106 research outputs found

    Roadmap on optical security

    Get PDF
    Information security and authentication are important challenges facing society. Recent attacks by hackers on the databases of large commercial and financial companies have demonstrated that more research and development of advanced approaches are necessary to deny unauthorized access to critical data. Free space optical technology has been investigated by many researchers in information security, encryption, and authentication. The main motivation for using optics and photonics for information security is that optical waveforms possess many complex degrees of freedom such as amplitude, phase, polarization, large bandwidth, nonlinear transformations, quantum properties of photons, and multiplexing that can be combined in many ways to make information encryption more secure and more difficult to attack. This roadmap article presents an overview of the potential, recent advances, and challenges of optical security and encryption using free space optics. The roadmap on optical security is comprised of six categories that together include 16 short sections written by authors who have made relevant contributions in this field. The first category of this roadmap describes novel encryption approaches, including secure optical sensing which summarizes double random phase encryption applications and flaws [Yamaguchi], the digital holographic encryption in free space optical technique which describes encryption using multidimensional digital holography [Nomura], simultaneous encryption of multiple signals [Pérez-Cabré], asymmetric methods based on information truncation [Nishchal], and dynamic encryption of video sequences [Torroba]. Asymmetric and one-way cryptosystems are analyzed by Peng. The second category is on compression for encryption. In their respective contributions, Alfalou and Stern propose similar goals involving compressed data and compressive sensing encryption. The very important area of cryptanalysis is the topic of the third category with two sections: Sheridan reviews phase retrieval algorithms to perform different attacks, whereas Situ discusses nonlinear optical encryption techniques and the development of a rigorous optical information security theory. The fourth category with two contributions reports how encryption could be implemented at the nano- or micro-scale. Naruse discusses the use of nanostructures in security applications and Carnicer proposes encoding information in a tightly focused beam. In the fifth category, encryption based on ghost imaging using single-pixel detectors is also considered. In particular, the authors [Chen, Tajahuerce] emphasize the need for more specialized hardware and image processing algorithms. Finally, in the sixth category, Mosk and Javidi analyze in their corresponding papers how quantum imaging can benefit optical encryption systems. Sources that use few photons make encryption systems much more difficult to attack, providing a secure method for authentication.Centro de Investigaciones ÓpticasConsejo Nacional de Investigaciones Científicas y Técnica

    Survey of FPGA applications in the period 2000 – 2015 (Technical Report)

    Get PDF
    Romoth J, Porrmann M, Rückert U. Survey of FPGA applications in the period 2000 – 2015 (Technical Report).; 2017.Since their introduction, FPGAs can be seen in more and more different fields of applications. The key advantage is the combination of software-like flexibility with the performance otherwise common to hardware. Nevertheless, every application field introduces special requirements to the used computational architecture. This paper provides an overview of the different topics FPGAs have been used for in the last 15 years of research and why they have been chosen over other processing units like e.g. CPUs

    Understanding Quantum Technologies 2022

    Full text link
    Understanding Quantum Technologies 2022 is a creative-commons ebook that provides a unique 360 degrees overview of quantum technologies from science and technology to geopolitical and societal issues. It covers quantum physics history, quantum physics 101, gate-based quantum computing, quantum computing engineering (including quantum error corrections and quantum computing energetics), quantum computing hardware (all qubit types, including quantum annealing and quantum simulation paradigms, history, science, research, implementation and vendors), quantum enabling technologies (cryogenics, control electronics, photonics, components fabs, raw materials), quantum computing algorithms, software development tools and use cases, unconventional computing (potential alternatives to quantum and classical computing), quantum telecommunications and cryptography, quantum sensing, quantum technologies around the world, quantum technologies societal impact and even quantum fake sciences. The main audience are computer science engineers, developers and IT specialists as well as quantum scientists and students who want to acquire a global view of how quantum technologies work, and particularly quantum computing. This version is an extensive update to the 2021 edition published in October 2021.Comment: 1132 pages, 920 figures, Letter forma

    Recent Advances in Signal Processing

    Get PDF
    The signal processing task is a very critical issue in the majority of new technological inventions and challenges in a variety of applications in both science and engineering fields. Classical signal processing techniques have largely worked with mathematical models that are linear, local, stationary, and Gaussian. They have always favored closed-form tractability over real-world accuracy. These constraints were imposed by the lack of powerful computing tools. During the last few decades, signal processing theories, developments, and applications have matured rapidly and now include tools from many areas of mathematics, computer science, physics, and engineering. This book is targeted primarily toward both students and researchers who want to be exposed to a wide variety of signal processing techniques and algorithms. It includes 27 chapters that can be categorized into five different areas depending on the application at hand. These five categories are ordered to address image processing, speech processing, communication systems, time-series analysis, and educational packages respectively. The book has the advantage of providing a collection of applications that are completely independent and self-contained; thus, the interested reader can choose any chapter and skip to another without losing continuity

    Recent Application in Biometrics

    Get PDF
    In the recent years, a number of recognition and authentication systems based on biometric measurements have been proposed. Algorithms and sensors have been developed to acquire and process many different biometric traits. Moreover, the biometric technology is being used in novel ways, with potential commercial and practical implications to our daily activities. The key objective of the book is to provide a collection of comprehensive references on some recent theoretical development as well as novel applications in biometrics. The topics covered in this book reflect well both aspects of development. They include biometric sample quality, privacy preserving and cancellable biometrics, contactless biometrics, novel and unconventional biometrics, and the technical challenges in implementing the technology in portable devices. The book consists of 15 chapters. It is divided into four sections, namely, biometric applications on mobile platforms, cancelable biometrics, biometric encryption, and other applications. The book was reviewed by editors Dr. Jucheng Yang and Dr. Norman Poh. We deeply appreciate the efforts of our guest editors: Dr. Girija Chetty, Dr. Loris Nanni, Dr. Jianjiang Feng, Dr. Dongsun Park and Dr. Sook Yoon, as well as a number of anonymous reviewers

    Ideal quantum protocols in the non-ideal physical world

    Get PDF
    The development of quantum protocols from conception to experimental realizations is one of the main sources of the stimulating exchange between fundamental and experimental research characteristic to quantum information processing. In this thesis we contribute to the development of two recent quantum protocols, Universal Blind Quantum Computation (UBQC) and Quantum Digital Signatures (QDS). UBQC allows a client to delegate a quantum computation to a more powerful quantum server while keeping the input and computation private. We analyse the resilience of the privacy of UBQC under imperfections. Then, we introduce approximate blindness quantifying any compromise to privacy, and propose a protocol which enables arbitrary levels of security despite imperfections. Subsequently, we investigate the adaptability of UBQC to alternative implementations with practical advantages. QDS allow a party to send a message to other parties which cannot be forged, modified or repudiated. We analyse the security properties of a first proof-of-principle experiment of QDS, implemented in an optical system. We estimate the security failure probabilities of our system as a function of protocol parameters, under all but the most general types of attacks. Additionally, we develop new techniques for analysing transformations between symmetric sets of states, utilized not only in the security proofs of QDS but in other applications as well

    Optical Light Manipulation and Imaging Through Scattering Media

    Get PDF
    Typical optical systems are designed to be implemented in free space or clean media. However, the presence of optical scattering media scrambles light waves and becomes a problem in light field control, optical imaging, and sensing. To address the problem caused by optical scattering media, we discuss two types of solutions in this thesis. One type of solution is active control, where active modulators are used to modulate the light wave to compensate the wave distortion caused by optical scattering. The other type of solution is computational optics, where physical and mathematical models are built to computationally reconstruct the information from the measured distorted wavefront. In the part of active control, we first demonstrate coherent light focusing through scattering media by transmission matrix inversion. The transmission matrix inversion approach can realize coherent light control through scattering media with higher fidelity compared to conventional transmission matrix approaches. Then, by combining the pre-designed scattering metasurface with wavefront shaping, we demonstrate a beam steering system with large angular and high angular resolution. Next, we present optical-channel-based intensity streaming (OCIS), which uses only intensity information of light fields to realize light control through scattering media. This solution can be used to control spatially incoherent light propagating through scattering media. In the part of computational optics, we first demonstrate the idea of interferometric speckle visibility spectroscopy (ISVS) to measure the information cerebral blood flow. In ISVS, a camera records the speckle frames of diffused light from the human subject interferometrically, and the speckle statistics is used to calculate the speckle decorrelation time and consequently the blood flow index. Then, we compare the two methods of decorrelation time measurements - temporal sampling methods and spatial ensemble methods - and derive unified mathematical expressions for them in terms of measurement accuracy. Based on current technology of camera sensors and single detectors, our results indicate that spatial ensemble methods can have higher decorrelation time measurement accuracy compared to commonly used temporal sampling methods.</p
    • …
    corecore