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Abstract 

Compressive sensing has recently emerged and is now a subject of increasing research and 

discussion, undergoing significant advances at an incredible pace. The novel theory of compressive 

sensing provides a fundamentally new approach to data acquisition which overcomes the common 

wisdom of information theory, specifically that provided by the Shannon-Nyquist sampling 

theorem. Perhaps surprisingly, it predicts that certain signals or images can be accurately, and 

sometimes even exactly, recovered from what was previously believed to be highly incomplete data. 

In 2006, the Digital Signal Processing group at Rice University created a single-pixel camera, 

which fused an innovative camera hardware architecture with the mathematical theory and 

algorithms of compressive sensing. This work constituted the start sparkle for the development of 

many enthusiastic and impressive compressive imaging systems, which now define state-of-the-art 

solutions in many imaging applications.  

In this thesis, initially, a comprehensive review of the current state-of-the-art of compressive 

imaging systems with particular emphasis in single-pixel architectures is presented. Afterwards, the 

main subject of this thesis is explored and the single-pixel imaging systems which were developed 

for various imaging modalities are exposed, namely for monochrome, color, multispectral, 

hyperspectral and high dynamic range imaging. For each of these modalities a configuration that 

operated with passive illumination and another that operated with active illumination has been 

implemented. This allowed a thorough comparative analysis to be made. An algorithm was also 

developed and demonstrated for the generation of compressive random binary codes to be used by 

a CMOS imager and enrich it with a compressive imaging mode of operation. 

There was still the opportunity to explore the developed compressive single-pixel imaging 

systems in three different applications. In one of those applications, a passive illumination 

single-pixel monochrome imaging system has been mounted on a microscope and has been used to 

acquire images with very fine spatial resolution. In another application, the theory of compressive 

sensing has been combined with machine learning and pattern recognition mechanisms to detect 

faces without explicit image reconstruction. Within this context, the passive illumination 

single-pixel monochrome imaging system has also been used to acquire real-world data and test this 

innovative concept. The third application used a passive illumination single-pixel hyperspectral 

imaging system to derive spectroscopic information of grapes from hyperspectral images. This 

information may be used to analyze and assess the physicochemical properties of the grapes. 

Before the concluding remarks, a tangible idea is presented for future consideration. It is 

related with the development of a compressive single-pixel imaging LIDAR system for the 

aerospace industry. 
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Resumo 

A sensorização compressiva surgiu recentemente e constitui hoje um assunto de grande 

investigação e discussão, manifestando avanços significativos com uma cadência impressionante. A 

inovadora teoria de sensorização compressiva fornece-nos uma abordagem fundamentalmente 

nova ao tema da aquisição de dados que ultrapassa o conhecimento comum providenciado pela 

teoria da informação, em particular aquele estabelecido pelo teorema da amostragem de 

Shannon-Nyquist. Talvez surpreendentemente, ela prevê que certos sinais ou imagens podem ser 

recuperados com precisão, e por vezes de um modo exacto, a partir do que anteriormente se 

acreditava serem dados altamente incompletos.  

Em 2006, o Digital Signal Processing Group da Universidade de Rice criou uma câmara com um 

único pixel, que fundiu uma arquitectura inovadora de hardware com a teoria matemática e os 

algoritmos da sensorização compressiva. Este trabalho foi determinante para o desenvolvimento 

entusiástico e impressionante de muitos sistemas de imagiologia compressiva que definem 

actualmente soluções ao nível do estado-da-arte em diversas aplicações. 

Nesta tese, inicialmente, é apresentada uma revisão extensa do estado-da-arte actual no que 

respeita a sistemas de imagiologia compressivos com particular ênfase nas arquitecturas que 

empregam um único pixel. Depois, o tema principal desta tese é explorado e são expostos os 

sistemas de imagiologia com um único pixel que foram desenvolvidos para diferentes modalidades, 

nomeadamente para aquisição de imagens monocromáticas, a cores, multiespectrais, hiperespectrais 

e de gama dinâmica alargada. Para cada uma das modalidades foi implementada uma configuração 

que operava com iluminação passiva e outra que operava com iluminação activa. Isto permitiu 

realizar uma análise comparativa minuciosa dos sistemas em causa. Foi também desenvolvido e 

demonstrado um algoritmo de geração dos códigos compressivos para ser usado por um sensor de 

imagem CMOS e enriquecê-lo com um modo compressivo de aquisição de imagens.  

Houve ainda a oportunidade de explorar os sistemas desenvolvidos em três aplicações. 

Numa dessas aplicações, um sistema de iluminação passiva para aquisição de imagens 

monocromáticas com um único pixel foi montado num microscópio e foram obtidas imagens com 

uma resolução espacial muito fina. Noutra aplicação, a teoria de sensorização compressiva foi 

combinada com mecanismos de aprendizagem computacional para detecção de faces sem a 

reconstrução explícita das imagens. Neste contexto, o sistema de iluminação passiva para aquisição 

de imagens monocromáticas com um único pixel foi usado para adquirir dados reais e testar este 

conceito inovador. A terceira aplicação usou um sistema de iluminação passiva para aquisição de 

imagens hiperespectrais com um único pixel para derivar informação espectroscópica de uvas. Esta 

informação pode ser usada para analisar e avaliar as suas propriedades físico-químicas. Antes das 

notas finais, é apresentada uma ideia para prossecução futura relacionada com o desenvolvimento 

de um sistema LIDAR de imagiologia com um único pixel para a indústria aeroespacial. 
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Introduction 

1 

Chapter 1. Introduction 

It is clear that the Nyquist-Shannon sampling theorem has been a fundamental rule of signal 

processing for many years and can be found in nearly all signal acquisition protocols, being 

extensively used from consumer video and audio electronics to medical imaging devices or 

communication systems. Basically, it states that a band-limited input signal can be recovered 

without distortion if it is sampled at a rate of at least twice the bandwidth of the signal. For some 

signals, such as images that are not naturally band limited, the sampling rate is dictated not by the 

Nyquist-Shannon theorem but by the desired temporal or spatial resolution. However, it is 

common in such systems to use an anti-aliasing low-pass filter to band limit the signal before 

sampling it, and so the Nyquist-Shannon theorem plays an implicit role [1]. 

In the last few years, an alternative theory has emerged, showing that super-resolved signals 

and images can be reconstructed from far fewer data or measurements than what is usually 

considered necessary. This is the main concept of compressive sensing (CS), also known as 

compressed sensing, compressive sampling and sparse sampling. In fact, “the theory was so 

revolutionary when it was created a few years ago that an early paper outlining it was initially 

rejected on the basis that its claims appeared impossible to substantiate [2].”  

CS relies on the empirical observation that many types of signals or images can be well 

approximated by a sparse expansion in terms of a suitable basis, that is, by only a small number of 

non-zero coefficients. This is the key aspect of many lossy compression techniques such as JPEG 

(Joint Picture Experts Group) and MP3 (Moving Picture Experts Group Layer-3 Audio), where 

compression is achieved by simply storing only the largest basis coefficients of a sparsifying 

transform. 

In CS, since the number of samples taken is smaller than the number of coefficients in the 

full image or signal, converting the information back to the intended domain would involve solving 

an underdetermined matrix equation. Thus, there would be a huge number of candidate solutions 

and, as a result, a strategy to select the “best” solution must be found.  

Different approaches to recover information from incomplete data sets have existed for 

several decades. One of its earliest applications was related with reflection seismology, in which a 

sparse reflection function (indicating meaningful changes between surface layers) was sought from 

band limited data [1, 3, 4]. It was, however, very recently, that the field has gained increasing 

attention, when Emmanuel J. Candès, Justin Romberg and Terence Tao [5], discovered that it was 

possible to reconstruct Magnetic Resonance Imaging (MRI) images from what appeared to be 

highly incomplete data sets in face of the Nyquist-Shannon criterion (see Figure 1). Following 

Candès et al. work , this decoding or reconstruction problem can be seen as an optimization 

problem and be efficiently solved using the 1 -norm [6] or the total-variation [7, 8]. 
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Figure 1 – Example of a simple recovery problem. (a) The Logan–Shepp phantom test image. (b) 

Sampling domain in the frequency plane; Fourier coefficients are sampled along 22 approximately radial 

lines. (c) Minimum energy reconstruction obtained by setting unobserved Fourier coefficients to zero. (d) 

Compressive sensing based reconstruction. This reconstruction is an exact replica of the original image in 

(a) [5]. 

As a result, CS has become a kind of revolutionary research topic that draws from diverse 

fields, such as mathematics, engineering, signal processing, probability and statistics, convex 

optimization, random matrix theory and computer science. 

Undergoing significant advances, CS has proved to be far reaching and has enabled several 

applications in many fields, such as: distributed source coding in sensor networks [9, 10], coding, 

analog–digital (A/D) conversion, remote wireless sensing [1, 11], 3D LIDAR [12, 13] and inverse 

problems, such as those presented by MRI [14]. 

One application with particular interest within the aim of the work presented here, is the 

ground-breaking single-pixel imaging setup developed by D. Takhar et al. at the Rice 

University [15]. This camera represented a simple, compact and low cost solution that could 

operate efficiently across a much broader spectral range than conventional silicon based cameras. 
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1.1 Thesis structure 

This thesis is divided in seven chapters as follows: 

 Chapter 1 presents the motivation and structure of the thesis. The main contributions 

and a record of publications are also enumerated. 

 Chapter 2 describes the mathematical background of compressive sensing theory 

along with its main properties;  

 Chapter 3 reviews the evolution of compressive sensing based imaging systems;  

 Chapter 4 expounds the core work of this thesis. It describes the experimental work 

and results associated with the development of compressive single-pixel imaging 

systems for different imaging modalities. An algorithm that can concede a 

compressive sensing based operation mode to a CMOS imager is also presented. 

 Chapter 5 exemplifies distinct applications for two of the compressive single-pixel 

imaging systems described in Chapter 4. 

 Chapter 6 exposes one prospective idea for future pursuance aiming the 

reinforcement and exploitation of the competencies inherited from the work 

presented in this thesis.  

 Chapter 7 closes the thesis with some concluding remarks. 

1.2 Motivation 

In a technological era where commercial cameras have reached tens of Megapixels, the theory of 

compressive sensing has emerged as a new paradigm which has been particularly materialized in the 

form of single-pixel cameras that operate, at least on a first look, in a counter intuitive manner.  

Based on compressive sensing, single-pixel cameras can reconstruct images from fewer data 

than what is usually considered necessary. This creates the potential to perform faster still ensuring 

the quality of the results. Additionally, with these cameras, the information is gathered in an 

encrypted form right from the moment it is acquired, therefore bringing advantages in terms of 

storage/transmission and security. Their principle of operation places most of the complexity on 

the decoding end, which typically possesses more resources and can be improved disregarding the 

subtleties of the data acquired and provide even better reconstruction results with the same data. 

Because of their versatility different light detection devices may be used, which brings 

benefits in terms of sensitivity and signal quality. Furthermore, these cameras created opportunities 

to operate with increased spectral resolution in wavelengths that were practically impossible or very 

expensive before.  

For certain applications these cameras may even represent the only available solution. 
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From a personal point of view, despite the particularly exploratory nature of the subject, it 

was with great pleasure and enthusiasm that I have embraced it. It constituted an opportunity to 

further extend my knowledge and to work in such a revolutionary and novel theme as that of 

compressive sensing. Having in mind the risks and implications of such decision, the initially posed 

challenge has been turned into an extremely rewarding experience that will certainly contribute to 

my personal and professional future as well as to the future of the research group. 

1.3 Contributions 

At an institutional level it should be said that the work presented in this thesis stimulated the 

establishment of a new research and actuation area inside the Optoelectronics and Electronic 

Systems Unit at INESC TEC. Besides the direct benefits this aspect raised in terms of innovation 

and creation of knowledge, it also helped to reinforce the privileged position INESC TEC has been 

setting for long in the scientific community. In concrete terms, new cooperation opportunities have 

been initiated with the European Space Agency; with universities from different countries, namely, 

the University of North Carolina at Charlotte (USA); the University of Minho (Portugal); the 

University Jaume I (Spain), and with industrial partners, to explore applications of the knowledge 

gathered with this work.  

Concerning the theme of this thesis the following main contributions can be enumerated.  

Several different compressive single-pixel imaging systems have been developed, methodically 

characterized and compared. These systems were capable of acquiring monochrome, color, 

multispectral, hyperspectral and high dynamic range images, operating either in a passive or in an 

active illumination mode. 

Emphasis should be directed towards the implemented active illumination single-pixel 

monochrome imaging system, which was the first to present a compressive sensing based principle 

of operation and that enabled the subsequent development of active illumination compressive 

single-pixel imaging systems for different modalities (color, multispectral, hyperspectral and high 

dynamic range).  

A high dynamic range imaging system using an LCD for the spatial control of the image 

intensity was implemented. The knowledge gathered with this system would later be used for the 

development of an innovative high dynamic range compressive imaging technique, as will be 

exposed further below in this text. 

A transmissive compressive single-pixel imaging system has also been developed and used to 

acquire microscopic images. To the extent of our knowledge, we were the first to present an 

imaging system that used an LCD to incorporate the compressive random binary codes into the 

system and produce the incoherent projections characteristic of compressive imaging. The 

development of this system has given us an adequate insight to compare LCD with DMD as spatial 

light modulators for compressive single-pixel cameras. 
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Even though we have not been the first to implement a passive illumination compressive 

sensing based monochrome single-pixel imaging system, we have explored it and improved it to 

work for the acquisition of color, multispectral, hyperspectral and high dynamic range images. 

Perhaps, both the passive and the active illumination compressive single-pixel hyperspectral 

imaging systems may be considered the major contributions resulting from this work in the sense 

that they allow the acquisition of high spectral resolution hyperspectral images to be performed in a 

simple manner and empower the development of fast hyperspectral cameras that do not require any 

scanning. In particular, it has been demonstrated a hyperspectral compressive single-pixel imaging 

system with a spectral resolution of 10 pm, which represents an improvement of two orders of 

magnitude relatively to the best systems available on the market. Such a camera may find 

applications in different fields and enable its users to acquire images that were before practically 

impossible or very difficult or expensive to obtain. 

High dynamic range imaging and compressive imaging have been combined for the first 

time, with the combination benefitting from the advantages of both techniques. Both in active and 

in passive illumination mode, it was demonstrated that the new imaging modality could successfully 

reconstruct images with increased dynamic range disregarding the need for any geometrical 

calibration. Two different techniques have been presented and demonstrated for this purpose.  

We have also developed and demonstrated an algorithm for the generation of compressive 

codes, which has been particularly addressed to take benefit of the hardware configuration of a 

CMOS imager and provide it with a compressive imaging mode of operation. Based in this work a 

Provisional Patent Request has been submitted. 

The gathered knowledge and some of the developed compressive single-pixel imaging 

systems have also been explored in three different applications. The passive illumination 

monochrome single-pixel imaging system has been used to acquire microscopic images. Its 

potential has been demonstrated with the acquisition of 128 × 128 pixels images which yielded a 

spatial resolution of 42.19 µm/pixel. 

A preliminary feasibility analysis of a face detection system without explicit image 

reconstruction, that combined compressive sensing with machine learning and pattern recognition 

tools, was also conducted. The detection results yielded a detection error rate as low as 3% with less 

than 3% of the compressive measurements and were better than those obtained with a state-of-the-

art feature detector and descriptor. The passive illumination single-pixel monochrome imaging 

system has been used in this context to acquire real world data and evaluate the potential of this 

innovative framework.  

The passive illumination single-pixel hyperspectral imaging system has been used to gather 

spectroscopic data of grapes derived from hyperspectral images. These data can be used for the 

analysis and assessment of the physicochemical properties of the grapes. 

Some prospects were also provided for the future development of a single-pixel imaging 

LIDAR system based on compressive sensing to be used by the European Space Agency.   
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1.4 Publications 

Next, it is presented a record of the publications deriving from the work presented in this thesis. 

These have been divided into journal and conference publications and are listed in reverse 

chronological order. 

 

Journal 

 F. Magalhães, M. Abolbashari, F. M. Araújo, M. V. Correia, F. Faramarz, High-

resolution hyperspectral single-pixel imaging system based on compressive sensing, in Optical 

Engineering, 2012. 51(7): p. 071406, DOI: 10.1117/1.OE.51.7.071406. 

 M. Abolbashari, F. Magalhães, F. M. Araújo, M. V. Correia, F. Faramarz, High 

dynamic range compressive imaging: a programmable imaging system, in Optical Engineering, 

2012. 51(7): p. 071407, DOI: 10.1117/1.OE.51.7.071407. 

 F. Magalhães, M. Abolbashari, F. M. Araújo, M. V. Correia, F. Faramarz, Active 

Illumination Single-Pixel Camera Based on Compressive Sensing, in Applied Optics, 2011. 

50(4): pp. 405-414, DOI: 10.1364/AO.50.000405. 

 

Conference  

 F. Magalhães, R. Sousa, F. M. Araújo, M. V. Correia, Compressive Sensing based Face 

Detection without Explicit Image Reconstruction using Support Vector Machines, in ICIAR 

2013: X International Conference on Image Analysis and Recognition, 26-28 June, 

2013, Póvoa de Varzim, Portugal. 

 F. Magalhães, M. Abolbashari, F. M. Araújo, F. Farahi, M. V. Correia, Single-pixel 

hyperspectral camera based on compressive sensing, StudECE-1st PhD Students Conference 

in Electrical and Computer Engineering, Porto, Portugal, 28-29 June, 2012. 

 F. Magalhães, H. Gonçalves, F. M. Araújo, V. G. Tavares, M. V. Correia, MicroEye - 

Imager with compressive sensing capability, StudECE-1st PhD Students Conference in 

Electrical and Computer Engineering, Porto, Portugal, 28 - 29 June, 2012. 

 M. Abolbashari, G. Babaie, F. Magalhães, M. V. Correia, F. M. Araújo, A. S. Gerges, 

F. Farahi, Biological imaging with high dynamic range using compressive imaging technique, in 

Photonics West 2012, BiOS 8225-71, 21-26/January, 2012, San Francisco, USA, 

DOI: 10.1117/12.907365. 

 F. Magalhães, M. Abolbashari, F. Faramarz, F. M. Araújo, M. V. Correia, A 

compressive sensing based transmissive single-pixel camera, in AOP 2011 - International 

Conference on Applications of Optics and Photonics, 3-7/May , 2011, Braga, 

Portugal, DOI: 10.1117/12.891940. 

 F. Magalhães, F. M. Araújo, M. V. Correia, An active illumination single-pixel camera 

based on compressive sensing. in Ciência 2010 - Encontro com a Ciência e a Tecnologia 

em Portugal. 4-7/July/2010. Lisbon - Portugal. (poster) 
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Chapter 2. The Theory of Compressive Sensing – An Overview 

In order to become possible, CS is built upon two principles: sparsity, related with the signals of 

interest, and incoherence, related with the sensing modality. In the following sub-sections, these 

two subjects are presented and analyzed in detail. Then, the principles behind CS are presented 

along with its main properties. In the end, the robustness of compressive sensing to measurement 

errors and noise is analyzed.  

2.1 K-sparse and compressible signals 

Let‟s consider a real-valued, finite-length, one dimensional, discrete-time signal x , which can be 

viewed as a 1 column vector in  with elements  nx , where  ,,2,1 n
. Any signal in   

can be represented in terms of a basis of 1  vectors 

1}{ ii . For simplicity, let‟s assume that 

the basis is orthonormal. Using the   basis matrix },,,{ 21     with the vectors }{ i  

as columns, a signal x  can be expressed as: 

 

i
i

isx 





1
 or sx  , (1) 

 

where s  is the 1  column vector of weighting coefficients xxs T
iii   , . s  and x  are 

equivalent representations of the signal with x  in time or space domain and s  in  domain. 

The signal x  is K -sparse if it is a linear combination of only K  basis vectors, which means 

that only K  of the is coefficients in equation (1) are nonzero, while the remaining  KN   

coefficients are null. In addition, the signal x  is compressible if the representation in Eq. (1) has 

just a few large coefficients and many small coefficients, setting the basis of transform coding. 

Therefore, we can say that a signal x  is sparse in the   domain if the coefficient sequence is 

supported on a small set, and compressible if the sequence is concentrated near a small set. 

In face of the typical data acquisition paradigm, huge amounts of data are collected only to 

be in large part discarded at the compression stage to facilitate storage and transmission. Imagine, 

for example, a digital camera that captures images with millions of sensors (pixels) but eventually 

encodes the image in just a few hundred kilobytes. Clearly, this is a tremendously wasteful process 

and suffers from three principal drawbacks. First, the initial number of samples N  may be large, 

even if the desired K  is small. Second, the set of all N  transform coefficients  is  must be 

computed even though all but K  of them will be discarded. Third, there is an overhead that is 

introduced by the encoding of the large coefficients locations. 
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2.2 Recovering K-sparse signals 

Following the work presented in [16], Candès and Tao developed a refined version of the Uniform 

Uncertainty Principle (UUP) [17], which has proved to be essential to the study of the general 

robustness of CS. This key notion was then named Restricted Isometry Property (RIP) and can be 

defined as follows: 

For each integer ,2,1K , define the isometry constant K  of a measurement matrix A  as 

the smallest number such that 

 

    222

222

11

xAxx KK     (2) 

 

holds for all K -sparse vectors x . Therefore, we can say that a matrix A  obeys the RIP of order K  

if K  differs enough from one. When this condition is verified, A  approximately preserves the 

Euclidean length of K -sparse signals, which in turn implies that K -sparse vectors cannot be in the 

null space of A . An alternative description of this property is to say that all subsets of K  columns 

taken from A  are in fact nearly orthogonal (they cannot be exactly orthogonal since we have more 

columns than rows).  

Let‟s imagine we want to acquire K -sparse signals making use of matrix A . Suppose that K2  

is sufficiently smaller than one. This indicates that all pair-wise distances between K -sparse signals 

must be well preserved in the measurement space, which means that 

 

    2

212

2

21

2

212
222

11


xxAxAxxx KK     (3) 

 

is true for all K -sparse vectors 1x , 2x  [1, 18]. 

2.3 Incoherence 

Let‟s now consider  NM   linear measurements of x  and a collection of test functions  M
mm 1

  

such that   mxmy , . By stacking the measurements  my  into the 1M  vector y  and the test 

functions 
T
m  as rows into an NM   sensing matrix   we can write 

 

ssxy 
. (4) 
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A condition related with RIP is incoherence, which requires that the rows of   (the 

measurement or sensing matrix) cannot represent the columns of   in a sparse way (and vice-

versa). 

Incoherence extends the duality between time and frequency and expresses the idea that an 

object having a sparse representation in   must be spread out in the domain in which it was 

acquired. This incoherence property is verified for many pairs of bases, including, for instance, delta 

spikes and sine waves of the Fourier basis, or the Fourier basis and noiselets.  

The coherence between the sensing basis   and the representation basis   can be given by 

the following equation: 

 

  jknjkn  ,max, ,1  ,   (5) 

 

which, in simple words, is measuring the largest correlation between any two elements of   and 

  . CS is essentially interested in low coherence pairs. For instance, for the previously referred 

delta spikes and sine waves (time-frequency) pair,   1,  , therefore, indicating maximal 

incoherence [1, 19]. 

A particular aspect of interest is that random matrices are largely incoherent with any fixed 

basis  . This enables the use of known fast transforms such as a Walsh, Hadamard, or Noiselet 

transform [20].  

Furthermore, what is most remarkable about this concept is that it allows capturing 

information contained in a sparse signal in a very efficient way without trying to understand that 

signal. In other words, it is not required to know about the details of the signal being acquired.  

2.4 How compressive sensing works 

Compressive sensing addresses the inefficiencies presented by the sample-then-compress framework by 

directly acquiring a compressed signal representation, avoiding the intermediate stage of acquiring 

N  samples [5]. CS bypasses the sampling process and directly acquires a condensed representation 

y consisting of M linear measurements. Furthermore, the measurement process is nonadaptive in 

that   does not depend in any way on the signal x . 

The transformation from x  to y  is a dimensionality reduction and so implies the loss of 

information in general. In particular, since NM  , for a given y , there is an infinite number of 'x  

such that yx  ' , if there is no restriction on 'x . The overwhelming capacity of CS is that   can 

be designed such that sparse/compressible x  can be recovered exactly/approximately from 

measurements of y . 
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To recover the signal x  from the random measurements of y , the traditional preferred 

method of least squares has been shown to fail with high probability. Instead, it has been 

demonstrated that minimizing the 
1 -norm [16]: 

 

1

'minargˆ


ss   such that ys  '  (6) 

given that 

 

, 

 

(7) 
i

iss ':'
1

  

it is possible to exactly reconstruct K-sparse vectors and closely approximate compressible vectors 

stably with high probability using just   KNKOM log  random measurements [5, 6]. 

Minimizing the 
1 -norm subject to linear equality constraints can easily be recast as a linear 

program, also known as basis pursuit, which can find several alternative reconstruction techniques 

based on greedy, stochastic and variational algorithms [5, 11, 21, 22]. 

As it has been referred, in compressive sensing, since we are in the presence of an 

underdetermined equation system, simply invert a transform is not enough. In the particular 

context of compressive imaging, there are many configurations of pixels that could explain what 

have been measured. However, very few of these exhibit the structure expected in a real-world 

image. Fortunately, there are various popular models to quantify this structure. One model, 

motivated by the achievements in image compression, is, for instance, sparsity in the wavelet 

domain. Next, from a geometric standpoint, it will be illustrated why 
2 reconstruction fails to find 

the sparse solution that can be identified by 
1  reconstruction. Figure 2 presents significant 

information to this subject. Part (a) illustrates the 
2  ball in 3  with a certain radius. It must be 

emphasized that this ball is isotropic. Part (b) represents the 
1  ball in 3 , which is anisotropic 

(“pointy” along the axes). 

The 
2  minimizer ŝ  is the point from   closest to the origin. This point can be found by 

blowing the 
2  ball until it bumps into  . Due to the random orientation of   (imposed by the 

randomness in matrix  ), the closest point ŝ  will be away from the coordinate axes with high 

probability and, therefore, will not be sparse and will be far from the sparsest answer s (only one of 

its components is non-zero). In higher dimensions, this difference becomes even more significant. 

Paying attention to the part (b) of Figure 2, it can be seen that the point of intersection ŝ  is now 

defined by the vector that solves equation (6). 
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Figure 2 – Geometry of 1  recovery. (a) Visualization of the 2  minimization that finds the non-sparse 

point of contact ŝ  between the 2  ball (hypersphere, in red) and the translated measurement matrix 

null space (in green). (b) Visualization of the 1  minimization solution that finds the sparse point of 

contact ŝ  with high probability thanks to the pointiness of the 1  ball. Picture adapted from [19]. 

Another model, and one which tends to produce slightly better results in practice, assumes 

that typical images tend to have small total-variation (TV) compared to their energy [7, 8]. The 

total-variation of an NN  pixels image x  is given by:  

 

    


 
N

ji

jijijiji xxxxxTV
1,

2

,1,

2

,,1)(   (8) 

 

The recovery procedure then searches for the image with smallest total-variation which 

explains the observed values. 

 

In addition to enabling sub-Nyquist sampling, CS exhibits a number of attractive properties.  

 Universality:   can be considered a universal encoding strategy, as it does not 

need to be designed with regards to the structure of  . This allows exactly the 

same encoding strategy to be applied in a variety of different sensing 

environments; no knowledge is required about the subtleties of the data being 

acquired. Random measurements are also future proof – i.e., if new research yields 

a better sparsity inducing basis, then the same set of random measurements can be 

used to reconstruct data with even better quality –. 

 Encryption: A pseudorandom basis can be generated using a simple algorithm 

according to a random seed. Such encoding effectively implements a form of 
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encryption: randomized measurements will themselves resemble noise and be 

meaningless to an observer without knowledge of the associated seed. 

 Robustness and progressivity: Random coding is robust in that the randomized 

measurements have equal priority, unlike the Fourier or wavelet coefficients in 

current transform coders. Thus, this enables progressively better data 

reconstruction as more measurements are obtained. Besides this, one or more 

measurements can also be lost without corrupting the entire reconstruction. 

Oppositely, since the bits in JPEG 2000 do not have all the same value, if 

important bits are missing – e.g., because of packet loss –, then it is impossible to 

retrieve the information accurately. 

 Scalability: the number of measurements to compute can be adaptively selected 

in order to trade off the amount of compression of the acquired image versus 

acquisition time. In contrast, conventional cameras trade off resolution versus the 

number of pixel sensors. 

 Computational asymmetry: CS places most of its computational complexity in 

the recovery system (decoder), which will often have more substantial 

computational resources than the encoder. The encoder is very simple since it 

merely computes incoherent projections and makes no decisions [15]. 

2.5 Robustness of compressive sensing 

In any realistic application, we cannot expect to measure x  without any error. Therefore, now, it 

is important to analyze the robustness of compressive sampling in face of measurement errors. This 

is a critical topic since any real-world sensor is subject to noise. For that reason, one immediately 

understands that to be widely applicable, the methodology needs to be stable. Small perturbations 

in the observed data should, then, induce only small perturbations in the reconstruction. 

Fortunately, the recovery procedures may be adapted to be surprisingly stable and robust in the 

presence of arbitrary perturbations. 

Let‟s suppose the measurements are affected by noise and define the following model: 

 

exy  ,   (9) 

 

where e  is a stochastic or deterministic error term with bounded energy 
2

e , being   an 

upper bound on the noise magnitude. 
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Because of the measurement inaccuracies, a modification has been introduced to 

equation (6) to make it noise-aware. In this way, the reconstruction proposal has the following 

form: 

 

1

'minargˆ


ss   such that 
2

'


sy ,   (10) 

 

which satisfies  xCCss KKN  
2

ˆ


 with overwhelming probability. NC  and KC  are the noise 

and approximation error amplification constants, respectively, and  xK  is the 
2  error incurred 

by approximating s  using its largest K  terms. Once again, this problem is convex and can be 

solved using standard convex programming algorithms [18, 23]. 
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Chapter 3. Compressive Imaging Systems – A Review 

In this chapter, a chronologically ordered review of the main contributions to the subject of 

compressive imaging is presented along with their key features and outcomes.  

Recent work in the emerging field of compressive sensing indicates that, when feasible, 

well-judged selection of the type of distortion induced by measurement systems may dramatically 

improve reconstruction results. The basic idea of this theory is that when the signal of interest is 

very sparse or compressible, relatively few incoherent observations are necessary to reconstruct the 

most significant non-zero signal components. However, applying this theory to practical imaging 

systems is very challenging in face of several requirements and measurement constraints. Therefore, 

in the following sub-sections several systems that can be seen as the state-of-the-art in the field of 

compressive sensing imagers are described and analyzed along with the strategies implemented to 

overcome these challenges. 

The first work here presented corresponds to the breakthrough single-pixel camera from 

Rice University which was in the base of the foreseen developments in this area of research and 

application. 

3.1 The single-pixel camera 

The single-pixel camera, developed originally at the Rice University [15], is one of the most 

paramount examples of CS. It can be seen as an optical computer comprising a digital micro-mirror 

device (DMD) with an array of 1024 × 768 micromirrors, two lenses, a single photodetector and an 

analog-to-digital (A/D) converter. Basically, this configuration computes random linear 

measurements of the scene under view. The image is then reconstructed from these measurements 

by a digital computer. A block-diagram depicting the single-pixel camera setup can be seen in 

Figure 3. 

 

Figure 3 – Single-Pixel Camera block-diagram. Incident light field (corresponding to the desired image

x  ) is reflected off a DMD array whose mirror orientations are modulated by a pseudorandom pattern. 

Each different mirror pattern produces a voltage at the single photodiode that corresponds to one 

measurement  my . From M  measurements a sparse approximation to the desired image x  using 

CS techniques can be obtained. Picture reproduced from [15]. 
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This time-multiplexing technique enables the use of a single and yet more efficient photon 

detector in contrast with the individual pixel in the array counterpart. This is particularly important 

when the detector is expensive, making an N-pixel array/matrix prohibitive. Furthermore, 

sometimes these N-pixel arrays/matrices are simply not available due to technological constraints. 

A single-pixel camera can also be adapted to acquire images at wavelengths that are currently 

impossible with conventional digital cameras. 

Figure 4 presents the experimental setup comprising the optical hardware of the single-pixel 

camera previously described. Following the red arrows in Figure 4, it can be seen that a light source 

is used to illuminate the object (in this case, a black and white printout of an “R” character). Then, 

the object‟s image is formed by means of Lens 1 on the DMD that adequately reflects or not the 

light incident on each of its pixels towards the detector, depending on the imposed spatial 

modulation pattern. The light collected by Lens 2 will finally be concentrated on the single light 

detector that will integrate it, thus, yielding an output voltage that depends on the used DMD 

modulation pattern. This voltage is amplified through an operational amplifier circuit to be finally 

digitized by an A/D converter. This process is repeated until M values are acquired so that we can, 

finally, use them to reconstruct the imaged object. Each of these values (output voltage of the 

photodiode) can be interpreted as the inner product of the desired image x  with a 

two-dimensional measurement basis   Mmm ,,2,1,  . 

 

 

Figure 4 – Optical setup of the single-pixel camera developed at the Rice University. Picture reproduced 

from [15]. 

With this arrangement the resolution of the reconstructed image is defined by the resolution 

of the random binary codes applied to the DMD. 
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3.2 Feature-specific structured imaging system 

The physical measurements that are obtained by a computational imaging (CI) system can often be 

interpreted as projections or features of the object space. The overall CI system may therefore be 

viewed as an optical feature extraction module followed by a module for the computational feature 

exploitation. 

Several features have been used in the past, such as: random projections [24], discrete cosine 

projections [25] and principal and independent components [26, 27].  

Deriving from CI paradigm several benefits have been quantified, namely, reduced hardware 

complexity, improved signal-to-noise ratio (SNR), faster frame rates and higher feature fidelity 

resulting in improvements of the reconstruction quality and/or task performance (e.g., recognition 

rate) compared to conventional imagers. 

Often, this previous work on feature-specific CI relied on passive illumination imaging 

modalities, rather than those making use of active illumination. Passive illumination imaging 

modalities rely on ambient illumination, while the active illumination ones use structured 

illumination that can be either temporally structured (e.g., pulses and/or coded waveforms) [28, 29] 

or spatially structured (e.g., depth map extraction for 3D imaging) [30]. 

Following this approach, Baheti and Neifeld presented a feature-specific imaging system 

based on the use of structured light [31]. The illumination patterns used in their system are based 

on principal component features and the features‟ measurements they obtain correspond to the 

light reflected from an object over which the spatially structured illumination has been projected. 

The reflected light is then gathered by a single photodetector. The system flow diagram can be seen 

on Figure 5. 

 

 

Figure 5 – Flow diagram for the Feature-Specific Structured Imaging (FSSI) system. Picture reproduced 

from [31]. 
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As shown in Figure 5, after the projection and measurement steps, there is a post-processing 

phase, whose goal is to provide an estimate of the object reflectance function that is quantified by 

its Mean-Square-Error (MSE).  

When compared to conventional imagers this system yielded far better results, with potential 

benefits in terms of hardware complexity, costs, SNR, frame rate and/or bandwidth. In particular, 

the feature-specific structured imaging (FSSI) system is capable of providing significant Root-

Mean-Square Error (RMSE) reduction within a high-noise environment, providing a 38% RMSE 

reduction and requiring 400 times fewer measurements (for a noise standard deviation of 0.002), 

when compared to the optimal Linear Minimum MSE (LMMSE) post-processing of a conventional 

image. 

3.3 Random projections based feature-specific structured imaging 

Following the work presented in Section 3.2, shortly after, Baheti and Neifield presented a FSSI 

system whose illumination patterns were defined using random binary patterns [32]. In this case, 

following more closely the style of compressive sensing, the illumination system does not require 

prior knowledge about the object being imaged and the object estimates are generated using 
1 -

norm minimization and gradient-projection sparse reconstruction algorithms [33]. In particular, 

their experiments have shown the feasibility of the proposed approach by using 42% fewer 

measurements than the object dimensionality. 

The benefits of this system over the passive compressive single-pixel imaging architecture 

presented by the Rice University [15] are twofold: first, the active modality enables imaging with 

zero ambient light levels, and, second, the active modality reduces the complexity of the light-

collection hardware.  

The advantage of this work compared to the FSSI system presented in Section 3.2 is that the 

measurement mechanism uses a Random Projections (RP) basis and so does not depend on the 

object. However, as presented in detail in Section 2.3, in the light of compressive sensing theory, 

the reconstruction fidelity is dependent on the incoherence between the RP basis and the basis in 

which the object is sparse [6, 20]. 

Figure 6 depicts the approach previously described. The main differences between this and 

the FSSI are the active illumination patterns and the reconstruction phase, which in the latter case 

relies on non-linear methods. 
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Figure 6 – Flow diagram for the binary Random Projections FSSI (RPFSSI) system. Picture reproduced 

from [32]. 

Since no prior knowledge about the object reflectance profile is used, the cost of this 

“ignorance” is reflected by the increased number of measurements that the RPFSSI requires to 

outcome with the same RMSE of the FSSI system, as can be found on Table 1. 

 

Table 1 – Comparison between the number of measurements required by the RPFSSI and FSSI systems 

to achieve the same RMSE-based performance. 

Number of measurements 

RMSE RPFSSI FSSI 

0.212 150 1 

0.204 200 2 

0.192 300 4 

0.173 400 6 

0.168 500 7 

0.163 600 9 

 

3.4 Compressed sensing magnetic resonance imaging 

Imaging speed has always been a critical issue in Magnetic Resonance Imaging (MRI) and the 

development of methods to reduce the amount of acquired data without degrading the image 

quality has always been desired. This quest turns this problem particularly attractive for 

compressive sensing and as a result, in 2007, Lustig, Donoho and Pauly [34] combined CS with 

MRI, exploiting the implicit sparsity of this type of images. The transform sparsity of MR images 

can be demonstrated by applying a sparsifying transform, such as the discrete wavelet transform 

(DWT) [35], to a fully sampled image and reconstructing an approximation to the image from a 
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subset of the largest transform coefficients. The sparsity of the image then corresponds to the 

percentage of transform coefficients that are sufficient for a reconstruction that has enough quality 

for diagnostic purposes.  

MRI and CS tend to naturally fit since the transform sparsity of MR images and the coded 

acquisition process used in MRI match with two fundamental properties of CS. As it has already 

been explained in this thesis, in CS one measures a relatively small number of random linear 

combinations of the signal values, but as the underlying signal is sparse/compressible it can be 

reconstructed with good accuracy from relatively few measurements by a nonlinear procedure. In 

CS-MRI, we are in the presence of a special case of CS where the sampled linear combinations are 

simply individual Fourier coefficients. The work of Candès, Romberg, and Tao [5] was motivated in 

large part by MRI since it looked at random undersampling of Fourier coefficients.  

Designing a CS scheme for MRI can now be viewed as selecting a subset of the frequency 

domain that can be efficiently sampled and is incoherent with respect to the sparsifying transform. 

Figure 7 depicts a scheme of a compressive sensing based MRI system. There it can be seen that 

incoherent measurements in the frequency domain can be obtained from the control of the 

gradient waveforms and RF pulses of the MRI system. Those measurements can then be used to 

reconstruct an image using an appropriate nonlinear reconstruction method with sparsity 

constraints.  

 

 

Figure 7 – Scheme of a CS based MRI system. The user controls the gradient waveforms and RF pulses 

(block (a)) that, in turn, control the phase of the pixels/voxels (block (b)) in the image. An RF coil 

receives the signal in an encoded form (block (c)). The incoherent measurements result from the control 

of the gradient waveforms (block (d)). An image can then be reconstructed with an appropriate nonlinear 

reconstruction enforcing sparsity (block (e)). Picture reproduced from [36]. 
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The authors have explored this concept in four applications (rapid 3D angiography; 

whole-hearth coronary imaging; brain imaging and dynamic heart imaging) and have highlighted the 

way in which different applications face different constraints, imposed either by MRI scanning 

hardware or by patient considerations, and how the inherent freedom of CS to choose the 

trajectories for sampling and sparsifying transforms plays a crucial role in matching those 

constraints [34, 36].  

Next, the results obtained for two of those applications are displayed and discussed.  

Angiograms are inherently sparse in the pixel representation and also if they are target of 

spatial finite differencing. The need for high temporal and spatial resolution strongly encourages 

undersampling. CS was able to improve current strategies by significantly reducing the artifacts that 

result from undersampling. In the example shown in Figure 8, the authors have applied CS to 3D 

Cartesian contrast enhanced angiography. Selecting a pseudorandom subset they have combined 

undersampling (10-fold) with low coherence. CS was able to significantly accelerate MR 

angiography, enabling better temporal resolution or alternatively improving the resolution of 

current imagery without compromising scan time. Additionally, most of the artifacts that appeared 

in the linear reconstruction from undersampled data were not present in the CS nonlinear 

reconstruction [34, 36]. 

 

 Nyquist Sampling Linear Reconstruction Compressive Sampling  

    

 

Figure 8 – 3D contrast enhanced angiography. Even acquiring only 10% of the samples, CS could 

recover most of the blood vessel information revealed by Nyquist sampling and significantly reduce the 

artifacts when compared to the linear reconstruction. Images taken from [36]. 

Brain scanning is the most common clinical application of MRI. Most brain scans use 2D 

Cartesian multislice acquisitions and it has been shown that brain images are sparse in the wavelet 

domain [34, 36].  

Lustig et al. tested the application of CS to brain imaging by acquiring a full Nyquist-sampled 

data set which was, after, retrospectively undersampled. The 2-D Cartesian multislice sampling 

trajectories are illustrated in Figure 9. For each slice, a different random subset of 80 trajectories 

from 192 possible trajectories, which represented an increase of speed by a factor of 2.4, has been 
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selected. The authors also made use of the fact that undersampling each slice differently increased 

incoherence compared to sampling all the slices in the same way [34, 36].  

In Figure 9 it is also visible an axial slice of the multislice CS reconstruction that has been 

compared to full Nyquist sampling, linear reconstruction from the undersampled data, and linear 

reconstruction from a low resolution (LR) acquisition taking the same amount of scan time.  

CS was able to reconstruct images with a quality similar to that obtained with the full 

Nyquist-sampled set. CS also exhibited better suppression of aliasing artifacts when compared to 

linear reconstruction from incoherent sampling and improved resolution over a low-resolution 

acquisition with the same scan time. 

 

 

Figure 9 – Brain scanning using MRI. The results obtained with CS, using fewer sampling trajectories, 

were comparable to those obtained with the full Nyquist-sampled set. CS was also more successful than 

linear reconstruction from incoherent sampling in suppressing aliasing artifacts and exhibited improved 

resolution over a low-resolution acquisition with the same scan time. Picture reproduced from [36]. 

In sum, the authors proved that applying CS to MRI can potentially reduce significantly the 

scan times without compromising the quality of the results, raising benefits for patients and health 

care economics. 

Despite the impressive good results the authors have obtained, many crucial issues have been 

enumerated, namely: optimizing sampling trajectories; developing improved sparse transforms that 

are incoherent to the sampling operator; studying reconstruction quality in terms of clinical 

significance; and improving the speed of reconstruction algorithms [34, 36]. 

3.5 Single-pixel terahertz imager 

Another very interesting system was again developed by the Rice University and this time the first 

example of a CS-based terahertz (THz) imaging system was presented [37]. Within this work, a 

successful reconstruction of a target‟s image with a randomly chosen subset of samples from the 

Fourier plane was demonstrated. It combined CS with traditional phase retrieval (PR) algorithms 

for image reconstruction with only a random subset of the Fourier amplitude image. 

The setup that was developed is shown in Figure 10. 
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Figure 10 – CS-based THz Fourier imaging setup. Picture reproduced from [37]. 

Supported by Figure 10, the principle of operation can be explained as follows. 

The imaging system consists of a pulsed THz transmitter and receiver and two lenses, one of 

which collimates the THz beam, while the other focuses the beam. The object mask, placed in the 

optical path between the two lenses, scatters the THz waves. The focusing lens forms the Fourier 

transform of the object mask at its focal plane and the receiver, mounted on a translation stage, 

performs a raster scan in the focal plane, over an area of 64   64 mm, at 1 mm intervals. The 

authors have placed a circular aperture (1 mm diameter) in front of the receiver antenna in order to 

sample only a small area of the Fourier pattern, rather than relying on the ~6 mm receiver aperture. 

The object mask was made of opaque copper tape on a transparent plastic plate and it consisted of 

an R-shaped hole with 34   31 mm dimensions. 

At each detector position, an entire time-domain THz waveform is measured and the power 

spectrum of each waveform is computed. After that, the spectral amplitude and phase at a 

particular wavelength is selected ( =1.5 mm) to obtain a (complex) pixel value. In this manner, a 

64   64 Fourier image is assembled.  

It was stated that the system is able to reconstruct images with a resolution of 1.40 mm/pixel 

and that, using CS, it was capable of reducing the number of measurements required for image 

reconstruction by more than a factor of 8.  

The authors also concluded that the reconstruction result could be improved by removing 

the background profile of the phase, which is not caused by the object but is inherent in the 

spherical wavefront curvature of the Gaussian beam that illuminates the object. As a result, the 

phase in the Fourier plane is distorted by the superposition of a spherically varying background. 

Then, the object mask was initially removed from the setup and a 64   64 pixels image of the 

background phase of the beam was obtained through 2D Fourier inversion. As a result, it was 

concluded that the phase-correction procedure not only removes the spherically varying phase 

profile in the reconstruction but also improves the quality of the reconstruction. This is supported 

by the results exhibited in Figure 11. 
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Figure 11 – Compressive sensing imaging results. (a) Magnitude of image reconstructed by inverse 

Fourier transform using the full dataset (4096 uniformly sampled measurements) and (d) its phase. Note 

the phase distortion inherent in the THz beam in (d). Compressed sensing reconstruction result using 500 

measurements (12%) from the full dataset: (b) magnitude and (e) phase. Compressed sensing with phase 

correction improves image quality (c) and eliminates phase distortion (f). All figures show a zoom-in view 

on a 40   40 grid centered on the object. Picture reproduced from [37]. 

Therefore, in this work the authors have shown that the incorporation of CS into THz 

imaging designs can significantly reduce the image acquisition time, since fewer measurements are 

required. In particular, they have shown to be able to successfully recover the test object using only 

12% of the dimensionality. They claim that their transmission configuration can be useful for 

quality control applications, such as detection of point impurities in manufactured products, 

because Fourier-domain measurements are particularly sensitive to sharp point-like features. 

Following this work, Chan et al. [38] presented another single-pixel terahertz imaging system 

based on compressive sensing.  

For practical, time-critical applications, a terahertz imaging system should not require raster 

scanning of the object or the terahertz beam. In addition, one would like to preserve the superior 

detection sensitivity of a single-point detector such as photoconductive antennas (rather than the 

lower sensitivity provided by existing multipixel arrays) and the simplicity and spatial coherence of a 

point-source transmitter. As a result, the authors have devised a system that enables both of these 

goals. 

The speed of most existing terahertz imaging systems is limited by the need to mechanically 

raster scan the object (or the terahertz beam) and, therefore, in contrast to their previous work, this 

system replaced the mechanical scanning with the spatial modulation of the free-space terahertz 

beam, which can in principle be much faster. 
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Furthermore, supported by CS theory, this system requires fewer measurements than the 

total number of image pixels to fully reconstruct an image, thus, speeding up the acquisition 

process. 

 

 

Figure 12 – Diagram of the CS-based THz imaging system discarding the need for raster scanning. 

Picture reproduced from [38]. 

 

Observing Figure 12 it is possible to see that an approximately collimated beam from the 

terahertz transmitter illuminates an object mask and is partially (~50%) transmitted through a 

random pattern of opaque pixels. The random patterns, the focusing lens and the receiver are 

placed in order to most efficiently focus the terahertz beam onto the receiver antenna. To ensure 

accurate alignment when changing from one random pattern to another, an automatic translation 

stage was used. The reconstruction process takes less than 10 seconds to be computed in 

MATLAB® on a standard personal computer. 

The authors state that reconstruction using more measurements yields a sharper image but 

also adds some artifacts. Main sources of noise include laser power fluctuation and alignment errors 

between patterns. 

In sum, this time, the authors have eliminated the need for raster scanning of the object or 

the terahertz beam, while maintaining the high sensitivity of a single-element detector. Based on the 

theory of CS, the system is capable of recovering a 32   32 pixels image of a rather complicated 

object with only 300 measurements (~30%), a fact that significantly increases the acquisition speed 

comparatively to traditional raster scan systems. The major limitation of the system is related to the 

transition from one random pattern to another. The authors also indicate the possibility of the 

system being used in spectroscopy applications. 
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3.6 Compressive structured light for recovering inhomogeneous 

participating media 

Another impressive work was presented by Gu et al. [39], in which structured light was used, not 

for the conventional idea of establishing correspondence for triangulation, but for the purpose of 

obtaining volumetric information of participating mediums, such as translucent objects, smoke, 

clouds, mixing fluids, and biological tissues. Therefore, the new called, compressive structured light 

projects patterns into a volume of participating medium to produce images which are integral 

measurements of the volume density along the line of sight. For a typical participating medium 

encountered in the real world, the integral nature of the acquired images enables the use of 

compressive sensing techniques that can recover the entire volume density from only a few 

measurements. This makes the acquisition process more efficient and enables reconstruction of 

dynamic volumetric phenomena. An iterative algorithm was also proposed to correct for the 

attenuation of the participating medium during the reconstruction process. 

This system principle of operation can be seen in Figure 13. 

 

 

Figure 13 – Compressive structured light for recovering inhomogeneous participating media. (a) Coded 

light is emitted along the z-axis to the volume while the camera acquires images as line-integrated 

measurements of the volume density along the x-axis. The light is coded in either the spatial domain or 

temporal domain with a predetermined sequence. (b) Image formation model for participating medium 

under single scattering. The image irradiance at one pixel, I(y, z), depends on the integral along the x-axis 

of the projector‟s light, L(x, y), and the medium density, ρ(x, y, z), along a ray through the camera center. 

(c) Experimental setup. The volume density is reconstructed from the measurements by the use of 

compressive sensing techniques. Picture reproduced from [39]. 

Observing Figure 13, it can be seen that for participating media, each camera pixel receives 

light from all points along the line of sight within the volume. Thus, each camera pixel is an integral 

measurement of one row of the volume density. Whereas conventional structured light range 

finding methods seek to triangulate the position of a single point, compressed structured light seeks 

to reconstruct the unidimensional (1D) density “signal” from a few measured integrals of this 

signal. 
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The authors stated that compressive structured light codes yield high efficiency both in 

acquisition time and illumination power, at the expense of a more sophisticated reconstruction 

process.  

Figure 14 presents some of the reconstruction results of milk drops dissolving in water. 

 

Photograph View 1 View 2 View 3 

    

Figure 14 – Reconstruction results of milk drops dissolving in water. 24 images were used to reconstruct 

the volume at 128 × 128 × 250 at 15fps. The reconstructed volumes are shown in three different views 

and the image in the leftmost column shows the corresponding photograph (taken with all projector 

pixels emitting white) of the dynamic process). Picture reproduced from [39]. 

The authors point as future direction the possibility of designing more complex coding 

strategies to improve the performance or to apply the method to new problems. 

3.7 Compressive spectral imagers 

In 2007, Gehm et al. [40] presented a single-shot CS-based spectral imaging system. The primary 

features of the system design are two dispersive elements, arranged in opposition and surrounding a 

binary-valued aperture code. The schematic drawing of the proposed system is presented in Figure 

15. 

 

Figure 15 – Schematic drawing of the single-shot CS-based spectral imager. Picture reproduced from [40]. 

Even though it is not shown in Figure 15, an image of a remote scene is formed on the plane 

of the input aperture, which is then imaged through the first arm onto the plane containing the 
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coding aperture. However, due to the employed dispersive element, multiple images are formed at 

wavelength-dependent locations. 

At this point, both the spatial and spectral information about the scene are mixed on the 

spatial structure of the coding aperture plane. After, passing through the coding aperture, this 

information is modulated by the coding pattern. The second arm, then, unmixes the spatial and 

spectral information introduced by the first arm and forms an image of the scene on the detector 

array. In other words, the two arms are arranged in opposition so that the second arm exactly 

cancels the dispersion introduced by the first arm, leaving only the spatial spectral modulation 

introduced by the coding aperture. 

In Figure 16, a photograph of the experimental prototype can be seen. 

 

 

Figure 16 – Experimental prototype of the proposed architecture. Picture reproduced from [40]. 

This new class of imagers was named by the group as coded aperture snapshot spectral 

imager (CASSI), and in this particular case as dual disperser CASSI (DD-CASSI). 

The reconstruction phase relies on a unique multiscale method. This reconstruction method 

combines a maximum likelihood estimator with a penalty-based multiscale denoising technique that 

utilizes spatio-spectral correlations in the scene to improve the reconstruction quality. Figure 17 

shows some of the results obtained with the described imaging system. 

To sum up, the authors have presented a single-shot spectral imager that, for the first time, 

mitigated the trade-offs between spatial resolution, spectral resolution, light collection, and 

measurement acquisition time. Despite the acceptable performance of the system for a first proof-

of-concept, it was stated that the results were limited by the stock optics used to create the present 

prototype and that could be further improved. 

A useful property of this design is that the measurement resembles the scene, making it easy 

to focus the camera on objects in the scene. This also makes it possible to perform local block 

processing of the detector data to generate smaller data cubes of subsets of the entire scene. 
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Following the DD-CASSI system, in 2008, Wagadarikar et al. [41] reported a new CASSI 

system, this time called a single disperser CASSI (SD-CASSI). Like the DD-CASSI, the SD-CASSI 

does not directly measure each voxel in the desired three-dimensional data cube. It collects a small 

number (relatively to the size of the data cube) of coded measurements and a sparse reconstruction 

method is used to estimate the data cube from the noisy projections. The instrument disperses 

spectral information from each spatial location in the scene over a large area across the detector. 

 

 

Figure 17 – Experimental results from simple targets with narrow-band illumination. (a) Detector image 

recorded for illumination with a 10 nm full width at half maximum (FWHM) bandpass filter centered at 

560 nm – note the modulation introduced by the coding aperture. (b) Intensity image generated by 

summing the spectral information in the reconstruction for the 560 nm bandpass filter. (c) Spectral 

reconstruction at a particular spatial location for the 560 nm bandpass filter. (d) Spectral reconstruction at 

a particular spatial location for the 580 nm bandpass filter. The small peak near 520 nm is due to spectral 

aliasing. Picture and info reproduced from [40]. 

 

Thus, spatial and spectral information from the scene is multiplexed on the detector, 

implying that the null space of the sensing operation of the SD-CASSI differs from that of the DD-

CASSI. Furthermore, with SD-CASSI, a raw measurement of a scene on the detector rarely reveals 

the spatial structure of the scene and makes block processing more challenging. 

In Figure 18 a schematic drawing of the SD-CASSI system is presented. 
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Figure 18 – Schematic drawing of the SD-CASSI system. Picture reproduced from [41]. 

In this system, standard optics are used to form an image of a scene on the coded aperture 

plane, which modulates the spatial information over all wavelengths in the spectral cube with the 

coded pattern. Imaging the data cube from this plane through the dispersive element results in 

multiple images of the code-modulated scene at wavelength-dependent locations in the plane of the 

detector array. The spatial intensity pattern in this plane contains a coded mixture of spatial and 

spectral information about the scene. 

Figure 19 shows the experimental setup of the SD-CASSI. 

 

 

Figure 19 – Top view of the SD-CASSI experimental setup. Picture reproduced from [41]. 
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Figure 20 – Scene consisting of a ping-pong ball illuminated by a 543 nm green laser and a white light 

source filtered by a 560 nm narrowband filter (left), and a red ping-pong ball illuminated by a white light 

source (right). Picture reproduced from [41]. 

 

In Figure 21 it can be seen the results obtained with the SD-CASSI system for the scene 

represented in Figure 20. 

 

 

Figure 21 – Spatial content of the scene of Figure 20 in each of 28 spectral channels between 540 and 640 

nm. The green ball can be seen in channels 3 to 8; the red ball can be seen in channels 23 to 25. Picture 

reproduced from [41]. 

 

To evaluate the ability of the SD-CASSI to reconstruct the spectral signature of objects in 

the scene, the authors measured the spectral signatures of each ping-pong ball using a commercial 

spectrometer from Ocean Optics. These results are presented in Figure 22. 
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Figure 22 – (left) Spectral intensity through a point on the ping-pong ball illuminated by a 543 nm green 

laser and a white light source filtered by a 560 nm narrowband filter. (right) Spectral intensity through a 

point on the red ping-pong ball illuminated by a white light source. Spectra from an Ocean Optics non-

imaging reference spectrometer are shown for comparison. Picture reproduced from [41]. 

From the previous results, it is possible to observe that the SD-CASSI reconstructed spectra 

closely follow those measured by the non-imaging reference spectrometer. 

An important characteristic of any spectrometer or spectral imager is the spectral resolution. 

As the authors reported, if the optical distortions such as the blurring and the smile distortion were 

ignored, the spectral resolution of the SD-CASSI would then be determined by the width of the 

smallest code feature. 

The authors have also stated that the system exhibits an average spectral resolution of 

3.6 nm/spectral channel. 

The reconstruction phase relied on the application of the Gradient Projection for Sparse 

Reconstruction (GPSR) method [33] so that the data cube could be estimated from the SD-CASSI 

measurements. For that purpose, spatial sparsity of the scene in the wavelet basis was assumed. 

In a concluding manner, the main differences between the DD-CASSI and SD-CASSI are 

presented in Table 2. 

 

Table 2 – Comparison of the main aspects of DD-CASSI and SD-CASSI. 

DD-CASSI SD-CASSI 

Uses 9 optical elements Uses 6 optical elements 

Only spectral multiplexing 
Spatial and spectral multiplexing, less 

compressive measurement 

Cannot spectrally resolve point sources May spatially resolve point sources 

Block processing possible Block processing challenging 

Instrument of choice for high spatial resolution 
but lesser spectral resolution 

Instrument of choice for high spectral resolution 
but lesser spatial resolution 
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In 2009, Sun and Kelly, from the Rice University, presented a CS-based hyperspectral imager 

capable of reconstructing images with 0.8 nm of spectral resolution [42]. This work represents a 

clear extension of the work presented in 2006 by Takhar et al. [15] and instead of a photodetector, 

this time, a spectrometer (Ocean Optics QE65000) was used as the light detection device. 

Unfortunately, no details were provided regarding the optical and mechanical arrangement of the 

system. In Figure 23 some of the results obtained with this system are presented. 

The authors also applied a pixel-by-pixel raster scan pattern and acquired the measurements 

under the same illumination and spectrometer integration conditions as in the compressive results, 

for comparison purposes. In Figure 24 it can be seen the raster scan results and the compressive 

results for the same scene for two spectral bands. Supported by these results, one can say that the 

quality of the compressive results is higher. This can be justified by the fact that CS measurement 

always captures approximately half of the total light from the scene instead of 1/N2 with raster 

scan. Therefore, the signal-to-noise ratio (SNR) is much higher in the compressive approach. The 

authors also stated that besides bringing better image quality, CS saves 90% of acquisition time and 

data storage volume. 

 

 

(a) 

 

 

 

(b) 

 

 

 

 

 

 

(c) 

 

Figure 23 – (a) Mosaic of hyperspectral images with a lateral resolution of 256 x 256 pixels and a 

spectrum resolution of 4 nm (averaged over several channels). (b) Reconstructed image after summing all 

the bands. (c) Image taken with a conventional camera. Images reproduced from [42]. 
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Figure 24 – 256 x 256 pixels images for two spectral bands obtained via raster scan (left column) and 

compressive sensing (right column). Images reproduced from [42]. 

3.8 Compressive ghost imaging system 

In 2009, Katz et al. presented an algorithm based on compressive sensing for ghost imaging (GI) 

and proved a substantial increase in the signal-to-noise ratio of the reconstructed images [43]. 

Succinctly, ghost imaging establishes quantum correlations between photon pairs to build up an 

image of an unseen object as follows: while one of the photons strikes the object, the other follows 

a different path to the camera's lens. If the camera is constructed to only record pixels from 

photons that hit simultaneously the object and the camera's image plane, an image of the object can 

be reconstructed. Figure 25 shows a scheme of the experimental setup used for standard ghost 

imaging. In conventional GI, the object is illuminated by a speckle field generated by passing a laser 

beam through a rotating diffuser. For each phase realization of the diffuser, the speckle field which 

impinges on the object is imaged. This is done by splitting the beam before the object to an object 

arm and a reference arm, and placing a CCD camera at the reference arm. At the object arm, a 

bucket detector measures the total intensity which is transmitted through the object. To reconstruct 

the transmission function of the object, the bucket detector measurements are cross-correlated with 

the intensities measured at the reference arm. Each bucket measurement consists in the overlap 

between the object and the illumination pattern. Thus, the GI measurement process is in essence a 

vector projection of the object transmission function over M different random vectors, and the GI 

reconstruction is a linear superposition of these vectors determined by the measured projections.  
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Figure 25 – Scheme of a standard setup for pseudothermal ghost imaging with two detectors. Picture 

reproduced from [43]. 

The GI linear reconstruction process has no assumptions on the object to be resolved. Thus, 

if the number of speckles that cover the object is N , one needs at least NM   different intensity 

patterns in order to reconstruct the object. In fact, since the different intensity patterns overlap, 

NM   measurements are needed to meet 1SNR  [44]. However, any prior information on 

the structure of the object could significantly reduce the number of measurements required for a 

faithful reconstruction. As we have already seen, most natural images are sparse in an appropriate 

basis and CS exploits that fact to reduce the number of measurements needed for faithful image 

recovery. Katz et al. applied this knowledge to GI and experimentally demonstrated CS 

reconstruction in GI. For that they have used the setup depicted in Figure 26. This implementation 

is a variation of the standard GI with two detectors, where the rotating diffuser has been replaced 

with a computer controlled spatial light modulator (SLM). Knowing the applied SLM phase mask 

for each realization, the field intensity in the reference arm was computed using the 

Fresnel-Huygens principle of propagation, instead of measuring it as in conventional GI.  

 

 

Figure 26 – Scheme of the compressive ghost imaging setup with a single detector. Picture reproduced 

from [43]. 

The authors have used reference data for 64 × 64 pixels and reconstructed images of a 

double slit transmission plate (width 220 µm, separation 500 µm), using 256 and 512 realizations. 

The corresponding results for conventional GI reconstruction are shown in Figure 27 a-b, while the 

CS reconstruction results using the same set of measured data are presented in Figure 27 c-d. 
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It can be seen that the main features of the object were recovered with standard GI but with a poor 

SNR, justified by the common speckle features of GI. The CS results, on the other hand, exhibit a 

noticeable higher SNR and a more accurate reconstruction. To quantify the improvement gained by 

utilizing CS reconstruction, the calculated SNR for the CS reconstruction using 256 realizations is 

2.1 times higher than the standard GI reconstruction, and is 3.5 times higher for the 512 

realizations case. For the CS reconstruction they have utilized the gradient projection for sparse 

reconstruction (GPSR) algorithm [33], minimizing the ℓ1-norm in the 2D-DCT domain. 

 

Figure 27 – Ghost imaging results for the reconstruction of images of a double-slit transmission plate. 

Top row: Conventional ghost imaging with: (a) 256 realizations; (b) 512 realizations; Bottom row: 

Compressive ghost imaging reconstruction using the same experimental data as in (a) and (b). Picture 

reproduced from [43]. 

3.9 CMOS compressive sensing imager 

Jacques, Majidzadeh et al. presented a Complementary Metal Oxide Semiconductor (CMOS) imager 

with built-in capability to perform Compressed Sensing coding by Random Convolution [45-47]. 

The CMOS CS-imager scheme with 2N pixels is depicted in Figure 28. This device relies on a 

Linear Feedback Shift Register (LFSR) initiated in a pseudo-random sequence a , following a 

Rademacher distribution (equal probability of occurrence for 1 and +1). It acts as a convolutive 

filter on the imager focal plane and the output current in each pixel is proportional to the light 

intensity. The sign of this current is adjusted by the 1-bit value  ia  of the pseudo-random 
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sequence stored in the memory and, conforming Kirchoff‟s Law, the current of all the pixels along 

each column is combined. Each column is connected to the input of one Operational Amplifier 

(Op-Amp) and its output voltage is subsequently digitized by an Analog to Digital converter 

(ADC), in a time-multiplexed manner. Finally, the output of the ADC is integrated to represent that 

specific compressed image measurement. 

For the realization of the next measurements, the content of the shift-registers (SR) grid has to be 

adapted. This is achieved by pushing the last 1-bit value of the sequence, i.e. 2N
a , into the first pixel 

memory, therefore causing all the remaining bits to update their positions. However, to fit the 

random convolution model, a random activation of the Op-Amps/ADC blocks must be applied. 

This is achieved by logically combining several LFSR, producing a certain activation probability. If 

this triggering is off, a new shift is produced by the SR and no reading is performed. Otherwise, a 

measurement is acquired and quantized by the Op-Amps/ADC blocks following the scheme 

initially described. 

It is claimed that the system enables an image acquisition rate of 60 frames-per-second (fps) 

with a 4MHz sampling clock, thanks to the reduced number of measurements required in 

compressive sensing. If the oversampling, introduced to reduce the effect of the circuit thermal 

noise, is not conducted, the image acquisition rate can be increased up to 180 fps [46]. 

The reconstruction burden is all supported by a computer system which does it by means of 

Nesterov iterative boosting inside a convex minimization algorithm based on operator splitting and 

proximal methods. 

Analyzing the key principles of CS and the conclusions drawn by the authors, it can be said 

that such a camera would be perfect for devices with low CPU power and targeting low energy 

consumption. The authors also said that they plan to adapt the same technology to 2D grids of 

biosensors for analyzing the electrical activity of a group of connected neural cells. The produced 

biosignal is indeed sparse both in the spatial and in the time domains, corroborating the 

applicability of CS. 

Comparatively to the Rice University single-pixel camera [15], the authors referred that the 

DMD-photodiode pair is subject to various nonlinearities (e.g. non-uniform reflectance of the 

mirrors through the focusing lens, non-uniform mirror positions, photo-electric conversion) and, in 

principle, the proposed imager suffers less from these imperfections since it relies on an 

homogeneous analog processing in the electric domain and uses a mature CMOS technology. 

Furthermore, errors and nonlinearities induced by all the micro-electronic modules can be reduced, 

modeled and on-chip calibrated to oppose their effects. 

Despite exhibiting some similarities with the work of Robucci et al. [8], this system is 

optimized for CS-based imaging, while the other is a more general architecture intended to perform 

alternative analog signal processing tasks (e.g. DCT or wavelet transform). 
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Figure 28 – Scheme of the CMOS CS-imager. Picture reproduced from [45]. 

3.10 Compressive microscopy imaging systems 

Some groups have also dedicated themselves to the application of compressive sensing theory to 

microscopy systems, in particular, confocal microscopy systems [48-50]. Analyzing their research, it 

is possible to conclude that the proposed compressive confocal microscopy system acts in a kind of 

a parallel beam confocal imaging system which uses a single pixel detector and a digital micromirror 

device (DMD) to capture linear projections of the in-focus image. 
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Compressive confocal microscopy has emerged as a new framework offering the potential 

advantage of lowering costs by reducing the hardware and optical complexity. This is achieved 

because most of the burden is moved from data acquisition to image reconstruction, which is 

performed digitally in a standard computer. Another advantage comes from the fact that there is no 

need for any scanning scheme or mechanical scanning device, which is translated on faster 

operation times. Figure 29 shows the schematic drawing of the compressive confocal microscope 

along with its principle of operation. 

 

Figure 29 – Schematic drawing of the compressive confocal microscope along with its principle of 

operation. Picture reproduced from [48]. 

Observing Figure 29, it is perceptible that only the light coming from the in-focus plane will 

be measured by the single-pixel detector. The measured light then contains the spatial information 

compressed by the used DMD coding patterns. 

The authors stated that, in some cases, up to 90% reduction of scan effort and 50% light 

efficiency are feasible. It is also referred that, in the future, it is possible to consider the use of faster 

DMD or other spatial light modulating devices to improve the image acquisition speed/quality of 

the system. Besides, the use of more efficient CS coding patterns, such that fewer measurements 

could be used to reconstruct an image, was also among the authors‟ intentions. 

In 2010, Marim et al. [51] presented a microscopy acquisition scheme successfully combining 

compressive sensing and digital holography in off-axis and frequency-shifting conditions. Their 

imaging scheme works for sparse gradient images, acquiring a diffraction map of the optical field 

with holographic microscopy and recovering the signal from as little as 7% of random 
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measurements. The reconstruction process is based on an iterative approach that, given a partial 

knowledge of the Fresnel coefficients, seeks for a solution with maximum sparsity and whose 

Fresnel coefficients match the observed subset. 

The experimental setup diagram can be found in Figure 30. 

The principle of operation of the system depicted in Figure 30 can be explained as follows: 

initially, the monochromatic optical field from a diode laser dynamically backscattered by an 

intralipid emulsion illuminates an United States Air Force (USAF) resolution target; then, it beats 

against a separate local oscillator field detuned by Δω/(2π) = 200Hz and finally it creates a time-

fluctuating interference pattern measured with a N = 1024 × 1024 array detector. The diffracted 

object field map in the detector plane, resolved in quadrature (in amplitude and phase) is calculated 

from a four-phase measurement. The frequency detuning Δω enables rejection of non-fluctuating 

light components reflected by the target as well as speckle reduction through signal accumulation. 

 

 

Figure 30 – Diagram of the experimental off-axis, frequency-shifting digital holography setup. Picture 

reproduced from [51]. 

 

In Figure 31 comparative images of the results obtained with standard holography and those 

obtained with the reported system are presented and are a good evidence of the reconstruction 

quality.  
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(a) 

 
(b) 

Figure 31 – (a) Results obtained with standard holography. (b) CS reconstruction, using 7% of the 

Fresnel coefficients. Images reproduced from [51]. 

3.11 Compressive optical coherence tomography 

Optical coherence tomography (OCT) is a non-invasive, depth resolved, imaging modality, which 

has been widely used in medical diagnosis and research. Spectral domain OCT (SD-OCT) uses an 

array detector such as a CCD or CMOS camera to sample and digitize the spectral interferograms. 

Due to the Fourier domain detection configuration, SD-OCT has superior sensitivity and imaging 

speed compared with time domain OCT (TD-OCT) and, therefore, has supplanted conventional 

TD-OCT in many applications [52]. However, the advantages come at the charge of an expensive, 

large array, and high-speed camera. Moreover, when large imaging depth as well as high axial 

resolution is required, the camera has to capture spectra at a large sampling rate, because 

conventional image reconstruction algorithms for SD-OCT require spectral domain sampling 

beyond Nyquist rate to achieve a certain imaging depth. In other words, the camera has to have 

enough pixels to guarantee that at least two data points are sampled within one period of the 

spectral interferogram. Such CCD or CMOS cameras and associated electronics are usually 

expensive and limit the imaging speed. Besides, it is challenging to transfer and process the large 

amounts of data acquired [53].  

In 2010, Liu and Kang presented a study where they have explored the potential of using 

compressed sensing for SD-OCT (CS-SD-OCT) [53]. Their intent was to reduce the need for a 

large pixel array camera and enable the reconstruction of high-resolution images with less data and 

processing. So, the authors used a common path SD-OCT (CP-SD-OCT) as illustrated in Figure 

32. There, it can be seen the broadband light source used to illuminate the common path 

interferometer which consisted of a 50/50 fiber optic coupler and a single mode fiber probe serving 

as both sample and reference arm. The probe was scanned laterally to obtain B-mode images. The 

partial reflection at the distal end of the probe arm has been assumed to represent the reference 

signal. After being coupled back to the probe arm, the sample signal interfered with the reference 
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signal and was detected by the spectrometer, which used a CCD camera with 2048 pixels to 

discretize and digitize the spectral interferograms. The broadband source consisted of three 

superluminescent emission diodes resulting in an emission spectrum with a bandwidth of ~100 nm 

full width at half maximum (FWHM) centered at 800 nm. The axial resolution was measured to be 

3.2 μm. 

 

 

Figure 32 – Scheme of the common path spectral domain OCT setup. Picture reproduced from [53]. 

 

So with this setup, they randomly undersampled the spectra by applying known random 

masks to the full pixel array to demonstrate the concept of compressed sensing in OCT. These 

random masks have been used to sample 62.5%, 50%, and 37.5% of the CCD camera pixels. OCT 

images have been reconstructed by minimizing the ℓ1-norm of a transformed image to enforce 

sparsity, subject to data consistency constraints, and the results showed great potential for this 

technique. Some of the results obtained are shown in Figure 33.  

 

Despite the demonstrated good performance, the authors stated that it could be possible to 

increase the acquisition speed with more appropriate hardware, such as that provided by a high-

speed camera capable of randomly sample the pixels of interest. Even though a high-speed camera 

with random access to the pixels would be more expensive than a standard high-speed camera it 

would effectively improve the imaging speed. The authors also expressed the future intention of 

taking full advantage of signal compressibility in both axial and lateral directions, which would allow 

high fidelity reconstruction with even fewer sampling points. 
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Figure 33 – OCT image of onion cells: (a) obtained using complete spectral data; (b), (c), and (d) obtained 

by sampling 62.5%, 50%, 37.5% of the pixels and pursuing sparsity in pixel domain; (e), (f), and (g) 

obtained by sampling 62.5%, 50%, 37.5% of the pixels and pursuing sparsity in wavelet domain. Picture 

reproduced from [53]. 

In 2011, Young et al. [54] demonstrated real-time CS-OCT for volumetric imaging of the 

Optic Nerve Head (ONH) using a 1060 nm Swept-Source OCT prototype. A common problem 

faced in ophthalmic imaging is motion artifact due to eye movements, such as subconscious micro-

saccades, which occur approximately once a second [54], therefore, it is of utmost importance the 

capability of acquiring images at fast rates (real-time) in this type of applications. By the time Young 

et al. presented this work, compressive sensing had already been demonstrated as a novel method 

for rapid image acquisition of OCT volumes [55], and it has been showed that OCT images of the 

Optic Nerve Head (ONH) reconstructed with CS had better recovery of anatomical features than 

that achieved with basic interpolation schemes. This was mainly due to the minimization of motion 

artifacts from rapid acquisition and from registering and averaging OCT volumes, which have 

different speckle characteristics due to CS reconstruction, thus yielding images with higher quality 

and higher SNR [54]. So, in their work, Young et al. used X-Y galvanometer mounted mirrors to 

scan the beam across the sample. The used source was a commercial swept-source with an effective 

3dB bandwidth of 61.5 nm, corresponding to an axial resolution of ~6 μm in tissue. The optical 

system used a standard fiber coupler Michelson interferometer topology, and the sample arm optics 

delivered a spot size at the cornea and at the retina of 1.3 mm and 17 μm (assuming a 25 mm axial 

eye length), respectively [54]. The CS-OCT volumes were acquired using a modified raster scan 

pattern consisting of randomly spaced horizontal scans, as depicted in Figure 34. 



Compressive Sensing Based Single-Pixel Imaging Systems 

44 

 

Figure 34 – Setup of the swept-source OCT system constructed with a 1060 nm source and a standard 

Michelson interferometer. The regular raster scan pattern was modified to acquire randomly spaced 

horizontal B-scans.  The full volume was generated through CS-recovery in post processing. Picture 

reproduced from [54]. 

 

In their experiments, they have fully acquired a volume and partially acquired volumes with 

36, 48 and 65 percent of missing data at a similar location. The fully sampled volume required 1.6 s 

for acquisition, while the partial volumes with 36, 48 and 65 percent of missing data required 1.02 s, 

0.83 s and 0.56 s, respectively. The acquired B-scans from the volumes for different percentages of 

missing data were axially cropped and constructed into a data volume consisting of 512 (axial), 400 

and 400 (lateral) voxels. The acquired frames were inserted into the volumes at their corresponding 

frame positions and missing frames were filled with zeros. The sparsely sampled data volume for 

each percentage of missing data acquired was recovered in MATLAB® using the Iterative Soft-

Thresholding (IST) algorithm [56], following the processing details previously presented in [55]. For 

a volume with the dimensions of 512 × 400 × 400 voxels, the CS-recovery process took 

approximately two hours on a computer with an i7 Intel CPU running at 2.67 GHz and 20 GB of 

memory. The authors stated that the speed of CS-recovery algorithm could be improved using 

C++ implementations or by using a general purpose Graphics Processing Unit (GPU). The top 

row of Figure 35 contains the reconstructions obtained after acquiring the data and that have been 

placed in the corresponding positions in the volume. The CS-recovered summed voxel images are 

shown in the second row of Figure 35. In the third and fourth row of Figure 35, it can be seen 

frames reconstructed from each CS-recovered volume in the fast (B-scan) and in the slow scan 

directions, respectively. Qualitatively, it can be said that CS interpolation preserved the main 

structures of the eye. However, a modest degradation of image quality was evidenced in the images 

recovered from summing the data with 65% of missing data. In the slow scan images, the 65% 

missing CS-recovered volume preserved more of the physiological curvature of the retina compared 

to that of the fully-acquired data, or CS with 36% and 48% of missing data, because of the shorter 

acquisition time. 
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Figure 35 – Results recovered with CS. The top row shows the position of the frames that were acquired, 

the second row shows the CS reconstructed summed voxel projection, the third and fourth row show a 

selected B-scan and slow scan from the CS-recovered info, respectively. Picture reproduced from [54]. 

So, with this work CS-OCT has been validated as a promising novel method for increasing 

volumetric acquisition speed for new and existing OCT systems without sacrificing image quality. 

This can be easily achieved as it only requires changes in the scanning protocol and in the post-

processing of acquired data. The CS acquisition scan pattern can be easily modified for different 

percentages of missing data, thus corresponding to different durations for volume acquisition. 

3.12 Photon-counting compressive sensing laser radar for 3D imaging 

In 2011, Rowland et al. [12, 13] demonstrated a photon-counting, single-pixel, laser radar – also 

known as LIDAR (LIght Detection And Ranging) – camera for 3D imaging where spatial 

resolution is obtained through compressive sensing. Their implementation does not rely on 

scanning and represents an improvement upon pixel-array based designs in the sense that it is 

compact and resource-efficient. It can easily be scaled to higher resolutions and to operate at any 

wavelength with an adequate single photon detection device. In Figure 36 it is presented a picture 

of the experimental setup of the implemented imaging LIDAR system (ILS). There it can be seen 

the pulsed light source used to illuminate the scene and the DMD array where an image of the 
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scene is formed. The spatial compression takes place on the DMD where the random compressive 

codes are applied and the reflected light is collected by the avalanche photodiode (APD). The 

output of the APD, obtained for each compressive code, is correlated with the original pulse signal 

to produce a histogram of single photon arrival times, thus compressing the range information. 

Peaks in the timing histogram indicate objects at different distances. Figure 37 contains results 

obtained with this system for objects placed at different depths. 

 

 

Figure 36 – Experimental setup of the photon-counting compressive sensing laser radar system for 3D 

imaging. Picture reproduced from [13]. 

 

 

Figure 37 – Results obtained with the photon-counting compressive sensing laser radar system for 3D 

imaging. Reconstructions for objects „U‟ and „R‟ at depths 1.75 m and 2.10 m. (a) and (b) consider only 

„U‟ and „R‟, respectively, while (c) considers a range including both. Timing histogram (d) peaks represent, 

from left to right, „U‟, „R‟, and the room wall. Picture reproduced from [13]. 

Within this context, it is opportune to contextualize this system and present its main 

advantages when compared to other imaging LIDAR systems. ILS based on Time-of-Flight (TOF) 

are the preferred ones, thanks to their ability to accurately range-find over large ranges. Pulsed 
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direct detection probably offers the best performance since it is less constrained by range 

limitations, exhibits higher SNR and offers greater scope for imaging through the use of Focal 

Plane Array (FPA) detectors. Therefore, the biggest interest falls within the development of fast 

high resolution detectors with high sensitivity. For that, arrays of APD operated in Geiger-mode 

have proved to be the most successful approach, since these sub-ns timing detectors have single-

photon precision and sensitivity close to shot-noise limit. However, it is still hard to increase their 

pixel density. The highest resolution commercially available array sensor is only 32×32 pixels, being 

under development arrays with 32×128 [57, 58] and 64×256 pixels [59, 60]. The Jigsaw system [61] 

has proved its performance and relies on prism-based scanning to improve its resolution and field 

of view (FOV). Despite this, the spectral range of the currently available array sensors is limited due 

to peak quantum efficiency (QE) in the mid-visible spectrum. For resolved targets, the amount of 

light returning to the receiver drops inversely with the range squared. In a pulsed ILS this energy is 

even more divided, among multiple detectors, causing shot-noise to become significant. With CS 

approximately 50% of the DMD pixels are “ON” for each measurement code, thus causing the 

system to gather about N/2 times more photons than an average pixel sensor (1/N), which 

significantly reduces image distortion from dark noise and read-out noise. The advantages of the 

single-pixel design include the fact that the QE of a photodiode is higher than that of the sensors in 

a typical CCD/CMOS array. More, the fill factor of a DMD can reach 90% whereas that of a 

CCD/CMOS array is only ~50%. Unlike Fourier or Wavelet coefficients, for instance, random 

coding is robust because equal priority is credited to all the measurements. Consequently, as more 

measurements are gathered progressively better reconstructions can be obtained. 

3.13 Millimeter-wave imaging with compressive sensing 

Earlier in 2011 and later in 2012, Gopalsami et al. [62, 63] presented a millimiter-wave imaging 

system which benefited from compressive sensing theory.  

Passive millimeter-wave (PMMW) imagers using a single radiometer, called single-pixel 

imagers, employ raster scanning to produce images. A serious disadvantage of such imaging systems 

is the long acquisition time needed to produce a high-fidelity image. This aspect originates from 

two factors, namely, the time to scan the whole scene pixel by pixel and the integration time for 

each pixel to achieve adequate SNR. As it has already been evinced in this document, compressive 

sensing (CS) can significantly reduce the imaging time and at the same time generate high-fidelity 

images by exploiting the sparsity of the data in some transform domain. While the efficiency of CS 

has been recognized for single-pixel optical systems, its application to PMMW imaging is not direct 

due to its longer wavelength by three to four orders of magnitude, which causes high diffraction 

losses and due to the weaker intensity of the radiation, which can be eight orders of magnitude less 

than that of infrared, for example. The authors have then developed and implemented a CS 

technique for PMMW imagers which improved the imaging speed by a factor of ten.  
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The main advantage of PMMW imaging is the robustness under all weather conditions, 

unlike visible and infrared optical systems, which require clear atmospheric conditions. It finds 

applications in remote sensing for polar ice mapping, terrain mapping and meteorology, for 

instance. It can also be applied to aircraft navigation for landing in optically obscure weather, and to 

security and defense scenarios for the detection of concealed weapons, for example. [63]  

So, for the development of the compressive sensing based PMMW imaging system, the 

authors took advantage of the cyclic nature of the Hadamard basis and relied on the use of a single 

extended 2D Hadamard mask of size (2p-1) × (2q-1) to expose a different p × q sub-mask for each 

acquisition, translating the extended 2D mask one pixel at a time. This represented an enormous 

contribution comparatively to the manual introduction of the masks verified in the aim of the 

single-pixel THz imaging system presented in section 3.5 (see reference [38]). Figure 38 shows an 

image of an extended Hadamard mask with two highlighted examples of sub-masks. The mask was 

fabricated using chrome coating on a millimeter-wave transparent quartz plate. [62] 

 

 

Figure 38 – Example of an extended Hadamard mask with 81 × 85 pixels. The colored boxes represent 

two different sub-masks (41 × 43 pixels) that are used in two different acquisitions. Picture reproduced 

from [62]. 

Figure 39 shows a diagram of the compressive sensing based PMMW imaging system that 

has been developed.  There, it can be seen that the extended Hadamard mask is placed at the image 

plane of a 6 inches diameter lens, where the image of a distant target is formed. The exposure 

window is defined by a metal plate with a hole of size p × q that is placed in front of the extended 

mask. For each compressive measurement, the extended mask is controlled by a two-axis 

translation stage to expose different sub-mask patterns. A second lens of 1 inch diameter collects 

the modulated radiation field through the Hadamard mask and focuses it onto the multichannel 

radiometer. The positions of the lenses and the mask are governed by the lens equation 

oir ddf 111  , where rf  is the focal length of either of the lenses, and id  and od  are the 

image and object distances, respectively. As the targets used in their experiments did not have 

spectral features, the authors averaged all 16 spectral channels, thus increasing the SNR by a factor 

of four. 
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Figure 39 – Diagram of the compressive sensing based passive mm-wave imaging setup. Picture 

reproduced from [63]. 

 

This setup has been used for the acquisition of images of a 60 W incandescent bulb (thermal 

source). Figure 40 contains the results of those acquisitions when different amounts of samples for 

the reconstruction have been used. It can be said that the images reconstructed with 11% of the 

samples compare well with those reconstructed with 100% of the samples. The slight distortion in 

the object geometry can be justified by the smoothing nature of the reconstruction algorithm 

around sharp edges. 

 

 

Figure 40 – 41 × 43 pixels images of the incandescent bulb acquired with the CS based PMMW system 

with: (a) 100% and (b) 11% of the samples. Picture reproduced from [63]. 

 

The possibility to reconstruct images with good quality from approximately 10% of the 

samples offered a ten-fold increase in imaging speed. The system also enabled the reconstruction of 

images with 41 × 43 pixels with pixel size of 1.24 mm, which is about half of the wavelength of the 

used radiometer (146 to 154 GHz), with better SNR than that of raster scanning systems. 
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3.14 Compressive polarimetric imaging 

In early 2012, Durán et al. presented a CS-based optical system capable of performing spatially 

resolved polarimetric imaging with a single-pixel detector [64, 65]. A scheme of the implemented 

setup is shown in Figure 41. The principle of operation of the single-pixel polarimetric imager can 

be described as follows. 

 

 

Figure 41 – Setup for single-pixel imaging polarimetry. An example of a binary intensity pattern displayed 

by the SLM is also shown. Picture reproduced from [64]. 

A collimated (unpolarized) laser beam passes through a liquid crystal spatial light modulator 

(LC-SLM), which is used to apply the compressive measurement binary patterns. Next, the light 

goes through a polarization object (PO) that is placed right after the LC-SLM to produce a 

space-variant polarimetric vector. In order to illuminate the PO with linearly polarized light the LC-

SLM had to be enclosed by properly oriented linear polarizers (P1 and P2). After passing through 

the PO, the light is guided to a commercial Stokes polarimeter (SP) by means of an inverted beam 

expander (IBE). This element adequately shapes the beam width to the reduced entrance window 

of the SP, being crucial to ensure that all the light emerging from the object is collected by the SP 

and to keep the normal incidence. For this experiment, a He-Ne laser emitting at 632.8 nm and a 

transmissive twisted nematic LCD with 800 × 600 pixels were used. The Walsh-Hadamard basis 

was chosen as the measurement basis and the corresponding binary patterns had 64 × 64 pixels. 

The compression level was approximately 70% (1225 measurements were performed). For this 

polarimetric imager, the problem of measuring a spatial-dependent Stokes vector is equivalent to 

solve three times the CS algorithm for single-pixel imaging, one for each Stokes parameter. Figure 

42 contains some results obtained with this system. The imaged object consisted of an amplitude 

mask with the characters “UJI”, being the character “J” covered with a cellophane film to act as an 

inhomogeneous polarization distributor.  
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Figure 42 – (a) 1024 × 1024 pixels image of the object used in the experiment, which consists of an 

amplitude mask with a cellophane film covering the zone colored in yellow. (b), (c) and (d) represent 

64 × 64 pixels pseudo-color images for the Stokes parameters. Picture reproduced from [64].  
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Chapter 4. Compressive Sensing Based Single-Pixel Imaging Systems  

This chapter expounds the core subject of this dissertation, which is focused on the study and 

development of single-pixel imaging systems based on compressive sensing. Its content is 

distributed along six sections. The first five are related with the compressive sensing based 

acquisition of monochrome, color, multispectral, hyperspectral and high dynamic range images. In 

the last section, an algorithm that has been developed to include compressive sensing based 

imaging capabilities into a CMOS imager is presented. Illustrative results are provided for all the 

systems and for all the experiments that were conducted.  

For the sake of clarity and simplification, there are some considerations that have been 

assumed for all the conducted experimental procedures, unless stated otherwise, that will now be 

presented. To acquire the data used to reconstruct the images, the sampling frequency was 

250 kSamples/s. For each measurement, 10000 samples were acquired and averaged. The random 

binary codes used for spatial compression were permuted Hadamard codes. The NESTA software 

package [66] has been used for image reconstruction, in particular, using the TV minimization 

option. The images were reconstructed using 100% of the measurements and have been normalized 

to [0, 255] using 8 bits. Whenever used, the connection that enabled the transmission of the video 

signal, containing the images to be projected, between the computer and the Epson® projector has 

been established via a D-sub 15 pin interface. For the case of the LightCommander it was 

connected to the computer via an HDMI (High-Definition Multimedia Interface) interface.  

More details will be provided throughout the dissertation as necessary. 

4.1 Monochrome Imaging Systems  

In this section we present the work related with the implementation of compressive sensing based 

single-pixel imaging systems capable of acquiring monochrome images. Monochrome images 

instead of recording the color of a scene, only register a single sample for each pixel, that is, they 

only preserve intensity information. The single-pixel monochrome imaging systems here presented 

compress the spatial information by incorporating the random measurement codes, either into the 

light used to illuminate the scene being acquired, here designated as active illumination systems, or 

into the light field coming from the same scene, here designated passive illumination systems.   

4.1.1 Active illumination single-pixel monochrome imaging system 

Following the work of the Rice and Arizona groups [15, 23, 32], in a preliminary manner, we have 

developed an innovative active illumination single-pixel imaging system. This system‟s setup 
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employed a video projector to incorporate the random binary measurement matrix and the 

proposed experimental setup is presented in Figure 43. 

 

 

Figure 43 – Active illumination single-pixel-camera experimental setup. Following the red arrows, it can 

be seen that the image projected by the video projector is reflected on the wall and by means of a lens is 

focused on the photodiode active area. The output of the photodiode amplifier circuit is connected to a 

data acquisition board. 

 

Figure 44 shows an integrated version of the proposed single-pixel imaging system in a much 

smaller assembly comprising the same configuration of Figure 43. This integrated setup has been 

developed to comprise the lens and the photodiode circuit in a single integrated module (see Figure 

44 (b)), therefore, it is considerably more compact. A large area (1 cm2) silicon photodiode (RS 303-

674) was used in order to facilitate the optical alignment and maximize the integration of light over 

the objective‟s field of view. The schematics of the photodiode amplifier circuit are shown in Figure 

45. In this circuit, the output voltage is proportional to the current drawn by the photodiode (I) and 

is given by the following expression: Vout = (R1 + R2)×I. The experimental setup also included a 

video projector with 1280×800 (WXGA) maximum resolution (Epson® model EB W7), a 12 bits 

resolution analog-to-digital (A/D) data acquisition board with a maximum sampling frequency of 

10 kSamples/s and maximum voltage range [-10 V; 10 V] (National Instruments™ USB-6008), and 

a 8 mm focal length Computar® lens with focus distance ranging from 30 cm to infinity. 
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(a) 

 
(b) 

Figure 44 – (a) Compact active illumination single-pixel camera setup. (b) Detailed photo of the 

assembly comprising the lens and the photodiode circuit. 

 

Figure 45 – Schematics of the photodiode amplifier circuit. 

 

Regarding the proposed configuration, the video projector was used to project the result of 

the product between the image to be reconstructed and the random measurement patterns (see 

Figure 46). Therefore, each of the output voltages of the photodiode amplifier circuit was 

representative of the inner product between the used pattern for that measurement and the image 

to be reconstructed. 
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Figure 46 – Example of one of the projected images, representing the product between a random 

measurement pattern and the image to be reconstructed. 

Initial results obtained with the active illumination system for an image containing sharp 

edges are presented in Figure 47. The reconstructed images have 32 × 32 pixels, in order to speed 

up the reconstruction and testing procedures during this experimental phase.  

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 47 – (a) Reference image. First results obtained (32×32 pixels   N = 1024) with the active 

illumination single-pixel camera using: (b) 205 measurements   20% (PSNR = 11.08 dB); (c) 410 

measurements   40% (PSNR = 12.30 dB); (d) 717 measurements   70% (PSNR = 13.21 dB). All 

the PSNR were calculated using the reference image and the respective reconstructed image. 

The data management and all the measurement steps, related with image projection and data 

sampling, were controlled and synchronized with MATLAB® software that was specifically 

developed for this purpose. The sampling frequency used for these experiments was 10 kSamples/s 

and 1000 samples were acquired and averaged for each measurement. 

The reconstructions were obtained with the 1 -Magic software package [67] finding the 

solution with minimum total-variation. 1 -Magic is a collection of MATLAB® routines for solving 

the convex optimization programs central to compressive sampling. The results were obtained with 

MATLAB® on Microsoft Windows 7 with an Intel® Core™2 Duo CPU @ 2.50GHz and 3 GB of 

RAM. The average processing time to reconstruct a 32 × 32 pixels image from 410 measurements 

was approximately 10 seconds and the average processing time to reconstruct a 64 × 64 pixels 

image from 1640 measurements was approximately 400 seconds. In addition, it should be taken 

into account the approximate 420 ms consumed to project each code and perform the associated 

measurement. Therefore, bigger images could have been reconstructed at the expense of more 

time.  
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From the results shown in Figure 47, based on the PSNR values, it is clear that with an 

increasing number of measurements, the overall quality of the reconstructed images is also 

increased. The size of the “F” character on the wall was 4 cm × 3 cm, thus resulting on a spatial 

resolution of approximately 2 mm per pixel, for the 32 × 32 pixels image.  

The Peak Signal-to-Noise Ratio (PSNR) values were calculated according to the formula 

presented in equation (11). In equation (11), MAX  is the maximum possible pixel value of the 

image and MSE  is the Mean-Squared-Error (see equation (12)) for two monochromatic images,  

I and K , with sizes nm . 
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Figure 48 depicts the results obtained when the active illumination system was used for 

imaging of a more complex scene. In this case, only the random patterns were projected as the 

scene was composed of real objects. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 48 – (a) Original scene; Image reconstruction using: (b) 20% of the measurements 

(PSNR = 69.74 dB); (c) 40% of the measurements (PSNR = 75.60 dB); (d) 60% of the measurements. All 

the reconstructions are images with 64 × 64 pixels (N = 4096). All the PSNR values were obtained 

comparing the respective image with the image reconstructed using 60% of the measurements. 

 

Experiments were also conducted in order to test the robustness of the system in the 

presence of noise. Based on the PSNR values, it was possible to conclude that the system was able 

to reconstruct images of similar quality when the amplitude of the added noise was below 20% of 

the maximum amplitude of the signal (SNR = 14.54 dB). The results of the conducted experiments 

are depicted on Figure 49. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 49 – Reconstruction of the image of Figure 47 c) after the addition of uniformly distributed noise 

with maximum amplitude of: (a) 10% of the maximum amplitude of the measured signal (SNR = 

20.63 dB) – PSNR = 26.62 dB; (b) 20% of the maximum amplitude of the measured signal (SNR = 

14.54 dB) – PSNR = 25.03 dB; (c) 30% of the maximum amplitude of the measured signal (SNR = 

11.41 dB) – PSNR = 20.17 dB; (d) 40% of the maximum amplitude of the measured signal (SNR = 

8.48 dB) – PSNR = 13.87 dB. All the PSNR values were calculated comparing the respective image with 

the image of Figure 47 c). 

 

Besides the time taken to perform all the desired measurements and to reconstruct an image, 

some limitations concerning memory usage, which limited the number of acquired measurements, 

were also experienced. These arose from the fact that the pseudo-random measurement or sensing 

matrices (generated with uniform distribution) were being stored for the reconstruction phase as 

they were being used. The preliminary algorithms were not optimized in the sense that the 

measurement and reconstruction phases have been condensed into the same execution. Therefore, 

if one wanted to reconstruct an image using two different amounts of measurements, the complete 

algorithm had to be run twice. 

As stated before in section 2.3, random matrices are largely incoherent with any fixed basis. 

So, afterwards, we compared the performance obtained with pseudo-random measurement 

matrices to that obtained with permuted Hadamard measurement matrices, having both given 

similar results. The major advantage in using Hadamard based measurement matrices relied on the 

fact that they could be built on-the-run during the measurement and reconstruction phases, 

avoiding the memory usage that otherwise is required to save all the matrices. As will be attested, 

this was an important aspect taken into consideration for the development of a system with 

improved performance. 

Even though the projector‟s resolution limit was not fully exploited in the current work, it 

must be emphasized that super-resolution images could have been obtained either by using multiple 

sub-pixel shifted images of the same scene [68] or by exploring the fact that patches in a natural 

image tend to redundantly recur many times inside the image, both within the same scale, as well as 

across different scales [69]. 

This preliminary work was very important to get acquainted with the subject of single-pixel 

imaging. Moreover, it was also possible to obtain interesting experimental results for a flexible 

single-pixel CS imaging architecture based on active illumination. 
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However, the performance of this system could benefit from:  

 the use of a photodiode amplifier circuit with better signal conditioning and variable 

gain – to provide improved immunity against electrical noise and scale the signal in 

order to make use of all the dynamic range. 

 the use of an A/D signal acquisition board with better resolution – to reduce the 

quantization error; 

 the use of an A/D signal acquisition board with higher sampling frequency – to 

speed up the measurement process; 

 the use of a faster image reconstruction software; 

 the use of optimized and more flexible optical components – to maximize the 

amount of collected light and to ease the optical alignment; 

 the use of Hadamard based measurement matrices - to avoid the memory usage that 

otherwise is required to save all the matrices containing the random codes; 

 the development and implementation of optimized software for data management 

and measurement control. 

 

In order to overcome these limitations, an improved active illumination single-pixel imaging 

system, whose scheme is presented in Figure 51, has been implemented (see Figure 52) with the 

equipment listed in Table 3. 

The spectral responsivity of the amplified Silicon photodiode can be found in Figure 50. 

 

 

Figure 50 – Spectral responsivity of the Thorlabs PDA100A-EC amplified Silicon photodiode. Picture 

reproduced from the manual, available at http://thorlabs.com/Thorcat/13000/PDA100A-Manual.pdf. 
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Table 3 – Equipment for the active illumination single-pixel imaging system. 

 

LCD video projector 

Epson® - model EB W7  

 1280 × 800 (WXGA) maximum resolution. 

 

Analog-to-Digital converter 

National Instruments™ DAQ board - model PCI-6221 

 maximum sampling rate – 250 kSamples/s;  

 resolution – 16 bits;   

 maximum voltage range – [-10 V, 10 V]. 

 

Amplified Silicon photodiode 

Thorlabs – model PDA100A-EC  

 output voltage range [0 V, 10 V];  

 switchable gain adjustment over a 70 dB range;  

 active area - Ø9.8 mm;  

 wavelength range [400 nm, 1100 nm]. 

 

In the photo of Figure 52, in the closest plane to the observer, one can see the Epson® 

projector. In the background, from left to right, one can observe the object being acquired with the 

random binary measurement codes projected on it, the amplified photodiode with the lens and the 

BNC connector block (National Instruments™ - BNC-2110) that was connected to the DAQ 

board. 

The NESTA software package [66], available in MATLAB®, was used for image 

reconstruction and proved to be much faster than the 1 -Magic. For example, on the same 

computer of the preliminary system, for a 32 × 32 pixels image from 410 measurements the average 

reconstruction processing time was 0.6 seconds (94% faster), and for a 64 × 64 pixels image from 

1640 measurements it was 3.5 seconds (approx. 99% faster). It is important to emphasize that the 

reconstruction time reduces with the increase of measurements used to perform the reconstruction. 

The data management and all the measurement steps were now controlled through a 

LabVIEW™ software based application specifically developed for this purpose. This application 

software proved to be much faster than the MATLAB® one, in particular in the communication 

with the signal acquisition board and in the projection of the images containing the random binary 

measurement codes. 
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Figure 51 – Scheme of the compressive active illumination single-pixel imaging system. 

 

 

Figure 52 – Photo of the compressive active illumination single-pixel imaging system. 

Results and discussion 

In order to evaluate its performance, the setup was used for the acquisition of images of a wood 

object painted in black and white (see Figure 53). The object of Figure 53 is a square with 80 mm 

side. The dimensions of the “A” character are 50 mm × 45 mm and the thickness of the white 

border around is approximately 13 mm. 
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Figure 53 – Photo of the black and white wood object with character “A” taken with a conventional 

camera. 

In Figure 54, images of the object depicted in Figure 53 reconstructed with different 

resolutions are shown on the left column. The central column contains the images represented on 

the left column after median filtering with a 3x3 kernel and contrast adjustment. On the right 

column, for comparison purposes, it can be seen the images acquired with a conventional camera 

(see Figure 53) downsized to the respective resolution. All the images presented in Figure 54 are 

displayed using an intensity map with 256 gray levels. It is important to refer that all the 

reconstructed images (left column) are displayed in raw. 

For the acquisition of these images with the active illumination single-pixel camera, the 

sampling frequency was set to 250 kSamples/s and 10000 samples were acquired for each 

measurement. Then, the mean value for each set of 10000 samples was recorded as the voltage 

resulting from the respective projected compressive code. This averaging procedure was introduced 

because the liquid crystal displays (LCD) of the video projector are not static, even when a still 

image is being projected. Instead, they exhibit a variable modulation that results in fluctuations of 

the intensity of projected light. This modulation arises from the fact that if a liquid crystal cell is 

operated in DC it will be rapidly damaged due to the electrochemical reactions that will occur [70, 

71]. In addition, one must also bring into account a ripple that is present in the emitted light. The 

frequency of this ripple has been analyzed and determined not to be constant. Regarding this issue, 

contacts have been established with the projector‟s manufacturing company but it was not possible 

to obtain any clarification. To illustrate these aspects, Figure 55 shows the voltage signal output 

from the amplified photodiode circuit, when the video projector was being used for illumination. 

During these and all the subsequent experiments, the gain of the amplified photodiode circuit was 

set to a level that would ensure that when a white image was projected on the scene, the voltage 

output would be as close as possible to the maximum output voltage (10 V) without saturating. 

This ensured the measurements were performed making the best use of the maximum dynamic 

range and resolution of the data acquisition board (A/D converter), therefore increasing the SNR 

of the measurements. 
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Figure 54 – Several images of the black and white wood object containing the character “A”. Image 

resolution (in pixels) from top to bottom: 32 × 32; 64 × 64; 128 × 128; 512 × 512. Left column contains 

the images acquired with the active illumination single-pixel monochrome imaging system. Center 

column contains the images represented in left column after median filtering and contrast adjustment. 

Right column contains the images acquired with a conventional camera downsized for comparison 

purposes. 
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Figure 55 – Plot of the voltage signal on the output of the amplified photodiode circuit. The effect of the 

variable modulation and ripple of the light is clearly seen. 

 

From the observation of the images presented in Figure 54, one can state that the quality of 

the images obtained with the single-pixel camera for lower resolutions, such as 32 × 32 pixels, is 

comparable to that of the images obtained with a conventional camera. However, for higher 

resolutions this fact does not hold true and the single-pixel camera images become noisier than the 

conventional camera counterparts. This arises from the fact that when the resolution is increased 

the pixels in the compressive codes are defined by a smaller number of pixels on the LCD, as 

suggested by the following explanation.  

During these experiments the projector was positioned so that the projected codes matched 

the size of the object being imaged and that they were focused on the surface of the foresaid object. 

This was necessary because the projector was desired to be as close as possible to the object in 

order to maximize the density of light on its surface and because of the projector minimum 

working distance. So, as an example, when the system was projecting a 32 × 32 pixels compressive 

code, each pixel of the code was defined by 8 × 8 pixels on the LCD (256 × 256 pixels image), 

while in the case of a compressive code with 128 × 128 pixels each pixel of the code was defined by 

2 × 2 pixels on the LCD (256 × 256 pixels image). As a result, the variation on the amount of 

projected light when one pixel of the 32 × 32 pixels compressive code was turned on and off was 

superior to that verified when one pixel of the 128 × 128 pixels compressive code was turned on 

and off. Thus, one can infer that the SNR of the measured signal drops with the increase of 

resolution of the projected compressive codes, if the real-world size of the projected image is kept 

constant. To overcome this drawback, one could use, for instance, a photomultiplier instead of a 

photodiode, or an analog-to-digital converter with even more resolution. 

One particular note should be made to the case of the image reconstructed with 512 × 512 

pixels (see Figure 54), where the projected compressive codes were not focused on the surface of 
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the object. This was due to the fact that for a 512 × 512 pixels compressive code, the smallest 

image one can define on the LCD is also defined by 512 × 512 pixels and the projector‟s working 

distance that would focus that image on the surface of the object would cause it to become much 

bigger than the object. Therefore, for that configuration, the projector was positioned close to the 

object so that the projected image only illuminated its surface, even causing the image to be 

completely out of focus. However, it is interesting to observe that it was still possible to reconstruct 

a perceptible image with 512 × 512 pixels. This can be justified by the fact that even not being 

focused on the object, the amount of projected light was still dependent on the codes applied to the 

LCD, therefore compressing the spatial information of the object under its illumination. This 

reinforces the fact that, if one scene is being randomly illuminated and one can find a model for 

that randomness, then it will be possible to reconstruct that scene with a single-pixel compressive 

imaging system.  

Nonetheless, it is worth mentioning that by means of simple post-processing tasks, such as 

median filtering and contrast adjustment, it was possible to significantly improve the visual quality 

of the reconstructed images, closer to that obtained with a conventional camera (see Figure 54). 

In order to quantify the similarity of the reconstructed images to the images acquired with 

the conventional camera, the PSNR values have been calculated for the images of Figure 54. These 

results are listed in Table 4. Except for the case of the image with 32 × 32 pixels, it is clear that, 

relatively to the raw images, there was an improvement of similarity between the post-processed 

images and those acquired with the conventional camera, translated by higher PSNR values. The 

different tendency exhibited by the image with 32 × 32 pixels can be justified by the smoothing 

verified in the top and bottom transitions between the black and white portions of the image 

caused by the post-processing operations. With the increase of the resolution, a decrease of 

similarity was verified. This can be justified by the fact that with lower resolutions, any eventual 

discrepancies between the images may not be resolved by the available number of pixels, while the 

same may not be verified with higher resolutions.  

 

Table 4 – PSNR values obtained for the reconstructed images of Figure 54 relatively to the images 

acquired with the conventional camera. 

PSNR (dB) 

Resolution (pixels) Raw image Post-processed image 

32 × 32 17.53 16.65 

64 × 64 14.45 15.63 

128 × 128 12.08 14.79 

512 × 512 9.94 11.66 
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The normalized cross-correlation,  vu, , has also been calculated for the images in Figure 

54 according to the formulation provided by Lewis [72], which is presented below in equation 13. 

In equation 13, f , g , f  and g are the images being analyzed and the respective means. vu
f

,  is 

the mean of f  in the region under analysis. 
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The normalized cross-correlation was used to ensure that the quality assessment conducted 

by the PSNR was not being biased by the intensities of the images. In Table 5, the maximum values 

of the normalized cross-correlation of the different images are presented. 

 

Table 5 – Maximum values of the normalized cross-correlation obtained for the reconstructed images of 

Figure 54 relatively to the images acquired with the conventional camera. 

Normalized cross-correlation [0, 1] 

Resolution (pixels) Raw image Post-processed image 

32 × 32 0.96 0.94 

64 × 64 0.91 0.93 

128 × 128 0.83 0.92 

512 × 512 0.66 0.89 

 

 

Analyzing the results presented in Table 5, one can verify that the tendency obtained with 

the PSNR was maintained, thus confirming its validity.  

 

In the following tables, it can be seen, for different resolutions, the time taken to perform 

100% of the measurements (see Table 6) and the time consumed to reconstruct the images for 

different levels of compression (see Table 7). For the results presented in Table 7, for instance, a 

compression of 30% means that 70% of the measurements were used for reconstruction. 

The computational times presented in Table 7 were obtained with the NESTA software 

package executed with MATLAB® running on the same computer as indicated before.  
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Table 6 – Time taken to perform 100% of the measurements needed to reconstruct the images with 

different resolutions, using the Epson® video projector to project the compressive codes. 

Resolution 
(pixels) 

Time taken to acquire 100% 
of measurements (min) 

32 × 32 3.7 

64 × 64 14.7 

128 × 128 60.6 

512 × 512 1604 

 
 

Table 7 – Time consumed during reconstruction for different compression levels and different 

resolutions. 

Time consumed during reconstruction (s) vs. compression level (%) 

Resolution 
(pixels) 

50% 30% 10% 0% 

32 × 32 0.58 0.46 0.34 0.08 

64 × 64 2.51 1.63 1.09 0.22 

128 × 128 8.71 5.93 4.56 0.84 

512 × 512 413.22 249.80 108.45 20.24 

 
 

The active illumination single-pixel monochrome camera was also used for the acquisition of 

an image of a five-pointed black star filled with three different gray levels (see Figure 56). The 

five-pointed star of Figure 56 was printed in common paper with a width of 80 mm and a height of 

73 mm. 

 

Figure 56 – Five-pointed black star filled with three different gray levels. 
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The raw results for the reconstruction of the star represented in Figure 56 are presented on 

the left column of Figure 57. The center column contains the images of the left column after 

median filtering with a 3×3 kernel and contrast adjustment. For comparison purposes, it was 

acquired a photo of the five-pointed star with a conventional camera. This photo was subject to 

contrast adjustment and was then downsized to the different resolutions (see right column of 

Figure 57).  

 

   

   

   

Figure 57 – Several images of the grayscale five-pointed star. Image resolution (in pixels) from top to 

bottom: 32 × 32; 64 × 64; 128 × 128. Left column contains the images obtained with the active 

illumination single-pixel monochrome imaging system. Center column contains the images represented in 

left column after median filtering and contrast adjustment. Right column contains the images acquired 

with a conventional camera downsized for comparison purposes. 

 

Similarly to the case of the images of Figure 54, the PSNR and the normalized 

cross-correlation were calculated for the reconstructed images of Figure 57 relatively to the images 

acquired with the conventional camera. The results obtained are presented in Table 8 and Table 9. 
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Table 8 – PSNR values obtained for the reconstructed images of Figure 57 relatively to the images 

acquired with the conventional camera. 

PSNR (dB) 

Resolution (pixels) Raw image Post-processed image 

32 × 32 17.33 15.57 

64 × 64 14.26 14.72 

128 × 128 11.67 13.99 

 
 

Table 9 – Maximum values of the normalized cross-correlation obtained for the reconstructed images of 

Figure 57 relatively to the images acquired with the conventional camera. 

Normalized cross-correlation [0, 1] 

Resolution (pixels) Raw image Post-processed image 

32 × 32 0.92 0.87 

64 × 64 0.88 0.89 

128 × 128 0.8 0.89 

 
 

Even though a human observer would consider the post-processed images of Figure 57 to 

present better visual quality and to be more similar to those acquired with a conventional camera, 

this was faintly confirmed by the used metrics as can be seen in the results presented in Table 8 and 

Table 9. Perhaps, the benefit of using post-processing was more evident with the images of Figure 

54 because the scene they were describing can be considered to be less complex, due to its simpler 

spatial content and binary nature. 

 

From the experiments it was also possible to conclude that it should exist a certain period of 

time between the moment the order for image display is issued and the moment the measurement 

is performed. For the Epson® video projector, this interval should be at least 130 ms. 

4.1.2 Passive illumination single-pixel monochrome imaging systems 

As it will be explained in this section, it is possible to implement single-pixel imaging systems that 

do not rely on the use of the illumination to compress the spatial information of the acquired scene, 

as it was demonstrated in the previous section. Hence designated passive illumination single-pixel 

imaging systems, such systems compress the spatial information combining the random binary 

codes with the incoming light field. The result of each combination is then integrated to produce 

the incoherent projection vectors. 
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In this context, passive illumination imaging systems may use ambient light but, during the 

experiments here presented, the room was completely dark and an auxiliary source of light was used 

in order to ensure the reproducibility of the illumination conditions. The use of an auxiliary source 

of light also provided some flexibility in the sense that it allowed to control aspects such as the area 

under illumination and the intensity of the illumination, which were important to provide good 

dynamic range for the measurements. In particular, the auxiliary source of light was the Epson® 

video projector. 

Contrarily to the active illumination case which uses an LCD video projector for the 

definition of the compressive random codes, this system relied on a modular DMD development 

kit, instead. This DMD development kit is designated as “LightCommander™” and is designed and 

manufactured by Logic PD (vide http://www.logicpd.com/ ). The LightCommander can be used as 

a video projector in which the image to be projected is displayed on a DMD with a resolution of 

1024 × 768 pixels (XGA resolution). Some photos of the LightCommander can be seen in Figure 

58. 

 
 

  

Figure 58 – Photos of the LightCommander™ development kit from Logic PD. 

 
In Figure 58, the photo on the left shows a general view of the LightCommander™ and its 

casing, while the photo on the right shows a global view of the general assembly of the optical 

components, DMD controller board and illumination module with respective power unit. Since the 

optical assembly and DMD control were the main aspects of interest in the aim of the work here 

presented, the illumination module and its power unit were removed. As the LightCommander is a 

modular development kit, these removals did not compromise its operation neither they required 

any modification. 

In Figure 59 it can be seen, with more detail, the schematics of the LightCommander‟s 

optical assembly, where M1, M2 and M3 are mirrors, and Tunnel is an internally mirrored light 

conduit. The main dimensions and distances of the various components are also presented. The 

principal specifications of the 50 mm f/1.8 Nikon lens (AF Nikkor 50mm f/1.8 D) that 

accompanies the LightCommander and that has been used throughout all this work are presented 

in Table 10. 
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Table 10 – Main specifications of the Nikon lens that accompanies the LightCommander. 

Mount Type Nikon F-Bayonet 

Focal Length 50 mm 

Maximum Aperture f/1.8 

Minimum Aperture f/22 

Minimum Focus Distance 0.45 m 

 

 

Figure 59 – LightCommander‟s optical schematics. (Kindly provided by LogicPD)  

Figure 60 shows a photo of a DMD chip from Texas Instruments next to a 1 cent coin for 

size comparison.  

 

Figure 60 – Photo of a DMD chip from Texas Instruments next to a 1 cent coin for size comparison. 

Picture reproduced from http://de.academic.ru/pictures/dewiki/68/DLP_Chip.jpg.  
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Figure 61 (a) illustrates two mirrors from a DMD and their principle of operation. There it 

can be seen the two positions (±10º) assumed to define either the “1” or the “0” logical state. In 

Figure 61 (b) it is shown a portion of an actual DMD array with an ant leg so that the observer can 

create an estimate of the scale. 

 

 

 

Figure 61 – (a) Schematic of two mirrors from a digital micromirror device (DMD), illustrating its 

principle of operation. (b) A portion of an actual DMD array with an ant leg for scale. Picture reproduced 

from [23]. 

 

In this work the LightCommander‟s light path has been used in a reverse direction, turning it 

into a camera, instead of a light projector. By other words, the Nikon lens was used to collect the 

light from the scene and form an image of it on the DMD, where the compressive random codes 

were displayed. Depending on the codes, the amount of light directed towards the M1, M2 and M3 

mirrors would vary and would be, finally, measured by the amplified photodiode circuit placed at 

the exit of the light tunnel. The output voltage was then converted to the digital domain by means 

of the National Instruments™ PCI-6221 DAQ board that was connected to the computer in 

control. This configuration has been used to acquire images of the same objects (see Figure 53 and 

Figure 56) acquired with the active illumination system. Figure 62 shows the scheme of the passive 

illumination single-pixel monochrome imaging system, while Figure 63 shows a photo of the 

implemented experimental setup. 
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Figure 62 – Scheme of the passive illumination single-pixel monochrome imaging system. 

 

 

Figure 63 – Photo of the passive illumination single-pixel monochrome imaging system illuminating the 

black and white wood object of Figure 53. 

In these images it is possible to see that the Epson® video projector has been used to 

provide a uniform illumination of the scene, while the LightCommander was collecting the light to 

form an image of the scene on its DMD.  

Results and discussion 

Figure 64 presents the raw images obtained with different resolutions using this setup for the black 

and white wood object containing the character “A” (see Figure 53). Next to each of the images 
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obtained, an image acquired with a conventional camera and downsized to the same resolution for 

comparison is also presented.  

 

32 × 32 pixels 

  

64 × 64 pixels 

  

128 × 128 pixels 

  

Figure 64 – (left) Several images of the black and white wood object containing the character “A” 

acquired with the passive illumination single-pixel monochrome imaging system. (right) Images acquired 

with a conventional camera downsized for comparison purposes. 

 

Next, one can find the results obtained with the PSNR and with the normalized 

cross-correlation for the reconstructed images of Figure 64 relatively to the images acquired with 

the conventional camera. 
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Table 11 – PSNR values obtained for the reconstructed images of Figure 64 relatively to the images 

acquired with the conventional camera. 

Resolution (pixels) PSNR (dB) 

32 × 32 11.35 

64 × 64 11.62 

128 × 128 11.15 

 

 

Table 12 – Maximum values of the normalized cross-correlation obtained for the reconstructed images of 

Figure 64 relatively to the images acquired with the conventional camera. 

Resolution (pixels) Normalized cross-correlation [0, 1] 

32 × 32 0.83 

64 × 64 0.82 

128 × 128 0.8 

 

 

Unless stated otherwise, for these and all the subsequent experiments with the 

LightCommander, an active area comprising 768 × 768 mirrors on the DMD has been used to 

apply the compressive codes. Therefore, as the working distance was kept constant, in order to 

maintain the FOV for the different resolutions, a relation for the number of mirrors used to define 

a pixel of the compressive codes was established. For instance, blocks of 24 × 24 mirrors were used 

to define a pixel of the 32 × 32 compressive codes and blocks of 6 × 6 mirrors were used to define 

a pixel of the 128 × 128 compressive codes. This guaranteed that the FOV was always defined by 

the 768 × 768 mirrors area on the DMD. 

This setup has also been used to acquire images of the grayscale five-pointed star (see Figure 

56) and the results are presented in Figure 65. 
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32 × 32 pixels 

  

64 × 64 pixels 

  

128 × 128 pixels 

  
Figure 65 – (left) Several images of the grayscale five-pointed star acquired with the passive illumination 

single-pixel monochrome imaging system. (right) Images acquired with a conventional camera downsized 

for comparison purposes. 

In order to quantify the quality and similarity of the images of Figure 65 relatively to the 

images acquired with a conventional camera, the PSNR values and the maximum values of the 

normalized cross-correlation were obtained for those images. Table 13 and Table 14 contain the 

results of that assessment. 

 
Table 13 – PSNR values obtained for the reconstructed images of Figure 65 relatively to the images 

acquired with the conventional camera. 

Resolution (pixels) PSNR (dB) 

32 × 32 14.43 

64 × 64 12.54 

128 × 128 11.75 
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Table 14 – Maximum values of the normalized cross-correlation obtained for the reconstructed images of 

Figure 65 relatively to the images acquired with the conventional camera. 

Resolution (pixels) Normalized cross-correlation [0, 1] 

32 × 32 0.85 

64 × 64 0.88 

128 × 128 0.86 

 

 

The images in Figure 64 and Figure 65 acquired with the passive illumination single-pixel 

monochrome imaging system are presented without any noise filtering or contrast adjustment. 

Based on the opinions of human observers, one can state that the similarity of these images to 

those acquired with a conventional camera is notorious. The biggest difference is the noise 

presented by the images acquired with the single-pixel imaging system, which could arise from the 

measurements and from the reconstruction process. Furthermore, visually comparing these results 

with those obtained with the active illumination homologous system, it can be affirmed that the 

results obtained with the passive illumination imaging system are better in the sense that they 

exhibit less noise and are more similar to the images obtained with a conventional camera, even 

without the use of any filter or post-processing. Perhaps surprisingly, if we rely on the results 

obtained with the PSNR and with the normalized cross-correlation to compare the two systems, 

the same cannot be said. In other words, the two metrics indicate that the images obtained with the 

active illumination single-pixel monochrome imaging system are more similar to the images 

acquired with the conventional camera. Different alignments, different lighting conditions and even 

small variations in the field of view could be in the origin of discrepancies in the images that 

precluded the adequate judgment with the metrics and caused the results to be contradictory to the 

human opinion, which is here considered to be more correct. 

As in the case where the LCD video projector was used to spatially modulate the light, with 

the LightCommander there is also the need to wait a certain amount of time to ensure that the 

image transmitted by the video signal was already being displayed in the DMD by the time the 

measurement order has been issued. For the LightCommander it has been determined that one 

should wait at least 95 ms. 

Table 15 displays the time taken to perform 100% of the measurements needed to 

reconstruct the images with different resolutions. As expected, the system with the 

LightCommander performs faster than the system with the video projector (see Table 6).  
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Table 15 – Time taken to perform 100% of the measurements needed to reconstruct the images with 

different resolutions, using the Lightcommander‟s to project the compressive codes. 

Resolution 
(pixels) 

Time taken to perform 100% 
of measurements (min) 

32 × 32 3.1 

64 × 64 12.6 

128 × 128 51.9 

 

 

It is important to emphasize that when the DMD is used to display the random binary 

compressive codes the light output does not exhibit any ripple, in opposition to what was observed 

with the LCD video projector (see Figure 55). For this reason, one could acquire a smaller amount 

of samples without compromising the quality of the results, thus reducing the time required to 

perform all the required measurements. However, during these experiments the same amount of 

samples (10000) was acquired because the Epson® video projector was being used for illumination 

and the same ripple of Figure 55 was verified in the acquired signals. This also allowed to 

independently evaluate the benefit of reducing the delay time to 95 ms.  

For comparison, it was used a LED source of light without any ripple and it was acquired a 

128 × 128 pixels image considering the same sampling frequency and 10 samples sets for the 

measurements associated with the different projected codes. The time taken to perform 100% of 

the measurements for that image was 41.1 minutes (~20.8 % faster) and the result was identical to 

that acquired before with the Epson® video projector as the light source. 

If one is interested in the spatial resolution of the imaging system, one might establish a 

relation between the number of pixels of the acquired image and the real-world dimensions of the 

corresponding scene. In our system, as the number of mirrors used on the DMD to apply the codes 

was kept unaltered, the FOV had to be adapted to the dimensions of the scene by changing the 

distance of the imaging lens to the scene (working distance). Therefore, the imaging system exhibits 

different spatial resolutions at different working distances. The throw ratio (TR) of a projector 

results from the division of the distance between the projector lens and the projection screen (D) 

by the width of the image being projected (W), or more simply TR = D/W (see Figure 66). For the 

case of an imaging system such as the one presented in this section this explanation shall be 

adapted accordingly. Hence, W is related to the width of the scene being acquired and D is referring 

to the working distance of the imaging lens. 
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Figure 66 – Illustration for the definition of a projector‟s throw ratio. 

 
So, in our case, knowing the throw ratio of the LightCommander (3.6) it was possible to 

establish a relation between the working distance (D) and the spatial resolution. For that, all one 

had to do was to calculate the horizontal dimension (W) in real-world units and divide it by the 

corresponding number of pixels (1024). Picking an example of a working distance of 1000 mm, it 

comes: 

W = 1000 mm/3.6 ≈ 277.78 mm, which corresponds to a spatial resolution of 

≈ 0.27 mm/pixel. This value holds true for a fixed working distance and as long as the number of 

pixels of the acquired image remains the same as the number of mirrors used on the DMD to apply 

the compressive codes (768 × 768). As the later aspect was not verified for other image resolutions, 

it shall be multiplied by the specific proportion. For example, the spatial resolution for a 32 × 32 

pixels image is given by 24 × 0.27 mm/pixel, which is equal to 6.48 mm/pixel. As it has been 

previously referred, 24 signifies that each pixel of the acquired image with 32 × 32 pixels is defined 

by blocks of 24 × 24 mirrors on the DMD. For a 128 × 128 pixels image the spatial resolution 

comes 1.62 mm/pixel.  

In order to adjust the working distance of the imaging lens, before the images were acquired, 

an all-white 768 × 768 pixels image was displayed on the DMD and the LightCommander‟s tunnel 

was flooded with light. Doing so, the illuminated region was indicative of the FOV and the 

necessary adjustments could be made. 

4.1.3 Transmissive single-pixel imaging system 

Within the work here presented, it was also our intent to extend its scope to the development of 

alternative configurations that would disregard the need for an active illumination source and 

operate in a transmissive mode rather than reflective. For that purpose, the use of a liquid crystal 

display (LCD) as the spatial modulation device for the light coming from the scene being imaged 

was envisaged. 
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The scheme for this approach is depicted in Figure 67. 

 

 

Figure 67 – Scheme of the transmissive single-pixel imaging system. 

 

As it can be seen, by means of a lens system the image of the scene being acquired is formed 

on the surface of the LCD, behind which lies the photodiode (single-pixel) active region. The LCD 

was placed between two properly oriented linear polarizers. The photodiode (Thorlabs FDS1010) 

was part of a voltage amplification circuit (Thorlabs PDA200C) whose output was connected to an 

analog-to-digital (A/D) converter (National Instruments™ USB-6210) that enabled data acquisition 

by a computer for subsequent processing. The LCD was controlled via the projector that was 

receiving the video signal containing the coding patterns from the computer. 

Basically, the system applied random binary codes to the LCD and measured the 

corresponding output voltage from the amplification circuit. As previously stated, based on CS 

theory, this process can be repeated K  times, with K  much smaller than the image full 

dimensionality  N . Afterwards, using combinatorial optimization algorithms (NESTA software 

package, more in particular), the image that in conjunction with the used codes gave rise to the 

corresponding voltage measurements is reconstructed. 

This transmissive single-pixel camera was then exploited on an optical microscope (see 

Figure 68), since its optical system is well known and allows an easy configuration of both the 

optical magnification and working distance. At the same time, with this microscope we could 

mount a conventional camera on the other optical path and acquire conventional images of the 

scenes being imaged. This was of great help while focusing and aligning the system, and also 

because it was possible to acquire images for comparison with the results of the single-pixel camera.  



Compressive Sensing Based Single-Pixel Imaging Systems 

81 

 

Figure 68 – Transmissive single-pixel camera mounted on a microscope, placed on the vertical optical 

path. Note the conventional camera (in blue) mounted on the other optical path. 

 

The LCD, having a maximum resolution of 800 × 600 pixels (active area: 11.2 mm × 8.4 

mm = 94.08 mm2), was taken from an Epson® PowerLite S5 projector (see Figure 69). The central 

part of the LCD (512 × 512 pixels) was used to apply the random binary codes. The Thorlabs 

FDS1010 is a silicon photodiode with an active area of 94.09 mm2 (9.7 mm × 9.7 mm), whose 

responsivity is depicted in Figure 70. The photodiode amplifier (Thorlabs PDA200C) that has been 

used during these experiments, exhibits an analog voltage output ranging from 0 to 10 V, and full 

scale current measurement ranging from 100 nA to 10 mA (in decade steps), with an amplification 

varying from 1 × 108 V/A to 1 × 103 V/A, respectively. 

The active areas values confirm the suitability of the LCD and the chosen photodiode to be 

used together to spatially encode and measure the light, respectively. 

 

 

 

Figure 69 – Photo of the LCD module taken from the Epson® PowerLite S5 projector that has been 

used in the transmissive single-pixel camera (active area: 11.2 mm × 8.4 mm). 

LCD and 

Photodiode Conventional 

Camera 
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Figure 70 – Thorlabs FDS series photodiode responsivity curves. The yellow curve relates to the 

photodiode (FDS1010) used on the transmissive single-pixel camera setup. Picture reproduced from 

http://www.thorlabs.de/Thorcat/2700/2739-s01.pdf. 

As seen before in section 2.3, random matrices are largely incoherent with any fixed basis   

and, therefore, for the measurement or sensing matrices, again, we used Hadamard-based random 

binary codes. This choice revealed to be of great importance because the Hadamard-based random 

binary codes could be built on real time, during the measurement and reconstruction phases, 

avoiding the memory consumption that otherwise would be required to save all the codes.  

Results and discussion 

One of the scenes acquired with the proposed imaging system is represented in Figure 71. Since the 

conventional camera sensor size (½-inch CCD) was smaller than the LCD size, we had to stitch 4 

separate pictures taken with the conventional camera in order to get an image containing the single-

pixel imaging system field of view. For the case of the singe-pixel imaging system, ideally, its field of 

view would correspond to the size of the LCD. In particular, the actual field of view was defined by 

a 512 × 512 pixels region centered on the LCD active region.  

 

 
Figure 71 – Image of one of the acquired scenes. This image was obtained from the stitching of 4 

separate pictures taken with the conventional camera due to its sensor size (1/2-inch CCD) when 

compared to the size of the LCD active region. The red inset indicates the region acquired with our 

single-pixel camera. 

http://www.thorlabs.de/Thorcat/2700/2739-s01.pdf
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Next, some results obtained with the setup of Figure 68 are presented. 

 

(a)  (b)  

(c)  (d)  

Figure 72 – Reconstruction of an image with 32 × 32 pixels ( N = 1024) from: (a) 25% ( K = 256); (b) 

50% (K= 512); (c) 75% (K= 768); (d) 100% (K= 1024) measurements. For each reconstructed image, 

the PSNR has been calculated relatively to the image reconstructed using 100% ( K = 1024) of the 

measurements: (a) PSNR = 12.85 dB; (b) PSNR = 14.34 dB; (c) PSNR = 25.89 dB. 

 

(a)  (b)  

(c)  (d)  

Figure 73 – Reconstruction of an image with 64 × 64 pixels ( N = 4096) from: (a) 25% (K= 1024); (b) 

50% (K= 2048); (c) 75% ( K= 3072); (d) 100% (K= 4096) measurements. For each reconstructed image, 

the PSNR has been calculated relatively to the image reconstructed using 100% ( K  = 4096) of the 

measurements: (a) PSNR = 20.27 dB; (b) PSNR = 22.63 dB; (c) PSNR = 32.44 dB. 
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The results presented in Figure 72 and Figure 73, correspond to reconstructions of the scene 

contained within the red inset of Figure 71. From the analysis of these results, it is clear that the 

quality of the reconstructed images increased with the growth of the number of measurements used 

for reconstruction, as well as with the growth of the reconstructed image dimensionality. These 

facts are supported by the PSNR values presented for each of the reconstructed images relatively to 

the image of the same size reconstructed using a number of measurements equal to its full 

dimensionality, i.e., NK  . Also, as expected, the images with higher resolution exhibit smoother 

contours and are more perceptible.  

Even though the results shown are satisfactory, they suffer from lack of contrast. This can be 

justified by two aspects, one being the presence of a variable modulation and ripple on the voltage 

output and another being the incapacity of the LCD to efficiently filter the near-infrared radiation 

coming from the microscope halogen lamp which was detected by the photodiode.  

Concentrating on the first aspect, as the light coming from the scene was captured by a 

microscope objective its intensity was significantly reduced, thus shortening the full range of 

measurement, defined when the LCD was completely blocking or allowing the light to pass, and 

affecting the SNR of the measurements. Therefore, as the relative variations of the output voltage 

imposed by the random binary patterns were so small, any significant noise would compromise the 

quality of the results. The averaging applied to the 10000 samples acquired for each measurement 

was useful to attenuate the effect of this interference. Furthermore, after some experiments we 

came to the conclusion that the source of the variable modulation and ripple was mainly the LCD 

because it always appeared when the LCD was turned on and disappeared when it was turned off. 

This effect was again attributed to the polarization of the liquid crystals as it has been evidenced 

before when a video projector was used for illumination purposes (see Figure 55). 

Relatively to the second aspect, as it can be seen in the photodiode responsivity curve from 

Figure 70, its maximum occurs at 1000 nm, which is already in the near-infrared region of the 

spectrum. The emission spectrum of the microscope halogen lamp, as shown on Figure 74, ranges 

from ~400 nm (visible region of spectrum) up to 1000 nm (near-infrared region of the spectrum). 

Therefore, the LCD, which was made to filter light in the visible region of the spectrum, did not 

have the capability to block the near-infrared light that, subsequently, was detected by the 

photodiode, masking the variations imposed by the patterns applied to the LCD. 

Even with the use of a near-infrared filter, the overall quality of the results did not improve 

significantly, due to the relatively low responsivity of the photodetector in the visible region of the 

spectrum and relatively low intensity of light collected from the scene through the objective lens. 
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Figure 74 – Halogen lamp emission spectrum, obtained with a commercial spectrometer. 

 

4.1.4 Concluding remarks 

For certain applications, a single-pixel camera, both based on active and passive illumination, can 

represent a good way for reducing deployment complexity and costs, while expanding the 

performance and capabilities of data acquisition and processing systems.  

In the previous sections, several compressive imaging systems were presented and their 

operation was successfully demonstrated. It was proved that it is possible to reconstruct images 

based on the spatial modulation of the light used for illumination of the scene. Such systems may 

be particularly useful in scenarios with low level or null ambient lighting.  

It was also attested that the same spatial compression can be applied to the light field coming 

from the scene to be acquired, and capture an image in a similar way to that of a conventional 

camera. 

The assumptions made from the results obtained with the preliminary system proved to be 

correct and largely contributed to the development and implementation of single-pixel imaging 

systems based on active or passive illumination with improved performance. All this was achieved 

using very similar setups and making use of standard devices that have not been subjected to any 

change.  

It should be stated that the bottleneck of these imaging systems was the time consumed to 

perform all the measurements. This fact was strongly related with the time required to ensure that 

the images transmitted by the video signal were indeed being displayed, either on the LCD, or on 

the DMD, when the measurement orders have been issued. From the experiments, it was possible 

to conclude that this delay corresponds to 130 ms for the case of the LCD video projector and 

95 ms for the case of the LightCommander. 
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The transmissive single-pixel imaging system can be seen as a compact implementation of a 

passive illumination compressive imaging system. It does not require precise alignment or any 

geometric calibration since the detector has only one pixel and due to the larger dimensions of the 

spatial light modulator and photodiode, when compared with the dimensions of a ½ inch 

conventional image sensor, it also exhibited a larger field of view. Being easily assembled on a 

microscope and taking advantage of the already existing optical system, the transmissive single-pixel 

imaging system demonstrated the flexibility of this type of systems. 

Finally, the work presented in the previous sections inevitably leads us to the comparison 

between LCD and DMD as spatial light modulators. Although some of the features here presented 

are not directly related with the work at hands, it was considered worthy to mention them. 

Deriving from their different nature and manufacturing processes, the gap between the 

mirrors in a DMD array is smaller than the gap between the pixels in an LCD display, resulting in a 

sharper display for the DMD. LCD are typically slower than DMD, although faster LCD exist at a 

higher cost. By the contrary, faster DMD are relatively cheaper and widely available. It is common 

nowadays to find commercial video projectors that use DMD as spatial light modulators. The 

commonly found LCD usually operate in the visible region of the spectrum, while DMD easily 

operate in the visible and near-infrared regions of the spectrum. DMD with coatings suitable for 

operation in other ranges of the spectrum, such as ultraviolet, for instance, can also be easily 

accessed. While DMD can maintain the state of its mirrors, LCD pixels have to be modulated. 

Within the context of this thesis, this is reflected in the ripple verified in the measured signals when 

LCD are used (see Figure 55), which affects the dynamic range of the measurements thus 

compromising the quality of the results (compare the results of Figure 57 and Figure 65, for 

instance). LCD operate in transmission, which can facilitate the construction of more compact 

optical systems. However, there are also DMD projection systems commercially available that are 

already very compact (these systems are also known as “picoprojectors”). Comparatively to LCD, 

the main difficulty in using DMD for the development of optical systems arises from the “off-axis” 

characteristic they impose due to their angular principle of operation. The inherent polarization 

associated with the LCD principle of operation may eventually be explored in the development of 

compressive imaging based systems in which polarization would be the variable to be quantified. 

However, depolarization has been identified as one of the effects that compromises the contrast 

obtained with LCD. 

For the reasons aforementioned it appears that DMD are a better option to adopt when one 

is interested in the development of single-pixel imaging systems.  
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4.2 Color Imaging Systems 

Instead of representing only the spatial content of a scene by means of intensity mapping, as in the 

case of monochrome imaging systems, color imaging systems expand their functionality producing 

images that associate spectral information (characteristically broad and in the visible region of the 

spectrum) to the spatial content of the scene. Color images are typically defined in color spaces, 

being one of the most used the RGB color space given its similarity with the way the human eye 

senses colors. The images acquired with the systems presented in the following sub-sections will 

then be represented in the RGB color space.   

Operating either on active illumination mode or on passive illumination mode, the systems 

introduced in this section acquire images relative to different spectral regions and combine them 

afterwards into a single color image. As will be seen, the spectral filtering that dictates the color 

content of the images may be verified either on the illumination end, or on the detection end.  

4.2.1 Active illumination single-pixel color imaging systems  

This section focuses on two configurations that were implemented for the development of color 

imaging systems and that relied on the use of the illumination to compress the spatial content of 

the scene being acquired. 

During operation, both configurations acquired an image for each of the RGB channels, 

combining them afterwards to obtain the final RGB color image. The difference relied on the 

process used to separate each of the color components. One system took advantage of the color 

filters existent inside the projector, while the other used RGB color filters in front of the light 

detection device.  

4.2.1.1 Spectral filtering on the illumination end 

As in the case of the active illumination single-pixel monochrome imaging system, some 

preliminary experiments regarding the reconstruction of colored images were also conducted with 

the setup of Figure 44. In this case, the object to be imaged was a red squared contour on a green 

background painted with marker pens on normal paper (see Figure 75 (a)). For this experiment, the 

object was fixed and only the random patterns were projected. For each color channel of the RGB 

color space, 410 values were measured and a single image was reconstructed. In this experiment, 

the random patterns projected to obtain the measurements to reconstruct each of the RGB images 

were not black and white but red and black, for the case of the red channel, green and black for the 

green case and blue and black for the remaining case. This procedure was adopted to boost the 

independent influence of the RGB colors in the scene on their respective measurements. 

The final image corresponds to the combination of the three RGB images in order to create 

the colored image (see Figure 75 (b)). 
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(a)  (b)  

Figure 75 – (a) Piece of paper with the painted red contour and green background (the coin is present 

only for size comparison). (b) Color image of the painted area in (a), reconstructed with 32 × 32 pixels 

(410 measurements were acquired for each of the RGB channels). 

Even though it is possible to recognize the red squared contour and the green background, 

the result is not very well defined. Besides the compression level and the reduced size of the 

painted area, we believe that the low reflectivity of the paper surface and the spectral signature of 

the projected color components strongly conditioned the results. It must also be emphasized that 

the contours were not sharp, therefore, their lack of detail in face of the low spatial resolution with 

which the images were reconstructed.  

In the same manner, we tried to reconstruct a color image of the real scene depicted in 

Figure 48 (a). The results obtained are presented in Figure 76. In this case the quality of the 

reconstruction is significantly better and this is mainly due to the objects‟ materials, which are more 

reflective than paper. 

 

Figure 76 – Color reconstruction of a 64 × 64 pixels image of the real scene depicted in Figure 48 (a). 

40% of the measurements were used to reconstruct each image associated with the RGB channels. 

 

With these initial results it was possible to demonstrate that the same setup that has been 

used for the case of the active illumination single-pixel monochrome imaging system can also be 

used for the acquisition of color images. However, its performance suffered from the same 

limitations and, therefore, new results were acquired with the improved system of Figure 52. 

For the experiments related with the acquisition of color images, a wood object with a 

character “B” painted in blue inside a green background with a dark orange border around (see 

Figure 77) has been used. The object‟s outer squared contour measured 65 mm × 65 mm. The 

green rectangle measured 53 mm × 47 mm and the blue “B” character measured 40 mm × 35 mm. 
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Figure 77 – Photo of the colored wood object with character “B”. 

 

The delineation of the spectral bands used for illumination was then defined by the color 

filters existing on the projector‟s optical path and, again, instead of the binary black and white 

compressive codes, the projected codes were red and black, green and black and blue and black. To 

clarify, the image corresponding to the red channel of an RGB image was obtained from the 

measurements resulting from the projection of the red and black binary codes. The same was 

respectively verified for the green and blue channels (see Figure 78). Therefore, the time consumed 

to obtain a color image was threefold the time taken to obtain a monochrome image. It should also 

be said that the room where the experiments took place was completely dark and no other source 

of light was being used. 

 

 

Figure 78 – Photo with detail of the colored wood object being illuminated with a green and black 

random binary compressive measurement code with 32 × 32 pixels. 
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The spectra of the broad individual color components (RGB) used to illuminate the scene, as 

well as, the spectrum emitted when the three color components are combined (“white” light), are 

depicted in Figure 79. 

 

 

Figure 79 – Spectra of the RGB components used for illumination along with the spectrum of the 

“white” light resulting from their combinations. 

 
Comparing the spectra displayed in Figure 79 it is possible to infer the relative intensities of 

the different color components. 

Results and discussion 

Next, in Figure 81, results for the reconstruction of the object presented in Figure 77 with this 

active illumination single-pixel color imaging system are shown. Again, on the left column one can 

find the images acquired with the single-pixel camera, on the center column one can find the 

images acquired with the single-pixel imaging system after median filtering with a 3 × 3 kernel and 

on the right column one can find images acquired with a conventional camera and that were 

downsized afterwards for comparison purposes. It is important to indicate that the images present 

on the left column of Figure 81 were filtered for noisy points which were subsequently affecting the 

normalization of the values from each color channel of the reconstructed images to the desired 

range [0, 255]. For this, inside a 3×3 neighborhood, if the central point represented either the 

maximum or minimum value, and its absolute difference to any of the other values was bigger than 

a predefined threshold (50 in this case), then the median value of that neighborhood was assigned 

to it (see Figure 80). This algorithm will be designated, from now on, as selective local median filter. 
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Figure 80 – Illustrative examples of the application of the post-processing algorithm (selective local 

median filter) and median filtering to filter noisy points. The white portion of the matrix with a thicker 

black border represents the 3 × 3 neighborhood under analysis.  

 

Several examples for the application of the selective local median filter algorithm in 

comparison with median filtering can be found in Figure 80. On the left column of Figure 80 one 

can find matrices representing a 5 × 5 pixels portion of a raw image obtained from the 

reconstruction process. On the center column that same portion is presented after median filtering 

the central point of a 3 × 3 central neighborhood. Finally, on the right column it can be seen the 

output of the selective local median filter algorithm applied to the same 3 × 3 neighborhood. 

From the analysis of the content of Figure 80 one can infer that the effect of the selective 

local median filter is only seen in the cases where spurious noisy points eventually arise, preserving 

the remaining information intact. By the contrary, in the case of median filtering, the filter is applied 

to the entire image, independently of the pixels‟ values, outputting a smoother result. These 

spurious noisy points could be arising from noise introduced during the measurements and from 

the reconstruction process itself.  
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It can then be concluded that the selective local median filter is very useful in the cases that 

one wants to keep the raw information and just filter noisy points that may compromise the 

normalization process and consequently affect the visual quality of the final color image. The 

median filter not only filters the noisy points but also smooths the spatial content of the image. The 

inconvenient of the selective local median filter algorithm relies on the definition of the associated 

threshold, which in some cases may differ for all the three images associated with each of the color 

components. 

 

   

   

   

Figure 81 – Images of the colored wood object containing the character “B” acquired with the active 

illumination color imaging system with spectral filtering on the illumination end. Image resolution (in 

pixels) from top to bottom: 32 × 32; 64 × 64; 128 × 128. (left) Color images filtered with the selective 

local median filter. (center) Color images after median filtering. (right) Images acquired with a 

conventional camera downsized for comparison purposes. 
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The PSNR values and the maximum values of the normalized cross-correlation have been 

obtained for the images in Figure 81 and are presented in Table 16 and Table 17, respectively. For 

both metrics, the RGB color images have been converted to grayscale intensity images using 

MATLAB® function rgb2gray. This function makes the conversion by eliminating the hue and 

saturation information while retaining the luminance. 

 
 
Table 16 – PSNR values obtained for the reconstructed images of Figure 81 relatively to the images 

acquired with the conventional camera. 

PSNR (dB) 

Resolution (pixels) 
Selective local median 

filter 
Median filter 

32 × 32 20.89 21.00 

64 × 64 17.32 17.91 

128 × 128 17.71 15.69 

 

 
Table 17 – Maximum values of the normalized cross-correlation obtained for the reconstructed images of 

Figure 81 relatively to the images acquired with the conventional camera. 

Normalized cross-correlation [0, 1] 

Resolution (pixels) 
Selective local median 

filter 
Median filter 

32 × 32 0.57 0.57 

64 × 64 0.60 0.61 

128 × 128 0.48 0.52 

 

Based on the results obtained with the two metrics, it can be said that the quality of the 

images processed with the selective local median filter and with the median filter is almost identical. 

The slightly better results obtained with the images that have been median filtered may be justified 

by the remaining noise in the images processed with the selective local median filter. These 

statements are in agreement with the visual evaluation conducted by human observers. 

4.2.1.2 Spectral filtering on the detection end 

When the separation of the color components was done on the detection end, three independent 

color filters were used (one for each of the RGB components). These filters were placed in front of 

the photodiode active region, so that its response would only be stimulated by the part of the 

spectrum that was not filtered. In this configuration the projected compressive codes were again 

black and white and three images were also acquired (one for each of the RGB color channels). As 
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expected, it took three times longer to acquire a color image than it took to acquire a monochrome 

image. 

The spectra of the different color components resulting from the filtering of the “white” 

light emitted by the projector can be seen in Figure 82. 

 

 

Figure 82 – Spectra of the RGB components resulting from filtering the “white” light emitted by the 

projector. 

 
From the analysis of the spectra contained in the plot of Figure 82, one can infer the relative 

intensities of each of the color components. Also noticeable is the superposition of the blue and 

green spectra.  

Results and discussion 

Images of the wood colored object with character “B” (see Figure 77) were also acquired with this 

setup and the results are presented in Figure 83. On the left column one can find the raw images, 

while on the center column one can find the result of filtering the noisy points present in the 

images of each color channel, with the algorithm previously presented and described (see section 

4.2.1.1 and Figure 80). For this filtering, the threshold value has been experimentally determined for 

each color channel in order to provide the best results. Median filtering the raw images did not 

result satisfactorily, as can be seen in Figure 84, mainly because of the reduced contrast of the 

images representative of the green and blue channels (see Figure 85). This was mainly due to the 

fact that the green and blue spectral components obtained after filtering were highly superposed 

(see Figure 82). On the rightmost column one can see images acquired with a conventional camera 

and that were afterwards downsized for comparison purposes.  
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Figure 83 – Images of the colored wood object containing the character “B” acquired with the active 

illumination color imaging system with spectral filtering on the detection end. Image resolution (in pixels) 

from top to bottom: 32 × 32; 64 × 64; 128 × 128. (left) Color images resulting from the combination of 

the raw images representative of the RGB channels. (center) Color images filtered with the selective local 

median filter. (right) Images acquired with a conventional camera downsized for comparison purposes. 

 

Figure 84 – 128 x 128 pixels image obtained after median filtering the raw images representative of the 

RGB channels. 
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Figure 85 – From left to right, images representative of the Red, Green and Blue components with 

128 × 128 pixels.  

Following, Table 18 and Table 19 present the results obtained with the PSNR and with the 

normalized cross-correlation for the images of Figure 83. 

 

Table 18 – PSNR values obtained for the reconstructed images of Figure 83 relatively to the images 

acquired with the conventional camera. 

PSNR (dB) 

Resolution (pixels) Raw 
Selective local median 

filter 

32 × 32 16.53 16.71 

64 × 64 19.62 18.90 

128 × 128 19.23 19.65 

 

Table 19 – Maximum values of the normalized cross-correlation obtained for the reconstructed images of 

Figure 83 relatively to the images acquired with the conventional camera. 

Normalized cross-correlation [0, 1] 

Resolution (pixels) Raw 
Selective local median 

filter 

32 × 32 0.38 0.40 

64 × 64 0.35 0.37 

128 × 128 0.32 0.34 

 

Based on the results presented in Table 18 and in Table 19 one can state that the quality of 

the reconstructed images of Figure 83 is similar, either filtering has been applied or not. Comparing 

these results with those presented in Table 16 and Table 17, one can say that the overall tendency, 

mainly defined by the results of the normalized cross-correlation, leads to the conclusion that the 

images acquired with the active illumination color imaging system with spectral filtering on the 

illumination end have better quality and are more similar to those acquired with a conventional 

camera. This conclusion falls within the human opinion based on the visual evaluation of the 

images. 
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4.2.2 Passive illumination single-pixel color imaging systems 

Similarly to the case of the active illumination single-pixel color imaging systems, the two 

configurations here presented are also capable of acquiring color images, through the combination 

of images representative of the RGB channels. The difference to the active illumination system 

relies on the fact that here the compression of the spatial content is applied to the light field coming 

from the scene. This is possible thanks to the use of the LightCommander as a camera, in the same 

manner as it was used in the setup of the passive illumination single-pixel monochrome imaging 

system (see section 4.1.2). The definition of the spectral content used for the acquisition of the 

images representing each of the RGB channels was either dictated by the filters inside the video 

projector used to illuminate the scene or by the use of RGB color filters placed in front of the light 

detection device. 

4.2.2.1 Spectral filtering on the illumination end 

The principle of operation of the system here presented is very similar to that of the passive 

illumination single-pixel monochrome imaging system with the exception that in the color imaging 

system the illumination of the scene enclosed the spectral content of the image to be acquired. This 

later aspect was defined by the filters existent inside the video projector, as it was in the case of the 

active illumination color imaging system with spectral filtering on the illumination end. Therefore, 

the setup implemented for this system was the same as the one previously depicted in Figure 62 

and Figure 63. The main difference was that in this case the projected illumination was not white, 

but red, green and blue, instead, as defined by the spectra represented in Figure 79. 

This system has then been used for the acquisition of images of the colored wood object 

with character “B” represented in Figure 77. The results are presented in Figure 86. The column on 

the left contains the color images resulting from the combination of the raw images, associated with 

each color channel, filtered with the selective local median filter. The results for the combination of 

the raw images after median filtering are shown in the central column. Finally, the column on the 

right contains images acquired with a conventional camera that were downsized for comparison 

purposes. 
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Figure 86 – Images of the colored wood object containing the character “B” acquired with the passive 

illumination color imaging system with spectral filtering on the illumination end. Image resolution (in 

pixels) from top to bottom: 32 × 32; 64 × 64; 128 × 128. (left) Color images filtered with the selective 

local median filter. (center) Color images after median filtering. (right) Images acquired with a 

conventional camera downsized for comparison purposes. 

Once more, the PSNR and the normalized cross-correlation were used to evaluate the quality 

of the reconstructed images relatively to the images that were captured with a conventional camera. 

The results obtained with the two metrics for the images in Figure 86 are presented in Table 20 and 

Table 21. Based on this evaluation, it is not evident which of the filtering methods yielded better 

results. Despite the small differences indicated by the two metrics for the two filtering methods, the 

PSNR shows better results for the images to which the selective local median filter has been 

applied, while the normalized cross-correlation obtained better results for the images smoothed 

with the median filter. Based on human opinion, it can be said that it is evident the similarity of the 

reconstructed images after being processed with each of the filters, although the images to which 
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the median filter has been applied seem slightly better, mainly because they are smoother, i.e., they 

have less noise. 

 

 

 Table 20 – PSNR values obtained for the reconstructed images of Figure 86 relatively to the images 

acquired with the conventional camera. 

PSNR (dB) 

Resolution (pixels) 
Selective local median 

filter 
Median filter 

32 × 32 14.61 13.42 

64 × 64 14.58 14.51 

128 × 128 14.20 13.52 

 

 

Table 21 – Maximum values of the normalized cross-correlation obtained for the reconstructed images of 

Figure 86 relatively to the images acquired with the conventional camera. 

Normalized cross-correlation [0, 1] 

Resolution (pixels) 
Selective local median 

filter 
Median filter 

32 × 32 0.47 0.53 

64 × 64 0.43 0.44 

128 × 128 0.38 0.40 

 

 

4.2.2.2 Spectral filtering on the detection end 

Regarding the other configuration which has been assumed for the acquisition of color images by 

means of passive illumination, it can be stated that it used the same setup of the previous section. 

The only difference was that the light used to illuminate the scene was white and the spectral 

content of the images to be acquired was defined by RGB filters placed in front of the photodiode. 

It has also been used to acquire images of the colored wood object with character “B” and the 

results are presented in Figure 87. The color images obtained after combining the raw images, 

associated with each color channel, filtered with the selective local median filter can be found in the 

left column. The center column contains the color images resulting from the combination of the 

reconstructed raw images representative of each color channel after median filtering. Right column 

contains the images acquired with a conventional camera downsized for comparison purposes.  
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Figure 87 – Images of the colored wood object containing the character “B” acquired with the passive 

illumination color imaging system with spectral filtering on the detection end. Image resolution (in pixels) 

from top to bottom: 32 × 32; 64 × 64; 128 × 128. (left) Color images filtered with the selective local 

median filter. (center) Color images after median filtering. (right) Images acquired with a conventional 

camera downsized for comparison purposes. 

 

The quality of the reconstructed images of Figure 87 has been evaluated with the PSNR and 

with the normalized cross-correlation metrics, comparatively to the images captured with a 

conventional camera, and the results obtained are enumerated in Table 22 and Table 23. Based on 

the evaluation provided by both metrics it can be said that there are no significant differences 

between the images smoothed with each of the filters. As expected, the only visual difference 

marked by human visual assessment was the noisier content of the images smoothed with the 

selective local median filter.  
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Table 22 – PSNR values obtained for the reconstructed images of Figure 87 relatively to the images 

acquired with the conventional camera. 

PSNR (dB) 

Resolution (pixels) 
Selective local median 

filter 
Median filter 

32 × 32 19.23 19.23 

64 × 64 18.63 18.74 

128 × 128 15.57 15.8 

 
 

Table 23 – Maximum values of the normalized cross-correlation obtained for the reconstructed images of 

Figure 87 relatively to the images acquired with the conventional camera. 

Normalized cross-correlation [0, 1] 

Resolution (pixels) 
Selective local median 

filter 
Median filter 

32 × 32 0.50 0.49 

64 × 64 0.47 0.48 

128 × 128 0.42 0.43 

 

4.2.3 Concluding remarks 

Comparing the active and the passive illumination color imaging systems based on human visual 

judgment, it can be concluded that the passive illumination system was the one that presented the 

best results. In other words, the results obtained with the passive illumination system have less 

noise and are more similar to those acquired with the conventional camera. This corroborates the 

same conclusion drawn for the case of the monochrome imaging systems, and can again be 

supported by the benefit of using the DMD as the spatial light modulator.  

However, based on the results obtained with the applied metrics, one would say that the 

active illumination system achieved better performance, both in the case that the spectral filtering 

happened on the illumination end or on the detection end, which would conflict with the human 

opinion. Because of this, one could be lead to question if the conversion of the RGB images to 

grayscale intensity images might have caused this difference. The fact that the same difference was 

verified in the case of the monochrome imaging systems dissipates any eventual doubt relatively to 

effect that the conversion of the RGB images to grayscale intensity images might have had. 

Therefore, once again, this difference can be supported by changes in the images deriving from 

different optical alignments, different lighting conditions and even small changes in the field of 

view, verified for the different imaging setups. These differences may have caused the images to 
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appear translated, rotated, scaled, distorted and with different brightness and/or contrast 

distributions, even though care was exerted to minimize these effects. 

From a general perspective, regarding the single-pixel color imaging systems presented in the 

previous sections, it is important to point out that the systems in which the spectral separation was 

encoded in the light source provided results with more vivid and more realistic colors. This can be 

supported by the fact that the RGB color components emitted by the projector (see Figure 79) 

were much more defined than in the case in which the color separation happened by means of 

filters placed in front of the photodiode. In the latter case, a large superposition of the blue and 

green spectra was verified (see Figure 82), thus leading to the reduced color contrast verified in the 

images obtained when those components were being used (see Figure 85). Furthermore, the 

spectral windows of the RGB filters used on the detection end were broader and exhibited lower 

transmittance than those of the filters existent inside the projector. These facts largely contributed 

to the relatively worse results obtained with the systems whose spectral filtering was performed on 

the detection end.  

Another aspect of interest is that despite the intensity of the spectra in the “red” region was 

relatively low, the images obtained for the red component exhibited good contrast. Besides the 

good spectral separation verified for that region of the spectrum, this can also be supported by the 

photodiode‟s spectral responsivity which is always increasing with wavelength until approximately 

1000 nm (see Figure 50), therefore causing the signal-to-noise ratio of those measurements to 

become improved.  

Nonetheless, the results obtained proved the potential of such systems and it is believed that 

if both the emitted spectra and the filtered spectra were optimized the different systems would 

perform similarly well. 

It should also be said that even though a conventional camera (FujiFilm™ S5600) has been 

used for comparison purposes, it was not possible to obtain the spectral response of its CCD 

sensor (5th Generation Super CCD HR), but it is very likely for it to be different from that of the 

used photodiode. It is also very probable that the Bayer color filter present in front of the CCD 

exhibits a spectral signature different from that of the single-pixel color imaging systems. Certainly, 

these facts also contributed to the difference of colors verified in the images acquired with the 

single-pixel imaging systems when compared to those acquired with the conventional camera.  
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4.3 Multispectral Imaging Systems 

A multispectral imaging system is one that is capable of capturing images at specific spectral bands. 

These bands do not need to be contiguous and may be, for instance, separated by filters or by the 

use of instruments that are sensitive to particular wavelength ranges. The acquired images can be 

combined to create composite images. Spectral imaging with more bands, higher spectral resolution 

or broader spectral coverage is called hyperspectral, as can be seen later in this document. In the 

following sections an active and a passive illumination single-pixel imaging system for the 

acquisition of multispectral images will be demonstrated and compared.  

4.3.1 Active illumination single-pixel multispectral imaging system 

In the system presented in this section, the spectral bands chosen to represent the scene were 

defined in the light used to illuminate the scene. As in the previously presented active illumination 

systems, this system also incorporates the compressive measurement codes into the illumination to 

encrypt the spatial information of the scene.  

The setup of the implemented active illumination single-pixel multispectral imaging system is 

displayed in Figure 88. 

 

Figure 88 – Scheme of the setup for the active illumination single-pixel multispectral imaging system. 

 

In this setup the light sources consisted of three LED light bulbs with 15 LED each that 

have been used at a time. These light bulbs were independently emitting in the red, green and blue 

regions of the visible spectrum. The luminous intensity of the red, green and blue LED bulbs was 4 

candela, 12 candela and 6 candela, respectively. 

The normalized emission spectra of the three light bulbs are shown in Figure 89. 
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Figure 89 – Normalized emission spectra of the red, green and blue LED light bulbs used for 

illumination in the active illumination single-pixel multispectral imaging system. 

The measured FWHM of the LED light bulbs was 17.2 nm for the red bulb, 34.2 nm for the 

green bulb and 24.5 nm for the blue bulb. 

The LED light bulbs were placed in front of the LightCommander‟s tunnel in order to flood 

it with light. As the angular emission of the LED was very wide, the light reaching the DMD was 

homogeneously distributed. The amplified photodiode and DAQ board were the same as in the 

other active illumination setups.  

In Figure 90 two photos of the experimental setup of the active illumination single-pixel 

multispectral imaging system are presented. The photo on the left exhibits the LightCommander 

without its native illumination module and respective power unit. There it can be seen the blue 

LED light bulb launching light into the LightCommander‟s tunnel. The photo on the right shows a 

detailed view of the amplified photodetector and lens capturing the light coming from the scene 

illuminated with a random binary code. 
 

  

Figure 90 – Photos of the active illumination single-pixel multispectral imaging system. Left: Light from 

the blue LED light bulb is being launched into the Lightcommander‟s tunnel. The LightCommander‟s 

illumination module and respective power unit have been removed. Right: Detailed photo of the 

amplified photodiode and of the scene being illuminated with a binary random code. 
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Results and discussion 

The object that was used to evaluate the performance of this system is depicted in Figure 91. 

 

 

Figure 91 – RGB scene composed to be used on the performance evaluation of the active illumination 

single-pixel multispectral imaging system. 

 

The object of Figure 91 was printed in standard paper and the green rectangle measured 

35 mm × 44 mm, while the blue character “A” measured 20 mm in the wider end and 5 mm in the 

thinner end. The red border was 10 mm and 5mm thick. The RGB colors were coded with 8 bits as 

pure red [R:255; G:0; B:0], pure green [R:0; G:255; B:0] and pure blue [R:0; G:0; B:255], for the 

border, rectangle and character “A”, respectively.  

Figure 92 displays the images captured with the active illumination single-pixel multispectral 

imaging system, with different resolutions. On the left column, one can find the result of 

combining the raw images obtained for each color channel after selective local median filtering. On 

the center column, one can find the same raw images used to obtain the results of the left column 

after median filtering with a 3 × 3 kernel. The column on the right contains images acquired with a 

conventional camera downsized for the different resolutions for comparison purposes. 
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Figure 92 – From top to bottom: 32 × 32; 64 × 64; 128 × 128; pixels images captured with the active 

illumination single-pixel multispectral imaging system. The RGB images resulting from the combination 

of the raw images after selective local median filtering can be seen on the left column, while the center 

column contains the RGB images resulting from the combination of the raw images after median 

filtering. On the right column, it can be seen the images acquired with a conventional camera downsized 

for comparison purposes.  

 

The contents of Table 24 and Table 25 summarize the results of the evaluation performed 

with the PSNR and normalized cross-correlation metrics for the images of Figure 92, relatively to 

the images acquired with the conventional camera. These results quantify those images to be of 

similar quality, independently of the filtering method. Despite the residual noise of the images 

processed with the selective local median filter, this is consistent with the opinion based on the 

visual assessment held by human observers. 
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Table 24 – PSNR values obtained for the reconstructed images of Figure 92 relatively to the images 

acquired with the conventional camera. 

PSNR (dB) 

Resolution (pixels) 
Selective local median 

filter 
Median filter 

32 × 32 15.81 15.62 

64 × 64 16.59 16.58 

128 × 128 17.51 16.74 

 

 

Table 25 – Maximum values of the normalized cross-correlation obtained for the reconstructed images of 

Figure 92 relatively to the images acquired with the conventional camera. 

Normalized cross-correlation [0, 1] 

Resolution (pixels) 
Selective local median 

filter 
Median filter 

32 × 32 0.63 0.64 

64 × 64 0.61 0.61 

128 × 128 0.58 0.58 

 

 

In order to perceive the reflective properties of the content in the scene, we acquired three 

images with our system and with a conventional camera when it was being independently 

illuminated with each of the three LED bulbs. Those images can be seen in Figure 93. It should be 

noted that the images referring to the conventional camera are displayed with the real colors with 

which they have been acquired, while the images acquired with our system were mapped into the 

respective color channel with 256 levels, being the images corresponding to the other channels set 

to black. From their analysis one can state that the images exhibiting best contrast are those relative 

to the green illumination. These can be supported by two facts: the higher luminous intensity of the 

green LED bulb and the higher sensitivity the human eye possesses in that range of the visible 

spectrum [73]. 
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Figure 93 – 128 × 128 pixels images acquired to evaluate the reflective properties of the content of the 

printed scene of Figure 91. On the top row it can be seen the images acquired with the active illumination 

single-pixel multispectral imaging system after median filtering. The photos acquired with a conventional 

camera are displayed on the bottom row. The images represented from left to right, illustrate the 

acquisitions made when the scene was being independently illuminated with the red, green, and blue LED 

bulb, respectively. 

 

As previously stated, each 10000 samples set was averaged afterwards in order to obtain the 

measurement produced with the respective code. This averaging process proved to be particularly 

useful, due to the AC modulation of the light emitted by the LED bulbs. With it, ideally, one 

obtains the change on the DC value of the output voltage, caused by the projected code, and 

eliminates the influence of the AC modulation. This modulation can be substantiated in the plot of 

Figure 94. 

From the images present in Figure 92 and Figure 93, it is evident that there was an intensity 

profile on the used illumination. It becomes more obvious near the corners of the red border, 

where the images appear darker, and near the center of the image, where the images look brighter. 

As the density of projected light reduces in a square fashion with the increase of distance, and we 

wanted the maximum amount of light to be reflected from the scene towards the photodiode, the 

scene was placed in the shortest distance possible dictated by the field of view and the working 

distance of the projection lens. At such distance, the light distribution over the scene was not 

perfectly homogeneous, which was also conditioned by the LED bulbs emission diagram that is not 

homogeneous either. 
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Figure 94 – Plot of the normalized voltage on the output of the amplified photodiode circuit when one 

LED light bulb was being used for illumination of the scene being acquired. 

 

This latter fact, to a certain extent, also caused the light reaching the peripheral region of the 

DMD not to be projected, due to the angular operation of its mirrors. The major difference relies 

on the content associated with the red color, which appears to have lower intensity, which can 

significantly be justified by the relatively smaller area it occupies in the scene and by the relatively 

smaller luminous intensity of the red LED bulb. These facts cause a comparatively smaller 

reflection of the light emitted when the red LED bulb was being used, thus yielding lower SNR to 

the associated measurements. Despite these minor aspects, the obtained images look particularly 

faithful to those obtained with the conventional camera. 

4.3.2 Passive illumination multispectral single-pixel imaging system 

In this section it is presented the passive illumination counterpart of the multispectral system 

presented in the previous section. In this system, the positions of the illumination source and of the 

light detector were interchanged, thus causing the optical path to be used in a reverse direction, in a 

manner similar to that of a conventional camera. The spectral content was again defined by the 

illumination sources but the compressive codes for spatial compression were applied to the light 

field captured by the imaging system. A scheme describing the setup of the implemented system is 

depicted in Figure 95. In Figure 96 a photo of the experimental setup can be observed. 
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Figure 95 – Scheme of the setup for the passive illumination single-pixel multispectral imaging system. 

 

 

Figure 96 – Photo of the passive illumination single-pixel multispectral imaging system during operation. 

 

This system has been used to acquire RGB images of the composed RGB scene displayed in 

Figure 91 and the results are depicted in Figure 97. In order to acquire the different images 

corresponding to each of the colors channels, the agreeing LED light bulb had to be used. The 

images on the left column result from the combination of the raw images obtained for each of the 

color channel after applying the selective local median filter, while the center columns contains the 

images resulting from the combination of the raw images of each color channel after median 

filtering with a 3 × 3 kernel. On the right column are displayed images acquired with a conventional 

camera that were downsized for comparison purposes. 

In order to maximize the amount of light collected by the imaging system, the distance 

between the imaging lens and the scene was the shortest possible. That distance resulted from the 

lens‟ working distance which ensured that the FOV was adequately covering the scene. Observing 

the results of Figure 97 it can be concluded that the intensity of the red portion in the images 
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acquired with the single-pixel system is partially reduced near the outer edges. This result comes 

from the emission diagram of the LED light bulbs, which is not homogeneous and is more intense 

in the central region, and from its reduced luminous intensity, when compared to the other LED 

bulbs. These facts combined with the angular operation of the DMD mirrors reduce the efficiency 

of light acquisition for those regions of the image. Despite these aspects, based on human opinion, 

it can be said that the acquired images closely represent those acquired with a conventional camera.  

 

 

   

   

   

Figure 97 – From top to bottom: 32 × 32, 64 × 64 and 128 × 128 pixels images captured with the passive 

illumination single-pixel multispectral imaging system. On the left column are the RGB images obtained 

after filtering each color channel raw image with the selective local median filter. The center column 

contains the RGB images obtained after median filtering each color channel raw image. On the right 

column, it can be seen images acquired with a conventional camera downsized for comparison purposes. 
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As it was the case for the previously presented imaging systems, the quality assessment based 

on the PSNR and normalized cross-correlation metrics is presented now for the images of Figure 

97 relatively to the images acquired with a conventional camera. The results obtained are shown in 

Table 26 and Table 27. Based on the results of the metrics, it can be stated that both filtering 

methods yielded images with similar quality, which is corroborated by human visual assessment. 

 

Table 26 – PSNR values obtained for the reconstructed images of Figure 97 relatively to the images 

acquired with the conventional camera. 

PSNR (dB) 

Resolution (pixels) 
Selective local median 

filter 
Median filter 

32 × 32 16.25 16.28 

64 × 64 16.50 16.35 

128 × 128 16.96 16.73 

 

 

Table 27 – Maximum values of the normalized cross-correlation obtained for the reconstructed images of 

Figure 97 relatively to the images acquired with the conventional camera. 

Normalized cross-correlation [0, 1] 

Resolution (pixels) 
Selective local median 

filter 
Median filter 

32 × 32 0.55 0.55 

64 × 64 0.54 0.55 

128 × 128 0.54 0.54 

 

4.3.3 Concluding remarks 

This section demonstrated the capability of single-pixel imaging systems to acquire multispectral 

images. In particular, the active illumination, which has already been used for the compression of a 

scene‟s spatial content, was also used to integrate spectral information into the system‟s operation. 

In the passive illumination case, the illumination was only used to define the spectral content and 

the spatial compression was applied, on the acquisition side, to the incoming light field. 

Comparatively to the images acquired with the various color imaging systems already 

presented, based on the opinion of human observers, it can be said that the colors of the images 

reconstructed with these systems were significantly closer to those of the images acquired with a 

conventional camera. To a great extent, this is due to the much narrower spectra of the LED 

illumination sources (see Figure 89). It should be pointed-out that it was possible to add 
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multispectral functionality to the active and passive illumination single-pixel imaging systems 

already presented only with the change of the light source, therefore confirming the flexibility of 

these systems.  

If these multispectral imaging systems are compared to each other based on the used metrics, 

the system that performed better was the one using active illumination, mainly due to the results 

obtained with the normalized cross-correlation. However, a confident conclusion cannot be easily 

drawn because of the small differences existent between the results obtained with both metrics. 

On the other hand, based on human judgment, which is considered to be correct, it can be 

concluded that the results obtained with the passive illumination system are better because they 

exhibit less noise and more intense colors, even though both systems have used the same 

illumination sources and a DMD as a spatial light modulator. The difference resides in the fact that 

the intensity of light projected by the active illumination system was smaller than that acquired by 

the passive illumination system. This is verified because it was not possible to launch all of the light 

emitted by the LED bulbs into the LightCommander‟s tunnel and the incorporation of the 

compressive codes into the launched light reduced even more its intensity (statistically, by 

approximately 50%). This was reflected in a smaller dynamic range in the measurements and/or 

smaller SNR. In the case of the passive illumination system, the LED bulbs were directly 

illuminating the FOV with their maximum intensity, therefore resulting in a higher amount of light 

collected by the imaging lens of the LightCommander, and, finally, in a more intense signal at the 

photodiode placed in the exit of the light tunnel.  

Another important aspect is that exactly the same equipment has been used in both systems, 

thus demonstrating their versatility, which can prove useful in certain scenarios.  

As a final point, the multispectral systems here presented acquired results in the visible range 

of the spectrum but their operation could similarly be verified in other regions of the spectrum, as 

long as the radiation sources and/or detection devices were adequately changed. 

4.4 Hyperspectral Imaging Systems 

Hyperspectral imaging (HSI), also designated imaging spectroscopy or imaging spectrometry, is 

defined as “the acquisition of images in hundreds of contiguous, registered, spectral bands such 

that for each pixel a radiance spectrum can be derived”, as originally coined by Goetz et al. in 1985 

[74]. 

Hyperspectral imaging is an emerging technique that was initially developed for remote 

sensing [75] but has since found applications in different fields such as security and defense [76], 

food inspection [77], biology [78], pharmaceuticals [79] and astronomy [76]. 

Conventional imaging systems produce 2D –  yx,  – spatial matrices of scalar values 

representing the intensity of a scene. A hyperspectral imaging system, in contrast, generates a vector 

for each pixel of the 2D spatial matrix, which contains spectral information for that particular 
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spatial location. Therefore, we have a 3D –  ,, yx  – spectral data representation that is usually 

known as datacube. 

Typically, hyperspectral systems suffer from tradeoffs between spatial resolution, spectral 

resolution, light collection and acquisition rate. Even though there are some designs that enable the 

simultaneous control of several parameters [80-82], some limitations still remain. For that reason, as 

previously seen in section 3.7, two compressive completely static, single-shot spectral designs with 

the main goal of controlling all the four operational quantities have been presented [40, 41]. 

Although these approaches were quite successful, their main constraints are related with the 

compromise between spectral and spatial resolution, the difficulty or impossibility to resolve point 

sources and the amount of compressibility that can be achieved. In 2009, Sun and Kelly [42] 

presented a compressive sensing (CS) based hyperspectral imager capable of reconstructing images 

with nanometer (0.8nm) spectral resolution. Their system simultaneously acquires and compresses 

the datacube which greatly decreases the acquisition time and data volume, while increasing the 

overall image quality when compared to its raster scan counterpart. 

Here, the focus will reside on the study of two compressive sensing based single-pixel 

hyperspectral imaging systems. These systems can also operate either on an active illumination or 

on a passive illumination mode. The main difference between the two modes of operation relies on 

the illumination and on the light detection device. On the active illumination case, the spectral 

information is included in the projected codes used for compression of the spatial content and the 

single-pixel light detection device can have a broad spectral response, as long as it is sensitive to the 

spectral content. Additionally, the spectral information is included by the use of light sources with 

very sharp spectral signatures, such as lasers. By the contrary, on the passive illumination case, the 

light used to illuminate the scene is broad over all the spectral region of interest and does not 

incorporate any coding process. The hyperspectral capability of the system comes from the use of a 

light detection device with very high spectral resolution. The compression of the spatial content is 

applied to the light field coming from the scene. 

4.4.1 Active illumination single-pixel hyperspectral imaging system 

In this section an active illumination single-pixel hyperspectral imaging system is presented. As in 

the previously presented active illumination systems, this system incorporates the compressive 

measurement codes into the illumination. Its hyperspectral capability comes from the use of light 

sources with very narrow spectral signatures. 

The setup of the implemented active illumination single-pixel hyperspectral imaging system 

can be seen in Figure 98. 
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Figure 98 – Setup of the active illumination single-pixel hyperspectral imaging system. 

 
In this setup the illumination was originated in two laser sources: a He-Ne laser emitting at 

632.8 nm (red) with 8 mW and a Nd:YAG laser emitting at 532 nm (green) with 50 mW power. 

The laser radiation was launched into the LightCommander‟s tunnel by means of a 

microscope objective. This lens also served to broaden the laser beam causing the DMD to be 

entirely illuminated. The amplified photodiode and DAQ board were the same as in the other 

active illumination setups.  

In Figure 99 a photo of the experimental setup of the active illumination single-pixel 

hyperspectral imaging system can be seen. In the closest plane to the observer, part of the He-Ne 

laser tube can be seen. It can also be seen the LightCommander without the illumination module 

and power unit, having a mechanical part to hold the microscope objective in front of the light 

tunnel, instead. On a farther plane, one can see the amplified photodiode with the objective lens 

and the scene being illuminated with the laser light modulated by the DMD with a binary random 

code. 

 

 

Figure 99 – Photo of the active illumination single-pixel hyperspectral imaging system. 
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Results and discussion 

In order to evaluate the performance of the active illumination single-pixel hyperspectral imaging 

system, the object of Figure 100 was chosen to be imaged. This object consisted of a paper with the 

characters “V” and “E” printed in black in a red and green background, respectively. Between the 

two colored backgrounds there was a black line separating them. The height of both characters was 

31 mm. The “V” character measured 28 mm in the wider end and 8 mm in the thinner end, while 

the “E” character measured 19 mm across. The size of the entire scene was 10 cm × 6 cm. 

 

 

Figure 100 – Paper with “V” and “E” characters printed in black in a red and green background, 

respectively. 

 

During operation each laser source was turned on at a time and an image was acquired for 

each case. Some of the images acquired with this system are presented in Figure 101. These images 

were acquired with 32 × 32 pixels, 64 × 64 pixels and 128 × 128 pixels and were cropped 

afterwards to avoid saturated regions originated by the very intense reflections there verified. These 

intense reflections were justified by the glossy finish and texture of the paper. 
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32 × 19 

pixels 

  

64 × 38 

pixels 

  

128 × 75 

pixels 

  

Figure 101 – Images with different resolutions obtained with the active illumination single-pixel 

hyperspectral imaging system for the paper object with the characters “V” and “E” printed in black in a 

red and green background, respectively (see Figure 100). The images on the left column were obtained 

when the He-Ne laser (red) was on and the images on the right column were obtained when the 

Nd:YAG laser (green) was on. 

 

Both 128 × 75 pixels images from Figure 101, were converted to RGB images, according to 

the CIE 1931 2-degree standard, using MATLAB® functions provided in the MathWorks 

community website (vide http://www.mathworks.com/). These functions convert the CIE 

chromatic coordinates associated with the spectral color, specified by a wavelength in the visible 

region of the spectrum, to its RGB values in the sRGB color space [83, 84]. sRGB is a standard 

RGB color space that is widely accepted and used in monitors, printers and in the internet [85]. 

The result of that transformation is presented in Figure 102. Afterwards, those images were 

added into a single RGB image and the result can be seen in Figure 104. In Figure 103, it can be 

seen the Red and Green channels of the RGB photos taken with a conventional camera when the 

scene was being independently illuminated with each of the laser sources.  



Compressive Sensing Based Single-Pixel Imaging Systems 

118 

  

Figure 102 – 128 × 75 pixels images, from Figure 101, converted to RGB images. 

 

  

Figure 103 – Red (left) and Green (right) channels of the RGB photos taken with a conventional camera 

when the scene was being illuminated with the He-Ne laser (on the left) or with the Nd:YAG laser (on 

the right). These photos have been resized to 128 × 60 pixels for comparison with the images displayed 

in Figure 102. 

 

 

Figure 104 – RGB image resulting from the addition of the images of Figure 102. 

 

Even though care was exerted in order to ensure the entire scene was evenly illuminated, the 

Gaussian nature of the laser beam is noticeable on the brighter portion observable on the top-left 

corner of the green region in Figure 104. 

Although one can acquire hyperspectral images with a conventional camera, as it was the 

case for the photos shown in Figure 103, if we compare them to those in Figure 102 it is evident 

that the results are not equal. This difference is most noticeable in the regions of the scene whose 

background color differed from the color of the laser light that was being used for illumination. In 
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those regions, the images acquired with the active illumination single-pixel hyperspectral imaging 

system exhibit much lower intensities than the images acquired with the conventional camera. 

In order to find a justification for the differences verified in the images acquired with the two 

imaging systems, the reflectance spectra of the red and green regions of the scene were measured at 

normal incidence when a halogen bulb was being used for illumination (see Figure 105).  

 

 

Figure 105 – Reflectance spectra of the red and green regions of the scene presented in Figure 100. In 

black it is also presented the emission spectrum of the halogen bulb that was used for illumination. 

 
From the observation of Figure 105 it is possible to conclude that despite the maximum 

reflectance of the red (~635 nm) and green (~516 nm) regions occur within the correct spectral 

regions, both regions strongly reflect other wavelengths.  

The optics used for collection of the light reflected from the scene also differed among the 

two imaging systems, being the aperture of the lens used in the single-pixel camera much narrower 

which caused it to collect less light. 

Because of the facts mentioned above, the conventional camera was able to capture the 

content of the green region when the red laser was being used for illumination and vice-versa. The 

same was not verified with the active illumination single-pixel hyperspectral imaging system.  

It should, however, be said that if the spectral content within the field of view was 

controlled, the results obtained with both imaging systems should have been the same. 

4.4.2 Passive illumination single-pixel hyperspectral imaging system 

Here, we describe a hyperspectral compressive sensing based single-pixel camera with high spectral 

resolution built using a Digital Micro-mirror Device (DMD), to optically compress the image to be 

acquired by applying binary random codes, and an optical spectrum analyzer (OSA), to enable high 

spectral resolution acquisition. The optical-domain compression causes each spectral line to be 
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measured by the OSA as the inner product between the incoherent random measurement vectors 

and the image of interest. We demonstrate the successful reconstruction of images of a scene 

illuminated by a He-Ne laser which has a very sharp and distinct spectral signature. Due to its 

excellent spectral resolution the reconstructed images show the ability of our system to extract the 

information existent in the scene corresponding to that specific spectral region. We also present the 

reconstruction of high spatial resolution images of an elaborated scene. 

The implementation of our system was based on the use of a DLP™ (Digital Light 

Processing) projector (Infocus LP120 – 1024 x 768 square pixels – 0.7 inches diagonal) in a reverse 

way – i.e., rather than using it for projection, it was used as part of an image acquisition system –. In 

this configuration, it was possible to take advantage of the integrated and optimized optical 

assembly of the projector, as well as of all the existing video signal conditioning and control. The 

Infocus LP120 projector (see Figure 106) incorporates a zoom lens with manual focus and manual 

zoom adjust and exhibits a throw ratio of 1.8 – 2.1:1 (typical) and a minimum projection distance of 

1.5 m (maximum distance 5 m). 

 

 

Figure 106 – Photo of the Infocus LP120 video projector. 

 

Similarly to the work of Takhar et al. [15], the application of the random binary measurement 

patterns is made through a DMD. In our setup, this device is part of the projector‟s optical engine 

and by means of the projector‟s lensing system the image of the scene being acquired is formed on 

the DMD surface. The dimensions of the mirrors of the DMD being used were approximately 

12.7 × 12.7 microns2 and, in our case, an active area of 512 × 512 elements of the DMD was used. 

When electrically actuated, the mirrors of the DMD exhibit a tilt angle of ±12º, which is used to 

either direct the light along the projection path (“ON” state), or to deviate the light towards a light 

absorber (OFF state). Therefore, depending on the applied code, the light hitting the DMD pixels 

at “ON” state is reflected towards the place where the projector lamp was originally located. There, 

after the light tunnel, instead of the lamp, a 10x microscope objective with 0.25 numerical aperture 

(NA) was inserted to launch light into a 50/125 µm multi-mode fiber with 0.2 NA that was 
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connected to a single-mode optical fiber at 633 nm with 0.14 NA, which, in turn, was connected to 

the OSA input.  

The OSA (ANDO AQ6317B) is implemented on a Zollner-Thurnar's type monochromator. 

The principle of operation can be described as follows (see Figure 107): the single-mode fiber acts 

as the input slit of the monochromator, being the divergent input beam collimated by a concave 

mirror to illuminate a grating that acts as a diffractive element. An output slit is arranged at a 

position where the reflected light from a focusing mirror is focused, enabling that only a specific 

spectral component exits at the slit towards the photodetection block. The detected spectral 

window can be tuned by rotating the grating, while the spectral resolution can be changed by 

changing the width of the output slit.  

 

 

Figure 107 – Scheme depicting the principle of operation of the Zollner-Thurnar's type monochromator 

of the ANDO AQ6317B optical spectrum analyser (OSA). 

 

Finally, the light intensity at each spectral line was measured by the single photodetector of 

the OSA and the resulting linear vector was stored for each binary random code. Depending on the 

dimensionality of the used random codes, the number of DMD pixels (mirrors) that were used to 

encrypt a pixel of the reconstructed image would vary. For instance, for a reconstructed image with 

64 × 64 pixels, each pixel would correspond to a set of 8 × 8 DMD elements, since an active area 

of 512 × 512 elements was being used on the DMD. The spatial resolution of the reconstructed 

images is, then, defined by the dimensionality of the random codes used for measurement. 
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One image can be reconstructed for each of the measured wavelengths and, in that manner, 

a datacube -  ,, yx  - can be built. In order to access the spectrum of a particular part of an image, 

the values along the datacube (i.e., along the   dimension), for that  yx,  region of interest can 

be selected. The spectral resolution of the resulting spectrum is directly related with the resolution 

with which the measurements were performed by the OSA. 

A scheme depicting our hyperspectral camera principle of operation can be found in Figure 

108. In Figure 109 a detailed photo of the optical engine of the Infocus LP120 projector can be 

seen and in Figure 110 a detailed photo of the Infocus LP120 with the 10x microscope objective 

launching light into the optical fiber is presented. The M1-DA video input port of the projector was 

connected to the computer‟s VGA D-sub 15 pin interface. The synchronization of the 

measurements and the communication between the OSA and the computer was established via 

General Purpose Interface Bus (GPIB) protocol according to the ANSI/IEEE Standard 488.1. 

 

 

Figure 108 – Scheme depicting the principle of operation of the passive illumination single-pixel 

hyperspectral imaging system. 
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Figure 109 – Optical engine of the Infocus LP120 projector. 

 

 

Figure 110 – Detailed photo of the Infocus LP120 with the 10x microscope objective launching the light 

into the 50/125 µm multi-mode optical fiber. 

Results and discussion 

The implemented system was used to acquire specific images to assess its performance. One initial 

scene consists of a vertical line projected by a He-Ne laser at 632.8 nm into a mirror. 

The normalized emission spectrum of the He-Ne laser is shown in Figure 111 (red trace). 

This spectrum has been directly measured on the OSA with a resolution of 10 pm and span of 

500 pm, corresponding to a wavelength range from 632.61 nm to 633.11 nm. Also in Figure 111, 

the normalized reconstructed spectrum (black trace), which was obtained along the reconstructed 

datacube in a spatial position where the laser line was imaged, is represented. As can be seen, the 

spectrum along the datacube closely matches the measured spectrum. 
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Figure 111 – Normalized reconstructed spectrum obtained along the reconstructed datacube in a fixed 

spatial position where the laser line was imaged (black trace). The red trace represents the normalized 

spectrum of the He-Ne source measured with the OSA. 

 

Figure 112 shows the images reconstructed at 632.800 nm, representing the laser line, and 

the images reconstructed at 632.790 nm, representing the absence of any relevant feature at that 

particular wavelength. Along with these images the normalized intensity of corresponding pixels is 

shown in a 3D mapping, which stresses the fact that when one observes the image representing the 

laser line, at its particular location, those pixel values are much greater than all the remaining pixel 

values in the image. The same is not verified for wavelengths in which the laser line cannot find 

representation. 

Since the results presented in Figure 112 show the minimum spectral separation required to 

have an image where the laser line is present and another image where it is not, one can state that 

the demonstrated spectral resolution of the proposed system is 10 pm. 

During the acquisition of the images shown in Figure 112 the field of view corresponded to 

a square area with 40 mm side. Therefore, one can state that the spatial resolution for the 32 × 32 

pixels images was 1.25 mm/pixel, while for the case of the images with 64 × 64 pixels the spatial 

resolution was approximately 0.63 mm/pixel.  

In the meantime, an improved passive illumination single-pixel hyperspectral imaging setup 

has been implemented. For that, the disassembled Infocus LP120 video projector has been 

substituted by the LightCommander. A Newport fiber optic positioner with 5 degrees of 

positioning has been adapted in order to hold and position the SMA connectorized optical fiber, in 

front of the microscope objective, which was used to collect the light coming from the 

LightCommander‟s light tunnel and launch it into the fiber. In Figure 113 it can be seen a photo of 

this assembly. 
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Figure 112 – Rows (a) and (c) represent the images reconstructed at 632.800 nm with 32 × 32 and 64 × 

64 pixels, respectively, along with a 3-D representation of their normalized intensities. Rows (b) and (d) 

represent the images reconstructed at 632.790 nm with 32 × 32 and 64 × 64 pixels, respectively, along 

with a 3-D representation of their normalized intensities. 
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Figure 113 – Detailed photo of the assembly used for launching light coming from LightCommander‟s 

light tunnel into the optical fiber. 

 

As the image of a line is already sparse in the spatial domain, we chose another scene, more 

elaborated this time, to demonstrate the usefulness of this hyperspectral system in such situation 

and to prove the ability of the system to reconstruct larger and more complex images. For this, we 

reconstructed an image of a lit light bulb with 15 red LED, at 630.900 nm, which was the central 

wavelength of the emission peak (FWHM = 17.2 nm), with 512 × 512 pixels (see Figure 114). As it 

can be seen in Figure 114, the image reconstructed with our camera closely represents the image 

taken with a conventional camera, thus confirming its feasibility. For this acquisition, the field of 

view corresponded to a square area with 60 mm side, thus resulting in a spatial resolution of 

approximately 0.12 mm/pixel. 

 

 

Figure 114 – 512 × 512 pixels photo of the lit LED lamp acquired with: (a) conventional camera; (b) with 

passive illumination single-pixel hyperspectral camera, at 630.900 nm. 
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Since the measurement rate was limited both by the rate at which the codes were displayed 

on the DMD and by the OSA scanning speed, the measurement process for this image took 

approximately 28 hours. Notwithstanding, as can be seen, this fact does not impair the potential of 

this camera to reconstruct more complex and larger images.  

Next, in Figure 115, one can observe different reconstructions of the image of the lit LED 

bulb acquired with our camera. The associated Peak Signal-to-Noise Ratio (PSNR) values were 

calculated relatively to the image reconstructed using 100% of the measurements (see Figure 

114 (b)), and reflect the quality improvement obtained with the increase of measurements used to 

reconstruct the image. 

 

 

Figure 115 – PSNR versus the percentage of measurements used to reconstruct the 512 × 512 pixels 

images of the lit LED bulb with respect to their full dimensionality. All the PSNR values were calculated 

relatively to the 512 × 512 pixels image reconstructed using 100% of the measurements [see Figure 114 

(b)]. 
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Comparing our work to the CASSI systems developed at Duke University [40, 41] some 

advantages and disadvantages can be identified. The main difference is that while these systems 

measure two-dimensional coded spectral or spatio-spectral projections of the three-dimensional 

datacube that represents the scene, our system simultaneously acquires and compresses the 

datacube into one-dimensional arrays. Despite both systems involve a software-based 

reconstruction final step, the CASSI systems operate with a single-shot, while our system requires 

several measurements to be performed in order to gather the required information. As our system 

only requires a single element detector, it can incorporate, for instance, large area photodiodes, 

causing its sensitivity to be much higher than that of the pixels of the detector array used in the 

CASSI systems; therefore our system exhibits higher potential of working in lower lighting 

conditions. Furthermore, as our compressive measurements always capture approximately 50 

percent of the total light from the scene, the signal to noise ratio is much higher than that of the 

CASSI systems.  

In the CASSI systems, prisms were used as dispersive elements and since the dispersion of a 

prism is nonlinear, the spectral resolution of this instrument varies with wavelength. By the 

contrary, the spectral resolution of our system is linear and much higher than those obtained by the 

CASSI systems, being 3.6 nm the lowest of the two CASSI systems. 

The CASSI authors also state that in their systems there is a compromise between spatial and 

spectral resolution and that it can be difficult to spectrally or spatially resolve point sources. These 

facts do not constitute a limitation for our system. 

Regarding the previously referred work of Sun and Kelly [42], one can state that the main 

difference relies on the instrumentation level, in particular, in the light detection equipment. Their 

system made use of a spectrometer with 1044 spectral bands responsive from 200-1100 nm, 

therefore their statement of 0.8 nm of maximum spectral resolution.  

In our work we have used an OSA responsive from 600-1700 nm that is capable of 

providing excellent resolution over the full spectral range, as previously explained. Furthermore, in 

our case, optical fibers were used to guide the light till the OSA, which increases the flexibility of 

the system.  

 

Following these experiments, we implemented a smaller version of the passive illumination 

single-pixel hyperspectral imaging system. To accomplish this we replaced the OSA by a miniature 

fiber optic spectrometer from Ocean Optics (model USB 2000) as the one depicted in Figure 116. 

The dimensions of the spectrometer are 89 mm (length) × 64 mm (width) × 34 mm (height) and 

weights 270 grams with the USB cable. 
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Figure 116 – Photo of an Ocean Optics USB 2000 miniature fiber optic spectrometer. Image reproduced 

from http://www.oceanoptics.com/Products/usb2000.asp. 

In Figure 117, on the left, it is shown a USB 2000 spectrometer without cover, unveiling its 

internal optical arrangement, and, on the right, one can see a scheme illustrating the path that light 

assumes inside the spectrometer. In the image on the right, number 1 represents the input optical 

fiber that is secured with an SMA connector (number 2), behind which it is mounted a slit. This slit 

consists of a dark piece of material containing a rectangular aperture, which measured 25 µm in our 

case. This aperture regulates the amount of light that enters the spectrometer. Number 3 represents 

the collimating mirror that focuses light entering the optical path towards the grating (number 4). 

The grating, in turn, diffracts light from the collimating mirror and directs it onto the focusing 

mirror (number 5). The focusing mirror receives light reflected from the grating and focuses the 

light onto the CCD detector (number 6). The CCD detector collects the light received from the 

focusing mirror and converts the optical signal to a digital signal (12 bits analog-to-digital 

converter). Each pixel on the CCD detector responds to the wavelength of light that strikes it, 

creating a digital response. The detector is a Sony ILX511 linear silicon CCD array, responsive 

from 200 nm up to 1100 nm with 2048 pixels (14 µm × 200 µm each). The spectrometer then 

transmits the digital signal to the computer application via USB. 

 

  

Figure 117 – (left) Ocean Optics USB 2000 miniature fiber optic spectrometer without the cover. (right) 

Scheme of the light path through the optical arrangement of the USB2000. The photo on left was 

reproduced from http://www.biophotonicsworld.org/system/uploads/0000/0037/IMG_9538.JPG. 

http://www.biophotonicsworld.org/system/uploads/0000/0037/IMG_9538.JPG
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According to the information provided by the manufacturer in its website (vide 

http://www.oceanoptics.com), the spectral resolution of the spectrometer can be obtained from 

the product between dispersion and pixel resolution. The dispersion can be expressed in nm/pixel 

and results from the division of the spectral range of the grating by the number of pixels of the 

detector. For our spectrometer, the spectral range of the grating (#3) was 650 nm, and the detector 

had 2048 pixels. Therefore, the dispersion equals approximately 0.32 nm/pixel. The pixel resolution 

varies with the width of the entrance aperture and can be defined either by the slit size or by the 

diameter of the optical fiber. As we used a 600 µm diameter fiber and the slit size was 25 µm, the 

pixel resolution has been determined by the slit size as ~4.2 pixels. As a result, the spectral 

resolution of this system was 0.32 nm/pixel × 4.2 pixels ≈ 1.34 nm. This fiber with larger diameter 

has been used instead of the previously used ones, because the sensitivity of the spectrometer is 

smaller compared to that of the OSA and we wanted to place as much light as possible at the 

entrance slit of the spectrometer.  

This setup has then been used to acquire hyperspectral images at specific wavelengths of a 

scene composed by the previously imaged red LED bulb (see Figure 114) when it was being hit in a 

spot by a red laser emitting at 654 nm. All the synchronization for the projection of the 

compressive codes and the acquisition of the spectra measured by the spectrometer was executed 

by a LabVIEW™ application specifically designed for that purpose. The communication between 

the control computer and the spectrometer has been established via USB and the communication 

with the LightCommander has been established via HDMI, as before. As the spectral contents of 

the LED bulb and of the laser line were very close, it was not possible to discern the laser spot in a 

photo acquired with a conventional camera (see Figure 118). The spectrum of both light sources 

can be seen in the plot of Figure 119. There, in black it is represented the normalized spectrum 

measured by the USB 2000 spectrometer when the LightCommander was collecting all the light 

from the scene, i. e., its DMD was displaying an all-white image. In red, one can find the 

normalized spectrum obtained along the reconstructed datacube in a spatial position where both 

the LED bulb and the laser spot were represented. The spectrometer integration time was set to 

150 ms. From the results of Figure 119, it can be stated that the reconstructed spectrum closely 

follows the original one. The discrepancies verified may be due to measurement noise and to 

artifacts introduced by the reconstruction process. 
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Figure 118 – Conventional camera photo of the composed scene of a red LED bulb being hit by a spot 

of a laser emitting at 654 nm.  

 

 

Figure 119 – Spectrum of the scene composed by a red LED bulb and by a laser spot at 654 nm. The 

spectrum directly measured with the USB 2000 spectrometer is represented in black while the spectrum 

obtained along the reconstructed datacube is represented in red.  

 

Figure 120 illustrates the images reconstructed with 128 × 128 pixels at 630.88 nm and 

654.03 nm, representing the red LED bulb and the laser spot, respectively. These images have been 

median filtered with a 3 × 3 kernel. 
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Figure 120 – 128 × 128 pixels images reconstructed at 630.88 nm and 654.03 nm, representing the red 

LED bulb and the laser spot, respectively. 

 
The system took approximately 80 minutes to acquire 100% of the measurements for the 

reconstruction of the datacube. 

4.4.3 Concluding remarks 

In the case of the active illumination single-pixel hyperspectral imaging system, though only two 

laser wavelengths were used, one can assume that such system would perform equally well if a 

tunable laser would have been used, instead. If that was the case, the spectral resolution of the 

system would have been dictated by the spectral resolution of the tunable laser.  

Regarding the passive illumination implementation, it was demonstrated, for the first time, a 

hyperspectral CS-based imaging system using optical-domain compression with a spectral 

resolution of 10 picometers. This system is also capable of providing access to the spectrum along 

the reconstructed datacube for a specific spatial region in the image. Another relevant aspect of the 

passive illumination system is the fact that it measures all wavelengths at once; therefore, it offers 

the ability to simultaneously acquire images with high spectral resolution from a large spectral 

range. The performance of the compact passive illumination hyperspectral single-pixel imaging 

system was comparable to that of the system incorporating an OSA at the expense of worse 

spectral resolution (1.34 nm). Due to its compactness and versatility, it is believed that this system 

may be an excellent option for the development of a carry-on hyperspectral imaging system that 

can find applications in agro-food industry or oil industry, for instance. 

In addition, if a DMD is used with dedicated controller boards, its display rate can go up to 

30k patterns/second. At such rate, the only requirement would be the OSA, the spectrometer or 

the light detection device to have an adequate sampling rate and sensitivity.  
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In the scope of CS theory, since fewer measurements are required, a design incorporating CS 

into HSI can significantly reduce the image acquisition time and provide images with high spatial 

and spectral resolutions, even under reduced illumination conditions. 

Moreover, the presented implementations can also be extended to work in spectral regions 

currently inaccessible to conventional imaging arrays, with applications in biology, sensing and 

spectroscopy. Generally speaking, changing the lasing and photodetection range would be the 

major differences one would have to make, since the LightCommander‟s optical path can operate 

up to 1500 nm with minor decrease in the transmittance (this information has been provided by 

Texas Instruments, which is the DMD manufacturing company). If operation in other ranges of the 

spectrum is desired, then, it is possible to find DMD with adequate optical coatings. 

4.5 High Dynamic Range Compressive Imaging Systems 

High dynamic range imaging (HDRI or HDR) is related with the acquisition of images that contain 

a broad range of brightness levels which conventional imaging systems are not able to fully 

apprehend. This can be due to the range of colors, the reflective or transmissive properties, the 

illumination pattern, etc. In a typical digital camera, the value for each color (red, green, and blue) is 

stored using 8 bits. Assuming that minimum intensity is equal to 1 and maximum intensity is equal 

to 256, the dynamic range of such camera is about   dB48256log20 10   for each color. To 

capture a scene that requires a dynamic range of more than 48 dB for each color, a new imaging 

technique is necessary. For that, one of the most popular methods is to capture images of the same 

scene with different exposure times and gains, and then combine the resulting images to construct 

an image with high dynamic range [86, 87]. 

Early work in this area was done by Mann [88, 89], who proposed an algorithm to combine 

different images of the same scene captured with different exposure times. The proposed 

combination algorithm made use of a certainty function that was the derivative of the camera‟s 

response function. Another work in this field was reported by Madden [90] where, once again, 

multiple images of a scene were captured with a CCD using different exposure times. The exposure 

time was changed such that at minimum exposure time there was no saturated pixel, and at 

maximum exposure time some pixels became saturated. By examining each pixel at different 

exposure times, it could be stated that pixels might: 

 be saturated at long exposure time and their values become the maximum allowable;  

 remain dark from either short exposure time or simply lack of light; 

 take values below saturation and above noise level.  

To construct the final HDR image, each pixel of the HDR image was chosen from the 

images to have a value below saturation and to be the most precise relatively to the minimum 

quantization error.  
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There are also some works on extending the dynamic range of color images. Moriwaki [91] 

used the same principle of combining images with different exposure times and constructing an 

adaptive exposure color image. It was shown that the constructed image had better accuracy in 

applications like color discrimination. A work reported by Debevec and Malik [86] used images 

with different exposure times to find the response function of the imaging process up to a scale 

factor and then used this response function to construct HDR images. Mitsunaga and Nayar [92] 

used images obtained with different exposure times to calculate the response time of the imaging 

system and using only the ratio of different exposure times it was possible to accurately recover the 

response function.  

Another technique for improving the dynamic range of an image is to change the exposure 

or intensity of each pixel individually. Nayar and Mitsunaga [93] proposed an imaging system where 

neighboring pixels had different exposures. Their system used a mask with different transparencies 

in front of the detector. Mannami et al. [94] proposed HDR imaging by means of reflective liquid 

crystal. They used LCoS (liquid crystal on silicon) as a spatial light modulator in front of a camera 

to spatially modulate the intensity of each pixel. One of the issues here was the geometric alignment 

between the pixels of the camera and the LCoS and homography was used for geometric 

calibration. Also, an off-line calibration was conducted to infer the radiometric properties of the 

system. At each step they changed the values of the LCoS pixels so that the values of the 

corresponding camera pixels became equal to an optimal value. This optimal value corresponded to 

optimal radiance. Adeyemi et al. [95] used a digital micromirror device (DMD) to acquire an HDR 

image in a microscopy system. They also used the geometrical calibration for corresponding pixels 

of the camera and the DMD. Also, the DMD was characterized for its reflected power in terms of 

the digital values of DMD pixels. They reported that with their system, in principle, they could 

improve dynamic range of an image by a factor of 573, although their experimental results showed 

improvement by only a factor of 5.  

Commercially, there are some HDR imaging systems, such as Viper FilmStream, SMal, 

Pixim, and SpheronVR [87], that can capture and record HDR images in one shot. Fujifilm has 

introduced point-and-shoot cameras that capture HDR from two images with different exposure 

times [96]. 

Having pointed out this, in a preliminary approach, some experiments regarding the subject 

of high dynamic range imaging, in particular the control of image intensity during acquisition, have 

been conducted and will be explained hereafter. For that, consider a situation in which it is required 

to obtain information about the tridimensional profile of an object‟s surface, as the one shown on 

Figure 121, by means of image analysis techniques and optical interferometry.  
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Figure 121 – Picture of a hemispherical surface. 

 

In these cases, usually, a fringe pattern, as shown in Figure 122, is projected into the object. 

Afterwards, the distortion caused by the object surface on the projected pattern is analyzed and that 

allows the determination of the tridimensional profile of the object‟s surface. 

 

 

Figure 122 – Example of a sinusoidal fringe pattern used for the extraction of 3D information about the 

object into which it is projected. 

 

However, due to the object‟s shape and material it may be impossible to acquire a single 

image that enables the analysis of the complete scene at once. This limitation is perfectly visible in 

Figure 123, where it was necessary to adjust the camera‟s gain and exposure time to acquire these 

particular situations. 
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(a) 

 
(b) 

 

Figure 123 – Photos of the hemispherical object from Figure 121 with a sinusoidal pattern projected on 

its surface, acquired with a conventional camera using different exposure times and gains: (a) exposure 

time: 31 ms, gain: 14; (b) exposure time: 230 ms, gain: 81. 

 

In our case, the sinusoidal pattern seen in Figure 123 did not result from an interference 

process but rather it was projected by a video projector that was connected to the computer, 

therefore, avoiding the need for vibration and temperature compensation systems well-known in 

interference based methodologies. For the application in hands, a video projector was also more 

flexible and easy to configure. As it is clear from the photo in Figure 123 (a), the use of low 

exposure times and gain values did not enable the imaging of the fringes projected on the 

hemispherical surface. By contrast, when higher exposure times and gain values were used (Figure 

123 (b)) it was possible to see the fringes projected on the hemispherical surface but the remaining 

of the image appeared saturated.  

In order to overcome this problem, a setup for high dynamic range imaging with adaptive 

intensity control has been devised. Then, for the control of each pixel‟s luminous intensity, we used 

an LCD as the one we used in our transmissive single-pixel camera (see section 4.1.3), which was 

connected to the projector that in turn was controlled by the computer. This LCD exhibited a 

dynamic range of 256 levels, ranging from totally clear to totally blocked. The camera we have used 

(Guppy F-046C) had a 780 × 582 pixels resolution and 8 bit color depth. The used lenses had 

manual zoom and a working distance of 90 mm. As the resolution of the LCD and camera were 

not the same, neither the size of their pixels was, the system had to be initially calibrated. For this, 

reference points were displayed on the LCD and an image of them was acquired with the camera. 

Then, a scale factor was determined for both the vertical and horizontal axes of the image in order 

to establish a correspondence between the pixels on the LCD and those on the camera‟s sensor. 

Given the good optical alignment achieved with the implemented setup, no other aspect had to be 

compensated during the calibration phase.  

A scheme and a photo of the experimental setup that has been implemented can be found in 

Figure 124 and Figure 125, respectively. 
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Figure 124 – Scheme of the experimental setup used for high dynamic range imaging with adaptive 

intensity control. 

 

 

Figure 125 – Photo of the experimental setup used for high dynamic range imaging with adaptive 

intensity control. 

 

A LabVIEW™ application was developed to control all the acquisition parameters from the 

camera and perform all the image processing and analysis tasks. Finally, the information obtained 

was used to create a mask that would be applied to the LCD and that would allow to control the 

intensity of the different regions in the image. 

A flowchart for the developed application can be found in Figure 126. 
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Figure 126 – Flowchart of the application developed for adaptive intensity control. 

 

In the beginning of the application, the mask applied to the LCD induced the maximum 

possible attenuation to all the pixels and the camera‟s exposure time was configured to the 

minimum possible. After, an image was acquired and the N pixels with highest intensity were 

analyzed. Based on that, the camera‟s exposure time was adjusted so that the intensity of those N

pixels would become close to the saturation level (maximum end of the dynamic range). Next, a 

new image was acquired and the pixels whose intensity was below a predefined threshold were 

located. In the end, the corresponding LCD pixels were changed so that the resulting intensity of 

the respective pixels would become close to a predefined level (minimum end of the dynamic 

range). 

Figure 127 shows some of the results obtained with the previously described system. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 127 – Results obtained with the adaptive intensity control imaging system for the acquisition of 

high dynamic range images of a hemispherical surface (top row) and of a metallic and highly reflective 

object (bottom row): (a) and (d) initial image; (b) and (e) final image; (c) and (f) mask applied to the LCD 

that provided the acquisition of the final image. 

 

From the analysis of the images in the top row of Figure 127, it can be stated that the final 

result served its purpose as we can clearly distinguish the fringe pattern where previously was an 

almost totally saturated region. The same holds true for the results shown in the bottom row of 

Figure 127, but in this case, due to the limited dynamic range of the LCD, the applied mask was not 

able to attenuate the intensity of the saturated pixels as much as it would be desirable. 

 

From a general standpoint, it can be concluded that the goal to which we had proposed 

ourselves has been attained, using an LCD as a spatial light modulator. However, as we can see 

from the images of Figure 127, an LCD with a higher dynamic range could reveal itself 

advantageous in situations where the objects present evident reflective properties. It can also be 

stated that the results obtained strongly depend on the lighting conditions and on the object‟s shape 

and material, therefore, reinforcing that there will always be a strong compromise between the 

values used for the camera‟s parameters, such as exposure time and gain, for instance, and the final 

results. Above all, this preliminary approach showed to be effective regarding the control of local 

intensity during acquisition of images with very contrasting reflectivity profiles. 

Following these experiments, the combination of high dynamic range imaging and 

compressive imaging has been envisioned as it could benefit from the advantages of both imaging 

modalities, such as increasing the dynamic range of an image and create the image faster and/or in 

wavelengths where conventional cameras do not work. For example, in fluorescence imaging there 
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is a demand for HDR cameras suitable for the infrared region of the spectrum [97]. Such cameras 

are expensive, so high dynamic range compressive imaging (HDRCI) may be a solution for this 

type of imaging.  

Therefore, HDRCI constitutes a computational imaging system capable of controlling its 

radiometric properties and construct an image with extended dynamic range based on the data 

obtained with a single detector. As with the other imaging systems previously described in this 

thesis, the HDRCI system can also operate in active illumination mode or in passive illumination 

mode, as will be presented after. In order to demonstrate the potential and benefit of using the 

HDRCI system, a synthetic scene consisting of some black characters on a white and gray 

background (see Figure 128) was created. On the left half of the scene, the background was 

represented in a dark gray tone to mimic a shadow or a region with reduced illumination, thus 

causing that portion of the image to have low contrast. The full scene measured 11 × 11 cm2 and 

the characters exhibited a height of 45 mm with widths ranging from 9 mm (character “I”) to 40 

mm (character “C”). 

 

 

Figure 128 – Synthetic scene created to evaluate the performance of the HDRCI system. 

 

This scene was printed on a standard white paper and a conventional camera has been used 

to capture images of it (see Figure 129).  
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(a) 

 
(b) 

 

Figure 129 – Photos of the scene depicted in Figure 128, acquired with a conventional camera, using 

different exposure times: (a) 1/320 s; (b) 1/25 s. 

 
As one can easily conclude from the photos of Figure 129, it is difficult to simultaneously 

acquire with good contrast both halves of the scene. Therefore, in order to cope with this difficulty, 

these photos were combined into a high dynamic range image with MATLAB®. The resulting 

image can be seen in Figure 130. Tone mapping has been used in order to display the high dynamic 

range image on an 8-bit display (a low dynamic range display). 

 

 

Figure 130 – 128 × 128 pixels high dynamic range image resulting from the combination of the photos 

from Figure 129 captured with different exposure times. 

 
It is clear from Figure 130 that the content in the left half of the image is now clearly 

perceptible and the right half of the image is not saturated. The following sub-sections will explain 

how compressive imaging systems can be used to obtain similar results, either with active 

illumination, or with passive illumination. 
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4.5.1 Active illumination high dynamic range compressive imaging system 

As it has been described and analyzed before in this thesis, the light used to illuminate a scene may 

contain random codes used to compress the spatial information and enable the reconstruction of 

images based on the data acquired with a single light detector. Here, the potential of that active 

illumination will be extended to enable the reconstruction of high dynamic range images.  

It has also been previously reported [86-92] that a common technique for HDR imaging is to 

combine a series of images acquired with different exposure times. In the context here presented, 

changing exposure time in compressive imaging has different meaning from what it does in 

conventional imaging. Therefore, in compressive imaging, exposure time cannot be changed as in 

conventional imaging and a parameter equivalent to exposure time has to be defined. Equivalent 

exposure time can be defined as a combination of masking some regions/pixels and changing the 

radiance, the integration time of the single detector (e.g. photodiode) or the gain of the 

amplification circuit. In other words, for changing the equivalent exposure time, some pixels are 

blocked/unblocked and the second parameter, which is radiance from object, integration time of 

detector, and/or gain of amplification circuit, is increased/decreased. 

The basic concept of this high dynamic range compressive imaging technique is depicted in 

the flowchart of Figure 131. First, an image is acquired using standard compressive imaging, then 

regions/pixels with relatively high intensity are identified and a corresponding mask is created. 

Those regions/pixels are the ones that most likely will be saturated when the equivalent exposure 

time is increased and as a result no relevant information can be extracted from them. The threshold 

used to select which regions/pixels are blocked can be defined from the histogram or some other 

statistics of the reconstructed image. All the codes for acquiring the next image, via compressive 

imaging technique, are multiplied by the mask in order to block regions/pixels with high intensity. 

Since the mask used in this technique is binary and the compressive codes are binary too, the result 

of their combination will also be binary. This procedure is finished when the maximum number of 

iterations is reached. This means, for instance, that the equivalent exposure time cannot be further 

adjusted, that a sufficient number of images has been acquired or that another criterion has been 

met. In this description, the terms regions and pixels have been distinguished because one might 

want to operate either at the pixel level or at the region level (group of pixels), depending on the 

problem at hands. 
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Figure 131 – Flowchart describing the procedure for HDRCI by means of acquiring images with different 

equivalent exposure times. 

 

The setup that has been used for these experiments is the same that has been used for the 

definition and characterization of the active illumination single-pixel monochrome imaging system 

(see Figure 51 and Figure 52). The software has only been changed in order to incorporate the 

mask into the projected codes. In Figure 132 a photo of the active illumination HDRCI system 

under operation can be seen. 

 

 

Figure 132 – Photo of the active illumination HDRCI system under operation. 

 
For the acquisition of the first image, the gain of the amplified photodiode circuit was set to 

50 dB so that when a white image was projected on the scene, the voltage output would become as 

close as possible to the maximum output voltage (10 V) without saturating. This was important to 

attain the largest possible dynamic range for the measurements and consequently be able to 

distinguish from noise the small variations of the voltage output caused by the compressive codes. 
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Then, all the binary compressive codes were projected and the respective measurements were 

performed. The image resulting from this process is presented in Figure 133 and can be understood 

as the equivalent of acquiring an image with a conventional camera using a low exposure time. 

 

 

Figure 133 – 128 × 128 pixels image initially obtained with low equivalent exposure time and without 

mask, using the active illumination HDRCI system. 

 
Next, the right half of the image has been identified as the region that most likely would 

become saturated when the equivalent exposure time would be increased and, therefore, it was 

defined a black mask for that region. After, a half-white half-black image has been projected on the 

scene, with the black half corresponding to the right half of the scene, and the gain of the amplified 

photodiode circuit has been adjusted in order to place again the output voltage as close as possible 

to the maximum value without saturating. The gain value that has been found to accomplish this 

was 70 dB. Finally, all the measurements relative to the compressive codes including the mask were 

conducted and the image of Figure 134 was reconstructed. This image can be seen as the equivalent 

of acquiring an image with a conventional camera using a longer exposure time, disregarding the 

information contained in the overexposed region (right half). 

 

 

Figure 134 – 128 × 128 pixels image obtained with equivalent long exposure time and with a mask totally 

blocking the right half part, using the active illumination HDRCI system. 
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The results presented in Figure 133 and Figure 134 have been filtered with the selective local 

median filter (see Figure 80) in order to remove spurious noisy points that could arise from the 

reconstruction process and from noise in the measurements. 

In the end, the two images obtained with different equivalent exposure times were combined 

into a high dynamic range image with MATLAB® and were tone-mapped into 8 bits for display. 

The resulting high dynamic range image is presented in Figure 135. The PSNR and normalized 

cross-correlation metrics were used to quantify the similarity of this image with that resulting from 

the combination of the two images acquired with a conventional camera using different exposure 

times (see Figure 130) and the obtained values were 10.73 dB and 0.46, respectively. 

 

 

Figure 135 – 128 × 128 pixels high dynamic range image resulting from the combination of the images 

acquired with different equivalent exposure times of Figure 133 and Figure 134. Tone mapping has been 

used to display the image with 8 bits. 

 

From the result of Figure 135, it can be said that it was possible to increase the pixel values 

of the regions with very low reflectance without compromising the quality of the image 

corresponding to bright regions, hence increasing the dynamic range of the imaging system. 

 

As stated before [93-95], another technique that is commonly used in HDRI adaptively 

controls the scene radiance for each region/pixel. Then, the information relative to the radiance of 

each pixel is combined with the acquired images in order to produce HDR images. Here, we have 

again used the projected light to compress the spatial information but it has also been used to 

control the radiance or intensity of the scene.  

The flowchart describing the algorithm implemented for this HDRCI technique is depicted 

in Figure 136. 
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Figure 136 – Flowchart of the algorithm implemented for HDRCI by means of intensity control. 

 
First, we select a proper level for the ADC gain. The proper level at this step can, again, be 

defined as the level at which the output voltage becomes as close as possible to the maximum of 

the voltage range, without saturating, when a white image is being projected on the scene. Second, 

an image is constructed by the use of the compressive imaging technique. Pixels that have values 

greater than a threshold are identified and, again, this threshold value can be defined on the basis of 

the histogram of the reconstructed image or some other statistics of the reconstructed image. Next, 

the identified pixels with values greater than the threshold are attenuated in such a way that their 

values reach above the noise level and far below saturation. This level depends on the number of 

steps the algorithm will iterate and the amount of increase in the ADC gain. For example, suppose 

that the number of iterations for the algorithm is two and that each pixel of the attenuator has 8 

bits. Therefore, on average, for each iteration 4 bits can be used, giving an attenuation factor of 16 

(24). Hence, a pixel with maximum intensity (or a saturated pixel) can be reduced by a factor of 16 

relative to the highest possible level (saturation level). The level of ADC gain shall be determined 

accordingly, based on the percentage of attenuation for the whole image. For instance, if the 

average attenuation of image intensity is 80% (for an attenuation factor of 5
100

80
1/1 








 ), then 

the gain of ADC will be increased by a factor of 5. As the ADC gain changes, the noise level will 

also change, thereby affecting the noise level of quantized samples, unless the dominant noise of 

quantized samples is the noise of the ADC for all gain levels; therefore, increasing the ADC gain 

would not change the noise level significantly. This is an acceptable assumption for the 
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implemented system. The average responsivity of the photodiode is approximately 0.5 A/W, and 

the bandwidth of the system varies with the selected gain. The following table presents the noise 

equivalent power of the photodiode and the maximum noise current for 50 dB and 60 dB gains, 

which were the minimum and maximum gain values used during these experiments. 

 

Table 28 – Noise equivalent power and maximum noise current for the PDA100A amplified photodiode 

when the gain of 50 dB or 60 dB was chosen. 

Gain Bandwidth 
Noise equivalent 

power 
Maximum noise current 

50 dB 20 kHz 3.0 × 10-12 W/ Hz  3.0 × 10-12 ×
31020 × 0.5 = 21.21 × 10-11 A 

60 dB 6 kHz 2.2 × 10-12 W/ Hz  2.2 × 10-12 ×
3106 × 0.5 = 8.52 × 10-11 A 

 

 

The corresponding gain factors are 2.38 × 105 V/A and 0.75 × 106 V/A, which result in 

noise voltages of 50.48 µV and 63.90 µV, for a gain of 50 dB and 60 dB, respectively. Since the 

sensitivity of the ADC (National Instruments™ PCI-6221 DAQ board) is 97.6 µV at maximum 

voltage range, it can be said that the dominant noise is ADC noise at all gain levels. 

Next, the results obtained with this HDRCI technique are presented. As expected, the image 

acquired initially using standard compressive imaging was equal to that of Figure 133 and the image 

reconstructed after applying an attenuation mask to the projected compressive codes is shown in 

Figure 137 (a) along with the used mask (see Figure 137 (b)).  

 

 

 
(a) 

 
(b) 

 

Figure 137 – (a) 128 × 128 pixels image reconstructed with the active illumination HDRCI system when 

the mask displayed in (b) was used. The mask reduced 60% the radiance of the right half of scene. 
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In order to obtain the HDR image, the image in Figure 137 (a) has been divided, pixel by 

pixel, by the mask displayed in Figure 137 (b). Tone mapping has been used to display the HDR 

image with 8 bits (see Figure 138).  

 

 

Figure 138 – 128 × 128 pixels high dynamic range image resulting from the division of the image in 

Figure 137 (a) by the mask displayed in Figure 137 (b). Tone mapping has been used to display the image 

with 8 bits. 

 

Once again the metrics were used to quantify the quality of the reconstructed images and the 

PSNR and the maximum of the normalized cross-correlation obtained for the image of Figure 138 

relatively to the image of Figure 130 were, respectively, 13.63 dB and 0.81. These values support the 

opinion derived from human visual assessment that the image of Figure 138 has better quality than 

the image of Figure 135. 

In this active illumination setup, the increase in dynamic range of the image is limited by the 

dynamic range of the projector. Figure 139 shows the intensity range of the projector as it projects 

a series of grayscale images ranging from darkest (an image with pixel values of 0) to brightest 

(image with pixel values of 255). For each gray level, 10000 samples were acquired and averaged to 

define the corresponding intensity. The dynamic range of the projector is ∼134.32, which is 

∼21.28 dB. So theoretically, using this setup, the dynamic range of an image can be enhanced by as 

much as 21.28 dB. 
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Figure 139 – Normalized intensity measured by the photodiode as a function of the gray level [0, 255] of 

the image projected with the Epson® video projector.  

4.5.2 Passive illumination high dynamic range compressive imaging system 

Here, the HDRCI techniques that were applied in the previous section will be exploited in a passive 

illumination configuration. For these experiments, the scene was being illuminated by the projector 

with a white image and the LightCommander was collecting the light from the scene and forming 

an image of it on the DMD. There, the compressive codes for spatial compression and the 

attenuation masks were applied to the incoming light field resulting in incoherent projections that 

were captured by the photodiode. The corresponding output voltages were then acquired by the 

computer by means of the ADC and gathered to enable the subsequent reconstruction of the 

respective image. In Figure 140 it can be seen a scheme of the implemented setup. 

 

 

Figure 140 – Scheme of the passive illumination HDRCI system. 
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In Figure 141 a photo with a top view of the setup used for passive illumination HDRCI can 

be seen. It is possible to observe the scene being illuminated with a white image projected by the 

Epson® video projector and the LightCommander. In Figure 142, it is presented another photo of 

this setup from another angle, from which it is visible the amplified photodiode mounted in front 

of the LightCommander light tunnel. 

This setup has also been used to acquire high dynamic range images of the synthetic scene 

depicted in Figure 128. Similarly to what has been previously reported for other compressive 

imaging systems, during these experiments the sampling frequency was 250 kSamples/s and 10000 

samples were averaged for each measurement.  

Initially, the technique of combining images acquired with different exposure times into a 

single HDR image has been used. For that, the scene was illuminated by the video projector with a 

white image and the gain of the amplified photodiode circuit was set to 50 dB because that was the 

gain that would cause the output voltage to become as close as possible to maximum value (10 V), 

without saturating. Then, an image has been acquired and the result is shown in Figure 143. 

 

 

Figure 141 – Top view photo of the passive illumination HDRCI system. 

 

The image in Figure 143 can be seen as the equivalent of acquiring an image with a 

conventional camera using a low exposure time. Consequently, the right half of the scene has been 

identified as the one that would likely become saturated when the equivalent exposure time would 

be increased and it was decided that a black mask should be applied to that region. Then, a half-

white half-black image was projected on the scene and the gain of the amplified photodiode circuit 

was adequately adjusted in order to increase the equivalent exposure time. The new gain value has 

then been set to 60 dB. Finally, the black mask was included in the codes and all the measurements 

were performed. The resulting image is displayed in Figure 144 and can be interpreted as the 

equivalent of acquiring an image with a conventional camera using a longer exposure time, 

disregarding the information contained in the overexposed region (right half). 
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Figure 142 – General view of the passive illumination HDRCI system during operation. Next to the 

lower right corner of the photo, it is possible to see the amplified photodiode mounted in front of the 

LightCommander light tunnel. 

 

Figure 143 – 128 × 128 pixels image initially obtained with low equivalent exposure time and without 

mask, using the passive illumination HDRCI system. 

The images in Figure 143 and Figure 144 were filtered with the selective local median filter 

to remove spurious noisy points. These two images were combined into a HDR image and the 

result of that combination is presented in Figure 145. Tone mapping has been used to display this 

image with 8 bits. From the analysis of that image one can state that it yields good contrast all over 

its representation, therefore leading to the conclusion that the system was able to effectively extend 

the dynamic range of the acquired image. The results of the quality assessment obtained with the 

PSNR and normalized cross-correlation for the image of Figure 145 relatively to the image of 

Figure 130, were 10.13 dB and 0.39, respectively. 
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Figure 144 – 128 × 128 pixels image obtained with long equivalent exposure time and with a mask totally 

blocking the right half part, using the passive illumination HDRCI system. 

 

 

Figure 145 – 128 × 128 pixels high dynamic range image resulting from the combination of the images 

acquired with different equivalent exposure times of Figure 143 and Figure 144. Tone mapping has been 

used to display the image with 8 bits. 

 

Following these experiments, we pursued the acquisition of HDR images with the passive 

illumination compressive imaging system by means of intensity control. In a similar manner to that 

employed with the active illumination HDRCI system, an attenuation mask has been defined to the 

brighter part of the image in order to improve the contrast in its darker part. The image initially 

acquired without any attenuation mask was the same as that of Figure 143. Then, a mask capable of 

reducing the radiance of the right half of the scene by 50% has been multiplied by the compressive 

codes and the resulting image is displayed in Figure 146 (a). This amount of attenuation has been 

chosen because it was the one found to be capable of providing a reconstructed image with an 

almost uniform background both in the darker region and in the brighter region, thus indicating 

how much the radiance level varied from one region to the other. 
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(a)_ 

 
(b) 

 

Figure 146 – (a) 128 × 128 pixels image reconstructed with the passive illumination HDRCI system when 

the mask displayed in (b) was used. The mask reduced 50% the radiance of the right half of scene. 

 
The image in Figure 146 (a) has been divided by the mask in Figure 146 (b), in order to 

produce a HDR image (see Figure 147). Calculating the PSNR and the maximum of the normalized 

cross-correlation of the image of Figure 147 relatively to the image of Figure 130 the obtained 

values were 11.2 dB and 0.59, respectively. Comparing these results to those obtained for the image 

of Figure 145, one could be lead to conclude that the quality of the image of Figure 147 was better, 

what would be contrary to the opinion held by human observers. 

 

 

Figure 147 – 128 × 128 pixels high dynamic range image resulting from the division of the image in 

Figure 146 (a) by the mask displayed in Figure 146 (b). Tone mapping has been used to display the image 

with 8 bits. 

 

If the active and passive illumination HDRCI systems are compared for the case where 

HDR images resulted from the combination of images acquired with different equivalent exposure 

times, it can be stated that both performed well, although the passive illumination system seemed to 

be the one which have yielded less noisy images. Even though this conclusion is true based on the 
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evaluation performed by human observers, it was not confirmed by the values obtained with the 

metrics. This can be due to the fact that the output voltage generated by the amplified photodiode 

circuit for the light coming from the DMD does not exhibit any ripple, opposed to that verified 

when the LCD of the video projector are used as spatial light modulators (see Figure 55). Despite 

this fact, that ripple did not compromise the results obtained with the active illumination HDRCI 

system because the output voltage exhibited a good dynamic range (up to 10 V) and the averaging 

of the collected samples minimized its effect.  

Perhaps surprisingly, the performance of the passive illumination HDRCI system for the 

case where HDR images were obtained by means of intensity control was not that satisfactory and 

it was considerably worse when compared to that of the active illumination HDRCI system. This 

has been investigated and it is believed that it greatly depends on the fact that light intensities from 

the DMD are produced by pulse width modulating the mirrors, thus causing the perceived gray 

scale to be proportional to the percentage of time the mirror is “ON”. The human visual system 

effectively integrates the pulsed light to create the perception of the desired intensity [98]. For the 

sake of clarification, let‟s consider the diagrams in Figure 148. In the binary PWM pixel 

representation in Figure 148, a pixel's LSB consumes 1/(2n-1) of the total refresh period, where n is 

the number of bits used to define the several intensities. The LSB+1 bit consumes double the LSB 

time. This pattern continues for all the bits of the given pixel. In practice, the LightCommander 

uses 8 bits and if the refresh rate is set to 60 Hz, which is the maximum accepted value, the bit 

times are as follows: 

 

Bit 0: 62.16 µs Bit 4: 996.92 µs 

Bit 1: 126.71 µs Bit 5: 1991.44 µs 

Bit 2: 251.02 µs Bit 6: 3980.49 µs 

Bit 3: 499.65 µs Bit 7: 8204.18 µs. 

 

 

Figure 148 – Binary PWM sequence pattern with two examples of how intensity values are generated 

with 5 bits.  
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To confirm this, light was launched into the LightCommander‟s tunnel and the DMD 

mirrors were all set to represent different gray levels. The modulated light was then projected by the 

LightCommander and was measured by the amplified photodiode circuit. The plots of the 

measured signals are presented in Figure 149 for different gray levels. These signals were acquired 

using a sampling frequency of 250 kSamples/s. 

 

 

Figure 149 – Plots of the measured PWM signals when different gray levels were being assigned to the 

DMD pixels. 

 

As it can be seen in the plots of Figure 149, the time patterns exhibited by the modulated 

light directly depend on the gray level assigned to the DMD pixels, thus corroborating the 

explanation given with the support of the diagrams in Figure 148. Additionally, PWM methods can 

result in the display of visual artifacts that the viewer can perceive (as we were told by the Texas 

Instruments technical staff) and, therefore, there was the need to develop techniques to mitigate 

these effects. For that, in the case of the LightCommander, each bit segment is divided and shown 

at multiple occasions, still ensuring the sum of all sub-segments equals to the whole allocated bit-

time. 

In this imaging setup, the increase in dynamic range of the image is limited by the dynamic 

range of the DMD. The same procedure which has been followed for the active illumination 

system with the Epson® projector (see Figure 139), was used to quantify the intensity range of the 

passive illumination system with the DMD and the results are shown in Figure 150. Despite 

exhibiting a dynamic range of ≈472.94, which is ≈26.75 dB and 5.47 dB higher than in the passive 

illumination homologous case, the average intensity of the light output varies in an irregular fashion 

with the change of the gray level set on the DMD. Again, this is justified by the PWM used for the 

definition of the different gray levels. 
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Figure 150 – Normalized intensity measured by the photodiode as a function of the gray level [0, 255] of 

the image projected with the LightCommander. 

 
Observing the plot of Figure 150 it is possible to emphasize the existence of a pattern-like 

structure occurring every 8 peaks, being the only difference the offset which seems to be increasing. 

This repeatability may be another indication of the effect of the PWM employed to define the 256 

gray levels using 8 bits.  

However, as expected, the gray levels corresponding to black (0) and white (255) correspond 

to the minimum and maximum output on the photodiode amplification circuit, respectively. This 

happens because for these extreme values all the mirrors are either off or on, therefore producing a 

flat output signal.  

4.5.3 Concluding remarks 

The content presented in these sections dealt with a problem that is in the basis of the need for 

high dynamic range imaging techniques. In other words, when one is in face of a scene with a broad 

range of intensities, usually, it is required to employ techniques for the extension of the dynamic 

range of the acquired images in order to encompass the brightest and darkest areas there existing, 

which is not possible using standard digital imaging or photographic techniques.  

In particular, the principal goal was to conceive and demonstrate HDRI systems which could 

also benefit from compressive imaging techniques. For that, initially, a preliminary imaging system 

that used an LCD as a spatial light modulator, to adaptively control the intensity of a scene, and 

changed the exposure time of the camera in an adequate manner was described. Although the 

results obtained were useful to demonstrate its potential, they also served to draw the attention to 

some of its limitations, such as the dependence on the dynamic range of the SLM and on the 
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lighting conditions, for instance. Despite this, it constituted a solid starting point to the 

development of high dynamic range compressive imaging systems.  

In that aim, two techniques have been explored: one which combines images acquired with 

different exposure values and another which controls the radiance of the scene being acquired. 

These techniques have been indifferently employed in both active and passive illumination 

configurations and, among all the combinations, the implementation of the technique for radiance 

control with the active illumination system was the one that yielded best overall results. This was 

supported both by the results obtained with the metrics and by the opinion of human observers. 

Regarding the technique that combines images acquired with different exposures into a HDR 

image, based on human opinion, it can be said that the passive illumination system was the one that 

produced best results, although the results obtained with the active illumination system were also 

satisfactory and the results of the metrics were better for this system. 

The PWM applied to the DMD to produce different gray levels strongly compromised the 

performance of the passive illumination system when it was being used to control the radiance of 

the scene. Maybe, an interesting solution would be to modify the binary random compressive codes 

so that the density of white pixels and black pixels in the codes would be higher, respectively, in the 

regions that appear darker and brighter in the reconstructed images. With that change of density in 

the black and white pixels the randomness of the codes would be reduced and could eventually 

limit the reconstruction of the images. Consequently, this solution could only be used as long as the 

modified codes could guarantee the reconstruction of the images. 

One common advantage to all the HDRCI systems here demonstrated is that there is no 

need for geometrical calibration since they require a detector with a single pixel. Depending on the 

scenarios where these systems can be used, it may be necessary to develop automatic procedures to 

define the pixels/regions to which the high dynamic range compressive imaging techniques are 

applied. 

4.6 CMOS Based Compressive Imaging Sensor 

In this section, an algorithm that was implemented for the generation of compressive codes to be 

used within a CMOS based imaging sensor will be presented. The development of this imaging 

sensor lies outside of the scope of the present work, but the algorithm here presented can be seen 

as an additional functionality.  

4.6.1 Overall architecture and operation 

This imaging sensor is based on a Single Instruction Multiple Data (SIMD) analog processor (see 

Figure 151). Each pixel has a photosensor, a set of analog memories and a multiplier. The 
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operations are done in parallel in all pixels. Each photosensor converts the light intensity into a 

current and its value is stored in an analog memory. 

The write line (WL) and read line (RL) control if a pixel is written or read, respectively: if 

both vertical WL (WLV) and horizontal WL (WLH) are active, the corresponding pixel is written; 

the same logic happens for RL. The value to be written or read is sent to/from a bus that is 

connected to all pixels. The boundary line (BL) breaks the connection between pixels: the vertical 

BL breaks the vertical connections and the horizontal BL breaks the horizontal connections. This 

way, operations defined by WL and RL can be done in sections defined by BL. For instance, if BL 

is defined to connect adjacent horizontal pixels two-by-two (BLV = [1 1 1 1 …] and BLH = [1 0 1 

0 ...]), the WL and RL can be set to patterns WLH = [0 1 0 1 ...] and RLH = [1 0 1 0 …] to copy 

each left column to the right column within each section. 

 

 

Figure 151 – Architecture of the CMOS based imaging sensor. 

 

Using the aforementioned lines, it is possible to implement operations such as upsizing and 

downsizing of images. The upsizing and downsizing are performed in one dimension at a time. 

Initially, the horizontal dimension is collapsed or expanded by transferring each column at a time. 

Then, the vertical dimension is collapsed or expanded by transferring each row in the same manner. 

Convolution is another operation exhibited by the imaging sensor and it makes use of the multiplier 

in each pixel. The coefficients of each kernel row are provided by the Kernel Row component and 

redirected by the Analog Router component to the pixels. The Kernel Row can supply up to 32 

coefficients and the Analog Router repeats the kernel sequence throughout the pixel array. By 

setting WL, RL and BL in a proper sequence, convolutions can be performed with an order of 

complexity O(n²), where n is the width of the kernel. After, the values to be transmitted off-chip 

are stored in the analog memories of each pixel. RL can control the pixels that are read and the 
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current from each pixel that is being read is added to a global bus (by Kirchhoff‟s Current Law) and 

read externally. The main specifications of the imaging sensor integrated circuit (IC) are as follows: 

 51 × 51 μm2 pixel size; 

 38 × 38 pixels;  

 3.3 × 3.3 mm2; 

 Austria Microsystems 0.35 μm OPTO technology, 

and it is expected the following performance: 

 60 μW / pixel @ 3.3V; 

 + 500 fps @ 1 MHz – operating as a conventional imaging sensor; 

 2.88 GOPS (Giga-Operations Per Second); 

 Power efficiency: 28.88 GOPS/W; 

 Area efficiency: 265 MOPS/mm2. 

 

Figure 152 contains the layout of the IC for the CMOS based imaging sensor. 

 

 

Figure 152 – Layout of the integrated circuit of the imaging sensor. 

4.6.2 Compressive sensing based mode of operation 

The proposed architecture and main functionalities of the imaging sensor were explored in order to 

implement a process for the generation of compressive codes that could be used to provide 

measurements towards compression and reconstruction of images. So, the idea was to randomly 

initialize the read lines (RL) with two arrays that would define which pixels would be read or not. 

The intent of this random selection of pixels was to produce the same result as that depicted in 
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Figure 46, i.e., do the dot-product of a binary random matrix by the values of the pixels in the 

sensor. The next steps consist in summing the current of all the selected pixels and register the 

result as the measurement corresponding to that code. In the end of each step, the RL arrays are 

circularly shifted to produce another compressive code for the next measurement. This process is 

repeated until the desired number of measurements, defined by the chosen amount of compression, 

is achieved. The shifts of the RL arrays are not executed simultaneously, otherwise one would not 

be able to produce as many codes as those required to acquire an image without compression. To 

better illustrate this description, the following example is presented, assuming that the sensor has 

4 × 4 pixels, for the sake of simplicity. 

If one considers the following arrays for the initial state of the vertical and horizontal read 

lines, respectively: 





















1

0

1

1

RLV   0101RLH  

the result of their multiplication becomes: 

 





















0101

0000

0101

0101

RLHRLV . 

 

Then, if the horizontal read line array (RLH) is circularly shifted it assumes the following 

representation: 

 1010RLH  

 

and the following result is obtained for the multiplication of the two random arrays. This result 

represents the new and succeeding compressive code.  

 





















1010

0000

1010

1010

RLHRLV  

 

This methodology has then been used to perform simulations and evaluate its feasibility. For 

that it was used the 32 × 32 pixels image of Figure 153, containing several geometric shapes and 

different gray levels. 



Compressive Sensing Based Single-Pixel Imaging Systems 

161 

 

Figure 153 – 32 × 32 pixels image with several geometric shapes and different gray levels used in the 

simulations performed to study the feasibility of the algorithm created to generate binary random 

compressive codes to be used by the CMOS based imaging sensor. 

 
Figure 154 presents the results of the reconstruction of the image of Figure 153 for different 

amounts of compression. There it can be seen images reconstructed with 10% and 50% of the total 

number of measurements and the respective PSNR values calculated relatively to the original image 

of Figure 153. 

 

 

 
(a) 

 
(b) 

 

Figure 154 – 32 × 32 pixels reconstructions of the image in Figure 153. The reconstructions were 

performed using: (a) 10% (PSNR = 5.32 dB); (b) 50% (PSNR = 12.51 dB), of the total number of 

measurements (1024). The PSNR were calculated relatively to the image of Figure 153. 

4.6.3 Concluding remarks 

This work enabled the successful demonstration of the feasibility of the developed algorithm to 

generate binary random codes that can be used by the CMOS based imaging sensor to effectively 

compress and allow the reconstruction of the images from a subset of the measurements in a 

compressive sensing based manner. 
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Its use opens the possibility to reduce the consumed power since many of the components 

can be deactivated. Once it is possible to reconstruct an image using fewer measurements than the 

total number of pixels, it is possible to increase the frame rate when the imaging sensor is operating 

in the compressive sensing based mode. 

The capabilities of the imager to sense in a reconfigurable way and process data in the analog 

domain provide a versatile platform for compressive sensing operations. Therefore, supported by 

the outcomes of this work, it has been fabricated an IC with compressive sensing based capabilities. 

Such IC will be in the basis of a low powered, compact and fast imager based on compressive 

sensing. Besides the compressive sensing based imaging capabilities, the presented architecture is 

also capable of executing operations such as upsizing, downsizing and convolution. 

Following this work, it should be mentioned that a Provisional Patent Request has been 

submitted for an imager with compressive imaging capability. 
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Chapter 5. Applications 

This section illustrates three applications of compressive sensing based single-pixel imaging 

systems. A passive illumination single-pixel monochrome imaging system has been used in two 

different scenarios. It has been assembled on a stereo microscope to acquire microscopic images 

and it has also been combined with pattern recognition and machine learning mechanisms to 

perform face detection without explicit image reconstruction. A passive illumination single-pixel 

hyperspectral imaging system has been used to acquire hyperspectral images of grapes, which 

contain important spectroscopic information useful for the analysis of their physicochemical 

properties.  

5.1 Microscopic imaging using a passive illumination single-pixel 

monochrome imaging system 

For these experiments, the LightCommander has been assembled on a Leica stereo microscope 

(Leica S6D) using adaptor optics to form an image of the scene under observation on the DMD. 

The optical adaptation was achieved using a 1.0x lens (Leica – reference 10445930) and a 2.5x 

adaptor tube (Leica – reference 10446175) connected with a T2 adaptor ring, as can be seen in 

Figure 155. There, it is also observable the Thorlabs PDA100A-EC amplified photodiode that was 

positioned on the output of the LightCommander‟s light tunnel and a 12V-35W halogen bulb that 

has been used to illuminate the scene. The scene consisted of a piece of text printed in black on 

standard white paper with the characters “ste” which was being illuminated in transmission. The 

microscope was set to its lowest magnification (0.63x) and Figure 156 shows 128 × 128 pixels 

images acquired with the single-pixel camera and with a conventional camera, for comparison 

purposes. The dimensions of the scene under observance corresponded to a square with 5.4 mm 

which yielded a spatial resolution of approximately 42.19 µm/pixel for an image with 128 × 128 

pixels. Despite the noise evident in the image acquired with the single-pixel camera, it can be stated 

that both images are manifestly similar, attesting the feasibility of the single-pixel imaging system to 

be used in such application. As the amount of light collected by the microscope optics was rather 

reduced, the main difficulty was related with the establishment of good dynamic range for the 

compressive measurements which strongly depended on the sample and on the intensity of the 

illumination. It should be noted that this system also had the potential to be used for the acquisition 

of color and multispectral images, for instance, once the adequate spectral filtering or illumination 

would have been used, respectively.  
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Figure 155 – Photo of the LightCommander with the photodiode in front of the light tunnel assembled 

on a Leica microscope. 

 

  

Figure 156 – 128 × 128 pixels result images acquired with: (left) the compressive single-pixel imaging 

system; (right) a conventional camera; assembled on the microscope, for a scene consisting of the 

characters “ste” printed in black on standard white paper. 

5.2 Face detection without explicit image reconstruction 

As demonstrated by Duarte et al. [99], compressive sensing can be further extended to statistical 

inference related tasks, such as detection, classification and recognition since the signal 

reconstruction is not explicitly required, but only the relevant statistics for the problem at hand. 

Face detection which nowadays has become a widespread tool due to the proliferation of mobile 

devices and social networks could eventually represent another application of compressive sensing 
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within this context. Following this idea, it was envisioned and analyzed, in a preliminary manner, 

the possibility of detecting faces in images without explicit reconstruction. So, for this, the main 

idea was to acquire incoherent projections of images, of faces and different objects, with Hadamard 

based codes and, then, use those projections to train a classifier. Therefore, the problem consisted 

of classifying if the content of a specific image corresponded either to a face or to an object. For 

that, two sets of images were created, one containing 200 images of faces in an upright frontal 

position, with 2 images per person, and other containing 50 images of different objects/animals, 

with 2 images per object/animal. The faces‟ images were obtained from the “FEI Face Database” 

[100] and the objects/animals‟ images were obtained from the “Caltech 101” database [101]. The 

images have been cropped and resized to 256 × 256 pixels (see Figure 157). 

 

    

    

Figure 157 – Examples of images belonging to the created sets. (Top) Images of faces of three persons 

in upright frontal positions, with two examples for the same person. (Bottom) Images of three different 

objects/animals, with two examples for the same object. 

 

Then, for each image, a vector comprising the incoherent projections, produced with the 

Hadamard based compressive codes in a manner similar to that exposed in Figure 46, was created. 

The only difference relied in the fact that this time the compressive codes were not permuted. Each 

incoherent projection or measurement was obtained with a different code and corresponded to the 

sum of the pixel values of the image resulting from that product. As the images exhibited different 

intensities, each of the vectors was posteriorly normalized to values between 0 and 1. To reduce the 

computational complexity, the used images and codes were scaled down to 32 × 32 pixels, 

therefore, producing vectors with 1024 elements. Figure 158 shows the plot of two vectors, one 

obtained with an image of a face and another with an image of an object/animal. 
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Figure 158 – Plot of vectors with the 1024 incoherent measurements obtained with an image of a face 

and with an image of an object/animal. 

 

For the discrimination task we used a Support Vector Machine (SVM), which is a popular 

machine learning mechanism [102]. In the simplest form, a SVM uses a linear separating hyperplane 

to create a binary classifier with a maximal margin. In cases where data cannot be linearly separable, 

data are transformed to a higher dimension than the original feature space. Such is done by 

choosing a given kernel function, representing the inner product in some implicit higher dimension 

space. In our case, this transformation was made with a radial basis function (RBF).  

The sets of vectors containing the incoherent measurements were split into training and test 

sets to be used by the classifier. The training has been performed with 20%, 40% and 60% of the 

data, being the respective remainder used as testing data. The splitting of the data into training and 

test sets was repeated 10 times in order to assess the variability of the obtained performances. The 

best parameterization of each model was found by a „grid-search‟ based on a 5-fold cross validation 

scheme conducted on the training set. 

Nowadays, it is relatively easy to solve problems with millions of instances, each of them 

with a reasonable number of features. However, it is common to have access to datasets with 

significantly higher number of features than instances leading to the well-known problem of the 

“curse of dimensionality”. Feature selection (FS) techniques provide the means to overcome this 

issue by identifying the most valuable features so that good and simple class discrimination models 

can be obtained. There are three types of feature selection algorithms: filter, wrapper and 

embedded. The former is independent of the classifier being usually done before the learning 

phase. Wrapper algorithms iteratively select subsets of features and assess the performance of the 

learning models to determine how useful those subsets are. Embedded algorithms automatically 

select features during the model construction [103]. Figure 159 succinctly depicts the three 

approaches. 
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Figure 159 – Three different standard approaches for feature selection: (left) depicts the filter feature 

selection (FS) approach done before the model design (MD); (center) the wrapper consists on an iterative 

approach where features are removed step by step until a desirable performance of the model is achieved; 

and (right) embedded method is designed jointly with the learning model algorithm. 

 

An FS problem can be described as a two-fold problem. First, one tries to eliminate the 

similar variables (redundancy) and secondly, to capture how correlated each feature is with the class 

(relevance). In [103] it was proposed a new way of performing FS using quadratic programming. 

There, the authors proposed a single mathematical formulation that was capable of simultaneously 

address the previously exposed redundancy and relevance requirements. 

FS algorithms, as those described above, can be coupled with any learning model. For this 

study, we have opted for the wrapper approach applied to SVM. The performance obtained with 

this approach has been compared to that obtained with a random choice of features and the results 

are presented below. It should be referred that in this study the features correspond to the 

measurements obtained with a specific code. In Figure 160 one can observe the performance of the 

SVM classifier with random feature selection and different amounts of training data. In Figure 161 

the performance of the SVM classifier with optimized feature selection (according to the method 

presented in [103]) and different amounts of training data is shown. 

 

 

Figure 160 – Performance of the SVM classifier trained with different amounts of data and with random 

feature selection. 
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Figure 161 – Performance of the SVM classifier trained with different amounts of data and with 

optimized feature selection. 

 
From the results presented in Figure 160 and Figure 161 it is obvious the increased 

performance of the classifier with optimized feature selection. Using 60% of data for training, with 

optimized feature selection the classifier was able to provide an error rate close to 3% with only 29 

measurements, while the same performance was reached only after the use of 370 measurements 

for the case of random feature selection. The stabilization of the error rate for the case of the 

optimized feature selection evidences its capacity to discriminate the relevance and redundancy of 

the involved features at an early stage. As a reference, the performance of the SVM classifier when 

all the 1024 measurements have been used was also obtained. As before, the training phase was 

conducted with sets comprising 20%, 40% and 60% of the data. The obtained error rates were 

5.15%, 3.00% and 3.10%, respectively. With these results, it can be said that using feature selection 

methods it was possible to obtain a competitive performance, translated by a smaller error rate, 

with far less features. 

In this study, it was also evaluated which features typically provided the best results. 

Knowing that information, it could then be combined with compressive sensing theory to design a 

face detection system that could simultaneously minimize the amount of required measurements 

and maximize the amount of meaningful information. Evaluating the data, it was then possible to 

infer that the 16th, 28th, 408th, 512th, 768th and 784th measurements (generated with the 

corresponding Hadamard based compressive codes) were the most common ones when a 

performance of 97% was obtained. In terms of computational effort, this fact can be extremely 

appealing once only a reduced and predefined set of Hadamard codes has to be computed to detect 

a human face with such a significant performance. 
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For comparison purposes, another face detection system was implemented using the 

information obtained from the Scale Invariant Feature Transform (SIFT) descriptors as inputs to 

the classifier. SIFT is a well-known technique for feature detection and description with a wide 

number of applications, inclusively, face detection and recognition [104-107]. SIFT descriptors are 

built upon the measurements of the gradient in 8 different orientations in image patches of size 

4 × 4 centered in interest points. These interest points are detected by common operators, such as 

Laplacian of Gaussian or Difference of Gaussian, for example, having the latter been used in these 

experiments. As a result, for each image patch, a feature vector of size 128 was obtained. The 

vocabulary for representation of the datasets was constructed with an unsupervised technique 

(K-means [108]) and concluded with the creation of a sparse histogram using a bag-of-words 

technique [109, 110]. The implemented system was then trained with 60% of the data and a 

performance of 80% was obtained. Figure 162 shows examples of images from the datasets with 

over imposed blobs representing the SIFT descriptors. 

 

    

Figure 162 – Examples of images belonging to the created sets with over imposed blobs representing the 

SIFT descriptors. 

 

Despite the early stage of the prospective study here presented, in face of the results 

obtained, it is strongly believed that the CS based framework has potential to be further developed 

in the future and that it would be interesting to apply it to video surveillance, for instance.  

It should be said that in this study the tasks associated with the SIFT descriptors, feature 

selection and training/testing of the classifier were performed in collaboration with a colleague 

post-doc researcher. 

After executing these experiments and evaluating the feasibility of detecting faces without 

explicit reconstruction of the images, the passive illumination single-pixel monochrome imaging 

system was used to assess the performance of the face detection system under real-world 

conditions. For that, two images, one of a face and another of an object, have been printed in white 

paper and placed in front of the imaging system so that the corresponding compressive 

measurements could be acquired (see Figure 163). The printed size of the images was 55 mm × 55 

mm. The electronic circuit board, observable on the top left corner of the photo in Figure 163, 

contained a 10 × 10 matrix of white light LED and was used for illumination of the scene.  
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Figure 163 – Photo of the arrangement used to acquire the measurements for face detection with the 

passive illumination single-pixel imaging system. 

 
The images that have been used are presented in Figure 164. 

 

 

  

 

Figure 164 – Images of a face (128 × 128 pixels) and of an object (256 × 256 pixels) that have been used 

to assess the performance of the face detection system under real-world conditions with the passive 

illumination single-pixel monochrome imaging system. 

 

The images of Figure 164 have been scaled down to 32 × 32 pixels and are presented in 

Figure 165. After, these images were used as the reference images in the calculation of the PSNR 

values of the reconstructed images. 
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Figure 165 – Images of Figure 164 resized to 32 × 32 pixels.  

After the data have been acquired, the corresponding vectors were input to the classifier and 

both examples were correctly classified when all the 1024 measurements have been used. This 

performance held true down to 1018 measurements. Using only 50 measurements the classifier 

performance decreased to 50%, failing to correctly classify the input data corresponding to the 

image of a face. This difference of performance, comparatively to the results previously obtained, 

may be supported by the following facts. During the measurement process, inevitably, there was 

noise involved which naturally affected the purity of the information or, by other words, masked 

the variability imposed by features within the images. The illumination of the images was not 

constant all over, mainly, because the alignment between the light source and the scene and 

between the scene and the imaging system was not along the same axis. The training of the 

classifier was performed with data that did not reflect these issues and, for that reason, the 

previously obtained model was not optimized for the conditions under test.  

Figure 166 contains the images of Figure 164 that have been acquired with the passive 

illumination single-pixel monochrome imaging system. These images have 32 × 32 pixels and were 

reconstructed using all the 1024 measurements. 

  

Figure 166 – Images of a face (PSNR = 12.41 dB) and of an object (PSNR = 9.86 dB) with 32 × 32 

pixels reconstructed using 1024 measurements acquired with the passive illumination single-pixel 

monochrome imaging system. The PSNR values were calculated using the homologous images of Figure 

165 as references. 
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Next, in Figure 167, the images of the same face and object of Figure 164 are presented for 

the case in which the measurements were obtained multiplying the image to be reconstructed by the 

Hadamard based random binary codes, as depicted in Figure 46. Relying on those images, it is 

possible to evidence the effect that the non-uniform illumination and the noise in the 

measurements had in the reconstructions presented in Figure 166. 

 

  

Figure 167 – Images of a face (PSNR = 24.84 dB) and of an object (PSNR = 22.93 dB) with 32 × 32 

pixels reconstructed using 1024 measurements obtained multiplying the image to be reconstructed by 

the Hadamard random binary codes. The PSNR values were calculated using the homologous images of 

Figure 165 as references. 

 

The higher PSNR values obtained with the images of Figure 167 reflect the improved visual 

quality of those images relatively to those of Figure 166 and their similarity relatively to the 

reference images of Figure 165. 

Even though in a real-world scenario it may be difficult or even impossible to control the 

illumination of a scene, one way of improving the results obtained in these experiments with the 

passive illumination single-pixel imaging system could be to improve the uniformity of the 

illumination on the scene. Another aspect that could benefit the face detection system under 

real-world conditions would be to train the classifier with data which had incorporated the 

variability found under such circumstances. 

A system such as the one presented here can be on the basis of the development of compact 

single-pixel cameras that can be optimized to detect specific targets. These cameras may have 

particular interest, for instance, in military, defense and surveillance scenarios. 
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5.3 Physicochemical analysis of grapes based on hyperspectral images 

Another application that has been explored was related with the use of a passive illumination single-

pixel hyperspectral imaging system for the acquisition of hyperspectral images of grapes. These 

experiments were conducted in collaboration with the Centre of Molecular and Environmental 

Biology at the University of Minho which has strong expertise in the analysis of spectroscopic data 

from grapes. In particular, this center holds a patent entitled “Method and Device for Monitoring 

the Production of Grapes with UV-VIS-SWNIR Spectroscopy” [111] (UV-VIS-SWNIR stands for 

ultraviolet/visible/short-wave near infrared) which, besides describing a method for monitoring the 

production of grapes, also exposes how to obtain and process information on the physicochemical 

characteristics of the grape from spectroscopic data. This knowledge is of utmost importance for 

the quality of wine production since it may be used, for instance, to monitor the development and 

maturation of the grapes; to follow the development of existing metabolite profiles in the grapes; to 

detect specific or anomalous features. 

Therefore, our intent was to acquire hyperspectral images of grapes and subsequently 

perform the spectroscopic analysis of the grapes on a pixel-wise manner. Doing that, one would be 

able to map, for instance, the distribution of glucose on the grapes, or to quantify how many seeds 

existed. These are key aspects to the final flavor of the wine. 

So, for these experiments, three grapes with different maturation levels were chosen. The 

maturation level was determined by the sugar concentration that has been quantified with a digital 

refractometer for sugar analysis from Hanna Instruments – model HI 96801. Brix 

percentage (%Bx) is directly related with the sugar content of an aqueous solution and is 

traditionally used in several industries, such as those for wine, fruit juice and honey production. A 

higher value of Brix percentage means a higher content of sugar in a solution. The three chosen 

grapes were measured to have 13.7 %Bx, 16.8 %Bx and 20.8 %Bx. 

In order to acquire the hyperspectral images of the grapes, the setup of Figure 168 was 

implemented. To increase the contrast between the grape and the background in the acquired 

images, a piece of black plastic with an opening was used to define the area to be illuminated. The 

grapes were, then, placed in front of that opening. The light source was a 12V-35W halogen bulb 

which was placed behind the opening of the plastic piece and would illuminate the grapes in 

transmission, relatively to the imaging system.  
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Figure 168 – Setup used to acquire hyperspectral images of grapes with the passive illumination single-

pixel hyperspectral imaging system. 

Figure 169 depicts three photos of the used grapes being illuminated in transmission, 

acquired with a conventional camera. 

   

Figure 169 – Photos of the three grapes with different maturation levels illuminated in transmission. 

These photos were acquired with a conventional camera. From left to right, the grapes had 13.7 %Bx, 

16.8 %Bx and 20.8 %Bx. 

The passive illumination single-pixel hyperspectral imaging system used a QE65000 Ocean 

Optics spectrometer as the light detection device. This spectrometer was used instead of the 

USB2000 because of its reduced dark noise, higher SNR ratio and higher dynamic range. As the 

luminous intensities in these experiments were lower than before, these aspects proved essential for 

the quality of the measurements. The spectral range of the grating (HC-1) was 780 nm and the 

detector (Hamamatsu S7031-1006), which is responsive from 200 nm up to 1100 nm, had 1044 

pixels (24 µm × 24 µm each). This results in a dispersion of approximately 0.75 nm/pixel. Using a 

10 µm slit the pixel resolution is listed, by the manufacturer, as ~2.2 pixels, which results in a 

spectral resolution of 0.75 nm/pixel × 2.2 pixels = 1.65 nm. 

Then, the single-pixel hyperspectral imaging system was used to construct a datacube for 

each of the grapes and, as an example, in Figure 170 a 32 × 32 pixels image of the grape with 

20.8 %Bx obtained at 671.02 nm is presented. Besides the shape of the grape, two seeds are also 

discernible in that image. For clarification, the seeds are highlighted with a red contour in the image 

presented on the right side of Figure 170. 
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Figure 170 – (left) 32 × 32 pixels image of the grape with 20.8 %Bx acquired at 671.02 nm with the 

passive illumination hyperspectral imaging system. (right) The seeds observable in the image on the left 

were highlighted with a red contour.   

 
A datacube representing the halogen bulb behind the opening on the black plastic piece was 

also acquired and an image of it acquired at 645.10 nm is presented in Figure 171. 

 

 

Figure 171 – 32 × 32 pixels image of the halogen bulb behind the opening on the black plastic piece at 

645.10 nm acquired with the passive illumination hyperspectral imaging system. 

 

As it has already been referred on this thesis, it is possible to obtain the spectrum at a spatial 

position along the datacube and obtain, in that way, the spectral signature of a specific pixel. For 

the halogen bulb it was found that depending on the spatial position, the spectrum obtained along 

the corresponding datacube would vary not only in intensity but also in terms of spectral density. 

To better illustrate this situation, three spectra were obtained along the datacube in three distinct 

spatial positions on the image. These positions correspond to the pixels marked in red, green and 

blue in Figure 172. 
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Figure 172 – 32 × 32 pixels image of the halogen bulb with three points marked in red, green and blue to 

indicate the positions where the spectra were obtained along the datacube. 

 
The spectra obtained for the three distinct spatial positions can be observed below in Figure 

173. The color of each spectrum indicates the position in the image to which each one corresponds. 

 

 

Figure 173 – Spectra obtained along the halogen bulb datacube in the positions marked by the red, green 

and blue pixels in the image of Figure 172. 

 

Inspecting the spectra in Figure 173, one can perceive the different spectral densities 

exhibited. These differences may be justified by the dispersion, refraction and diffraction suffered 

by the light emitted by the bulb. These phenomena may be caused by the reflective surface located 

inside the bulb, by the glass of the bulb and by the grating-like and angular nature of the DMD. 

Additionally, the curved surface of the bulb certainly also caused the measured spectral densities to 

be different because the reflectance spectrum of a surface can be defined as a function of the angle 

of incidence. The non-uniform temperature distribution along the filament of the bulb may also 

have had an impact in the measured spectra. 
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However, despite the spatial dependency of the spectra obtained along the datacube, if the 

intensity of all the pixels in an image is summed for each of the datacube‟s spectral bins, we end up 

with a vector that contains the spectral signature of the ensemble of light emitted by the lamp. That 

vector has a length equal to the spectral depth of the datacube and the only difference is on the 

intensity which derives from the use of a multiplicative factor by the reconstruction algorithm. The 

normalized spectrum obtained with this procedure is presented in Figure 174 with a thin red line, 

while the normalized spectrum measured by the system when all the DMD mirrors were “ON” is 

traced with a thick black line. In addition, the difference between the two spectra of Figure 174 is 

exactly zero all over its representation, thus confirming their equivalence. 

 

 

Figure 174 – Spectra of the halogen bulb. The normalized real spectrum is represented with a thick black 

trace while the normalized integrated spectrum, obtained from the reconstructed datacube, is represented 

with a thin red trace. 

 

Similarly to the case of the halogen bulb, three spectra were also obtained from the datacube 

of the grape with 20.8 %Bx (see Figure 175). These spectra were obtained in the same positions of 

those plotted in Figure 173, indicated by the coordinates of the colored pixels in the image of 

Figure 172. 
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Figure 175 – Transmission spectra obtained from the datacube of the grape with 20.8 %Bx in the 

positions marked by the red, green and blue pixels in the image of Figure 172. 

 

Due to the opacity of the used grape and its reddish color, the overall intensities of these 

spectra are much lower than the intensities of the spectra in Figure 173, and, in particular, the 

portions of the light corresponding to wavelengths below 600 nm have been completely absorbed. 

This was verified even though the spectrometer‟s integration time and the luminous intensity of the 

halogen bulb have been augmented, in order to maximize the dynamic range of the measured 

signals. Notwithstanding the fact that the amplitude of the noise in the spectra of Figure 175 is 

similar to that of Figure 173, in the former case its relative intensity is higher. The fact that the 

reconstructed spectra exhibited lower intensities than the spectra obtained during the measurement 

process, with each of the random compressive codes, also derived from the partitioning that the 

reconstruction algorithm made to the ensemble intensity, gathered from the entire scene, by all the 

pixels in each image. 

However, contrarily to the case of Figure 173, the spectral densities of the spectra of Figure 

175 are very similar to each other. This may have arisen from the non-uniformity of the grape, 

which caused the light to be scattered and become spatially uniform. By other words, the grape 

acted as a diffuser.  

As in the case of the halogen bulb (see Figure 174), the integrated spectral signature of the 

grape with 20.8 %Bx was obtained from the corresponding datacube and the resulting normalized 

spectrum perfectly matched the normalized real spectrum (see Figure 176), obtained when all the 

DMD mirrors were “ON”. 

The normalized integrated spectral signatures of the other two grapes were also obtained and 

are presented in Figure 177 along with the normalized integrated spectral signature of the grape 

with 20.8 %Bx. As it can be seen, the three grapes exhibit different spectral signatures, deriving 

from their different ripeness levels and different physicochemical compositions. This spectral 
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information is on the basis of the spectroscopic analysis performed by the group from the Centre 

of Molecular and Environmental Biology at the University of Minho. It is then expected that with 

the data provided by these experiments it will be possible to quantify, in a pixel-wise manner, the 

concentration of certain compounds such as glucose, fructose, malic acid and tartaric acid, which 

are fundamental for wine production and taste. 

Even though in these experiments only individual grapes were imaged, this system could be 

adapted to image entirely a grape cluster, a vine or even a vineyard, demonstrating in that manner 

its true potential. 

 

 

Figure 176 – Transmission spectra of the grape with 20.8 %Bx. The normalized real spectrum is 

represented with a thick black trace while the normalized integrated spectrum, obtained from the 

reconstructed datacube, is represented with a thin red trace. 

 

 

Figure 177 – Normalized integrated transmission spectra of the three grapes, obtained from each of the 

respective datacubes. 
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Besides the possibility of obtaining spectroscopic information in a pixel-wise manner without 

scanning of the scene or movement of the imaging system, which constitutes an inherent advantage 

of the used hyperspectral imaging system comparatively to the commonly used methods, this 

combined system of hyperspectral imaging and spectroscopic analysis has strong potential to 

become a choice of election. In particular, it represents a non-destructive method of analysis that is 

relatively cheaper and has strong potential to operate much faster. It does not require the 

intervention of highly qualified human resources and can be applied to the analysis of different 

analytes, such as olive oil, for the detection of counterfeits, fruit juices, for quality inspection, and 

water, for the detection of pollutants, for example. It can easily address different spectral ranges, 

suiting the needs of the different applications. It can also be assembled in a compact and light form 

to, consequently, enable its use outside of the lab and be applied, for instance, in remote sensing, 

which may find various applications in mineralogy, biology, defense, agriculture and environmental 

measurements. Agro-food industry has also recognized the potential of using hyperspectral imaging 

techniques and could also benefit from a system such as the one presented here [112].  
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Chapter 6. Future Work 

The aim of this section is to trace ideas of improvement and further development of the studies 

related to compressive sensing based imaging systems presented in this thesis. 

One improvement that is crucial, if one wants to attract the interest of potential end-users to 

this technology, is to reduce the time of the measurement process. This limitation can be effectively 

overcome by taking advantage of very fast DMD boards available on the market. For the time 

being, we were mainly limited by the available resources and this issue did not affect in any manner 

the accomplishment of the intended results.  

In the following section, one prospective work directed towards the aerospace industry, for 

the development of a CS based imaging LIDAR system, will be suggested and presented. 

6.1 Single-Pixel Imaging LIDAR System Based on Compressive Sensing 

LIDAR is an optical sensing technology that, basically, measures distances through the time light 

takes to travel from the source to the target. It is widely used in various applications such as 

agriculture, meteorology and military, for instance.  

In this section, a prospective work for the development of a compressive sensing based 

single-pixel imaging LIDAR system to be used in Space missions is presented. 

Mars and the Moon are envisaged as crucial destinations of Space exploration in the 

upcoming decades. Therefore, several strategic missions are included as milestones in terms of 

development of new technologies, demonstration of key capabilities, and delivering on high priority 

scientific objectives. In this context, Imaging LIDAR is seen as one key enabling technology that 

can be extremely relevant in Guidance, Navigation and Control (GNC) tasks, which require very 

accurate, wide range, high-resolution distance measurement systems. In particular, crucial stages of 

Space missions, such as descent and selection of a safe landing site, rendezvous and docking 

maneuvers, or robotic surface navigation and exploration operations, can be largely supported by 

Imaging LIDAR Systems (ILS) [113]. Although ILS have been commercially available and used for 

a long time in diverse metrology and ranging applications, their size, mass and power consumption 

are still far from being suitable and attractive for planetary exploratory missions. So, efforts are 

being driven towards the achievement of technological breakthroughs that can significantly reduce 

these drawbacks. Therefore, we propose the development of a single-pixel ILS based on 

compressive sensing, which has great potential for miniaturization; to increase spatial resolution; to 

eliminate the need for scanning; relying on a simple and robust configuration.  

The principle of operation of the proposed ILS is depicted in Figure 178. It can be seen that 

a pulsed laser source is used to illuminate the target scene, whose image is formed on the DMD 

array. Optical filtering is incorporated into the optical path to eliminate the influence from 
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background illumination. Depending on the random binary measurement codes applied to the 

DMD, the amount of light reflected towards the photon detection device will vary, thus, 

compressing the spatial information. Then, for each measurement code, a correlator is used to 

provide a timing histogram, thus compressing the distance information. At the end of the 

measurement process, a set of the collected timing histograms is used to reconstruct the images 

referring to the range-find distance. 

 

 

Figure 178 – Scheme illustrating the principle of operation of the single-pixel imaging LIDAR system 

based on compressive sensing. 

When compared to passive sensors, current ILS are bigger, heavier and consume too much 

power. However, miniaturization is becoming real, due to recent developments in MOEMS (micro-

optical-electrical-mechanical systems) and focal plane detector arrays, turning those into excellent 

candidates to be included into ILS to be used in Space missions. Combining these aspects with the 

advantages of a photon-counting compressive imaging LIDAR system, as discussed on section 

3.12, turns a single-pixel ILS into a significant solution that does not suffer from the aforesaid 

disadvantages [13]. The proposed system does not perform any scanning, therefore it does not 

involve moving parts, being advantageous for Space operation. This causes the optical engine 

arrangement to become simpler, efficient, easier to align, lighter and more compact. In addition to 

the fact that a single-pixel ILS, such as the proposed one, can be more immune to dark noise and 

read-out noise, since it can gather more photons than an average pixel sensor, if one or more 

measurements are lost, this will not corrupt the entire reconstruction. This is extremely relevant in a 

high error prone scenario such as the one evinced in Space missions. When arrays are used there is 

no way of recovering the info lost by dead pixels. Fortunately, that is not the case with single-pixel 

configurations, which enable the implementation of redundant setups at much lower cost, 

occupying less space, weighting less and consuming less power. Still, if one or more mirrors of the 

DMD become damaged, with CS it is still possible to fully reconstruct the images. Parallel sensing 

can also be employed to reconstruct images constituted by parts that were reconstructed at lower 
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resolutions (e.g, build a 64 x 64 pixels image with four contiguous 32 x 32 pixels images), in shorter 

periods of time. The proposed implementation can also be extended to work in spectral regions 

currently inaccessible to conventional imaging arrays. It is also believed that the proposed 

single-pixel ILS may benefit with the incorporation of the previously demonstrated high dynamic 

range compressive imaging techniques. 

It is anticipated that the single-pixel ILS system may be useful in diverse scenarios of Space 

missions. During the landing phase of a Space mission, several sub-phases need to be 

accomplished, namely the detection of a safe landing site. Until touchdown, ILS can be used as 

altimeter/velocimeter and provide assistance to the GNC tasks, to better map and retarget the 

descent trajectory in order to minimize fuel consumption. A rendezvous in Mars orbit between a 

sample container (SC) launched from the Mars surface, and the orbiter that will perform the return 

to Earth is foreseen in the aim of the Mars Sample Return mission. The SC is supposed to be a 

highly reflective sphere with 20 cm diameter and the ILS is expected to intervene in the terminal 

sequence of the rendezvous process. When rovers are used to explore planet surface, the capability 

to detect and avoid obstacles is also crucial. Stereo vision systems can provide real-time range 

images over significant FOV, but lack from range resolution over large measurement ranges and 

the environment illumination and target contrast strongly affect their performance. For rover 

navigation, one can further define three operational modes: regional navigation (from 10 m to 

100 m); mid-range navigation (from 4 m up to 10 m) and local navigation (from rover up to 4 m), 

each one with its specific requirements and difficulties. 

As a final point, it should be noted that the development of such an imaging LIDAR system 

has been proposed to the European Space Agency (ESA) and has been accepted for funding in the 

aim of the Innovation Triangle Initiative (ITI) program. The opportunity to collaborate with a 

partner so demanding and prestigious as ESA should be seen as a valuable tool to further reinforce 

the competencies and knowledge of the Optoelectronics and Electronic Systems Unit at INESC 

TEC in this area of research. 
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Chapter 7. General Conclusions 

Despite the wide range of subjects presented in this thesis, it can be easily recognized the existence 

of a common conducting path to all the work: the development and study of compressive sensing 

based single-pixel imaging systems. 

Compressive sensing based imaging, or simply compressive imaging, presented itself as an 

enabling new paradigm that dramatically pushed forward the frontiers of imaging and opened the 

doors to many promising applications.  

More in detail, one of the advantages of the presented single-pixel imaging systems is the 

ability to operate under very low light intensities, much lower than those required by conventional 

cameras. This is due to the fact that usually a single photodiode exhibits much higher sensitivity 

than the pixels of a conventional image sensor. Additionally, one can even incorporate 

photomultiplier tubes or photon-counters, for instance, to further improve the system‟s sensitivity. 

Another advantage relies on the fact that the information is acquired in an already 

compressed form. This avoids the waste of information often verified along the use of 

conventional imaging systems, which gather huge amounts of information that is then discarded 

through the application of compression standards. 

Since data are compressed from the beginning of the process, an efficient encryption method 

is brought into light, once the apparently random measurements will resemble noise and have no 

meaning for an observer that has no knowledge about their seed. 

With compressive single-pixel cameras, most of the burden is placed on the reconstruction 

process, reducing the complexity of the hardware and acquisition phase. This constitutes another 

advantage since the required computational resources are widely available and with increasing 

tendency to perform better without significant increase of their cost. 

As it was stated in this thesis, under very specific requirements, compressive imaging systems 

can be the choice of election in detriment of conventional imaging systems. More, in certain 

situations they are currently the only available solution. 

This thesis presented an encircling study of compressive sensing based single-pixel imaging 

systems. In general terms, the developed systems were capable of acquiring monochrome, color, 

multispectral, hyperspectral and high dynamic range images, operating either in a passive or in an 

active illumination mode. Comparing analogous systems operating with different illumination 

configurations, it has been possible to determine the superior quality of the results obtained with 

the systems operating with passive illumination, when compared to those obtained with the systems 

operating with active illumination. This could be explained by the ripple existent in the illumination, 

which in the case of active illumination could mask the effective variation caused by the random 

compressive codes in the signal perceived by the photodiode and, then, represent noise in the 

measurements. The lower contrast provided by the LCD makes the variation caused by the random 
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compressive codes to be fainter than that provided by the DMD, which results in a lower SNR for 

the measurements and, in turn, in reconstructions that reflect more that noise. 

It has also been implemented for the first time a transmissive compressive single-pixel 

imaging system that used an LCD as the spatial light modulator. This system has been used to 

acquire microscopic images and provided key insights for the comparison of LCD with DMD as 

spatial light modulators for compressive single-pixel cameras, from which the DMD have been 

elected as the best option. 

From the development and study of the color and multispectral imaging systems it was 

possible to conclude that the fidelity with which the colors of a scene are acquired and represented 

is directly related with the width of the spectral regions utilized to define the color components. 

Furthermore, in order to obtain the best results, those spectral regions shall be as sharp and narrow 

as possible and the overlap should be minimum. For the case of the developed hyperspectral 

imaging systems these issues did not find representation because the illumination was discrete, very 

sharp and narrow, in the case of the active illumination system, or the light detection was 

performed with high spectral resolution, in the case of the passive illumination system. In 

particular, for the first time, a passive illumination compressive single-pixel hyperspectral imaging 

system with 10 pm of spectral resolution has been implemented and demonstrated. This 

represented an improvement of two orders of magnitude relatively to the best commercially 

available systems.  

High dynamic range imaging has been combined with compressive imaging yielding a novel 

imaging modality which has been designated as high dynamic range compressive imaging. This new 

imaging modality has been implemented using two different techniques, having both been able to 

provide images with extended dynamic range. However, as it has already been referred and 

analyzed, the technique that produces HDR images through intensity control is not adequate to be 

implemented in a passive illumination configuration, since DMD use PWM to define gray levels, 

which compromises the quality of the measurements.  

Although the importance of using metrics to compare the results obtained with the 

developed imaging systems has been recognized, it was not possible to obtain a reliable output 

from their use. Two metrics have been employed but none consistently reflected the tendency 

obtained with the visual assessment of the quality held by human observers. For that reason, this 

issue shall be considered in the future towards the development of more adequate metrics that do 

not preclude judgments to be made based on their results. 

The simulation results obtained with the algorithm developed to generate the compressive 

codes for the CMOS imager were also very promising. Its use is expected to provide the CMOS 

imager with a compressive imaging mode capable of achieving increased frame rates with reduced 

power consumption and higher SNR. 

Two of the developed compressive single-pixel imaging systems have been explored in three 

distinct applications. Specifically, the passive illumination single-pixel monochrome imaging system 
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has been mounted on a microscope and has been used to acquire 128 × 128 pixels images, yielding 

a spatial resolution of 42.19 µm /pixel. We have also presented the results of a study that was 

conducted to evaluate the possibility of combining compressive sensing with machine learning and 

pattern recognition mechanisms to develop a face detection system that would disregard the need 

for explicit image reconstruction. Despite being still in an early phase of development, the 

preliminary results obtained for this novel idea were already very good, having yielded a detection 

error rate as low as 3% using only 3% of the compressive measurements. This performance has 

even been comparatively better than the one obtained with a state-of-the-art feature detector and 

descriptor. The passive illumination single-pixel monochrome imaging system has been used in this 

context to acquire real-world data and test the implemented system. Even though the result of this 

test was also successful, more measurements were required to correctly classify the test samples.  

The passive illumination single-pixel hyperspectral imaging system has been used to gather 

spectroscopic data of grapes from hyperspectral images. These data can be used to infer about the 

physicochemical properties of the grapes and constitute a relevant resource to ensure their quality 

and, consequently, the quality of wine production. 

For the future exploitation of the know-how developed throughout this thesis, a proposal 

for the development of a compressive single-pixel imaging LIDAR system has been accepted by the 

European Space Agency. Establishing this partnership with a worldwide renowned institution as 

the European Space Agency constituted a fact of extreme encouragement and served as a proof of 

recognition in the developed technology. It is believed that this collaboration will be essential to 

further establish this line of work inside the Optoelectronics and Electronic Systems Unit at 

INESC TEC and consolidate the knowledge that has been gathered so far. 

To finalize, it shall be said that it is believed that compressive sensing will continue to 

constitute a major opportunity for research and development for the scientific and technologic 

communities, as there are fascinating theoretical and practical research problems, promising 

substantial improvements in the imaging domain, as well as in others.  
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