In this paper we propose a multigrid optimization algorithm (MG/OPT) for the
numerical solution of a class of quasilinear variational inequalities of the
second kind. This approach is enabled by the fact that the solution of the
variational inequality is given by the minimizer of a nonsmooth energy
functional, involving the p-Laplace operator. We propose a Huber
regularization of the functional and a finite element discretization for the
problem. Further, we analyze the regularity of the discretized energy
functional, and we are able to prove that its Jacobian is slantly
differentiable. This regularity property is useful to analyze the convergence
of the MG/OPT algorithm. In fact, we demostrate that the algorithm is globally
convergent by using a mean value theorem for semismooth functions. Finally, we
apply the MG/OPT algorithm to the numerical simulation of the viscoplastic flow
of Bingham, Casson and Herschel-Bulkley fluids in a pipe. Several experiments
are carried out to show the efficiency of the proposed algorithm when solving
this kind of fluid mechanics problems