134 research outputs found

    High performance continuous-time filters for information transfer systems

    Get PDF
    Vast attention has been paid to active continuous-time filters over the years. Thus as the cheap, readily available integrated circuit OpAmps replaced their discrete circuit versions, it became feasible to consider active-RC filter circuits using large numbers of OpAmps. Similarly the development of integrated operational transconductance amplifier (OTA) led to new filter configurations. This gave rise to OTA-C filters, using only active devices and capacitors, making it more suitable for integration. The demands on filter circuits have become ever more stringent as the world of electronics and communications has advanced. In addition, the continuing increase in the operating frequencies of modern circuits and systems increases the need for active filters that can perform at these higher frequencies; an area where the LC active filter emerges. What mainly limits the performance of an analog circuit are the non-idealities of the used building blocks and the circuit architecture. This research concentrates on the design issues of high frequency continuous-time integrated filters. Several novel circuit building blocks are introduced. A novel pseudo-differential fully balanced fully symmetric CMOS OTA architecture with inherent common-mode detection is proposed. Through judicious arrangement, the common-mode feedback circuit can be economically implemented. On the level of system architectures, a novel filter low-voltage 4th order RF bandpass filter structure based on emulation of two magnetically coupled resonators is presented. A unique feature of the proposed architecture is using electric coupling to emulate the effect of the coupled-inductors, thus providing bandwidth tuning with small passband ripple. As part of a direct conversion dual-mode 802.11b/Bluetooth receiver, a BiCMOS 5th order low-pass channel selection filter is designed. The filter operated from a single 2.5V supply and achieves a 76dB of out-of-band SFDR. A digital automatic tuning system is also implemented to account for process and temperature variations. As part of a Bluetooth transmitter, a low-power quadrature direct digital frequency synthesizer (DDFS) is presented. Piecewise linear approximation is used to avoid using a ROM look-up table to store the sine values in a conventional DDFS. Significant saving in power consumption, due to the elimination of the ROM, renders the design more suitable for portable wireless communication applications

    Pixel and Readout Circuit of a Wide Dynamic Range Linear-Logarithmic Current-Mode Image Sensor

    Get PDF
    RESUME Le capteur d’images est la partie principale de tout système d’acquisition d’images, quelle que soit son application. Jusqu’à la fin des années 1990, les capteurs de type CCD ont dominé le marché en raison de leur qualité d’image exceptionnelle. À l’opposé des capteurs CCD, les capteurs CMOS offrent des possibilités intéressantes d’intégrer les circuits de traitement de signal sur un même substrat en vue d’obtenir une caméra sur puce. Entant que ces capteurs opèrent avec des tensions d’alimentations plus faibles que celles requise par les capteurs CCD, elles possèdent une faible consommation de puissance. De plus, les coûts associés à la fabrication des capteurs CMOS sont plus faibles que ceux engendrés par les capteurs CCD. Ces caractéristiques font en sorte que les capteurs d’images CMOS se prêtent à un plus grand nombre d’application que leurs équivalents CCD. Dans ce projet, l’objectif principal est de concevoir un capteur d’images ayant une plage dynamique élevée. Il possède l’avantage de deux modes d’opération, linéaire et logarithmique, ainsi qu’une lecture en mode courant afin d’augmenter sa plage dynamique. Les tensions d’alimentation des technologies CMOS diminue de plus en plus, et de ce fait la plage dynamique du pixel. En fonctionnant en mode courant, on arrive à atténuer cet effet. Le projet consiste à concevoir des circuits : convoyeur de courant, ‘delta-reset-sampling’ et un comparateur de courant qui sont efficaces pour les modes d’opération linéaire et logarithmique du pixel et permettent de détecter dans quels des deux modes se situe le pixel de façon à réaliser, à l’étage subséquent, une conversion analogique-numérique adéquate. Le pixel à trois transistors fonctionnant en mode courant utilise un transistor PMOS dans la région linéaire pour la lecture et un transistor PMOS de reset qui permet une réponse linéaire-logarithmique combinée. L'une des contributions à la non-linéarité de la réponse provient de l'effet provoqué par la résistance ‘on’ du transistor ‘select’. Pour éliminer cet effet, nous appliquons une fonction de linéarisation qui est effectuée dans le domaine numérique. Le mode d’opération du pixel est déterminé dans le circuit de lecture de colonne et un signal est envoyé à l'unité de traitement numérique comme indicateur de mode. Un prototype a été conçu et fabriqué en CMOS 0.35µm standard, 3.3V. Les résultats expérimentaux sont concluants et montrent une plage dynamique intrascènede 100 dB.----------ABSTRACT Digital cameras are rapidly becoming a dominant image capture devices. They are enabling many new applications. Charge-coupled devices (CCDs) have been the basis for solid state imaging since the 1970s. However, during the last decade, interest in CMOS imagers has increased significantly since they are capable of offering System-on-Chip (SoC) functionality. This can greatly reduce camera cost, power consumption, and size. Furthermore, by integrating innovative circuits on the same chip, the performance of CMOS image sensors could be extended beyond the capabilities of CCDs. Dynamic range is an important performance criterion for all image sensors. This thesis presents a current-mode CMOS image sensor operating in linear-logarithmic response. The objective of this design is to improve the dynamic range of the image sensor, and to provide a method for mode detection of the image sensor response. One of the motivations of using current-mode has been the shrinking feature size of CMOS devices. This leads to the reduction of supply voltage which causes the degradation of circuit performance in term of dynamic range. Such problem can be alleviated by operating in current-mode. The column readout circuits are designed in current-mode in order to be compatible with the image sensor. The readout circuit is composed of a first-generation current conveyor, an improved current memory is employed as a delta reset sampling unit, a differential amplifier as an integrator and a dynamic comparator. The current-mode three-transistor active pixel sensor uses a PMOS readout transistor in the linear region of operation and a PMOS reset transistor that allows for a linear-logarithmic response. One of the non-linearity contributions is the effect caused by the ‘on’ resistance of the select transistor. To eliminate this effect, we apply a linearization function that can be performed in the digital domain. The pixel response operation is determined in the column readout circuit and a signal is sent to the digital processing unit as an indicator. These circuits were implemented using a standard CMOS technology with no process modification. A prototype has been designed and fabricated in a standard AMS 2P4M, 3.3V, CMOS 0.35μm process from Austrian Microsystem

    Ageing and embedded instrument monitoring of analogue/mixed-signal IPS

    Get PDF
    • …
    corecore