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ABSTRACT It is necessary to improve the safety of the underwater acoustic sensor networks (UASNs)
since it is mostly used in the military industry. Specific emitter identification is the process of identifying
different transmitters based on the radio frequency fingerprint extracted from the received signal. The sonar
transmitter is a typical low-frequency radiation source and is an important part of the UASNs. Class D Power
Amplifier, a typical non-linear amplifier, is usually used in sonar transmitters. The inherent nonlinearity of
power amplifiers provides fingerprint features that can be distinguished without transmitters for specific
emitter recognition. Firstly, the non-linearity of the sonar transmitter is studied in depth, and the non-
linearity of the power amplifier is modeled and its non-linearity characteristics are analyzed. After obtaining
the nonlinear model of an amplifier, a similar amplifier in practical application is obtained by changing
its model parameters as the research object. The output signals are collected by giving the same input
of different models, and then the output signals are extracted and classified. In this paper, the memory
polynomial model is used to model the amplifier. The power spectrum features of the output signals are
extracted as fingerprint features. Then the dimensionality of the high-dimensional features is reduced.
Finally, the classifier is used to recognize the amplifier. The experimental results show that the individual
sonar transmitter can be well identified by using the non-linear characteristics of the signal. By this way,
this method can enhance the communication safety of UASNs.

INDEX TERMS Specific Emitter Identification, Sonar, Nonlinear Model, Power Amplifier

I. INTRODUCTION

THE ubderwater acoustic sensor networks (UASNs) are
often used for environmental and industrial sensing

in undersea space or space. Therefore, these networks are
also named underwater sensor networks(UWSNs). Under-
water sensor networks are different from other sensor net-
works[1][2]. Monitoring of underwater environment is very
important in marine science and technology. To cover this
monitoring, creating underwater sensor networks is essential
in ubdersea space.

The sound of water is the only form of energy that humans
have known so far that can travel long distances in the ocean.
Other physical media, such as visible light, electromagnetic
waves, lasers, etc., will quickly decay when propagating in
seawater and cannot be transmitted to distant places. There-
fore, sonar technology is an important means of acquiring,

utilizing and processing marine information, and has a unique
role in national security and national economic development.
The invention of modern sonar is earlier than radar, but the
public’s understanding of sonar is far less than that of radar.
This is because the sonar is mainly used for the detection
of surface ships and submarines in the military, and the
modern is extended to the underwater warning, anti-frogmen,
etc. So the sonar is covered with a mysterious veil. In the
civilian sector, sonar technology is an important means of
understanding various parameters of the sea surface, water
body and seabed, including sound velocity profile, tempera-
ture, and salt depth distribution, ocean current, internal wave,
mesoscale vortex, seabed landform/topography, etc. Sonar
equipment is also used in submarine scientific observation
networks, submarine oil and gas field exploration, shipwreck
rescue, underwater testing, ancient and marine disaster warn-
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ings[3][4]. In the field of national security, sonar equipment
is installed on a variety of platforms, including surface ships,
submarines, helicopters, unmanned/manned submersibles,
shore stations, torpedoes, mines, etc., for information collec-
tion, remote warning, targeting and Identification, navigation,
proximity/long-range weapon guidance, etc. Figure 1 shows
a basic UASNs. There are many known or unknown sonar
transmitters underwater. Each transmitter emits a different
signal.

If each transmitter cannot be identified, it poses a threat to
the secure communication of the network.

FIGURE 1. The power spectrum estimation of the output signals of linear and
nonlinear systems.

Individual identification of specific emitter is a technology
to extract the fingerprint characteristics of communication
equipment by analyzing the radio frequency signal of com-
munication equipment, and then identify the individual of
communication equipment [5][6]. It is also an important non-
cryptographic authentication method based on physical layer
hardware of equipment. Currently, the research object of
individual identification of specific emitters is mainly radar
and communication radio [7][8]. The working frequency is
generally radio frequency, and the working frequency will
reach MHz or even GHz. For example, individual identi-
fication based on RFID and individual identification based
on wireless network card or ZigBee device, their working
frequency has reached 2.4 GHz [9][10].

Individual identification of low-frequency emitters is also
a very important subject in the field of communication and
electronic countermeasures. The sonar transmitter studied
in this paper is a typical low-frequency radiation source.
Its working frequency is usually from several hundred Hz
to several hundred KHz. Although the working frequency
bands are different, the idea of individual identification of
radiation sources is similar. With the rapid development of
modern military, modern underwater warfare has become
a key part. Underwater vehicle must rely on underwater
acoustic countermeasure to grasp underwater information in
order to ensure underwater activities.

With the development of modern underwater acoustic
countermeasure, it is necessary to have good sonar equipment

in order to grasp the direction of enemy submarines. So sonar
equipment plays an important role in underwater, so there
will be many sonar equipment. At this time, new problems
will arise. Such as how to distinguish the cooperative sonar
equipment accurately, avoid the deceptive operation of the
enemy sonar equipment and so on. Therefore, it is of great
significance to study the individual recognition technology
of sonar transmitter.

Like different individual fingerprints, each sonar device
will have subtle differences in design, production, processing
and modulation. This hardware difference will be reflected
in the sonar transmission signal. By analyzing the received
sonar signal, this subtle difference can be extracted, and
then used for sonar transmitter individual identification. In
2003, Hall et al. of Canada first proposed in document [11]
to extract the subtle differences in Bluetooth signals for
individual identification of Bluetooth devices, and defined
these subtle features as "radio frequency fingerprints" [11].
Radio frequency fingerprint extraction and recognition of
wireless communication equipment works in its physical
layer, which can not only work alone, but also assist the tradi-
tional communication network security mechanism, so as to
provide higher security performance for the communication
network. Similarly, when identifying sonar transmitters, we
also identify individuals by extracting subtle differences in
the Countermeasures in the output signals of sonar trans-
mitters. We think that the extracted features should have
five characteristics: universality, uniqueness, short-term in-
variance, independence and robustness. It is a physical layer
method to protect the security of communication system.
Different sonar devices have different subtle characteristics
and can be used for identification and access authentication
of sonar devices.

II. RELATED WORK
A. BEHAVIOR MODELING
The nonlinearity of sonar transmitter results in the unin-
tentional modulation of the sonar signal. This unintentional
modulation is closely related to the individual differences of
amplifiers. Extracting these features from signals can identify
individuals effectively.

The nonlinear behavior modeling of nonlinear system can
be classified into two categories: memoryless behavioral
models and behavioral models with memory. The memo-
ryless model has a good fitting effect for some specific
nonlinear systems and narrowband communication systems.
However, With the rapid development of wireless communi-
cation technology, the bandwidth of wireless signals is wider
and wider, the signal frequency is getting higher and higher,
and the memory effect of wireless signals can not be ignored.
Therefore, scholars’ research focuses on memory models.

In 2011, Ming-Wei Liu et al. analyzed the nonlinearity of
a kind of circuit in front-end nonlinearity device of commu-
nication equipment. Because the nonlinearity of the circuit
leads to spectrum regeneration, distortion of communication
signal waveform and widening of signal spectrum [12]-[15].
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These phenomena are related to the individual differences
of hardware, which makes it possible to identify individual
emitters. In document [16], the influence of noise and input
power on power amplifier is simulated, and the change model
is established. The coefficient of the non-linear model is
extracted by spectral regeneration [16].

After observing signals of a certain length of time, this
method can identify the source of communication radia-
tion under the condition of high signal-to-noise ratio. Al-
ternatively, the excellent capability of artificial neural net-
works(ANNs) to accurately approximate continuous func-
tions has been successfully exploited to model nonlinear
system[17]-[20].

In document [21], the author proposed a two hidden layers
artificial neural networks models to fit the dynamic nonliear
behavior of a 250-W Doherty amplifier driven with a 20-MHz
bandwidth.

In document [22], a comparative study of behavioral mod-
els for microwave power amplifiers is proposed. The author
analyzed the fitting accuracy and computational complex-
ity of multiple behavioral models, including Volterra series
model, memory polynomial, Volterra with dynamic devia-
tion reduction, generalized memory polynomial model and
Kautz˘Volterra and Laguerre˘Volterra model. Two PAs were
studied to compare the performance of these models and
the results shows that the generalized memory polynomial
behavioral model has the best tradeoff for accuracy versus
complexity for both PAs.

This paper will model the behavior of power amplifier
circuit in sonar transmitter, simulate sonar transmitter with
the same model, the same batch of production and the same
mode of operation for steady-state characteristic analysis,
and extract fine features that can be used for individual
classification and recognition of sonar transmitter.

B. INDIVIDUAL RECOGNITION TECHNOLOGY
Due to the inherent nonliearities of the power amplifiers of
sonar transmitters, these feature provide distinguish features
for sonar transmitter recongnition. In [23][24], the author
used 3 order Taylor polynomial to model the amplifiers. Four
similar amplifiers are simulated by behavioral models derived
from four approximate parameters. The paper proposed an
transmitter recongnition method based on variational mode
decomposition and spectral features, which is comparing
with empirical mode decomposition. And different spectral
features, including spectral flatness, spectral brightness, and
spectral roll-off are uesd to improve the recongnition rate.

In [25],the author proposed a sparse feature learning
method beyond manual design is proposed to learn features
from the samples sampled during tracking.

In [26], a communication radiation source individual iden-
tification method based on dimensional reduction and ma-
chine learning is proposed as a component of intrusion detec-
tion for resolving authentication security issues. The authors
compared three kinds of dimensional reduction methods,
which are the traditional PCA, RPCA and KPCA[27][28].

And this paper take random forests, support vector ma-
chine, artificial neural network and grey correlation analysis
into consideration to make decisions on the dimensional
reduction data[29][30].

In [31], the power spectrum estimation is used to
distinguish different Universal Software Radio Peripher-
als(USRPs). In [32], 40 identical ZigBee devices are the
research object of transmitter recognition. The feature this
paper used is power spectrum estimation. In this paper, the
power spectrum estimation of the sonar transmitter output
signals based on Welch method is used to identify different
sonar transmitters

III. METHOD OVERVIEW
This section mainly introduces the memory polynomial
model and power spectral density characteristics used in this
paper.

A. MEMORY POLYNOMIAL MODEL
Power amplifiers with memory refers to the output of power
amplifier at a certain time not only related to the input at this
time, but also related to the input at a certain time before
[33]. The polynomial model of memoryless power amplifier
is dispersed and expressed as follows.

y(n) =
K∑

k=1

hkz
k(n) = h1z(n)+h2z

2(n) + · · ·+ hKz
K(n)

n = 1, 2, · · ·N
(1)

Increasing Memory Effect on Formula 1, the model can be
expressed as follows.

y(n) =
K∑

k=1

M∑
m=0

hkmz
k(n−m)

= h10z(n) + h11z(n− 1) + · · ·+ h1Mz(n−M)
+ h20z

2(n) + h21z
2(n− 1) + · · ·h2Mz2(n−M)

+ · · ·
+hK0z

K(n) + hK1z
K(n− 1) + · · ·hKMz

K(n−M)
n = 1, 2, · · ·N

(2)
Where, K is the nonlinear order and M is the memory

depth. The formula (2) can be simplified to formula (3)

y(n) =
K∑

k=1

M∑
m=0

hkmz(n−m)|z(n−m)|k−1

n = 1, 2 · · ·N
(3)

Next, we calculate the coefficients of the model. Firstly,
we define zkm(n) = z(n − m)|z(n−m)|k−1 and zkm =
[zkm(1), zkm(2), · · · , zkm(n)]T . Then, we rewrite formula
(2) into a matrix form.

y = Zh (4)

Where,
y = [y(1), · · · , y(n)]T (5)

Z = [z10, · · · zK0, z11, · · · zK1, · · · z1M , · · · zKM ] (6)

h = [h10, · · ·hK0, h11, · · ·hK1, · · ·h1M , · · ·hKM ]T (7)
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.
We introduce a polynomial model based on orthogonal

basis function and rewrite formula (4) into formula (8).

y = ψc (8)

where, ψ is a group of orthogonal bases and it is a K ×M
order matrix. By using the least square method, we can get
the analytical expression of the model coefficients.

ĉLS = (ψTψ)
−1
ψT y (9)

Figure 2 show that a block diagram of the memory poly-
nomial model.

B. POWER SPECTRUM DENSITY ESTIMATION
The power spectral function represents the frequency func-
tion of the unit bandwidth power with the spectrum compo-
nent of the finite average power signals[34]. The important
characteristics of the random signal are studied and analyzed.
Power spectrum estimation is one of the main contents of
signal processing. It mainly studies the characteristics of
signal in frequency domain. In this paper, the power spectrum
estimation of the sonar transmitter output signals based on
Welch method is used.

Periodogram method assumes that xi(n)(i = 0, 1, · · ·K−
1) is the uncorrelated implementation of stochastic process
x(n). The length of every xi(n) is M . The periodogram of
xi(n) is:

P (i)
per(eiω) =

1

M

∣∣∣∣∣
M−1∑
n=0

xi(n)e−jωn

∣∣∣∣∣
2

i = 1, 2, · · ·K (10)

Then, computing the average of these independent peri-
odogram and the result is the estimation of power spectrum
as shown below.

P (av)
per (ejω) =

1

K
P (i)
per(ejω) (11)

In application, it is seldom to get repeatedly implemen-
tations of a random signal. Accordingly, Bartlett proposed
dividing a random signal with length N into K segments
on average. Further, define every sub signal as xi(n) =
x(n + iM)(n = 0, 1, · · ·M − 1; i = 0, 1, · · ·K − 1) And,
computing the periodogram of every sub signal and comput-
ing the average. Final ,the expression of average periodogram
is:

P (BT )
per (ejω) =

1

M

K−1∑
i=0

∣∣∣∣∣
M−1∑
n=0

x(n+ iM)e−jωn

∣∣∣∣∣
2

(12)

Welch’s method has two modifications to the average
periodogram method.

• The Welch’s method improves segmentation scheme of
x(n). The method allows a certain degree of overlap
between the data of each segment and its adjacent data
segment. For example, when the data of each segment
coincides with half of the segment, the number of seg-
ment turn into K = N − (M/2)/M/2. Where, M is

the length of each segment of data, N is the total length
of the data.

• Data windowing for each segment may not be a rectan-
gular window. Such as Hanning window and Hamming
window. This can improve the distortion caused by the
larger side lobe of rectangular window.

The expression of power spectrum estimation based on
Welch’s method is:

P (i)
w (ejω) =

1

MU

∣∣∣∣∣
M−1∑
n=0

xi(n)ω(n)e−jωn

∣∣∣∣∣
2

(13)

Where ω(n) is a window function, xi(n) represents the i-
segment data sequence.

IV. EXPERIMENT AND RESULTS
A. EXPERIMENT STEPS
Sonar transmitter belongs to low-frequency radiation source,
which is an important part of the sonar system. It transmits
sound wave information into water. The frequency is from
several hundred Hz to several hundred KHz, and the trans-
mitted signal is usually a continuous wave signal. In this
experiment, we firstly use a memory polynomial method to
model the sonar transmitter.

FIGURE 3. The experiment steps.

The experiment steps are shown in figure 3. In this paper,
the non-linear order of memory polynomial is 3 and the
memory depth is 3.

TABLE 1. The parameters of the models

Number h1 h2 h3 h4 h5 h6

No.1 3.00 1.98 0.70 0.02 0.02 0.01
No.2 3.00 1.91 0.80 1.04 0.04 0.02
No.3 3.00 1.89 0.70 0.08 0.06 0.03
No.4 3.00 1.85 0.90 0.06 0.08 0.05
No.5 3.00 1.78 0.80 1.04 0.02 0.02

Then, we slightly change the parameters of the model to
get a similar transmitter model. Next, we input the same
signal to the model and get its output data through the model.
The model parameters are shown in the table 1. Finally,
we extract the features from the output data to realize the
classification and recognition of transmitter individuals.
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FIGURE 2. A block diagram of the memory polynomial model.

B. RESULTS
Firstly, we compared signals passing through linear and
nonlinear systems. Figure 4 shows that the power spectrum
estimation of the output signals of linear and nonlinear sys-
tems with single tone input.
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FIGURE 4. The power spectrum estimation of the output signals of linear and
nonlinear systems.

As we can seen, after the signal passes through the non-
linear system, it shows obvious non-linear characteristics.
That is spectral regrowth phenomenon. This nonlinearity
limits the delivered output power because of the compres-
sion nonlinear characteristics and also introduces unwanted
signal components at the output of the nonlinear device.
These unwanted signal components are called “nonlinear
distortion” that is manifested as harmonics at multiples of
the fundamental frequencies when the input signal consists
of discrete tones and, as spectral regrowth when the input
signal spectrum has a finite bandwidth. We can utilize the
nonlinear distortion of different transmitters to distinguish
these transmitters.

Secondly, we compared the power spectrum estimation of
different transmitters. We input the same single signal and
two tone signal to two transmitters. Figure 5 shows that the
power spectrum estimation comparison of the output signals
of two different models. The input signal is single-tone signal
and the frequency is 1KHz. Figure 6 shows that the power
spectrum estimation comparison of the output signals of two
different models and the input signal is two-tone signal and

the frequency are 1KHz and 2KHz. As we cab see, when the
input signal is two-tone signal, the nonlinearity of the output
of the model is more obvious. Therefore, we assume that it
is easier to distinguish different transmitters when the input
signal of the transmitters is two-tone signal.
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(a) The PSD of input signals. The signal is a single tone signal and
the frquency is 1KHz.
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(b) The PSD of output signals.

FIGURE 5. Power spectrum estimation comparison of model input and output
signals. The input signal is single-tone signal and the frequency is 1KHz. The
signal is a single tone signal and the frquency is 1KHz.

Figure 7 shows that the curve of recognition results with
SNR under different input signals. The results shows that
power spectrum estimation can distinguish these transmitters
and it is easier to distinguish different transmitters when the
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input signal of the transmitters is two-tone signal. When the
input signal is two tone signal, the recognition rate can reach
100% when the SNR is 0dB.

We use principal component analysis to reduce the dimen-
sion of the feature vector. Figure 8 shows that feature visu-
alization of five transmitter with the input signal is single-
tone signal and the SNR is 10dB. Figure 9 shows that feature
visualization of five transmitter with the input signal is two-
tone signal and the SNR is 10dB. As we can see, at the
same signal-to-noise ratio, when the input signal is a dual-
tone signal, the five similar transmitter models have better
discrimination.

Then, we utilize five nonlinear models as five sonar trans-
mitters to verify the validity of our method. The detailed
experiment conditions are shown in table 2.

TABLE 2. The case overview.

Item instruction
Feature selection Power spectrum estimation

Transmitter selection Nonlinear model of sonar
transmitter

Input signal 1KHz single tone // 2KHz single
tone 1KHz +2KHz two tone

Communication channel AWGN channel(SNR = -5−20dB)
Sampling rates 10KHz

Number of FFT points 2048 points
Number of transmitters 5

Number of the signal samples 100 samples per user
Number of the points per samples 10000 points per samples

We mainly analyze whether similar transmitters can be dis-
tinguished by power spectrum estimation and the influence of
different input signals on the recognition results.
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FIGURE 7. The curve of recognition results with SNR under different input
signals.

V. CONCLUSION
This paper mainly studies the individual identification of
emitter based on the behavior modeling of the sonar trans-
mitter. Ten approximate sonar transmitters are obtained by
memory polynomial modeling. The same signals are input
to the sonar transmitter model to collect its output signals,

and the output signals are extracted feature and classified. In
this paper, the memory polynomial method is used to model
the behavior of sonar transmitter, and the power spectrum
estimation of the output signals are used as the fingerprint
feature to identify the transmitters. The experimental results
show that this method can effectively identify multiple simi-
lar sonar transmitters.

In future work, we will consider collecting actual signals
of the sonar transmitter and other wireless network devices.
The environment of underwater will be considered in future
work.
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