1,759 research outputs found

    MICCS: A Novel Framework for Medical Image Compression Using Compressive Sensing

    Get PDF
    The vision of some particular applications such as robot-guided remote surgery where the image of a patient body will need to be captured by the smart visual sensor and to be sent on a real-time basis through a network of high bandwidth but yet limited. The particular problem considered for the study is to develop a mechanism of a hybrid approach of compression where the Region-of-Interest (ROI) should be compressed with lossless compression techniques and Non-ROI should be compressed with Compressive Sensing (CS) techniques. So the challenge is gaining equal image quality for both ROI and Non-ROI while overcoming optimized dimension reduction by sparsity into Non-ROI. It is essential to retain acceptable visual quality to Non-ROI compressed region to obtain a better reconstructed image. This step could bridge the trade-off between image quality and traffic load. The study outcomes were compared with traditional hybrid compression methods to find that proposed method achieves better compression performance as compared to conventional hybrid compression techniques on the performances parameters e.g. PSNR, MSE, and Compression Ratio

    Compressive Sensing Based Bio-Inspired Shape Feature Detection CMOS Imager

    Get PDF
    A CMOS imager integrated circuit using compressive sensing and bio-inspired detection is presented which integrates novel functions and algorithms within a novel hardware architecture enabling efficient on-chip implementation

    Compressive Imaging Using RIP-Compliant CMOS Imager Architecture and Landweber Reconstruction

    Get PDF
    In this paper, we present a new image sensor architecture for fast and accurate compressive sensing (CS) of natural images. Measurement matrices usually employed in CS CMOS image sensors are recursive pseudo-random binary matrices. We have proved that the restricted isometry property of these matrices is limited by a low sparsity constant. The quality of these matrices is also affected by the non-idealities of pseudo-random number generators (PRNG). To overcome these limitations, we propose a hardware-friendly pseudo-random ternary measurement matrix generated on-chip by means of class III elementary cellular automata (ECA). These ECA present a chaotic behavior that emulates random CS measurement matrices better than other PRNG. We have combined this new architecture with a block-based CS smoothed-projected Landweber reconstruction algorithm. By means of single value decomposition, we have adapted this algorithm to perform fast and precise reconstruction while operating with binary and ternary matrices. Simulations are provided to qualify the approach.Ministerio de Economía y Competitividad TEC2015-66878-C3-1-RJunta de Andalucía TIC 2338-2013Office of Naval Research (USA) N000141410355European Union H2020 76586

    Robust and Efficient Inference of Scene and Object Motion in Multi-Camera Systems

    Get PDF
    Multi-camera systems have the ability to overcome some of the fundamental limitations of single camera based systems. Having multiple view points of a scene goes a long way in limiting the influence of field of view, occlusion, blur and poor resolution of an individual camera. This dissertation addresses robust and efficient inference of object motion and scene in multi-camera and multi-sensor systems. The first part of the dissertation discusses the role of constraints introduced by projective imaging towards robust inference of multi-camera/sensor based object motion. We discuss the role of the homography and epipolar constraints for fusing object motion perceived by individual cameras. For planar scenes, the homography constraints provide a natural mechanism for data association. For scenes that are not planar, the epipolar constraint provides a weaker multi-view relationship. We use the epipolar constraint for tracking in multi-camera and multi-sensor networks. In particular, we show that the epipolar constraint reduces the dimensionality of the state space of the problem by introducing a ``shared'' state space for the joint tracking problem. This allows for robust tracking even when one of the sensors fail due to poor SNR or occlusion. The second part of the dissertation deals with challenges in the computational aspects of tracking algorithms that are common to such systems. Much of the inference in the multi-camera and multi-sensor networks deal with complex non-linear models corrupted with non-Gaussian noise. Particle filters provide approximate Bayesian inference in such settings. We analyze the computational drawbacks of traditional particle filtering algorithms, and present a method for implementing the particle filter using the Independent Metropolis Hastings sampler, that is highly amenable to pipelined implementations and parallelization. We analyze the implementations of the proposed algorithm, and in particular concentrate on implementations that have minimum processing times. The last part of the dissertation deals with the efficient sensing paradigm of compressing sensing (CS) applied to signals in imaging, such as natural images and reflectance fields. We propose a hybrid signal model on the assumption that most real-world signals exhibit subspace compressibility as well as sparse representations. We show that several real-world visual signals such as images, reflectance fields, videos etc., are better approximated by this hybrid of two models. We derive optimal hybrid linear projections of the signal and show that theoretical guarantees and algorithms designed for CS can be easily extended to hybrid subspace-compressive sensing. Such methods reduce the amount of information sensed by a camera, and help in reducing the so called data deluge problem in large multi-camera systems

    Compressive Sensing of time series for human action recognition

    Full text link
    Compressive Sensing (CS) is an emerging signal processing technique where a sparse signal is reconstructed from a small set of random projections. In the recent literature, CS techniques have demonstrated promising results for signal compression and reconstruction [9, 8, 1]. However, their potential as dimensionality reduction techniques for time series has not been significantly explored to date. To this aim, this work investigates the suitability of compressive-sensed time series in an application of human action recognition. In the paper, results from several experiments are presented: (1) in a first set of experiments, the time series are transformed into the CS domain and fed into a hidden Markov model (HMM) for action recognition; (2) in a second set of experiments, the time series are explicitly reconstructed after CS compression and then used for recognition; (3) in the third set of experiments, the time series are compressed by a hybrid CS-Haar basis prior to input into HMM; (4) in the fourth set, the time series are reconstructed from the hybrid CS-Haar basis and used for recognition. We further compare these approaches with alternative techniques such as sub-sampling and filtering. Results from our experiments show unequivocally that the application of CS does not degrade the recognition accuracy; rather, it often increases it. This proves that CS can provide a desirable form of dimensionality reduction in pattern recognition over time series. © 2010 Crown Copyright
    corecore