑

i∈I
λi(

∑

j∈J
P(i)

S
( j) − Pmax

i ) − λR(
∑

i∈I

∑

j∈J
P(i)

R
( j) − Pmax

R ),

s.t. P(i)

S
( j) ≥ 0,P(i)

R
( j) ≥ 0, Y(i)

j
≥ 0, λR ≥ 0, λi ≥ 0, (B.5)

where λR, and λi are Lagrange multipliers. For a given subcarrier assign-

ment Y, the source and relay power profiles are given as in (8.12) and (8.14).

Using the source and relay power profiles and the Lagrange multiplies λR

and λi, ∀i ∈ I, we can determine the jth subcarrier assignment, such that

the subcarrier is assigned to the user that achieves the maximum rate in that

subcarrier. This can be formulated as:

Yi
j =





1, if i∗ = arg max
i∈I

R̃i( j),

0, otherwise ,

(B.6)
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where R̃i( j) is defined as:

R̃i( j) =
W

2N
log2

(

1 +
Γ

(i)

SD
( j) + Γ(i)

AF
( j)

Γ

)

− λiP
(i)

S
( j) − λRP(i)

R
( j). (B.7)

The power profiles P(i)

S
( j) and P(i)

R
( j) are obtained as arg max

P
(i)
S

( j), P(i)
R

( j)

R̃i( j). Prob-

lem (B.5) can be solved iteratively using the gradient or sub-gradient meth-

ods as [21]:

λ(t+1)
=

(

λ(t) − ǫ(Pmax − P)
)+

, (B.8)

where ǫ is the step size, t is the iteration index, Pmax = [Pmax
R
,Pmax

1
, · · · ,Pmax

K
]T,

P = [
∑

j∈J
∑

i∈I Yi
j
P(i)

R
( j),

∑

j∈J Y1
j
P(1)

S
( j), · · · ,∑ j∈J YK

j
P(K)

S
( j)]T, and λ = [λR, λ1,

· · · , λK]T.
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