40 research outputs found

    Non linear force feedback enhancement for cooperative robotic neurosurgery enforces virtual boundaries on cortex surface

    Get PDF
    Surgeons can benefit from the cooperation with a robotic assistant during the repetitive execution of precise targeting tasks on soft tissues, such as brain cortex stimulation procedures in open-skull neurosurgery. Position-based force-to-motion control schemes may not be satisfactory solution to provide the manipulator with the high compliance desirable during guidance along wide trajectories. A new torque controller with non-linear force feedback enhancement (FFE) is presented to provide augmented haptic perception to the operator from instrument-tissue interaction. Simulation tests were performed to evaluate the system stability according to different non-linear force modulation functions (power, sigmoidal and arc tangent). The FFE controller with power modulation was experimentally validated with a pool of non-expert users using brain-mimicking gelatin phantoms (8%-16% concentration). Besides providing hand tremor rejection for a stable holding of the tool, the FFE controller was proven to allow for a safer tissue contact with respect to both robotic assistance without force feedback and freehand executions (50% and 75% reduction of the indentation depth, respectively). Future work will address the evaluation of the safety features of the FFE controller with expert surgeons on a realistic brain phantom, also accounting for unpredictable tissue's motions as during seizures due to cortex stimulation

    Augmentation Of Human Skill In Microsurgery

    Get PDF
    Surgeons performing highly skilled microsurgery tasks can benefit from information and manual assistance to overcome technological and physiological limitations to make surgery safer, efficient, and more successful. Vitreoretinal surgery is particularly difficult due to inherent micro-scale and fragility of human eye anatomy. Additionally, surgeons are challenged by physiological hand tremor, poor visualization, lack of force sensing, and significant cognitive load while executing high-risk procedures inside the eye, such as epiretinal membrane peeling. This dissertation presents the architecture and the design principles for a surgical augmentation environment which is used to develop innovative functionality to address the fundamental limitations in vitreoretinal surgery. It is an inherently information driven modular system incorporating robotics, sensors, and multimedia components. The integrated nature of the system is leveraged to create intuitive and relevant human-machine interfaces and generate a particular system behavior to provide active physical assistance and present relevant sensory information to the surgeon. These include basic manipulation assistance, audio-visual and haptic feedback, intraoperative imaging and force sensing. The resulting functionality, and the proposed architecture and design methods generalize to other microsurgical procedures. The system's performance is demonstrated and evaluated using phantoms and in vivo experiments

    From teleoperation to autonomous robot-assisted microsurgery: A survey

    Get PDF
    Robot-assisted microsurgery (RAMS) has many benefits compared to traditional microsurgery. Microsurgical platforms with advanced control strategies, high-quality micro-imaging modalities and micro-sensing systems are worth developing to further enhance the clinical outcomes of RAMS. Within only a few decades, microsurgical robotics has evolved into a rapidly developing research field with increasing attention all over the world. Despite the appreciated benefits, significant challenges remain to be solved. In this review paper, the emerging concepts and achievements of RAMS will be presented. We introduce the development tendency of RAMS from teleoperation to autonomous systems. We highlight the upcoming new research opportunities that require joint efforts from both clinicians and engineers to pursue further outcomes for RAMS in years to come

    Control and Estimation Methods Towards Safe Robot-assisted Eye Surgery

    Get PDF
    Vitreoretinal surgery is among the most delicate surgical tasks in which physiological hand tremor may severely diminish surgeon performance and put the eye at high risk of injury. Unerring targeting accuracy is required to perform precise operations on micro-scale tissues. Tool tip to tissue interaction forces are usually below human tactile perception, which may result in exertion of excessive forces to the retinal tissue leading to irreversible damages. Notable challenges during retinal surgery lend themselves to robotic assistance which has proven beneficial in providing a safe steady-hand manipulation. Efficient assistance from the robots heavily relies on accurate sensing and intelligent control algorithms of important surgery states and situations (e.g. instrument tip position measurements and control of interaction forces). This dissertation provides novel control and state estimation methods to improve safety during robot-assisted eye surgery. The integration of robotics into retinal microsurgery leads to a reduction in surgeon perception of tool-to-tissue forces at sclera. This blunting of human tactile sensory input, which is due to the inflexible inertia of the robot, is a potential iatrogenic risk during robotic eye surgery. To address this issue, a sensorized surgical instrument equipped with Fiber Bragg Grating (FBG) sensors, which is capable of measuring the sclera forces and instrument insertion depth into the eye, is integrated to the Steady-Hand Eye Robot (SHER). An adaptive control scheme is then customized and implemented on the robot that is intended to autonomously mitigate the risk of unsafe scleral forces and excessive insertion of the instrument. Various preliminary and multi-user clinician studies are then conducted to evaluate the effectiveness of the control method during mock retinal surgery procedures. In addition, due to inherent flexibility and the resulting deflection of eye surgical instruments as well as the need for targeting accuracy, we have developed a method to enhance deflected instrument tip position estimation. Using an iterative method and microscope data, we develop a calibration- and registration-independent (RI) framework to provide online estimates of the instrument stiffness (least squares and adaptive). The estimations are then combined with a state-space model for tip position evolution obtained based on the forward kinematics (FWK) of the robot and FBG sensor measurements. This is accomplished using a Kalman Filtering (KF) approach to improve the instrument tip position estimation during robotic surgery. The entire framework is independent of camera-to-robot coordinate frame registration and is evaluated during various phantom experiments to demonstrate its effectiveness

    Force-Sensing-Based Multi-Platform Robotic Assistance for Vitreoretinal Surgery

    Get PDF
    Vitreoretinal surgery aims to treat disorders of the retina, vitreous body, and macula, such as retinal detachment, diabetic retinopathy, macular hole, epiretinal membrane and retinal vein occlusion. Challenged by several technical and human limitations, vitreoretinal practice currently ranks amongst the most demanding fields in ophthalmic surgery. Of vitreoretinal procedures, membrane peeling is the most common to be performed, over 0.5 million times annually, and among the most prone to complications. It requires an extremely delicate tissue manipulation by various micron scale maneuvers near the retina despite the physiological hand tremor of the operator. In addition, to avoid injuries, the applied forces on the retina need to be kept at a very fine level, which is often well below the tactile sensory threshold of the surgeon. Retinal vein cannulation is another demanding procedure where therapeutic agents are injected into occluded retinal veins. The feasibility of this treatment is limited due to challenges in identifying the moment of venous puncture, achieving cannulation and maintaining it throughout the drug delivery period. Recent advancements in medical robotics have significant potential to address most of the challenges in vitreoretinal practice, and therefore to prevent traumas, lessen complications, minimize intra-operative surgeon effort, maximize surgeon comfort, and promote patient safety. This dissertation presents the development of novel force-sensing tools that can easily be used on various robotic platforms, and robot control methods to produce integrated assistive surgical systems that work in partnership with surgeons against the current limitations in vitreoretinal surgery, specifically focusing on membrane peeling and vein cannulation procedures. Integrating high sensitivity force sensing into the ophthalmic instruments enables precise quantitative monitoring of applied forces. Auditory feedback based upon the measured forces can inform (and warn) the surgeon quickly during the surgery and help prevent injury due to excessive forces. Using these tools on a robotic platform can attenuate hand tremor of the surgeon, which effectively promotes tool manipulation accuracy. In addition, based upon certain force signatures, the robotic system can precisely identify critical instants, such as the venous puncture in retinal vein cannulation, and actively guide the tool towards clinical targets, compensate any involuntary motion of the surgeon, or generate additional motion that will make the surgical task easier. The experimental results using two distinct robotic platforms, the Steady-Hand Eye Robot and Micron, in combination with the force-sensing ophthalmic instruments, show significant performance improvement in artificial dry phantoms and ex vivo biological tissues

    Robocatch: Design and Making of a Hand-Held Spillage-Free Specimen Retrieval Robot for Laparoscopic Surgery

    Get PDF
    Specimen retrieval is an important step in laparoscopy, a minimally invasive surgical procedure performed to diagnose and treat a myriad of medical pathologies in fields ranging from gynecology to oncology. Specimen retrieval bags (SRBs) are used to facilitate this task, while minimizing contamination of neighboring tissues and port-sites in the abdominal cavity. This manual surgical procedure requires usage of multiple ports, creating a traffic of simultaneous operations of multiple instruments in a limited shared workspace. The skill-demanding nature of this procedure makes it time-consuming, leading to surgeons’ fatigue and operational inefficiency. This thesis presents the design and making of RoboCatch, a novel hand-held robot that aids a surgeon in performing spillage-free retrieval of operative specimens in laparoscopic surgery. The proposed design significantly modifies and extends conventional instruments that are currently used by surgeons for the retrieval task: The core instrumentation of RoboCatch comprises a webbed three-fingered grasper and atraumatic forceps that are concentrically situated in a folded configuration inside a trocar. The specimen retrieval task is achieved in six stages: 1) The trocar is introduced into the surgical site through an instrument port, 2) the three webbed fingers slide out of the tube and simultaneously unfold in an umbrella like-fashion, 3) the forceps slide toward, and grasp, the excised specimen, 4) the forceps retract the grasped specimen into the center of the surrounding grasper, 5) the grasper closes to achieve a secured containment of the specimen, and 6) the grasper, along with the contained specimen, is manually removed from the abdominal cavity. The resulting reduction in the number of active ports reduces obstruction of the port-site and increases the procedure’s efficiency. The design process was initiated by acquiring crucial parameters from surgeons and creating a design table, which informed the CAD modeling of the robot structure and selection of actuation units and fabrication material. The robot prototype was first examined in CAD simulation and then fabricated using an Objet30 Prime 3D printer. Physical validation experiments were conducted to verify the functionality of different mechanisms of the robot. Further, specimen retrieval experiments were conducted with porcine meat samples to test the feasibility of the proposed design. Experimental results revealed that the robot was capable of retrieving masses of specimen ranging from 1 gram to 50 grams. The making of RoboCatch represents a significant step toward advancing the frontiers of hand-held robots for performing specimen retrieval tasks in minimally invasive surgery

    Robot Control for Remote Ophthalmology and Pediatric Physical Rehabilitation

    Get PDF
    The development of a robotic slit-lamp for remote ophthalmology is the primary purpose of this work. In addition to novel mechanical designs and implementation, it was also a goal to develop a control system that was flexible enough to be adapted with minimal user adjustment to various styles and configurations of slit-lamps. The system was developed with intentions of commercialization, so common hardware was used for all components to minimize the costs. In order to improve performance using this low-cost hardware, investigations were made to attempt to achieve better performance by applying control theory algorithms in the system software. Ultimately, the controller was to be flexible enough to be applied to other areas of human-robot interaction including pediatric rehabilitation via the use of humanoid robotic aids. This application especially requires a robust controller to facilitate safe interaction. Though all of the prototypes were successfully developed and made to work sufficiently with the control hardware, the application of advanced control did not yield notable gains as was hoped. Further investigations were made attempting to alter the performance of the control system, but the components selected did not have the physical capabilities for improved response above the original software implemented. Despite this disappointment, numerous novel advances were made in the area of teleoperated ophthalmic technology and pediatric physical rehabilitation tools. This includes a system that is used to remote control a slit-lamp and lens for examinations and some laser procedures. Secondly, a series of of humanoid systems suitable for both medical research and therapeutic modeling were developed. This included a robotic face used as an interactive system for ophthalmic testing and training. It can also be used as one component in an interactive humanoid robotic system that includes hands and arms to allow use of teaching sign language, social skills or modeling occupational therapy tasks. Finally, a humanoid system is presented that can serve as a customized surrogate between a therapist and client to model physical therapy tasks in a realistic manner. These systems are all functional, safe and low-cost to allow for feasible implementation with patients in the near future

    Robotic manipulators for single access surgery

    Get PDF
    This thesis explores the development of cooperative robotic manipulators for enhancing surgical precision and patient outcomes in single-access surgery and, specifically, Transanal Endoscopic Microsurgery (TEM). During these procedures, surgeons manipulate a heavy set of instruments via a mechanical clamp inserted in the patient’s body through a surgical port, resulting in imprecise movements, increased patient risks, and increased operating time. Therefore, an articulated robotic manipulator with passive joints is initially introduced, featuring built-in position and force sensors in each joint and electronic joint brakes for instant lock/release capability. The articulated manipulator concept is further improved with motorised joints, evolving into an active tool holder. The joints allow the incorporation of advanced robotic capabilities such as ultra-lightweight gravity compensation and hands-on kinematic reconfiguration, which can optimise the placement of the tool holder in the operating theatre. Due to the enhanced sensing capabilities, the application of the active robotic manipulator was further explored in conjunction with advanced image guidance approaches such as endomicroscopy. Recent advances in probe-based optical imaging such as confocal endomicroscopy is making inroads in clinical uses. However, the challenging manipulation of imaging probes hinders their practical adoption. Therefore, a combination of the fully cooperative robotic manipulator with a high-speed scanning endomicroscopy instrument is presented, simplifying the incorporation of optical biopsy techniques in routine surgical workflows. Finally, another embodiment of a cooperative robotic manipulator is presented as an input interface to control a highly-articulated robotic instrument for TEM. This master-slave interface alleviates the drawbacks of traditional master-slave devices, e.g., using clutching mechanics to compensate for the mismatch between slave and master workspaces, and the lack of intuitive manipulation feedback, e.g. joint limits, to the user. To address those drawbacks a joint-space robotic manipulator is proposed emulating the kinematic structure of the flexible robotic instrument under control.Open Acces
    corecore