5,432 research outputs found

    A study of the local convergence of a fifth order iterative method

    Full text link
    [EN] We present a local convergence study of a fifth order iterative method to approximate a locally unique root of nonlinear equations. The analysis is discussed under the assumption that first order Frechet derivative satisfies the Lipschitz continuity condition. Moreover, we consider the derivative free method that obtained through approximating the derivative with divided difference along with the local convergence study. Finally, we provide computable radii and error bounds based on the Lipschitz constant for both cases. Some of the numerical examples are worked out and compared the results with existing methods.This research was partially supported by Ministerio de Economia y Competitividad under grant PGC2018-095896-B-C21-C22.Singh, S.; Martínez Molada, E.; Maroju, P.; Behl, R. (2020). A study of the local convergence of a fifth order iterative method. Indian Journal of Pure and Applied Mathematics. 51(2):439-455. https://doi.org/10.1007/s13226-020-0409-5S439455512A. Constantinides and N. Mostoufi, Numerical Methods for Chemical Engineers with MATLAB Applications, Prentice Hall PTR, New Jersey, (1999).J. M. Douglas, Process Dynamics and Control, Prentice Hall, Englewood Cliffs, (1972).M. Shacham, An improved memory method for the solution of a nonlinear equation, Chem. Eng. Sci., 44 (1989), 1495–1501.J. M. Ortega and W. C. Rheinboldt, Iterative solution of nonlinear equations in several variables, Academic Press, New-York, (1970).J. R. Sharma and H. Arora, A novel derivative free algorithm with seventh order convergence for solving systems of nonlinear equations, Numer. Algorithms, 67 (2014), 917–933.I. K. Argyros, A. A. Magreńan, and L. Orcos, Local convergence and a chemical application of derivative free root finding methods with one parameter based on interpolation, J. Math. Chem., 54 (2016), 1404–1416.E. L. Allgower and K. Georg, Lectures in Applied Mathematics, American Mathematical Society (Providence, RI) 26, 723–762.A. V. Rangan, D. Cai, and L. Tao, Numerical methods for solving moment equations in kinetic theory of neuronal network dynamics, J. Comput. Phys., 221 (2007), 781–798.A. Nejat and C. Ollivier-Gooch, Effect of discretization order on preconditioning and convergence of a high-order unstructured Newton-GMRES solver for the Euler equations, J. Comput. Phys., 227 (2008), 2366–2386.C. Grosan and A. Abraham, A new approach for solving nonlinear equations systems, IEEE Trans. Syst. Man Cybernet Part A: System Humans, 38 (2008), 698–714.F. Awawdeh, On new iterative method for solving systems of nonlinear equations, Numer. Algorithms, 54 (2010), 395–409.I. G. Tsoulos and A. Stavrakoudis, On locating all roots of systems of nonlinear equations inside bounded domain using global optimization methods, Nonlinear Anal. Real World Appl., 11 (2010), 2465–2471.E. Martínez, S. Singh, J. L. Hueso, and D. K. Gupta, Enlarging the convergence domain in local convergence studies for iterative methods in Banach spaces, Appl. Math. Comput., 281 (2016), 252–265.S. Singh, D. K. Gupta, E. Martínez, and J. L. Hueso, Semi local and local convergence of a fifth order iteration with Fréchet derivative satisfying Hölder condition, Appl. Math. Comput., 276 (2016), 266–277.I. K. Argyros and S. George, Local convergence of modified Halley-like methods with less computation of inversion, Novi. Sad.J. Math., 45 (2015), 47–58.I. K. Argyros, R. Behl, and S. S. Motsa, Local Convergence of an Efficient High Convergence Order Method Using Hypothesis Only on the First Derivative Algorithms 2015, 8, 1076–1087; doi:https://doi.org/10.3390/a8041076.A. Cordero, J. L. Hueso, E. Martínez, and J. R. Torregrosa, Increasing the convergence order of an iterative method for nonlinear systems, Appl. Math. Lett., 25 (2012), 2369–2374.I. K. Argyros and A. A. Magreñán, A study on the local convergence and dynamics of Chebyshev- Halley-type methods free from second derivative, Numer. Algorithms71 (2016), 1–23.M. Grau-Sánchez, Á Grau, asnd M. Noguera, Frozen divided difference scheme for solving systems of nonlinear equations, J. Comput. Appl. Math., 235 (2011), 1739–1743.M. Grau-Sánchez, M. Noguera, and S. Amat, On the approximation of derivatives using divided difference operators preserving the local convergence order of iterative methods, J. Comput. Appl. Math., 237 (2013), 363–372

    Memory in a new variant of King's family for solving nonlinear systems

    Full text link
    [EN] In the recent literature, very few high-order Jacobian-free methods with memory for solving nonlinear systems appear. In this paper, we introduce a new variant of King's family with order four to solve nonlinear systems along with its convergence analysis. The proposed family requires two divided difference operators and to compute only one inverse of a matrix per iteration. Furthermore, we have extended the proposed scheme up to the sixth-order of convergence with two additional functional evaluations. In addition, these schemes are further extended to methods with memory. We illustrate their applicability by performing numerical experiments on a wide variety of practical problems, even big-sized. It is observed that these methods produce approximations of greater accuracy and are more efficient in practice, compared with the existing methods.This research was supported by PGC2018-095896-B-C22 (MCIU/AEI/FEDER, UE).Kansal, M.; Cordero Barbero, A.; Bhalla, S.; Torregrosa Sánchez, JR. (2020). Memory in a new variant of King's family for solving nonlinear systems. Mathematics. 8(8):1-15. https://doi.org/10.3390/math8081251S11588Cordero, A., Hueso, J. L., Martínez, E., & Torregrosa, J. R. (2009). A modified Newton-Jarratt’s composition. Numerical Algorithms, 55(1), 87-99. doi:10.1007/s11075-009-9359-zCordero, A., Hueso, J. L., Martínez, E., & Torregrosa, J. R. (2011). Efficient high-order methods based on golden ratio for nonlinear systems. Applied Mathematics and Computation, 217(9), 4548-4556. doi:10.1016/j.amc.2010.11.006Babajee, D. K. R., Cordero, A., Soleymani, F., & Torregrosa, J. R. (2012). On a Novel Fourth-Order Algorithm for Solving Systems of Nonlinear Equations. Journal of Applied Mathematics, 2012, 1-12. doi:10.1155/2012/165452Zheng, Q., Zhao, P., & Huang, F. (2011). A family of fourth-order Steffensen-type methods with the applications on solving nonlinear ODEs. Applied Mathematics and Computation, 217(21), 8196-8203. doi:10.1016/j.amc.2011.01.095Sharma, J., & Arora, H. (2013). An efficient derivative free iterative method for solving systems of nonlinear equations. Applicable Analysis and Discrete Mathematics, 7(2), 390-403. doi:10.2298/aadm130725016sSharma, J. R., Arora, H., & Petković, M. S. (2014). An efficient derivative free family of fourth order methods for solving systems of nonlinear equations. Applied Mathematics and Computation, 235, 383-393. doi:10.1016/j.amc.2014.02.103Wang, X., Zhang, T., Qian, W., & Teng, M. (2015). Seventh-order derivative-free iterative method for solving nonlinear systems. Numerical Algorithms, 70(3), 545-558. doi:10.1007/s11075-015-9960-2Chicharro, F. I., Cordero, A., Garrido, N., & Torregrosa, J. R. (2020). On the improvement of the order of convergence of iterative methods for solving nonlinear systems by means of memory. Applied Mathematics Letters, 104, 106277. doi:10.1016/j.aml.2020.106277Petković, M. S., & Sharma, J. R. (2015). On some efficient derivative-free iterative methods with memory for solving systems of nonlinear equations. Numerical Algorithms, 71(2), 457-474. doi:10.1007/s11075-015-0003-9Narang, M., Bhatia, S., Alshomrani, A. S., & Kanwar, V. (2019). General efficient class of Steffensen type methods with memory for solving systems of nonlinear equations. Journal of Computational and Applied Mathematics, 352, 23-39. doi:10.1016/j.cam.2018.10.048King, R. F. (1973). A Family of Fourth Order Methods for Nonlinear Equations. SIAM Journal on Numerical Analysis, 10(5), 876-879. doi:10.1137/0710072Hermite, M. C., & Borchardt, M. (1878). Sur la formule d’interpolation de Lagrange. Journal für die reine und angewandte Mathematik (Crelles Journal), 1878(84), 70-79. doi:10.1515/crelle-1878-18788405Petkovic, M., Dzunic, J., & Petkovic, L. (2011). A family of two-point methods with memory for solving nonlinear equations. Applicable Analysis and Discrete Mathematics, 5(2), 298-317. doi:10.2298/aadm110905021pCordero, A., & Torregrosa, J. R. (2007). Variants of Newton’s Method using fifth-order quadrature formulas. Applied Mathematics and Computation, 190(1), 686-698. doi:10.1016/j.amc.2007.01.062Awawdeh, F. (2009). On new iterative method for solving systems of nonlinear equations. Numerical Algorithms, 54(3), 395-409. doi:10.1007/s11075-009-9342-8Noor, M. A., Waseem, M., & Noor, K. I. (2015). New iterative technique for solving a system of nonlinear equations. Applied Mathematics and Computation, 271, 446-466. doi:10.1016/j.amc.2015.08.125Pramanik, S. (2002). Kinematic Synthesis of a Six-Member Mechanism for Automotive Steering. Journal of Mechanical Design, 124(4), 642-645. doi:10.1115/1.150337

    Multi-step derivative-free preconditioned Newton method for solving systems of nonlinear equations

    Get PDF
    Preconditioning of systems of nonlinear equations modifies the associated Jacobian and provides rapid convergence. The preconditioners are introduced in a way that they do not affect the convergence order of parent iterative method. The multi-step derivative-free iterative method consists of a base method and multi-step part. In the base method, the Jacobian of the system of nonlinear equation is approximated by finite difference operator and preconditioners add an extra term to modify it. The inversion of modified finite difference operator is avoided by computing LU factors. Once we have LU factors, we repeatedly use them to solve lower and upper triangular systems in the multi-step part to enhance the convergence order. The convergence order of m-step Newton iterative method is m + 1. The claimed convergence orders are verified by computing the computational order of convergence and numerical simulations clearly show that the good selection of preconditioning provides numerical stability, accuracy and rapid convergence.Peer ReviewedPostprint (author's final draft

    A Multigrid Optimization Algorithm for the Numerical Solution of Quasilinear Variational Inequalities Involving the pp-Laplacian

    Full text link
    In this paper we propose a multigrid optimization algorithm (MG/OPT) for the numerical solution of a class of quasilinear variational inequalities of the second kind. This approach is enabled by the fact that the solution of the variational inequality is given by the minimizer of a nonsmooth energy functional, involving the pp-Laplace operator. We propose a Huber regularization of the functional and a finite element discretization for the problem. Further, we analyze the regularity of the discretized energy functional, and we are able to prove that its Jacobian is slantly differentiable. This regularity property is useful to analyze the convergence of the MG/OPT algorithm. In fact, we demostrate that the algorithm is globally convergent by using a mean value theorem for semismooth functions. Finally, we apply the MG/OPT algorithm to the numerical simulation of the viscoplastic flow of Bingham, Casson and Herschel-Bulkley fluids in a pipe. Several experiments are carried out to show the efficiency of the proposed algorithm when solving this kind of fluid mechanics problems

    Numerical iterative methods for nonlinear problems.

    Get PDF
    The primary focus of research in this thesis is to address the construction of iterative methods for nonlinear problems coming from different disciplines. The present manuscript sheds light on the development of iterative schemes for scalar nonlinear equations, for computing the generalized inverse of a matrix, for general classes of systems of nonlinear equations and specific systems of nonlinear equations associated with ordinary and partial differential equations. Our treatment of the considered iterative schemes consists of two parts: in the first called the ’construction part’ we define the solution method; in the second part we establish the proof of local convergence and we derive convergence-order, by using symbolic algebra tools. The quantitative measure in terms of floating-point operations and the quality of the computed solution, when real nonlinear problems are considered, provide the efficiency comparison among the proposed and the existing iterative schemes. In the case of systems of nonlinear equations, the multi-step extensions are formed in such a way that very economical iterative methods are provided, from a computational viewpoint. Especially in the multi-step versions of an iterative method for systems of nonlinear equations, the Jacobians inverses are avoided which make the iterative process computationally very fast. When considering special systems of nonlinear equations associated with ordinary and partial differential equations, we can use higher-order Frechet derivatives thanks to the special type of nonlinearity: from a computational viewpoint such an approach has to be avoided in the case of general systems of nonlinear equations due to the high computational cost. Aside from nonlinear equations, an efficient matrix iteration method is developed and implemented for the calculation of weighted Moore-Penrose inverse. Finally, a variety of nonlinear problems have been numerically tested in order to show the correctness and the computational efficiency of our developed iterative algorithms
    corecore