5,728 research outputs found

    Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks

    Full text link
    Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.Comment: 46 pages, 22 fig

    A Method for Obtaining Electronic Voting Systems based Voter Confidentiality and Voting Accuracy

    Get PDF
    A Voting is common in our daily life, from electing president to electing committee. A complete electronic voting scheme suitable for all kinds of voting with safe guaranty where the voter?s privacy can be protected. Fingerprint system security have been investigated, including the use of fake fingerprints for masquerading identity, the problem of fingerprint alteration or obfuscation has received very little attention. Fingerprint image quality assessment software (e.g., NFIQ) cannot always detect altered fingerprints since the implicit image quality due to alteration may not change significantly. The main contributions of this Research are-1.Compiling case studies of incidents where individuals were found to have altered their fingerprints for circumventing AFIS.2.Identifying the damages of fingerprint alteration on the accuracy of a commercial fingerprint matcher.3.Classifying the alterations into three major categories and suggesting possible countermeasures.4.Developing a technique to automatically detect altered fingerprints based on analyzing orientation field and minutiae distribution.5.Evaluating the proposed technique and the NFIQ algorithm on a big database of altered fingerprints provided by a law enforcement agency. Experimental results show the feasibility of the proposed approach in detecting altered fingerprints and highlight the need to further pursue this problem

    Surface analysis and fingerprint recognition from multi-light imaging collections

    Get PDF
    Multi-light imaging captures a scene from a fixed viewpoint through multiple photographs, each of which are illuminated from a different direction. Every image reveals information about the surface, with the intensity reflected from each point being measured for all lighting directions. The images captured are known as multi-light image collections (MLICs), for which a variety of techniques have been developed over recent decades to acquire information from the images. These techniques include shape from shading, photometric stereo and reflectance transformation imaging (RTI). Pixel coordinates from one image in a MLIC will correspond to exactly the same position on the surface across all images in the MLIC since the camera does not move. We assess the relevant literature to the methods presented in this thesis in chapter 1 and describe different types of reflections and surface types, as well as explaining the multi-light imaging process. In chapter 2 we present a novel automated RTI method which requires no calibration equipment (i.e. shiny reference spheres or 3D printed structures as other methods require) and automatically computes the lighting direction and compensates for non-uniform illumination. Then in chapter 3 we describe our novel MLIC method termed Remote Extraction of Latent Fingerprints (RELF) which segments each multi-light imaging photograph into superpixels (small groups of pixels) and uses a neural network classifier to determine whether or not the superpixel contains fingerprint. The RELF algorithm then mosaics these superpixels which are classified as fingerprint together in order to obtain a complete latent print image, entirely contactlessly. In chapter 4 we detail our work with the Metropolitan Police Service (MPS) UK, who described to us with their needs and requirements which helped us to create a prototype RELF imaging device which is now being tested by MPS officers who are validating the quality of the latent prints extracted using our technique. In chapter 5 we then further developed our multi-light imaging latent fingerprint technique to extract latent prints from curved surfaces and automatically correct for surface curvature distortions. We have a patent pending for this method

    Behavior modelling and individual recognition of sonar transmitter for secure communication in UASNs

    Get PDF
    It is necessary to improve the safety of the underwater acoustic sensor networks (UASNs) since it is mostly used in the military industry. Specific emitter identification is the process of identifying different transmitters based on the radio frequency fingerprint extracted from the received signal. The sonar transmitter is a typical low-frequency radiation source and is an important part of the UASNs. Class D Power Amplifier, a typical non-linear amplifier, is usually used in sonar transmitters. The inherent nonlinearity of power amplifiers provides fingerprint features that can be distinguished without transmitters for specific emitter recognition. Firstly, the non-linearity of the sonar transmitter is studied in depth, and the nonlinearity of the power amplifier is modeled and its non-linearity characteristics are analyzed. After obtaining the nonlinear model of an amplifier, a similar amplifier in practical application is obtained by changing its model parameters as the research object. The output signals are collected by giving the same input of different models, and then the output signals are extracted and classified. In this paper, the memory polynomial model is used to model the amplifier. The power spectrum features of the output signals are extracted as fingerprint features. Then the dimensionality of the high-dimensional features is reduced. Finally, the classifier is used to recognize the amplifier. The experimental results show that the individual sonar transmitter can be well identified by using the non-linear characteristics of the signal. By this way, this method can enhance the communication safety of UASNs

    Vein Pattern Extraction Using Near Infrared Imaging for Biometric Purposes

    Get PDF
    Biomedical verification has been broadly examined for many years and pulled in much consideration because of its huge potential security application. Vein is less prone to damage and almost improbable to copy than any other physiological as well as behavioural biometric features such as fingerprint, iris, face and voice recognition. This paper proposes an efficient vein extraction method on low quality vein images taken by a camera absorbing near infrared light (NIR camera). At first, the image is contrast enhanced using contrast limited adaptive histogram equalization (CLAHE); secondly, local threshold method is applied on small blocks of the image followed by several morphological operations such as fill, erosion, dilation, clean and bridge, performed sequentially, for better accuracy. Experimental results obtained for extraction show that the proposed method can reap better results with reduced complexity. After extraction, matching of the test image with the template images stored in the database are matched using minutiae (point-to-point pattern). An orientation detector which filters out missing or unnecessary or unnatural spurious minutiae pairings while simultaneously using path or ridge orientations to increase performance and similarity score calculation. Thus the obtained processed images can be used in biometric purposes which in turn enhances the security of the syste

    Indoor positioning with deep learning for mobile IoT systems

    Get PDF
    2022 Summer.Includes bibliographical references.The development of human-centric services with mobile devices in the era of the Internet of Things (IoT) has opened the possibility of merging indoor positioning technologies with various mobile applications to deliver stable and responsive indoor navigation and localization functionalities that can enhance user experience within increasingly complex indoor environments. But as GPS signals cannot easily penetrate modern building structures, it is challenging to build reliable indoor positioning systems (IPS). Currently, Wi-Fi sensing based indoor localization techniques are gaining in popularity as a means to build accurate IPS, benefiting from the prevalence of 802.11 family. Wi-Fi fingerprinting based indoor localization has shown remarkable performance over geometric mapping in complex indoor environments by taking advantage of pattern matching techniques. Today, the two main information extracted from Wi-Fi signals to form fingerprints are Received Signal Strength Index (RSSI) and Channel State Information (CSI) with Orthogonal Frequency-Division Multiplexing (OFDM) modulation, where the former can provide the average localization error around or under 10 meters but has low hardware and software requirements, while the latter has a higher chance to estimate locations with ultra-low distance errors but demands more resources from chipsets, firmware/software environments, etc. This thesis makes two novel contributions towards realizing viable IPS on mobile devices using RSSI and CSI information, and deep machine learning based fingerprinting. Due to the larger quantity of data and more sophisticated signal patterns to create fingerprints in complex indoor environments, conventional machine learning algorithms that need carefully engineered features suffer from the challenges of identifying features from very high dimensional data. Hence, the abilities of approximation functions generated from conventional machine learning models to estimate locations are limited. Deep machine learning based approaches can overcome these challenges to realize scalable feature pattern matching approaches such as fingerprinting. However, deep machine learning models generally require considerable memory footprint, and this creates a significant issue on resource-constrained devices such as mobile IoT devices, wearables, smartphones, etc. Developing efficient deep learning models is a critical factor to lower energy consumption for resource intensive mobile IoT devices and accelerate inference time. To address this issue, our first contribution proposes the CHISEL framework, which is a Wi-Fi RSSI- based IPS that incorporates data augmentation and compression-aware two-dimensional convolutional neural networks (2D CAECNNs) with different pruning and quantization options. The proposed model compression techniques help reduce model deployment overheads in the IPS. Unlike RSSI, CSI takes advantages of multipath signals to potentially help indoor localization algorithms achieve a higher level of localization accuracy. The compensations for magnitude attenuation and phase shifting during wireless propagation generate different patterns that can be utilized to define the uniqueness of different locations of signal reception. However, all prior work in this domain constrains the experimental space to relatively small-sized and rectangular rooms where the complexity of building interiors and dynamic noise from human activities, etc., are seldom considered. As part of our second contribution, we propose an end-to-end deep learning based framework called CSILoc for Wi-Fi CSI-based IPS on mobile IoT devices. The framework includes CSI data collection, clustering, denoising, calibration and classification, and is the first study to verify the feasibility to use CSI for floor level indoor localization with minimal knowledge of Wi-Fi access points (APs), thus avoiding security concerns during the offline data collection process

    A Survey of Positioning Systems Using Visible LED Lights

    Get PDF
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.As Global Positioning System (GPS) cannot provide satisfying performance in indoor environments, indoor positioning technology, which utilizes indoor wireless signals instead of GPS signals, has grown rapidly in recent years. Meanwhile, visible light communication (VLC) using light devices such as light emitting diodes (LEDs) has been deemed to be a promising candidate in the heterogeneous wireless networks that may collaborate with radio frequencies (RF) wireless networks. In particular, light-fidelity has a great potential for deployment in future indoor environments because of its high throughput and security advantages. This paper provides a comprehensive study of a novel positioning technology based on visible white LED lights, which has attracted much attention from both academia and industry. The essential characteristics and principles of this system are deeply discussed, and relevant positioning algorithms and designs are classified and elaborated. This paper undertakes a thorough investigation into current LED-based indoor positioning systems and compares their performance through many aspects, such as test environment, accuracy, and cost. It presents indoor hybrid positioning systems among VLC and other systems (e.g., inertial sensors and RF systems). We also review and classify outdoor VLC positioning applications for the first time. Finally, this paper surveys major advances as well as open issues, challenges, and future research directions in VLC positioning systems.Peer reviewe
    corecore