415 research outputs found

    On-a-chip microdischarge thruster arrays inspired by photonic device technology for plasma television

    No full text
    This study shows that the practical scaling of a hollow cathode thruster device to MEMS level should be possible albeit with significant divergence from traditional design. The main divergence is the need to operate at discharge pressures between 1-3bar to maintain emitter diameter pressure products of similar values to conventional hollow cathode devices. Without operating at these pressures emitter cavity dimensions become prohibitively large for maintenance of the hollow cathode effect and without which discharge voltage would be in the hundreds of volts as with conventional microdischarge devices. In addition this requires sufficiently constrictive orifice diameters in the 10µm – 50µm range for single cathodes or <5µm larger arrays. Operation at this pressure results in very small Debye lengths (4 -5.2pm) and leads to large reductions in effective work function (0.3 – 0.43eV) via the Schottky effect. Consequently, simple work function lowering compounds such as lanthanum hexaboride (LaB6) can be used to reduce operating temperature without the significant manufacturing complexity of producing porous impregnated thermionic emitters as with macro scale hollow cathodes, while still operating <1200°C at the emitter surface. The literature shows that LaB6 can be deposited using a variety of standard microfabrication techniques

    Ultrathin silicon wafer bonding physics and applications

    Get PDF
    Ultrathin silicon wafer bonding is an emerging process that simplifies device fabrication, reduces manufacturing costs, increases yield, and allows the realization of novel devices. Ultrathin silicon wafers are between 3 and 200 microns thick with all the same properties of the thicker silicon wafers (greater than 300 microns) normally used by the semiconductor electronics industry. Wafer bonding is one technique by which multiple layers are formed. In this thesis, the history and practice of wafer bonding is described and applied to the manufacture of microelectomechanical systems (MEMS) devices with layer thickness on the scale of microns. Handling and processing problems specific to ultrathin silicon wafers and their bonding are addressed and solved. A model that predicts the conformal nature of these flexible silicon wafers and its impact on bonding is developed in terms of a relatively new description of surface quality, the Power Spectral Density (PSD). A process for reducing surface roughness of silicon is elucidated and a model of this process is described. A method of detecting particle contamination in chemical baths and other processes using wafer bonding is detailed. A final section highlights some recent work that has used ultrathin silicon wafer bonding to fabricate MEMS devices that have reduced existing design complexity and made possible novel, and otherwise difficult to produce, sensors. A new fabrication process that can reduce the required time for proof-of-principle devices using ultrathin silicon wafers is also described

    Advanced CMP processes for special substrates and for device manufacturing in MEMS applications

    Get PDF
    The present work reports on studies and process developments to utilize the chemical mechanical planarization (CMP) technology in the field of micro electrical mechanical systems (MEMS). Approaches have been undertaken to enable the manufacturing of thick film SOI (silicon-on-insulator) substrates with a high degree of flatness as well as utilizing CMP for the formation of several novel MEMS devices. Thick film SOI wafers are of high interest in MEMS manufacturing as they offer obvious benefits as a starting material or foundation for more complex structures. Precise control of the SOI layer thickness as well as the removal uniformity is of critical importance to fully utilize the benefits of this technology. By combining fixed abrasive (FA) pads for polishing and novel grinding techniques it is shown that major improvements can be achieved over the standard manufacturing sequence. Analysis of the material removal rate (MRR) dependency on several process parameters is made. Together with the FA pad vendor a suitable consumable set for SOI is generated, which shows long term stability in the generated process. A comparison with standard methods is undertaken to prove the surface and crystalline quality of the resulting substrate material is equivalent. Analysis is done to understand the microscopic mechanism of removal. The CMP process is applied to several MEMS structures to smooth deposited oxide films and to enable direct wafer bonding (DWB) at low temperatures. This allows the design of bonded multiple stack layers including heat sensitive materials such as metals. FA CMP is applied to large pattern MEMS for total planarization but also for smoothing of the surface of single protruding structures while minimizing edge rounding and preserving the original intended pattern shape. With dedicated CMP steps thick film polysilicon smoothing is demonstrated enabling DWB. The chemo-mechanical particularities of the FA pad are investigated in detail.reviewe

    Low-Cost, Water Pressure Sensing and Leakage Detection Using Micromachined Membranes

    Get PDF
    This work presents the only known SOI membrane approach, using Microelectromechanical systems (MEMS) fabrication techniques, to address viable water leakage sensing requirements at low cost. In this research, membrane thickness and diameter are used in concert to target specific stiffness values that will result in targeted operational pressure ranges of approximately 0-120 psi. A MEMS membrane device constructed using silicon-on-insulator (SOI) wafers, has been tested and packaged for the water environment. MEMS membrane arrays will be used to determine operational pressure range by bursting.Two applications of these SOI membranes in aqueous environment are investigated in this research. The first one is water pressure sensing. We demonstrate that robustness of these membranes depends on their thickness and surface area. Their mechanical strength and robustness against applied pressure are determined using Finite Element Analysis (FEA). The mechanical response of a membrane pressure sensor is determined by physical factors such as surface area, thickness and material properties. The second application of this device is water leak detection. In devices such as pressure sensors, microvalves and micropumps, membranes can be subjected to immense pressure that causes them to fail or burst. However, this event can be used to indicate the precise pressure level that malfunction occurred. These membrane arrays can be used to determine pressure values by bursting. We discuss the background information related to the proposed device: MEMS fabrication processes (especially related to proposed device), common MEMS materials, general micromachining process steps, packaging and wire bonding techniques, and common micromachined pressure sensors. Besides, FEA on SOLIDWORKS simulation module is utilized to understand membrane sensitivity and robustness. In addition, we focus on theories supporting the simulated results. We also discuss the device fabrication process, which consists of the tested device’s fabrication process, Deep Reactive Ion Etching (DRIE) for membrane formation, two different realizable fabrication technique (depending on sensing material) of sensing element, metal contact pads, and connectors deposition. In addition, a brief description and operation procedures of the device fabrication tools are provided as well. We also include detailed electrical and mechanical testing procedures and the collected data

    MME2010 21st Micromechanics and Micro systems Europe Workshop : Abstracts

    Get PDF

    Novel Applications of a Thermally Tunable Bistable Buckling Silicon-on-Insulator (SOI) Microfabricated Membrane

    Get PDF
    Buckled membranes are commonly used microelectromechanical systems (MEMS) structures. Recent work has demonstrated that the deflection and stiffness of these membranes can be tuned through localized joule heating. These devices were implemented into the design and fabrication of two novel device applications, a tunable pressure sensor and a steerable micromirror. A differential pressure across the membrane causes de reflection, up or down, which can be measured and related to a specific pressure. By tuning the stiffness of the membrane, its pressure response is varied providing a wider range of application for the pressure sensor. A 2.0mm by 2.0mm square membrane demonstrated a 60 percent decrease in pressure sensitivity from 1.433m/psi to 0.55m/psi. A steerable micromirror was realized by selectively heating a single quadrant of a buckled membrane, localized heating results in membrane de deflection constrained to that quadrant

    Design and Fabrication of Electrostatically Actuated Serpentine-Hinged Nickel-Phosphorous Micromirror Devices

    Get PDF
    A process for micromachining of micro-mirror devices from silicon-on-insulator wafers was proposed and implemented. Test methods and force applicators for these devices were developed. Following successful fabrication of these devices, a novel process for fabrication of devices out of the plane of the silicon wafer was proposed, so that the devices could be actuated electrostatically. In particular, the process makes use of thick photoresist layers as a sacrificial mold into which an amorphous nickel-phosphorous alloy may be deposited. Ideal design of the electrostatically actuated micro-mirrors was investigated, and a final design was selected and modeled using FEA software, which found that serpentine-hinged devices require approximately 33% of the actuation force of their straight-beamed counterparts. An aqueous electroless plating solution composed of nickel acetate, sodium hypophosphite, citric acid, ammonium acetate, and Triton X-100 in was developed for use with the process, and bath operating parameters of 85°C and 4.5 pH were determined. However, this electroless solution failed to deposit in the presence of the photoresist. Several mechanisms proposed for deposition failure included leaching of organic solvents from the photoresist, oxidation of the nickel-titanium seed layer on which the deposition was intended to occur, and nonlinear diffusion of dissolved oxygen in the solution

    Xenon difluoride etching of amorphous silicon for release of piezoelectric micromachined ultrasonic transducer structures

    Get PDF
    Piezoelectric micromachined ultrasonic transducers (PMUT) are devices, which are based on the piezoelectric effect and are used for sensing applications. A typical PMUT structure has diaphragm with a piezoelectric material between thin high conductivity electrode layers. There are several methods which can be used for PMUT structure fabrication, including back- and front-side etching, wafer bonding, and sacrificial layer release. The state-of-the-art methods used currently for PMUT structure fabrication still face several problems. Xenon difluoride (XeF2) etching is a fluorine-based dry vapour etch method that provides highly selective isotropic etch. It is an ideal solution for the release of self-supporting layers within MEMS devices. In this work, XeF2 etching of amorphous silicon (a-Si) for the release of PMUT structures was investigated. Different designs with varying dimensions were tested and characterized. The XeF2 etching process demonstrated to be efficient and very fast compared to other methods used for PMUT/MEMS release etching. Results from the optimization tests on the XeF2 process demonstrated total etching of 2 µm thick a-Si. Structures with sizes from 50 to 500 µm diameter were completely released after only 20 minutes of etching. Additionally, this work demonstrates that the etching rate of XeF2 is also influenced by the size, shape and location of the via openings. Furthermore, sputtered aluminium nitride AlN piezo layer process optimization and residual stress control contributed to the fabrication of suspended structures. All observed structures from 50 to 500 µm diameter which used AlN in the structural layer were suspended after release

    Capacitive Micromachined Ultrasound Transducers for Non-Destructive Testing Applications

    Get PDF
    The need for using ultrasound non-destructive testing (NDT) to characterize, test and detect flaws within metals, led us to utilize Capacitive Micromachined Ultrasound Transducers (CMUTs) in the ultrasound NDT field. This is due to CMUT's large bandwidths and high receive sensitivity, to be a suitable substitute for piezoelectric (PZT) transducers in NDT applications. The basic operational test of CMUTs, conducted in this research, was carried out based on a pulse-echo technique by propagating acoustic pulses into an object and analyzing the reflected signals. Thus, characterizing the tested material, measuring its dimension, and detecting flaws within it can be achieved. Throughout the course of this research, the fundamental parameters of CMUT including pull-in voltage and resonance frequency were initially calculated analytically and using Finite Element Analysis (FEA). Afterward, the CMUT was fabricated out of two mechanically bonded wafers. The device's movable membrane (top electrode) and stationary electrode (bottom electrode) were made out of Boron-doped Silicon. The two electrodes were electrically isolated by an insulation layer containing a sealed gap. The CMUT was then tested and characterized to analyze its performance for NDT applications. In-immersion characterization revealed that the 2.22 MHz CMUT obtained a -6 dB fractional bandwidth of 189%, and a receive sensitivity of 31.15 mV/kPa, compared to 45% and 4.83 mV/kPa of the PZT probe. A pulse-echo test, performed to examine an aluminum block with and without flaws, showed success in distinguishing the surfaces and the flaws of the tested sample

    Towards an on-chip power supply: Integration of micro energy harvesting and storage techniques for wireless sensor networks

    Get PDF
    The lifetime of a power supply in a sensor node of a wireless sensor network is the decisive factor in the longevity of the system. Traditional Li-ion batteries cannot fulfill the demands of sensor networks that require a long operational duration. Thus, we require a solution that produces its own electricity from its surrounding and stores it for future utility. Moreover, as the sensor node architecture is developed on complimentary metal-oxide-semiconductor technology (CMOS), the manufacture of the power supply must be compatible with it. In this thesis, we shall describe the components of an on-chip lifetime power supply that can harvest the vibrational mechanical energy through piezoelectric microcantilevers and store it in a reduced graphene oxide (rGO) based microsupercapacitor, and that is fabricated through CMOS compatible techniques. Our piezoelectric microcantilevers confirm the feasibility of fabricating micro electro- mechanical-systems (MEMS) size two-degree-of-freedom systems which can solve the major issue of small bandwidth of piezoelectric micro-energy harvesters. These devices use a cut-out trapezoidal cantilever beam to enhance the stress on the cantilever’s free end while reducing the gap remarkably between its first two eigenfrequencies in 400 - 500 Hz and 1 - 2 kHz range. The energy from the M-shaped harvesters will be stored in rGO based microsupercapacitors. These microsupercapacitors are manufactured through a fully CMOS compatible, reproducible, and reliable micromachining processes. Furthermore, we have also demonstrated an improvement in their electrochemical performance and yield of fabrication through surface roughening from iron nanoparticles. We have also examined the possibility of integrating these devices into a power management unit to fully realize a lifetime power supply for wireless sensor networks
    • …
    corecore