2,723 research outputs found

    Memory and Computation-Efficient Kernel SVM via Binary Embedding and Ternary Model Coefficients

    Full text link
    Kernel approximation is widely used to scale up kernel SVM training and prediction. However, the memory and computation costs of kernel approximation models are still too high if we want to deploy them on memory-limited devices such as mobile phones, smartwatches, and IoT devices. To address this challenge, we propose a novel memory and computation-efficient kernel SVM model by using both binary embedding and binary model coefficients. First, we propose an efficient way to generate compact binary embedding of the data, preserving the kernel similarity. Second, we propose a simple but effective algorithm to learn a linear classification model with ternary coefficients that can support different types of loss function and regularizer. Our algorithm can achieve better generalization accuracy than existing works on learning binary coefficients since we allow coefficient to be 1-1, 00, or 11 during the training stage, and coefficient 00 can be removed during model inference for binary classification. Moreover, we provide a detailed analysis of the convergence of our algorithm and the inference complexity of our model. The analysis shows that the convergence to a local optimum is guaranteed, and the inference complexity of our model is much lower than other competing methods. Our experimental results on five large real-world datasets have demonstrated that our proposed method can build accurate nonlinear SVM models with memory costs less than 30KB

    Deep multimodal biometric recognition using contourlet derivative weighted rank fusion with human face, fingerprint and iris images

    Get PDF
    The goal of multimodal biometric recognition system is to make a decision by identifying their physiological behavioural traits. Nevertheless, the decision-making process by biometric recognition system can be extremely complex due to high dimension unimodal features in temporal domain. This paper explains a deep multimodal biometric system for human recognition using three traits, face, fingerprint and iris. With the objective of reducing the feature vector dimension in the temporal domain, first pre-processing is performed using Contourlet Transform Model. Next, Local Derivative Ternary Pattern model is applied to the pre-processed features where the feature discrimination power is improved by obtaining the coefficients that has maximum variation across pre-processed multimodality features, therefore improving recognition accuracy. Weighted Rank Level Fusion is applied to the extracted multimodal features, that efficiently combine the biometric matching scores from several modalities (i.e. face, fingerprint and iris). Finally, a deep learning framework is presented for improving the recognition rate of the multimodal biometric system in temporal domain. The results of the proposed multimodal biometric recognition framework were compared with other multimodal methods. Out of these comparisons, the multimodal face, fingerprint and iris fusion offers significant improvements in the recognition rate of the suggested multimodal biometric system

    Grassmann Learning for Recognition and Classification

    Get PDF
    Computational performance associated with high-dimensional data is a common challenge for real-world classification and recognition systems. Subspace learning has received considerable attention as a means of finding an efficient low-dimensional representation that leads to better classification and efficient processing. A Grassmann manifold is a space that promotes smooth surfaces, where points represent subspaces and the relationship between points is defined by a mapping of an orthogonal matrix. Grassmann learning involves embedding high dimensional subspaces and kernelizing the embedding onto a projection space where distance computations can be effectively performed. In this dissertation, Grassmann learning and its benefits towards action classification and face recognition in terms of accuracy and performance are investigated and evaluated. Grassmannian Sparse Representation (GSR) and Grassmannian Spectral Regression (GRASP) are proposed as Grassmann inspired subspace learning algorithms. GSR is a novel subspace learning algorithm that combines the benefits of Grassmann manifolds with sparse representations using least squares loss §¤1-norm minimization for improved classification. GRASP is a novel subspace learning algorithm that leverages the benefits of Grassmann manifolds and Spectral Regression in a framework that supports high discrimination between classes and achieves computational benefits by using manifold modeling and avoiding eigen-decomposition. The effectiveness of GSR and GRASP is demonstrated for computationally intensive classification problems: (a) multi-view action classification using the IXMAS Multi-View dataset, the i3DPost Multi-View dataset, and the WVU Multi-View dataset, (b) 3D action classification using the MSRAction3D dataset and MSRGesture3D dataset, and (c) face recognition using the ATT Face Database, Labeled Faces in the Wild (LFW), and the Extended Yale Face Database B (YALE). Additional contributions include the definition of Motion History Surfaces (MHS) and Motion Depth Surfaces (MDS) as descriptors suitable for activity representations in video sequences and 3D depth sequences. An in-depth analysis of Grassmann metrics is applied on high dimensional data with different levels of noise and data distributions which reveals that standardized Grassmann kernels are favorable over geodesic metrics on a Grassmann manifold. Finally, an extensive performance analysis is made that supports Grassmann subspace learning as an effective approach for classification and recognition

    Robust recognition and exploratory analysis of crystal structures using machine learning

    Get PDF
    In den Materialwissenschaften läuten Künstliche-Intelligenz Methoden einen Paradigmenwechsel in Richtung Big-data zentrierter Forschung ein. Datenbanken mit Millionen von Einträgen, sowie hochauflösende Experimente, z.B. Elektronenmikroskopie, enthalten eine Fülle wachsender Information. Um diese ungenützten, wertvollen Daten für die Entdeckung verborgener Muster und Physik zu nutzen, müssen automatische analytische Methoden entwickelt werden. Die Kristallstruktur-Klassifizierung ist essentiell für die Charakterisierung eines Materials. Vorhandene Daten bieten vielfältige atomare Strukturen, enthalten jedoch oft Defekte und sind unvollständig. Eine geeignete Methode sollte diesbezüglich robust sein und gleichzeitig viele Systeme klassifizieren können, was für verfügbare Methoden nicht zutrifft. In dieser Arbeit entwickeln wir ARISE, eine Methode, die auf Bayesian deep learning basiert und mehr als 100 Strukturklassen robust und ohne festzulegende Schwellwerte klassifiziert. Die einfach erweiterbare Strukturauswahl ist breit gefächert und umfasst nicht nur Bulk-, sondern auch zwei- und ein-dimensionale Systeme. Für die lokale Untersuchung von großen, polykristallinen Systemen, führen wir die strided pattern matching Methode ein. Obwohl nur auf perfekte Strukturen trainiert, kann ARISE stark gestörte mono- und polykristalline Systeme synthetischen als auch experimentellen Ursprungs charakterisieren. Das Model basiert auf Bayesian deep learning und ist somit probabilistisch, was die systematische Berechnung von Unsicherheiten erlaubt, welche mit der Kristallordnung von metallischen Nanopartikeln in Elektronentomographie-Experimenten korrelieren. Die Anwendung von unüberwachtem Lernen auf interne Darstellungen des neuronalen Netzes enthüllt Korngrenzen und nicht ersichtliche Regionen, die über interpretierbare geometrische Eigenschaften verknüpft sind. Diese Arbeit ermöglicht die Analyse atomarer Strukturen mit starken Rauschquellen auf bisher nicht mögliche Weise.In materials science, artificial-intelligence tools are driving a paradigm shift towards big data-centric research. Large computational databases with millions of entries and high-resolution experiments such as electron microscopy contain large and growing amount of information. To leverage this under-utilized - yet very valuable - data, automatic analytical methods need to be developed. The classification of the crystal structure of a material is essential for its characterization. The available data is structurally diverse but often defective and incomplete. A suitable method should therefore be robust with respect to sources of inaccuracy, while being able to treat multiple systems. Available methods do not fulfill both criteria at the same time. In this work, we introduce ARISE, a Bayesian-deep-learning based framework that can treat more than 100 structural classes in robust fashion, without any predefined threshold. The selection of structural classes, which can be easily extended on demand, encompasses a wide range of materials, in particular, not only bulk but also two- and one-dimensional systems. For the local study of large, polycrystalline samples, we extend ARISE by introducing so-called strided pattern matching. While being trained on ideal structures only, ARISE correctly characterizes strongly perturbed single- and polycrystalline systems, from both synthetic and experimental resources. The probabilistic nature of the Bayesian-deep-learning model allows to obtain principled uncertainty estimates which are found to be correlated with crystalline order of metallic nanoparticles in electron-tomography experiments. Applying unsupervised learning to the internal neural-network representations reveals grain boundaries and (unapparent) structural regions sharing easily interpretable geometrical properties. This work enables the hitherto hindered analysis of noisy atomic structural data

    Tensor Networks for Dimensionality Reduction and Large-Scale Optimizations. Part 2 Applications and Future Perspectives

    Full text link
    Part 2 of this monograph builds on the introduction to tensor networks and their operations presented in Part 1. It focuses on tensor network models for super-compressed higher-order representation of data/parameters and related cost functions, while providing an outline of their applications in machine learning and data analytics. A particular emphasis is on the tensor train (TT) and Hierarchical Tucker (HT) decompositions, and their physically meaningful interpretations which reflect the scalability of the tensor network approach. Through a graphical approach, we also elucidate how, by virtue of the underlying low-rank tensor approximations and sophisticated contractions of core tensors, tensor networks have the ability to perform distributed computations on otherwise prohibitively large volumes of data/parameters, thereby alleviating or even eliminating the curse of dimensionality. The usefulness of this concept is illustrated over a number of applied areas, including generalized regression and classification (support tensor machines, canonical correlation analysis, higher order partial least squares), generalized eigenvalue decomposition, Riemannian optimization, and in the optimization of deep neural networks. Part 1 and Part 2 of this work can be used either as stand-alone separate texts, or indeed as a conjoint comprehensive review of the exciting field of low-rank tensor networks and tensor decompositions.Comment: 232 page

    Tensor Networks for Dimensionality Reduction and Large-Scale Optimizations. Part 2 Applications and Future Perspectives

    Full text link
    Part 2 of this monograph builds on the introduction to tensor networks and their operations presented in Part 1. It focuses on tensor network models for super-compressed higher-order representation of data/parameters and related cost functions, while providing an outline of their applications in machine learning and data analytics. A particular emphasis is on the tensor train (TT) and Hierarchical Tucker (HT) decompositions, and their physically meaningful interpretations which reflect the scalability of the tensor network approach. Through a graphical approach, we also elucidate how, by virtue of the underlying low-rank tensor approximations and sophisticated contractions of core tensors, tensor networks have the ability to perform distributed computations on otherwise prohibitively large volumes of data/parameters, thereby alleviating or even eliminating the curse of dimensionality. The usefulness of this concept is illustrated over a number of applied areas, including generalized regression and classification (support tensor machines, canonical correlation analysis, higher order partial least squares), generalized eigenvalue decomposition, Riemannian optimization, and in the optimization of deep neural networks. Part 1 and Part 2 of this work can be used either as stand-alone separate texts, or indeed as a conjoint comprehensive review of the exciting field of low-rank tensor networks and tensor decompositions.Comment: 232 page
    corecore