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Abstract

Superhydrophilic oil-water separation membranes were prepared based on chemical (non-photo-

induced) polymerization of acrylamide on metal meshes. Membranes were characterized by surface 

morphological analysis (SEM and AFM), determination of contact angles of water and oil drops, 

measurement of water flow through the membranes, analysis of dissolved organic in filtered water-

oil systems, critical intrusion pressure of oil and surface coverage by bacterial biofilms. The main 

characteristics of the membranes were studied as function of coverage with polyacrylamide (PAM). 

The membranes presented efficiencies larger than 99% for toluene-water separation and lifetimes of 

several months. The intrusion pressure (0.25-1.25 kPa) and water flow (10-300 Lm-2s-1) varied 

depending on PAM coverage. A mathematical model was implemented for predicting the water flow 

as function of hydrogel coverage.

The results indicate there is a degree of compromise between three factors that are related to the 

amount of PAM coating: avoiding biofouling (which can block the flow, induce corrosion, etc.), 

maintaining an important flow of water and sustaining a given intrusion pressure of oil on the 

membranes. 

Keywords: Polyacrylamide, Superhydrophilic Membranes, Oil-Water Separation, Biofilms.
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1. Introduction

In recent decades there has been a growing interest in developing new superhydrophilic and 

superhydrophobic membranes [1, 2]. The driving force to improve this technology is the petroleum 

industry, which uses huge amounts of water to extract the hydrocarbons. The water-oil mixture, 

generally with much higher percentages of water than hydrocarbon, is usually separated by 

gravitational decantation, but given the slowness of this process, it is of high relevance to develop new 

separation methods, mainly based on membranes that allow one phase to pass while retaining the other. 

These membranes are classified as superhydrophobic (retaining the aqueous phase) and 

superhydrophilic (allowing the aqueous phase to pass through). It is possible in principle to use both 

types of membranes in different sectors of separation reactors. 

A superhydrophilic membrane is defined by having water-surface contact angles in air lower than 

5. Additionally, it is desirable for the membrane to be superoleophobic also, given by two 

characteristics: i) sliding angle oil/surface less than 5; ii) oil-surface contact angle underwater greater 

than 150. Many superhydrophobic surfaces are obtained by electrospinning, for example, by dip-

coating electrospun polyimide in decanoic acid and silica nanoparticles [3], a PDMS and ZnO decorated 

on a self-standing polyimide [4], the combination of electrospun polyimide nanofibers and an in-situ 

polymerized polybenzoxazine containing silica nanoparticles [5] and with a Fe3+–phytic 

acid/octadecyltrimethoxysilane/polyimide nanofibrous membrane [6].

In a previous article [7], we report the characteristics of superhydrophobic membranes based on 

electrochemical deposition of stearic acid and the consequent formation of nanotubes of metallic 

stearate on brass meshes. As a following step, we developed a superhydrophilic membrane, which 

complements our project.  The study and preparation of superhydrophilic membranes for oil-water 

separation has been receiving wide interest in recent years, including coatings of PVDF meshes [8], 

polyamides meshes [9], hybrid inorganic-organic coatings [10,11] and inorganic coatings [12, 13, 14, 

15, 16]. As substrates for the membranes, metallic meshes are commonly in petroleum industry because 

they guarantee the passage of the phase to be filtered (aqueous in this case) through its pores.

In this work superhydrophilic membranes based on polyacrylamide (PAM) coatings on brass metal 

mesh substrates are presented. As a hydrogel, polyacrylamide consists of a 3D crosslinked polymer 
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network with water filling interstitial spaces. The natural fluidity of the trapped water confers a liquid 

like property to gel surfaces and these liquid water-like characteristics determine the highly hydrophilic 

(in air) and oleophobic (under water) properties of the gel surface [17, 18].

Superhydrophilic PAM membranes have been reported in the scientific literature, but its 

application at industrial level is limited by the type of photochemical initiation commonly used [19, 20, 

21, 22]. In fact, the quantity of PAM formed by photopolymerization is limited by the amount of 

photons from the UV source. In addition, and for the same reason, the polymerization is usually 

incomplete leaving highly toxic acrylamide (monomer) residue. PAM has been used as additive in 

filtration-separation membranes [23, 3, 24, 25] and as an organic coagulant aid for ultrafiltration [26, 

27, 28, 29].

The first objective of this work is to notify the preparation of superhydrophilic membranes based 

on PAM coated brass meshes, where polymerization is achieved by redox initiation, not photochemical. 

The second objective is the characterization and modeling of properties related to water filtration and 

oil phase retention in the membranes. The third objective is to analyze biofilms development on the 

membranes. It is common that many research works are focused on describing engineering properties 

using water or saline solutions, but with low bacteria content. However, the formation of biofilms on 

the superhydrophilic membranes is a crucial point since they usually seal them or produce 

microbiologically influenced corrosion [30].

2. Materials and Methods

2.1. Chemicals.

All solvents and reagents were of analytical quality and used as received. Acrylamide (AM), N N'-

methylenebis(acrylamide) (BIS) and polyacrilamide (PAM; average Mr =150000) were purchased 

from Sigma Aldrich. Ammonium persulfate (APS) and sodium hydroxide (NaOH) were purchased 

from Anedra (Argentina). Petroleum samples from an Argentinean oil field were provided by YPF-

Tecnología SA (Y-TEC): light crude (density  0.75 g/cm3, viscosity  0.9 cP, at 25 C) and , heavy 

crude (density  0.92 g/cm3).  Sunflower oil was purchased from a local store (density  0.91 g/cm3). 

Brass meshes (porous diameter ≈ 77 μm, atomic ratio Cu/Zn=4) were provided by Sueiro & Hijos 

(Argentina). These meshes are typically used in several oil-water and waste-water separation processes 

at industrial level. 
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2.2 Preparation of polyacrylamide (PAM) coated meshes.

Brass meshes were washed with acetone, de-ionized water and diluted acid solution prior its use. 

Then, meshes were pre-treated with ammonium persulfate (APS) as detailed in [31] by immersing in a 

0.05 M APS and 1 M NaOH solution for 30 minutes. Afterwards, meshes were rinsed with abundant 

de-ionized water and dried in oven at 70 ºC at atmospheric pressure. Dark blue colored meshes were 

obtained by this procedure, referred as the pre-treated meshes from now on. 

Then, the pre-treated meshes were immersed in a mixture of AM (monomer), BIS (linker), and 

APS (initiator) in water at room temperature ( 25 C). A small amount of PAM was added in order to 

increase viscosity and, hence, the adherence of organic material to the mesh. AM concentration was 

0.75 M and the weight proportion was 1- 0.03- 0.02- 0.01 for AM- BIS- APS- PAM. The immersion 

time was about 3 seconds. After immersion, the meshes were dried at 70 ºC and atmospheric pressure 

for 10 minutes. Then, the meshes were re-immersed for a given amount of cycles: 1, 3, 5 and 7 cycles 

were tested. The number of immersion cycles in the PAM solution is referred as N. Meshes were dried 

after each immersion cycle, as indicated. Afterwards, samples were placed in an oven at 70 ºC during 

6 hours for polymerizing. After polymerization, PAM membranes were hydrated in de-ionized water 

for 24 hours, remaining underwater for further tests. 

Additionally, polyacrylamide was synthesized in a separate flask (under identical conditions than 

for membranes) in order to characterize the polymer apart from the metallic mesh.

2.3 Instrumentation.

Surface morphology was analyzed using a Field Emission Scanning Electron Microscope 

(FESEM; Zeiss Supra 40 Gemini). Infrared spectra (ATR and transmission) were recorded using 

Nicolet 8700 equipment. Ultra violet absorption spectrums were determined using a Shimadzu UV-

3101PC spectrometer. 

Liquid 1H NMR spectrum was recorded on a Bruker AC-200 spectrometer operating at 200 MHz 

on the swollen polymer. High-resolution 13C NMR solid-state spectrum was recorded using a CP-MAS 

pulse sequence (cross polarization and magic angle spinning) with proton decoupling during 

acquisition, at room temperature, in a 7T Bruker Avance II-300 spectrometer equipped with a 4-mm 

MAS probe. The operating frequency was 75.46 MHz. Glycine was used as an external reference for 

the 13C NMR spectrum and to set the Hartmann-Hahn matching condition in the cross-polarization 
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experiments. The recycling time was 6 s. Contact time during CP was 2 ms. The spinning rate was 10 

kHz.
Differential Scanning Calorimetry (DSC) measurements were performed using a TA Q20 

differential scanning calorimeter in a dry nitrogen atmosphere. Indium standard was used for 

calibration. Mass of 5-10 mg of each sample were placed in the DSC pan. Samples were first heated to 

200 °C and held at temperature for 10 min to remove the thermal history. Then, samples were cooled 

to -20°C at a rate of 10 °C/min, held for 10 min, and again heated to 210 °C at 10 °C/min. The glass 

transition values (Tg) were taken as the midpoint of the transition in the second heating scan. 

Thermogravimetric analysis (TGA) of the sample samples were performed using a Shimadzu 

TGA-51 under nitrogen atmosphere, with a heating rate of 10 °C/min and a gas flux of 30 mL/min.

Atomic force microscopy (AFM) images were acquired using a Bruker Multimode 8 SPM (Santa 

Barbara, CA, USA) and NanoScope V Controller (Santa Barbara, CA, USA). The image analysis was 

performed using Gwyddion version 2.46 (Brno, Czech Republic) and Nanoscope version 9.1 software 

(Santa Barbara,CA, USA). The AFM images were acquired in the intermittent mode using silicon tips 

doped with antimony, with a spring constant of 42 N/m and a resonance frequency of 320 kHz. Areas 

of typically 10 μm × 10 μm were scanned. Average surface roughness was determined from AFM 

height images [32]. For each height image, a reference plane (mean plane) was defined, and a Z-axis 

perpendicular to that plane was considered, with Z = 0 on the plane. Z-values were calculated from the 

images in a discrete manner, where Zj was defined as the height of the jth-pixel from the mean plane. 

That is, Z is a discrete stochastic variable. Positive Z-values are associated to protrusions above the 

mean plane, while negative Z-values, to depressions below the plane. The average surface roughness 

(Ra) of each AFM image was determined as the average deviation of height values from the mean 

plane, when considering M pixels in a given image:   (M = 262,144).  
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2.4 Swelling ratio.

The swelling ratio of the polymer was determined following the protocol detailed in [33] with some 

modifications. Briefly, a weighed amount of the polymer was immersed in 300 mL of de-ionized water 

at 25 ºC shaking at 100 rpm. The polymer was separated from the de-ionized water at defined time 

intervals, carefully wiped with paper, and then weighed. Swelling ratio (M) was calculated as 

, where  is the weight of the swollen polymer and the initial weight of the 
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2.5 Water-air and chloroform-underwater contact angles.

Water in air contact angles (WA-CA) were determined using a homemade device that was 

calibrated with a KSV CAM 200 Optical Contact Angle Meter. Images were analyzed with an 

appropriate Image J software plugin. Contact angles were determined by analyzing 3 drops on each 

membrane and on three different replicated membranes. Thus, for each type of prepared membrane a 

total of 9 values were obtained, which were averaged. All determinations were performed at room 

temperature ( 25 C) and atmospheric pressure. The volume of the water droplet was 50 L and WA-

CA angles were registered after 1 minute since drop deposition on the surface. 

The oil underwater contact angles (OW-CA) were measured in different set-ups, depending if the 

oil was lighter or heavier than water. In the case of light-crude (0.75 g/cm3) and sunflower oil (0.95 

g/cm3) the membranes were placed on a membrane holder at the top of an acrylic fishbowl designed 

for this purpose. The acrylic box was filled with water, while oil was bubbled from the bottom using 

ad hoc holes where glass pipettes containing the oil were introduce. Thus, oil drops goes up in the water 

until getting into contact with the membranes, where an image is recorded for OW-CA determination. 

On the other hand, chloroform was used as organic heavier than water (1.4 g/cm3). In that case, 

chloroform drops were slowly placed on the membrane surface underwater for OW-CA 

determinations.

2.6 Water flux measurement.

Membranes were placed in another ad hoc designed glass container for water flow studies. This 

container is composed of two identical glass tubes of 17.5 cm length and 2.5 cm diameter, each one 

having an appropriated seat-beading at one extreme for placing the membranes, which separates both 

tubes. Thus, the tube-membrane-tube system can be placed vertically or horizontally, depending on the 

application. Water flux through the membrane was determined by measuring the volume of vertically 

collected water through the membrane during a fixed time (typically 40-50 seconds) while maintaining 

a constant water column of 5 cm on the membrane.

2.7 Critical intrusion pressure (Pc).

The critical oil intrusion pressure, Pc, is defined as the maximum pressure exerted by the column 

height of given oil that the membrane can supports without permeating any drop of oil. The membranes 

were vertically placed in the system tube-membrane-tube for Pc determinations, adding oil on the top 

of the membrane. The critical intrusion height of the for sunflower oil was determined for three 

replicates of each membrane. The values of Pc were calculated by experimentally determining the 
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maximum height of oil that is supported by the membrane (Hc) by Pc= oil g Hc, were oil is the density 

of the specific oil used in the test.

2.8 Oil-water separation efficiency.

The oil-water separation efficiency was evaluated by determining the amount of residual toluene 

in water after separating a toluene-water mixture. Mixtures consisted of 3 mL of toluene and 3 mL of 

distilled water, vigorously shaked and poured on top of the membrane in the vertical set up tube-

membrane-tube. Then, the aqueous phase was collected after passing through the membrane. The 

amount of toluene in the collected phase was determined by chloroform extraction followed by UV 

spectroscopic determinations of toluene concentration. 

2.9 Exposure to harsh conditions

Three cycles membranes were tested to study their stability under four different harsh conditions, 

saline water (NaCl 1M), hard water (MgCl2 1M, CaCl2 1M), acid solution (pH=3, HCl) and alkaline 

solution (pH=11, NaOH). Membranes were immersed in these solutions during 24 hours and then 

chloroform underwater contact angle and intrusion pressure were determined.

2.10 Bacterial adhesion assay

Bacterial adhesion assays were performed with the Gram negative bacteria Pseudomonas 

protegens. These were inoculated in LB media (5g/L yeast extract, 10g/L peptone and 5g/L sodium 

chloride) and incubated overnight at 30 ºC. Overnight Pseudomonas cultures were diluted to an optical 

density of 0.05 (600 nm, 1cm path length) in LB media and incubated again overnight at 30 ºC. The 

studied membranes were cut into small pieces and sterilized by immersion in ethanol 70% solution 

during 24 hours. Then, these pieces were set in a 24 multiwell plate, where 1 ml of the growth 

Pseudomonas media was added and incubated at 30 ºC. After a given time (1, 3, 5 or 24 hours), the 

surfaces were rinsed with de-ionized water and dried over air. All assays were performed three times. 

This protocol is similar to others previously reported [ 34, 35].

All the samples were imaged using AFM in intermittent mode [36] with the same parameters 

described previously. The images were analyzed to determine the percentage of the total area covered 

by bacteria in each of the AFM images. Bacteria detection was performed by thresholding and filtering 

using Gwyddion software. 

3. Results and Discussions
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3.1 Characterization.

The first result concerns with the needed of pre-treatment. Meshes coated with PAM, but without 

the pre-treatment, do not wet homogenously when immersed in the polymerization mix and PAM 

gathers around on one side of the mesh. Moreover, the mesh-PAM systems obtained without pre-

treatment are waterproof without observing water flux through it. Therefore, only membranes with the 

pre-treatment are considered from now on.

Figures 1 a-b-c show SEM images of a pre-treated mesh without PAM (only first stage, before 

immersion in the polymerization mixture, N=0) showing that pre-treatment with APS induces rod 

shaped nanostructures.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

50 μm 5 μm 500 nm

500 nm

500 nm

5 μm

5 μm

50 μm

50 μm

Figure 1. SEM images of PAM membranes prepared with different number 
of immersion cycles: N=0 (Pre-treatment, Figs. a-b-c), N=3 (d-e-f) and N=7 (g-h-i).

When these meshes are immersed in the polymerization mixture (second stage) the PAM coating 

is observed, which partially covers the metallic filaments and hence forms the membrane (Figures 1 

d-e-f). In the case of seven immersion cycles (N=7), the PAM coating extends to the entire mesh, not 

only on the metallic filaments, but filling large part of the pores (Figures 1 g-h-i). 

The amount of polymer in each type of membrane was studied by thermogravimetric analysis 

(TGA). It is observed in Figure 2 that, in every curve, there are two significant weight losses. The loss 

around 276 ºC can be attributed to elimination of ammonia. At higher temperatures starts the process 

of chain polymer decomposition. In the case of N=1 the amount of polymer is too low to be detected 
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with our instrument. In all the other cases, the loss of polymer weight increases with N. In the case of 

N=7 the mass loss at 700 C rises up to 35% of the initial (Figure 2).

 

N

Figure 2. TGA of membranes with different number of immersion cycles (N=1,3,5,7).

Characterizations of the polymer via FTIR, 1H and 13C NMR, and DSC are presented in the 

supplementary material. Figure S1 shows the FTIR (ATR) spectrum of membranes, indicating the 

bands associated to groups expected in PAM and also those assigned to metal–oxygen stretching of 

CuO and ZnO resulted from oxidation with APS in the first stage (pre-treatment). Figure S2 shows 1H 

and 13C NMR spectra, observing the resonance signals of methine and methylene. DSC analysis shows 

a glass transition temperature at 195 ºC (Figure S3), consistent with reported values [37].

3.2 Hydrophilicity and Oleophobicity.

Examples of the superhydrophilic and superoleofobic behavior are shown in Figures 3 and 4, 

respectively. Figures 3a-b-c show how a water drop completely spreads over the surface of the 

membrane when is deposited from above (water-in-air experiment). Consistently, polymer swelling 

was observed in all cases when cross-linked PAM was immersed in water. The result of polymer-water 

swelling experiment is shown in Figure S4 (Supplementary Material), determining the amount of 

absorbed water into the polymer as function of time in a water solution. This experiment showed that 

about eight hours are necessary to get the polymer completely hydrated.
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(a) (b) (c)

Water

Air

Membrane

Figure 3. (a) A water drop approaches the membrane from above, using a pipette.
(b) When the drop touches the membrane, it begins to spread on the surface. (c) Finally, in 

a fraction of seconds, the drop is filtered through the membrane and disappears from the 
surface. 

Figure 4a shows a fish tank full of water on whose lid a PAM membrane is placed horizontally. 

Light oil (0.75 g/cm3) is bubbled from the bottom. Crude oil bubbles rise through the water up to 

reaching the membrane surface. On the other hand, in Figure 4b the membrane is now placed at the 

bottom of the fish tank, submerged in water, and a drop of chloroform (1.4 g/cm3) is injected from the 

top until it is deposited on the membrane. These experiments allow the so-called " underwater contact 

angles of oil " (OW-CA)  to be determined for oils lighters and heavier than water.

Water

Crude
oil Water

Chloroform

Membrane

Membrane

Figure 4. Underwater superoleophobic behavior of prepared membranes.
(a) Light Oil (0.75 g/cm3). (b) Chloroform (1.4 g/cm3).

Table I shows the water in air (WA-CA) and the chloroform underwater (OW-CA) contact angles 

of the studied membranes. 
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Table I: Contact angles of the studied surfaces.
Immersion 
Cycles (N)

Water in air  contact 
angle (WA-CA)

Chloroform underwater
contact angle (OW-CA)

Pristine Brass Mesh - 131º ± 5º 113º ± 10º
First stage:

APS Pre-Treatement 0 <5º 155º-165º

1 <5º 155º-165º
5 <5º 155º-165º
10 <5º 155º-165º

Second Stage:
PAM Coating

15 <5º 155º-165º

The characteristics shown in Table 1 remain during several months after membrane preparation if 

membranes are stored under hydration with de-ionized water.

 The first observation in Table 1 is that pre-treatment with APS induces superhydrophilicity (WA-

CA lower than 5º). This is associated to the nanostructures generated by oxidation with the pre-treatment. 

The superhydrophilicity is conserved after the second stage (coating with PAM).  The second observation 

is the induction of superoleophobic behavior under water (OW-CA larger than 150º). 

Note that superhydrophilicity and superoleophobicity are induced by the APS pre-treatment. 

However, pre-treated meshes (first stage only) do not support oil pressure on it. Hence, in order to obtain 

membranes which separate oil-water mixtures and filter water while retaining oil on its surface, the PAM 

coating is required (second stage). This is illustrated in Figure 5, where the critical intrusion pressure, Pc 

(see Section 2.7) is plotted as function of the number of coating cycles, N (Pc=0 for N=0 in Figure 5).  

Figure 5 shows that Pc linearly increases with N. The non-zero values of Pc may be related to the 

fact that coating with PAM sustain permanent hydration of the surface and therefore it is necessary to 

have a minimum oil pressure on it in order to disrupt the hydration layer, allowing the oil to flow. At a 

microscopic level, the surface hydration is expected to increase with the amount of hydrogel, that is, 

with N, in agreement with the results of Figure 5. A more detailed study at microscopic level should 

include other factors, mainly the dependence of Pc with the pore size of the membrane, which is out of 

the scope of the present work.
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Figure 5. Critical intrusion pressure of sunflower oil vs. the number of immersion cycles. 

The coated meshes (N  1) allows to separate oil-water mixtures. An example of the separation 

quality of the studied membranes is shown in Figure 6 for the case of a vertical separation, although 

horizontal separation was successfully achieved as well. In Figure 6 the membrane is placed 

horizontally, separating two compartments. Initially, Figure 6a, a given column height of sunflower 

oil is supported on the membrane. In Figure 6b water droplets (blue colored for contrast) are injected 

into the upper compartment. In Figure 6c an increase of water content is observed in the vessel placed 

below, indicating that the injected water was completely filtered through the membrane. Water was 

completely filtrated in few seconds.

(a) (b) (c)
Oil Water

Mesh

Figure 6. Separation performance of PAM membranes.
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The separation described in Figure 6 was observed for the cases of organic compounds 

(chloroform, toluene), sunflower oil, light crude and heavy crude. In the experiments of oil/water 

separation it was not observed significant variation of the water flow with the chemical nature of the 

oil. The only phase that goes through the membrane is the aqueous phase, carrying only traces of 

dissolved organics. The variation of the aqueous flow between replicated tests is greater than the 

variation introduced by changing the organic liquid mixed with water in the upper compartment of the 

separation tubes. Oil-water separation tests were performed not only with light-oil, but with a sample 

of heavy oil from Patagonia also (density = 0.92 g/cm3) that was tested with a PAM-coated membrane 

(N= 3), obtaining successful results: only water flows through the system and membranes were not 

covered by the heavy-oil in at least 10 vertical tests. 

No oil-water interfaces were detected at the output of the filtering system in any of the tests. This 

suggests that the concentration of oil in the filtered phase should be no larger than its saturation 

concentration in water. Figure 7 shows the residual amount of toluene in water after the separation 

assays of toluene and water mixtures. Toluene was used for these experiments because it is relatively 

easy to determine its concentration in water by UV-Visible spectroscopy. The amount of toluene in 

water after filtering through the membranes is close to the informed solubility of toluene in water  at 

25 C (0.53g/L, [38]) (Figure 7). The separation efficiency of these mixtures () was between 99.91% 

and 99.96 % (without any trend with N) defined as  where  represents the molar Initial
toluene

Filtered
toluene

X
X

1 Initial
tolueneX

fraction of toluene initially dispersed in water (above the membrane, before filtering) and for Filtered
tolueneX

the molar fraction of toluene dissolved in water, determined after filtering through the membrane.
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Figure 7. Residual concentration of toluene in water after filtering a water-toluene mixture 
through the setup of Figure 6.  Horizontal line: solubility of toluene in water at 25 C.

The calibration curves and UV absorption spectrum for spectroscopic determination of toluene in 

water are shown in Supplementary Material (Figure S5). There were no significant differences in the 

concentration of toluene in water with the number of immersion cycles during preparation, N. Several 

harsh conditions were investigated by exposing the membranes to saline water (NaCl 1M), hard water 

(CaCl2, MagCl2, 1M), acid solutions (HCl, pH= 3) and alkaline solutions (NaOH, pH= 11). In all cases, 

the membranes maintained their superwetting ability and the critical intrusion pressure (Pc). In fact, no 

changes of the water-contact–angle (WCA) and Pc were observed when MQ-water, saline, hard-water, 

acid or alkaline solutions were used. The aspect and colour of the membranes are modified after 

immersing in acid solutions, but no changes in WCA and Pc were observed. The membranes 

maintained their quality parameters (flow rate, contact angles, separation efficiency and critical 

intrusion pressure) for at least three months (and possibly longer) when they are kept under permanent 

hydration conditions with distilled water. 
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3.3 Flow characterization.

The water flux through the membranes presents a strong dependence with the number of immersion 

cycles, with values around 50 Lm-2s-1 for membranes with 3 cycles (Figure 8). It is observed a 

significant decrease of water flux with an increasing number of cycles, assigned to obstruction of pores 

by PAM, as shown in Figure 8.

1 2 3 4 5 6 7

Numberof cycles (N)
0

0

50
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Figure 8. Water flux through PAM coated membranes. The height of the water column 
was fixed at 5 cm. Error bars are negligible in N=3, 5 and 7.

We propose a model for interpreting the results of Figure 8. Consider a metallic mesh whose 

filaments in absence of PAM (N=0) are separated by a distance  (in the present study is =77 0L 0L

m). The area of the free pores in that case is . After a given number N of immersion cycles in the 2
0L

polymerization media, the free pores area within  is now , where   is the thickness of 2
0L  2

0 2L

PAM coating around a metal filament. The area fraction of free pores in the area  is 2
0L

 and the fraction of area occupied by PAM in the pores is: 
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We assume that water flows via two regions: i) through the open (non-coated) pores and ii) through 

regions of the original free-pores that are now coated with PAM. The contribution to the flow of coated 

regions just above the metal filament is neglected (for simplicity) in the model. 

Thus, the total water flow, (plotted in Figure 8), has two contributions in the developed model: F

. The model assumes that each flow is proportional to the respective fraction,  PAMpores FFF  porous

and :  . The constants  and are given by the PAM PAMPAMpores kkkkkF  )( 21121  1k 2k

boundary conditions:  and . Hence, 10 kFF MAXPAM  2min1 kFFPAM 

is obtained. Using relationships [i] and [ii], a model expression PAM)minFMAXF(MAXFF 

for  in terms of  is obtained: F x

   [iii])x(x)minFMAXF(MAXFF  14

The model parameter  is expected to increase with the amount of hydrogel coating. In the present x

work, the amount of PAM in the membranes is governed by the number of immersion cycles, N, used 

during preparation. The analysis of SEM images (like those of Figure 1) indicates that in fact x 

increases from N=0 to N=5, then reaching saturation between N=5 and 6. Below saturation, the 

relationship between x and N can be linearly approximated. We assume the simplest approach, that is, 

 proportional to N , which is a good empirical approximation to the experimental data (Figure S6, x

Supplementary Material) . The proportionality constant between  and N is given by the condition x

that at =1/2 the pores are completely closed (filled with PAM), a condition reached after a given x

number of immersion cycles, referred as Nsaturation in [iv]. Therefore:

       ( )   [iv]
saturationN

Nx
2
1


2
10  x

Expressions [iii] and [iv] were used to fit data of Figure 8. The recovered values are FMAX=336 

Lm-2s-1, Fmin= 10 Lm-2s-1, Nsaturation = 6. Note that the recovered values are in excellent agreement with 

the features observed in Figure 8: i) at N=0 is F=325 Lm-2s-1, close to the recovered FMAX., ii) the flow 

reaches a minimum between 5 and 7 cycles (close to the recovered Nsaturation), iii) the minimum flow is 

about 25 Lm-2s-1 (close the recovered Fmin).
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Note that, as a remarkable difference with the contact angles, the flow  and the critical intrusion F

pressure Pc displays an important dependence with N. This behavior is connected to the two preparation 

stages. The first stage, APS pre-treatment, induces the required contact angles. The second stage, PAM 

coating, generates the condition for oil-water separation, related to and Pc.  F

The performance of the membranes is remarkable stable in time scales of several months. On the 

one hand, when drops of water are deposited on the air-membrane surface, these drops are immediately 

dispersed on the surface (and finally pass through), as illustrated in a Figure 3. On the other hand, in 

the oil/water separation experiments, the membranes are kept hydrated prior to their use, thus water 

forms a thin layer on both sides of the metal mesh. Both in the case of the deposited drop and in that of 

the hydrated membrane used in the separation tests, it was never observed that the pores of the 

membrane were sealed or clogged by the presence of water.

3.4 Bacteria adhesion

The effects on membrane performance due to the presence of bacteria is a complex issue, which 

naturally are expected to be more important for superhydrophilic than superhydrophobic membranes. 

A full study of those effects exceeds the objectives of the present work. Here, we present preliminary 

results about bacteria adhesion of a specific bacterium, Pseudomona protegens, in order to illustrate 

the expected inconveniences in concrete applications at industrial level or when using natural waters. 

Figure 9 illustrates the bacterial adhesion of Pseudomonas protegens on the membrane surfaces at 

different incubation times. As shown in Figure 9, the surface covered by bacteria increases with the 

immersion time of the membranes into a given bacterial growth media.

1 hour 3 hours 5 hours

Figure 9. Samples immersed during different times (each) in a Pseudomona protegens culture.  
AFM images (amplitude error) of meshes sectors (on the metallic filaments). N= 5 in all cases. 
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As a first step, it appears reasonable to study the effect of the amount of PAM (N) on the bacteria 

adhesion over the membranes. When N increases, more PAM is coating the brass meshes, then bacteria 

are less exposed to copper and zinc, which as is well known they have bactericide effect. Therefore, 

this effect predicts increase of bacterial coverage with N. Besides, it is reported that topographical 

pattern surface  have influence in the bacteria adhesion and biofilm development [39], for instance the 

surface roughness [40]. The discrimination of the several possible morphological effects on biofilm 

formation is a challenging task. Here we just present experimental data of membrane roughness and 

bacterial coverage as function of N.

 Figure 10 (top) shows representative AFM images of the membrane with different N.  In Figure 

11 is shown (red square) membrane roughness, Ra, as function of N. Ra was estimated using AFM 

height images registered on the metallic filament of the mesh, in the absence of bacteria which are 

shown in the Supplementary Material, Figure S7. As shown in Figure 11, membrane roughness 

decreases with increasing amounts (N) of hydrogel on the mesh. On the other hand, Figure 11 (bottom) 

shows that biofilm formation is favoured by the presence of PAM, that is, the surface covered area by 

biofilm increases with N (fixing all other parameters). Figure 11 (blue circle) illustrates these trends 

as a function of N. 

N = 3 N = 5

N = 1 N = 3 N = 5

N = 1

Figure 10. AFM images (amplitude error; 10 m X 10 m) of meshes sectors (on the metallic 
filaments) for different immersion cycles (N) without being in contact with bacteria cultures 

(top) and samples immersed 5 hours (each) in Pseudomona protegens cultures (OD=3) (bottom). 
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Numberof cycles (N)

Figure 11. Red-Square points: roughness on the metallic filaments of membranes in the absence 
of bacteria. Blue-circled points: percentage of surface covered by Pseudomona Protegens, after 
immersing the membranes during 5 hours (each) in bacterial media. 

As it was mentioned, the surface roughness parameter, Ra, of membranes decreases with N, while 

the area of membranes covered by biofilms increases with N. A crossover of both trends is observed 

near N = 3. These preliminary results are of relevance for further membrane’s performance, since 

showing that biofilm formation may seal the membranes, depending on bacterial concentration in the 

site.

4. Conclusions

The first remarkable result is that it was possible to obtain superhydrophilic PAM membranes 

without using UV-VIS irradiation for polymerization, which usually have low yields or require high 

intensity light sources. A two-steps redox process was used instead, that allows obtaining separation 

membranes with excellent properties in a simple and fast procedure. The method allows to 

systematically control the amount of hydrogel present in the membranes, a factor on which all 

properties of relevance for membranes used in oil-water separation are strongly dependent.

 The use of APS was essential to achieve superhydrophilic membranes. Moreover, APS plays a 

central role in the two stages that constitute the total preparation process. The first stage was the so-

called pre-treatment, which consists of oxidizing the mesh in an alkaline medium, controlling the 

conditions (concentration of APS and NaOH, temperature) in such a way that was possible to obtain 

copper oxides with homogenous nanometric morphology over the entire mesh. Therefore,  

nanostructures were obtained on the surface of the meshes, mostly nanobars but also nanopetals. The 
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presence of these structures was essential to ensure that the surface is uniformly wetted and to prevent 

highly inhomogeneous agglomeration of the compounds used in the subsequent polymerization step. 

Therefore, the first partial conclusion is that pre-treatment is necessary for obtaining superhydrophilic 

surfaces. This conclusion is coincident with that reported by Li et al for other meshes[41].  

 Nevertheless, pre-treatment is not enough to obtain membranes. The second stage, polymer 

coating, is necessary to provide a non-null oil intrusion pressure. Meshes with the pre-treatment only, 

that is with the first stage exclusively, do not support oil column on it. The second stage consists of a 

redox polymerization to obtain PAM, where APS plays again a key role, now as redox initiator of 

polymerization. To the best of our knowledge, the only work reporting the redox polymerization of 

acrylamide for hydrocarbon-water separation systems is Chen et al [42], who prepared nickel foams 

immersed in the mixture of precursors (APS, BIS, AM) to separate water-hydrocarbon, although the 

authors did not obtain separation membranes. 

The described preparation method allowed us to study the effect of hydrogel amount formed on 

the substrate in a simple way by systematically changing the parameter N. The results indicate that 

water flow, critical inclusion pressure, surface roughness and the area covered by biofilms are strongly 

dependent on N. In particular, the mathematical model presented in this work allows predicting the 

flow of water through the membrane as a function of N, in the absence of bacteria.

The studies with bacteria suggest there is a value of N from which the coverage with bacteria has 

a strong influence on the quality parameters, with a percentage of sealed surface greater than 60% for 

N> 3 after 5 hours of immersing the membranes in a media with Pseudomonas Protegens. This result 

is of high practical as suggesting that biofilm formation is a critical factor for membranes with N3 

(prepared under conditions used in this work). For example, the model developed confirms that high 

water flows are maintained for N3. On the other hand, the critical intrusion pressure is relatively low 

as N decreases below N=3. In the present studies, it seems that membranes with N3 are more 

appropriated to avoid the formation of biofilms, while maintaining significant water flows, at the cost 

of supporting low oil columns. However, the latter may not be an inconvenience in separation reactors 

with low differential pressure through the membranes. Therefore, for each specific application and 

situation, it is necessary to decide which the most relevant factor is.
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SUPPLEMENTARY MATERIAL

Membranes Based on Polyacrylamide Coatings on Metallic Meshes 
Prepared by a Two-Steps Redox Polymerization.

J. Nicolás Cabrera, Graciela Rojas, Norma B. D´Accorso, Leonardo Lizarraga, R. Martín Negri 

Wavenumber (cm-1)
5001000150020002500300035004000

100

90

80

%
 R

ef
le

ct
an

ce

vO-H vNH2

vCH2

vC=O

vC-N

vC-C

vCu-O
vZn-O

Figure S1. FTIR (ATR) spectra of PAM coated membrane. 
Functional groups associated to bands are indicated.

In Figure S1, peaks around 400–900 cm-1 are assigned to metal–oxygen stretching of CuO and 

ZnO (resulted from the oxidation of the membrane with APS). The bands around 3400 cm-1 (NH2), 

2900 cm-1 (CH2) and 1700 cm-1 (C=O) are the expected bands of PAM [43, 44].

Figure S2: NMR of PAM. A) 1H NMR spectrum in D2O as solvent and TMS as internal 
standard, performed in a Bruker 200 MHz;  B) 13C NMR spectrum of a solid sample was 
performed in 7T Bruker Avance II-300 spectrometer 75.46mHz.
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In the 1H NMR spectrum of PAM performed in gel state, it is possible to observe the methine and 

methylene signals at 1.5 ppm and 2 ppm respectively. The signals at 4.8 ppm corresponding to protons 

of water residues, meanwhile the little signals around 3.5 ppm can be attributed to vinylic protons 

associated with partially unreacted crosslinker (See Figure S2A). 13C NMR spectrum of PAM in solid 

phase is shown in Figure S2B, where methine and methylene signals appear together between 25 and 

50ppm and the carbonyl signal appears around 180ppm. These results are consistent with previously 

reported data [45].

Figure S3: DSC results of synthesized polyacrylamide.

The glass transition temperature (Tg) obtained from Figure S3 is consistent with reported 

values for polyacrylamide [37].

Figure S4: water-polymer swelling test. A sample of PAM is immersed in distilled water at t=0. 

Then is weighted at different time, the mass increases is recorded, and the sample is placed back into 

the solution. The percentage of mass increase (swelling ratio) is plotted as function of time.
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2. Figure S5.  Absorbance spectrum of toluene in chloroform at different concentration (left) 

and calibration curve of toluene in chloroform at 270 nm (right).

Figure S6. Dependence of x with N from SEM images. N is the number of immersion cycles. 

The parameter x is defined as the thickness of PAM coating around a metal filament, , 

divided by the length between filaments, .0L

N = 1 N = 3 N = 5

Figure S7. AFM Height images used for average surface roughness (Ra) determination. 



28

Highlights

 PAM superhydrophilic membranes were prepared by a two-step oxidative polymerization.

 The performance parameters of oil-water separation were studied.

 A model for water flow as function of hydrogel coverage was developed.

 Bacterial adhesion of Pseudomona protegens was investigated as function of PAM coverage. 
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