22,636 research outputs found

    Offshore wind speed short-term forecasting based on a hybrid method: swarm decomposition and meta-extreme learning machine.

    Get PDF
    As the share of global offshore wind energy in the electricity generation portfolio is rapidly increasing, the grid integration of large-scale offshore wind farms is becoming of interest. Due to the intermittency of wind, the stability of power systems is challenging. Therefore, accurate and fast offshore short-term wind speed forecasting tools play important role in maintaining reliability and safe operation of the power system. This paper proposes a novel hybrid offshore wind forecasting model based on swarm decomposition (SWD) and meta-extreme learning machine (Meta-ELM). This approach combines the advantages of SWD which has proven efficiency for non-stationary signals, with Meta-ELM which provides faster calculation with a lower computational burden. In order to enhance accuracy and stability, the signal is decomposed by implementing a swarm-prey hunting algorithm in SWD. To validate the model, a comparison against four conventional and state-of-the-art hybrid models is performed. The implemented models are tested on two real wind datasets. The results demonstrate that the proposed model outperforms the counterparts for all performance metrics considered. The proposed hybrid approach can also improve the performance of the Meta-ELM model as a well-known and robust method

    A Deep Learning-to-learning Based Control system for renewable microgrids

    Get PDF
    In terms of microgrids (MGs) operation, optimal control and management are vital issues that must be addressed carefully. This paper proposes a practical framework for the optimal energy management and control of renewable MGs considering energy storage (ES) devices, wind turbines, and microturbines. Due to the non-linearity and complexity of operation problems in MGs, it is vital to use an accurate and robust optimization technique to control the power flow of units efficiently. To this end, in the proposed framework, teacher learning-based optimization (TLBO) is utilized to solve the power flow dispatch in the system efficiently. Moreover, a novel hybrid deep learning model based on principal component analysis (PCA), convolutional neural networks (CNN), and bidirectional long short-term memory (BLSTM) is proposed to address the short-term wind power forecasting problem. The feasibility and performance of the proposed framework and the effect of wind power forecasting on operation efficiency are examined using the IEEE 33-bus test system. Also, the Australian Woolnorth wind site data is utilized as a real-world dataset to evaluate the performance of the forecasting model. The results show that the proposed framework can be used to schedule MGs in the best way possible.© 2023 The Authors. IET Renewable Power Generation published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.fi=vertaisarvioitu|en=peerReviewed

    An advanced short-term wind power forecasting framework based on the optimized deep neural network models

    Get PDF
    With the continued growth of wind power penetration into conventional power grid systems, wind power forecasting plays an increasingly competitive role in organizing and deploying electrical and energy systems. The wind power time series, though, often present non-linear and non-stationary characteristics, allowing them quite challenging to estimate precisely. The aim of this paper is in proposing a novel hybrid model named Evol-CNN in order to predict the short-term wind power at 10-min interval up to 3-hr based on deep convolutional neural network (CNN) and evolutionary search optimizer. Specifically, we develop an improved version of Grey Wolf Optimization (GWO) algorithm by incorporating two effective modifications in its original structure. The proposed GWO algorithm is more effective than the original version due to performing in a faster way and the ability to escape from local optima. The proposed GWO algorithm is utilized to find the optimal values of hyperparameters for deep CNN model. Moreover, the optimal CNN model is employed to predict wind power time series. The main advantage of the proposed Evol-CNN model is to enhance the capability of time series forecasting models in obtaining more accurate predictions. Several forecasting benchmarks are compared with the Evol-CNN model to address its effectiveness. The simulation results indicate that the Evol-CNN has a significant advantage over the competitive benchmarks and also, has the minimum error regarding of 10-min, 1-hr and 3-hr ahead forecasting.© 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).fi=vertaisarvioitu|en=peerReviewed

    Wind Power Forecasting Methods Based on Deep Learning: A Survey

    Get PDF
    Accurate wind power forecasting in wind farm can effectively reduce the enormous impact on grid operation safety when high permeability intermittent power supply is connected to the power grid. Aiming to provide reference strategies for relevant researchers as well as practical applications, this paper attempts to provide the literature investigation and methods analysis of deep learning, enforcement learning and transfer learning in wind speed and wind power forecasting modeling. Usually, wind speed and wind power forecasting around a wind farm requires the calculation of the next moment of the definite state, which is usually achieved based on the state of the atmosphere that encompasses nearby atmospheric pressure, temperature, roughness, and obstacles. As an effective method of high-dimensional feature extraction, deep neural network can theoretically deal with arbitrary nonlinear transformation through proper structural design, such as adding noise to outputs, evolutionary learning used to optimize hidden layer weights, optimize the objective function so as to save information that can improve the output accuracy while filter out the irrelevant or less affected information for forecasting. The establishment of high-precision wind speed and wind power forecasting models is always a challenge due to the randomness, instantaneity and seasonal characteristics

    Power System Parameters Forecasting Using Hilbert-Huang Transform and Machine Learning

    Get PDF
    A novel hybrid data-driven approach is developed for forecasting power system parameters with the goal of increasing the efficiency of short-term forecasting studies for non-stationary time-series. The proposed approach is based on mode decomposition and a feature analysis of initial retrospective data using the Hilbert-Huang transform and machine learning algorithms. The random forests and gradient boosting trees learning techniques were examined. The decision tree techniques were used to rank the importance of variables employed in the forecasting models. The Mean Decrease Gini index is employed as an impurity function. The resulting hybrid forecasting models employ the radial basis function neural network and support vector regression. Apart from introduction and references the paper is organized as follows. The section 2 presents the background and the review of several approaches for short-term forecasting of power system parameters. In the third section a hybrid machine learning-based algorithm using Hilbert-Huang transform is developed for short-term forecasting of power system parameters. Fourth section describes the decision tree learning algorithms used for the issue of variables importance. Finally in section six the experimental results in the following electric power problems are presented: active power flow forecasting, electricity price forecasting and for the wind speed and direction forecasting

    Innovative Second-Generation Wavelets Construction With Recurrent Neural Networks for Solar Radiation Forecasting

    Full text link
    Solar radiation prediction is an important challenge for the electrical engineer because it is used to estimate the power developed by commercial photovoltaic modules. This paper deals with the problem of solar radiation prediction based on observed meteorological data. A 2-day forecast is obtained by using novel wavelet recurrent neural networks (WRNNs). In fact, these WRNNS are used to exploit the correlation between solar radiation and timescale-related variations of wind speed, humidity, and temperature. The input to the selected WRNN is provided by timescale-related bands of wavelet coefficients obtained from meteorological time series. The experimental setup available at the University of Catania, Italy, provided this information. The novelty of this approach is that the proposed WRNN performs the prediction in the wavelet domain and, in addition, also performs the inverse wavelet transform, giving the predicted signal as output. The obtained simulation results show a very low root-mean-square error compared to the results of the solar radiation prediction approaches obtained by hybrid neural networks reported in the recent literature
    corecore