2 research outputs found

    Classification and Recognition of Encrypted EEG Data Neural Network

    Full text link
    With the rapid development of Machine Learning technology applied in electroencephalography (EEG) signals, Brain-Computer Interface (BCI) has emerged as a novel and convenient human-computer interaction for smart home, intelligent medical and other Internet of Things (IoT) scenarios. However, security issues such as sensitive information disclosure and unauthorized operations have not received sufficient concerns. There are still some defects with the existing solutions to encrypted EEG data such as low accuracy, high time complexity or slow processing speed. For this reason, a classification and recognition method of encrypted EEG data based on neural network is proposed, which adopts Paillier encryption algorithm to encrypt EEG data and meanwhile resolves the problem of floating point operations. In addition, it improves traditional feed-forward neural network (FNN) by using the approximate function instead of activation function and realizes multi-classification of encrypted EEG data. Extensive experiments are conducted to explore the effect of several metrics (such as the hidden neuron size and the learning rate updated by improved simulated annealing algorithm) on the recognition results. Followed by security and time cost analysis, the proposed model and approach are validated and evaluated on public EEG datasets provided by PhysioNet, BCI Competition IV and EPILEPSIAE. The experimental results show that our proposal has the satisfactory accuracy, efficiency and feasibility compared with other solutions

    Embedded Chaotic Whale Survival Algorithm for Filter-Wrapper Feature Selection

    Full text link
    Classification accuracy provided by a machine learning model depends a lot on the feature set used in the learning process. Feature Selection (FS) is an important and challenging pre-processing technique which helps to identify only the relevant features from a dataset thereby reducing the feature dimension as well as improving the classification accuracy at the same time. The binary version of Whale Optimization Algorithm (WOA) is a popular FS technique which is inspired from the foraging behavior of humpback whales. In this paper, an embedded version of WOA called Embedded Chaotic Whale Survival Algorithm (ECWSA) has been proposed which uses its wrapper process to achieve high classification accuracy and a filter approach to further refine the selected subset with low computation cost. Chaos has been introduced in the ECWSA to guide selection of the type of movement followed by the whales while searching for prey. A fitness-dependent death mechanism has also been introduced in the system of whales which is inspired from the real-life scenario in which whales die if they are unable to catch their prey. The proposed method has been evaluated on 18 well-known UCI datasets and compared with its predecessors as well as some other popular FS methods.Comment: 28 pages, 6 figures, submitted a minor revision to Soft Computing, Springe
    corecore