2,189 research outputs found

    Rotating disk electrodes to assess river biofilm thickness and elasticity

    Get PDF
    The present study examined the relevance of an electrochemical method based on a rotating disk electrode (RDE) to assess river biofilm thickness and elasticity. An in situ colonisation experiment in the River Garonne (France) in August 2009 sought to obtain natural river biofilms exhibiting differentiated architecture. A constricted pipe providing two contrasted flow conditions (about 0.1 and 0.45 m s−1 in inflow and constricted sections respectively) and containing 24 RDE was immersed in the river for 21 days. Biofilm thickness and elasticity were quantified using an electrochemical assay on 7 and 21 days old RDE-grown biofilms (t7 and t21, respectively). Biofilm thickness was affected by colonisation length and flow conditions and ranged from 36 ± 15 μm (mean ± standard deviation, n = 6) in the fast flow section at t7 to 340 ± 140 μm (n = 3) in the slow flow section at t21. Comparing the electrochemical signal to stereomicroscopic estimates of biofilms thickness indicated that the method consistently allowed (i) to detect early biofilm colonisation in the river and (ii) to measure biofilm thickness of up to a few hundred μm. Biofilm elasticity, i.e. biofilm squeeze by hydrodynamic constraint, was significantly higher in the slow (1300 ± 480 μm rpm1/2, n = 8) than in the fast flow sections (790 ± 350 μm rpm1/2, n = 11). Diatom and bacterial density, and biofilm-covered RDE surface analyses (i) confirmed that microbial accrual resulted in biofilm formation on the RDE surface, and (ii) indicated that thickness and elasticity represent useful integrative parameters of biofilm architecture that could be measured on natural river assemblages using the proposed electrochemical method

    Biofilm Viscoelasticity and Nutrient Source Location Control Biofilm Growth Rate, Migration Rate, and Morphology in Shear Flow

    Get PDF
    We present a numerical model to simulate the growth and deformation of a viscoelastic biofilm in shear flow under different nutrient conditions. The mechanical interaction between the biofilm and the fluid is computed using the Immersed Boundary Method with viscoelastic parameters determined a priori from measurements reported in the literature. Biofilm growth occurs at the biofilm-fluid interface by a stochastic rule that depends on the local nutrient concentration. We compare the growth, migration, and morphology of viscoelastic biofilms with a common relaxation time of 18 min over the range of elastic moduli 10–1000 Pa in different nearby nutrient source configurations. Simulations with shear flow and an upstream or a downstream nutrient source indicate that soft biofilms grow more if nutrients are downstream and stiff biofilms grow more if nutrients are upstream. Also, soft biofilms migrate faster than stiff biofilms toward a downstream nutrient source, and although stiff biofilms migrate toward an upstream nutrient source, soft biofilms do not. Simulations without nutrients show that on the time scale of several hours, soft biofilms develop irregular structures at the biofilm-fluid interface, but stiff biofilms deform little. Our results agree with the biophysical principle that biofilms can adapt to their mechanical and chemical environment by modulating their viscoelastic properties. We also compare the behavior of a purely elastic biofilm to a viscoelastic biofilm with the same elastic modulus of 50 Pa. We find that the elastic biofilm underestimates growth rates and downstream migration rates if the nutrient source is downstream, and it overestimates growth rates and upstream migration rates if the nutrient source is upstream. Future modeling can use our comparison to identify errors that can occur by simulating biofilms as purely elastic structures

    Measurement techniques for microbial corrosion assessment

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Continuum and discrete approach in modeling biofilm development and structure: a review

    Get PDF
    The scientific community has recognized that almost 99% of the microbial life on earth is represented by biofilms. Considering the impacts of their sessile lifestyle on both natural and human activities, extensive experimental activity has been carried out to understand how biofilms grow and interact with the environment. Many mathematical models have also been developed to simulate and elucidate the main processes characterizing the biofilm growth. Two main mathematical approaches for biomass representation can be distinguished: continuum and discrete. This review is aimed at exploring the main characteristics of each approach. Continuum models can simulate the biofilm processes in a quantitative and deterministic way. However, they require a multidimensional formulation to take into account the biofilm spatial heterogeneity, which makes the models quite complicated, requiring significant computational effort. Discrete models are more recent and can represent the typical multidimensional structural heterogeneity of biofilm reflecting the experimental expectations, but they generate computational results including elements of randomness and introduce stochastic effects into the solutions

    Surface Engineering of Biomimetic Antibacterial and Biocompatible Hybrid Materials Through Molecular Layer Deposition.

    Get PDF
    150 p.First part of this thesis highlights a new method for obtaining ultrathin conformal films composed of chitin and chitin-based organic-inorganic hybrid biomaterials from the gas phase by molecular layer deposition (MLD). The second part of this thesis investigates silicon-based films with application potential in packaging or further biomedical applications. MLD growth of a new materials group of hybrid alumosilazane films was explored For the first time synthesized from the vapor phase by utilizing a ring-opening reaction of V3N3 and coupling it with TMA was obtained. The last chapter of the thesis reports on the first gas-phase solvent-free synthesis of Polyoxazolines via living cationic ring-opening polymerization. For this a new type of MLD process has been developed, which uses TosCl chloride as initiator for polymerizations of 2-methyl-2-oxazoline, 2-phenyl-2-oxazoline and 2-isopropenyl-2-oxazoline.CICnanoGUN

    Membranes based on polyacrylamide coatings on metallic meshes prepared by a two-steps redox polymerization. Performance for oil-water separation and biofouling effects

    Get PDF
    Superhydrophilic oil-water separation membranes were prepared based on chemical (non-photoinduced) polymerization of acrylamide on metal meshes. Membranes were characterized by surface morphological analysis (SEM and AFM), determination of contact angles of water and oil drops, measurement of water flow through the membranes, analysis of dissolved organic in filtered wateroil systems, critical intrusion pressure of oil and surface coverage by bacterial biofilms. The main characteristics of the membranes were studied as function of coverage with polyacrylamide (PAM). The membranes presented efficiencies larger than 99% for toluene-water separation and lifetimes of several months. The intrusion pressure (0.25-1.25 kPa) and water flow (10-300 Lm-2s -1) varied depending on PAM coverage. A mathematical model was implemented for predicting the water flow as function of hydrogel coverage. The results indicate there is a degree of compromise between three factors that are related to the amount of PAM coating: avoiding biofouling (which can block the flow, induce corrosion, etc.), maintaining an important flow of water and sustaining a given intrusion pressure of oil on the membranes.Fil: Cabrera, Jorge Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Inorgánica, Analítica y Química Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Investigaciones en Bionanociencias "Elizabeth Jares Erijman"; ArgentinaFil: Rojas, Graciela Beatriz. YPF - Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: D'accorso, Norma Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones en Hidratos de Carbono. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones en Hidratos de Carbono; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Orgánica; ArgentinaFil: Lizarraga, Leonardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Investigaciones en Bionanociencias "Elizabeth Jares Erijman"; ArgentinaFil: Gonzalez Negri, Ricardo Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Inorgánica, Analítica y Química Física; Argentin

    Mechanics of biofilms formed of bacteria with fimbriae appendages

    Get PDF
    Gram-negative bacteria, as well as some Gram-positive bacteria, possess hair-like appendages known as fimbriae, which play an important role in adhesion of the bacteria to surfaces or to other bacteria. Unlike the sex pili or flagellum, the fimbriae are quite numerous, with of order 1000 fimbriae appendages per bacterial cell. In this paper, a recently developed hybrid model for bacterial biofilms is used to examine the role of fimbriae tension force on the mechanics of bacterial biofilms. Each bacterial cell is represented in this model by a spherocylindrical particle, which interact with each other through collision, adhesion, lubrication force, and fimbrial force. The bacterial cells absorb water and nutrients and produce extracellular polymeric substance (EPS). The flow of water and EPS, and nutrient diffusion within these substances, is computed using a continuum model that accounts for important effects such as osmotic pressure gradient, drag force on the bacterial cells, and viscous shear. The fimbrial force is modeled using an outer spherocylinder capsule around each cell, which can transmit tensile forces to neighboring cells with which the fimbriae capsule collides. We find that the biofilm structure during the growth process is dominated by a balance between outward drag force on the cells due to the EPS flow away from the bacterial colony and the inward tensile fimbrial force acting on chains of cells connected by adhesive fimbriae appendages. The fimbrial force also introduces a large rotational motion of the cells and disrupts cell alignment caused by viscous torque imposed by the EPS flow. The current paper characterizes the competing effects of EPS drag and fimbrial force using a series of computations with different values of the ratio of EPS to bacterial cell production rate and different numbers of fimbriae per cell

    Computational fluid dynamics techniques for fixed-bed biofilm systems modeling : numerical simulations and experimental characterization

    Get PDF
    This thesis is focused on the development of one-phase and multiphase models using computational fluid dynamics (CFD) techniques to analyze biosystems behavior at mesoscale. In the first part, the operation of a fixed-bed biofilm reactor was simulated using Eulerian one-phase models, coupling fluid flow dynamics with biokinetics. The results reproduced accurately bioreactor performance, being experimentally verified hydrodynamics and species transport. However, the models had to be adapted to reproduce real scenarios where the biofilm motion can play a key role. On further consideration, this thesis suggested the development of Eulerian two-phase models using volume of fluid (VOF) method, defining the biofilm as an independent fluid phase by means of a comprehensive analysis of its rheological properties. This characterization became essential for accurately reproducing the fluid-biofilm interaction, describing the biofilm as a non-Newtonian fluid, which parameters were strongly dependent on its density. Thus, in the second part of this thesis, this novel continuum approach for biosystems modeling was tested, considering the required implementations to reproduce the species transfer at the interface (liquid-biofilm), and the possible growth of the biofilm phase. This new approach coupled fluid dynamics under laminar conditions with biochemical phenomena and/or biofilm mechanical behavior, so being able to reproduce the fluid stress over the biofilm, and its motion. The simulated results were experimentally verified evaluating transport mechanisms under different hydrodynamic conditions, and the model capability to reproduce shear-induced deformation and detachment, and recoil in biofilms was stated. In the third part of this thesis, the capacities of the new approach of continuum model were further tested, in order to reproduce wide range of hydrodynamic conditions to which biosystems can be exposed. Particularly, Eulerian multiphase models were developed and solved to characterize turbulent gas flows behavior over biofilms attached to walls. A coupled method of VOF and level-set, and shear stress transport (SST) k-omega model were used, reproducing accurately gas-biofilm interactions, turbulence and near-wall treatment. The simulated results were experimentally verified to confer identity to developed CFD approach, correctly describing the interfacial instabilities on the fixed-bed biofilm, such as ripples formation, and biofilm displacement and removal from its original position. The results also revealed that biofilm fluidization was the mechanisms behind the impact of turbulent air flows. Finally, in the last part of this thesis, the work was focused on the accurate analysis of fluid-biofilm interface, and on the necessity of acquiring local experimental data to verify models. The applicability of needle-probes as an innovative technique for in-situ biofilm layer and fluid interfaces detection was examined. The sensor probe performance was calibrated and verified in multiphase systems, revealing its practicability for interface detection, depth measuring, and surface reconstruction. So, a feasible tool for the experimental characterization of biosystems and models verification at mesoscale was provided. Therefore, the Eulerian multiphase approach proposed in this thesis, together with the experimental analyses, revealed the potential of CFD techniques as an alternative tool for fixed-bed biofilm systems modeling, allowing to reproduce simultaneous spatial and temporal, physical and biochemical phenomena under different operating conditions and biosystems configurations. The proposed approach helped to address key aspects of biofilm modeling such as its deformation and detachment under laminar and turbulent conditions.El estudio y modelización de los sistemas biológicos o biosistemas sigue siendo un reto que requiere explorar los fenómenos físicos y bioquímicos desde diferentes niveles de resolución espacial y temporal. Incluso para el régimen de flujo laminar más simple, las interacciones fluido- biopelícula deben ser investigadas en detalle. La dinámica de fluidos computacional (CFD, del inglés computational fluid dynamics) es una herramienta prometedora y extendida para modelar rigurosamente la hidrodinámica en reactores, la cual recientemente ha surgido como un enfoque alternativo para el modelo de biorreactores. Sin embargo, las complicadas interacciones entre la biopelícula y las fases fluidas (gas y líquido), aún no han sido descritas utilizando este tipo de técnicas. En esta tesis, se diseñaron y desarrollaron modelos monofásicos y multifásicos utilizando códigos comerciales CFD para analizar el comportamiento de los biosistemas a nivel de mesoescala. En la primera parte, se simuló la operación de un reactor de biopelícula de lecho fijo utilizando modelos monofásicos Eulerianos, acoplando la dinámica del flujo de fluido con la biocinética, e implementando un modelo de pérdidas de presión hidráulica para considerar las características físicas de la biopelícula. Esta técnica permitió obtener resultados precisos relacionados con el rendimiento del bioreactor, verificando experimentalmente la hidrodinámica y el transporte de las especies. Sin embargo, estos modelos necesitaron ser mejorados para poder reproducir escenarios reales donde el movimiento de la biopelícula puede jugar un papel importante. Por ello, se sugirió el desarrollo de modelos Eulerianos de dos fases utilizando el método de volumen de fluido (VOF, del inglés volume of fluid), donde la biopelícula se definió como una fase líquida independiente. Para desarrollar estos modelos, la caracterización experimental de las propiedades de la biopelícula fue imprescindible para adquirir un conocimiento profundo de los fenómenos implicados, especialmente para reproducir con precisión la interacción fluida sobre la biopelícula, ya que tiene un efecto directo sobre la estructura de la biopelícula. Como resultado, se desarrolló un análisis reológico integral bajo flujos de cizallamiento estables, oscilatorios y transitorios, para obtener las propiedades mecánicas macroscópicas y analizar los mecanismos de unión entre los componentes estructurales a microescala. Los resultados experimentales señalaron que las biopelículas mostraban un carácter gelatinoso, y teniendo un comportamiento de adelgazamiento del cizallamiento con una tensión de fluencia. Así, la biopelícula se caracterizó como un fluido no Newtoniano, cuyos parámetros dependían en gran medida de la densidad de la biopelícula estudiada. En la segunda parte de esta tesis, se propuso, implementó y probó un nuevo enfoque continuo para el modelado de biosistemas. Esto incluyó la definición de biopelícula como una fase fluida no Newtoniana, y otras implementaciones para reproducir la transferencia de especies en la interfaz (líquido-biopelícula), y para vincular el posible crecimiento de la fase de biopelícula con las especies transportadas y transferidas, entre otras consideraciones. Este nuevo enfoque combinó la dinámica de fluidos en condiciones laminares con fenómenos bioquímicos y/o comportamiento mecánico de la biopelícula, calculando con precisión la fracción volumétrica de las fases a lo largo del dominio, pudiendo así reproducir la interacción fluido-biopelícula en caso de movimiento de la biopelícula. Los resultados simulados fueron verificados experimentalmente evaluando los mecanismos de transporte bajo diferentes condiciones hidrodinámicas. Adicionalmente, se mostró la capacidad del modelo desarrollado para reproducir deformaciones y desprendimientos inducidos por cizallamiento y el retroceso (o recuperación) en las biopelículas, estando los resultados simulados en concordancia cualitativa con las observaciones experimentales. Con el fin de reproducir una amplia gama de condiciones hidrodinámicas a las que pueden estar expuestos los biosistemas, las capacidades del nuevo enfoque del modelo continuo se probaron más a fondo. En particular, se desarrollaron y resolvieron modelos Eulerianos multifásicos para caracterizar el comportamiento de los flujos de gas turbulento sobre biopelículas adheridas a la pared, utilizando un método acoplado de VOF y de conjunto de nivel (en inglés level-set) y el modelo SST k-ω, con el fin de reproducir con precisión las interacciones gas-biopelícula, la turbulencia y el tratamiento cercano a la pared. Los resultados simulados fueron verificados experimentalmente para conferir identidad al enfoque de CFD desarrollado, describiendo correctamente las inestabilidades interfaciales en la biopelícula de lecho fijo, tales como la formación de ondulaciones, y el desplazamiento y desprendimiento de la biopelícula de su posición original. Los resultados también revelaron que la fluidización del biopelícula era el mecanismo que se encontraba detrás del impacto de flujos de aire turbulentos. Finalmente, en la última parte de esta tesis, el trabajo se centró en el análisis preciso de la interfase fluido-biopelícula, y en la necesidad de adquirir datos experimentales locales para verificar modelos, como se había comentado en los capítulos anteriores. Se examinó la aplicabilidad de las sondas de aguja como técnica innovadora para la detección in-situ de la capa de biopelícula y de las interfases de los fluidos. El comportamiento de las sondas fue calibrado y verificado en sistemas multifásicos, mostrando su practicidad para la detección de interfases, medición de profundidad y reconstrucción de superficies. Así pues, se proporcionó una herramienta viable para la caracterización experimental de biosistemas y la verificación de modelos a mesoescala. Por lo tanto, el enfoque multifase Euleriano propuesto en esta tesis, junto con los análisis experimentales, reveló el potencial de las técnicas CFD como una herramienta alternativa al modelo de sistemas de biopelícula de lecho fijo, permitiendo reproducir simultáneamente fenómenos físicos y bioquímicos en espacio y tiempo, y bajo diferentes condiciones de operación y configuraciones de los biosistemas. El enfoque propuesto ayudó a abordar aspectos clave del modelado de biopelículas como su deformación y desprendimiento bajo condiciones laminares y turbulenta

    Self-sterilizing ormosils surfaces based on photo-synzthesized silver nanoparticles

    Get PDF
    Medical device-related infections represent a major healthcare complication, resulting in potential risksfor the patient. Antimicrobial materials comprise an attractive strategy against bacterial colonizationand biofilm proliferation. However, in most cases these materials are only bacteriostatic or bactericidal,and consequently they must be used in combination with other antimicrobials in order to reach theeradication condition (no viable microorganisms). In this study, a straightforward and robust antibac-terial coating based on Phosphotungstate Ormosil doped with core-shell (SiO2@TiO2) was developedusing sol-gel process, chemical tempering, and Ag nanoparticle photoassisted synthesis (POrs-CS-Ag).The coating was characterized by X-ray Fluorescence Spectroscopy (XRF), Field Emission ScanningElectron Microscopy (FE-SEM), Atomic Force Microscopy (AFM) and X-ray Photoelectron Microscopy(XPS). The silver free coating displays low antibacterial activity against Staphylococcus aureus and Pseu-domonas aeruginosa, in opposition to the silver loaded ones, which are able to completely eradicate thesestrains. Moreover, the antimicrobial activity of these substrates remains high until three reutilizationcycles, which make them a promising strategy to develop self-sterilizing materials, such as POrs-CS-Ag-impregnated fabric, POrs-CS-Ag coated indwelling metals and polymers, among other materials.Fil: Gonçalves, Lidiane Patrícia. Universidade de Sao Paulo; BrasilFil: Miñan, Alejandro Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; ArgentinaFil: Benítez, Guillermo Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; ArgentinaFil: Fernandez Lorenzo, Monica Alicia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; ArgentinaFil: Vela, Maria Elena. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; ArgentinaFil: Schilardi, Patricia Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; ArgentinaFil: Ferreira Neto, Elias Paiva. Universidade de Sao Paulo; BrasilFil: Noveletto, Júlia Cristina. Universidade de Sao Paulo; BrasilFil: Correr, Wagner Rafael. Universidade de Sao Paulo; BrasilFil: Rodrigues Filho, Ubirajara Pereira. Universidade de Sao Paulo; Brasi

    Multifunctional Nanocomposites based on Bacterial Cellulose

    Get PDF
    Cellulose is biodegradable, renewable, and abundant in nature thus cellulose (or paper)-based products can be inexpensively produced and recycled. Among cellulosic materials, bacterial nanocellulose (BNC) draws a special research attention due to the inherent three-dimensional nanofibrous structure, excellent mechanical flexibility, high purity and well-defined surface chemistry, and cost-efficient, scalable and environment-friendly synthesis. BNC can be biosynthesized by Gluconacetobacter xylinus, which is the most characterized BNC producer among various microorganisms. BNC is composed of highly pure cellulose nanofibrils, produced from well-defined dextrose through biochemical steps and subsequent self-assembling of the secreted cellulose fibrils which has the dimension ranges from 25 to 100 nm in diameter from bacteria in the culture medium. During the biosynthesis of BNC, shape-controlled hydrogels with well-defined network structure pore diameters below 10 µm can be easily achieved. For all the above-mentioned reasons, BNC is a highly promising platform material for the fabrication of functional composites through in situ growth or adsorption of pre-synthesized nanostructures on the nanoscale cellulose fibers. In this work, we have designed and demonstrated novel strategies to realize BNC-based functional nanocomposites with applications in sensing, water purification and energy storage. We have demonstrated a BNC film-based surface enhanced Raman scattering (SERS) substrate which has 3D porous structure and ultrafine fibers with uniform and dense adsorption of plasmonic nanostructures, resulting large SERS enhancement and excellent uniformity of SERS activity. For the first time, we have demonstrated a novel, highly scalable, cost-effective and green strategy to realize functional BNC-based foams/membranes. Functional materials such as graphene oxide (GO), polydopamine (PDA) can be efficiently incorporated within BNC matrix during its growth. Owing to the intercalation of functional materials within the layered BNC matrix, the functional composites showed excellent mechanical robustness and flexibility, which is crucial for efficient, large-scale applications, either as a foam or as a membrane. Specifically, we have designed and developed a bilayered hybrid biofoam comprised of BNC and RGO and a completely biodegradable bilayered foam based on BNC and PDA for highly efficient solar steam generation, which can be a sustainable solution to alleviate global water crisis. An innovative water filtration membrane based on BNC and RGO which harvests sunlight to kill microorganisms has been developed to provide a novel anti-biofouling approach. We have also demonstrated a robust filtration membrane based on BNC loaded with GO and PdNPs, which exhibited excellent dye degradation performance for highly efficient wastewater treatment. Furthermore, the in situ fabrication approach has been extended to polymeric materials such as poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) to realize hybrid flexible supercapacitor electrodes based on RGO, BNC and PEDOT:PSS. The fabrication strategies and materials design demonstrated in this work can be easily extended to realize various BNC-based nanocomposites with applications in water purification, energy harvesting, sensing, catalysis, and life sciences
    corecore