7 research outputs found

    Optimal controllers design for voltage control in Off-grid hybrid power system

    Get PDF
    Generally, for remote places extension of grid is uneconomical and difficult. Off-grid hybrid power systems (OGHPS) has  renewable energy sources integrated with conventional sources. OGHPS is very significant as it is the only source of electric supply for remote areas. OGHPS under study  has Induction generator (IG) for wind power generation, Photo-Voltaic source with inverter, Synchronous generator (SG) for Diesel Engine (DE) and load. Over-rated PV-inverter has capacity to supply reactive power.  SG of  DE  has Automatic voltage regulator for excitation control to regulate terminal voltage. Load and IG demands reactive power, causes reactive power imbalance hence voltage fluctuations in OGHPS. To manage reactive power for voltage control, two control structures with Proportional–Integral controller(PI), to control  inverter reactive power and  SG excitation by automatic voltage regulator are incorporated.  Improper tuning of controllers lead  to oscillatory and sluggish response. Hence in this test system both controllers need to be tune optimally. This paper proposes novel intelligent computing algorithm , Enhanced Bacterial forging algorithm (EBFA) for optimal reactive power controller for voltage control in OGHPS. Small signal model of OGHPS with proposed controller is  tested for different disturbances. simulation results  are compared  with conventional  method , proved the effectiveness of EBFA

    The Application of Improved Bacteria Foraging Algorithm to the Optimization of Aviation Equipment Maintenance Scheduling

    Get PDF
    Taking the aviation equipment scheduled maintenance as a prototype, this paper improves a bionic global random search algorithm - bacteria foraging optimization algorithm to solve the task-scheduling problem. Inspired by gene mutation, the activity of bacteria is dynamically adjusted to make good bacteria more capable of action. In addition, a bacterial quorum sensing mechanism is established, which allows bacteria to guide their swimming routes by using their peer experience and enhance their global search capability. Its application to the engineering practice can optimize the scheduling of the maintenance process. It is of great application value in increasing the aviation equipment maintenance efficiency and the level of command automation. In addition, it can improve the resource utilization ratio to reduce the maintenance support cost

    Improve Interval Optimization of FLR using Auto-speed Acceleration Algorithm

    Get PDF
    Inflation is a benchmark of a country's economic development. Inflation is very influential on various things, so forecasting inflation to know on upcoming inflation will impact positively. There are various methods used to perform forecasting, one of which is the fuzzy time series forecasting with maximum results. Fuzzy logical relationships (FLR) model is a very good in doing forecasting. However, there are some parameters that the value needs to be optimised. Interval is a parameter which is highly influence toward forecasting result. The utilizing optimization with hybrid automatic clustering and particle swarm optimization (ACPSO). Automatic clustering can do interval formation with just the right amount. While the PSO can optimise the value of each interval and it is providing maximum results. This study proposes the improvement in find the solution using auto-speed acceleration algorithm. Auto-speed acceleration algorithm can find a global solution which is hard to reach by the PSO and time of computation is faster. The results of the acquired solutions can provide the right interval so that the value of the FLR can perform forecasting with maximum results

    Binary Multi-Verse Optimization (BMVO) Approaches for Feature Selection

    Get PDF
    Multi-Verse Optimization (MVO) is one of the newest meta-heuristic optimization algorithms which imitates the theory of Multi-Verse in Physics and resembles the interaction among the various universes. In problem domains like feature selection, the solutions are often constrained to the binary values viz. 0 and 1. With regard to this, in this paper, binary versions of MVO algorithm have been proposed with two prime aims: firstly, to remove redundant and irrelevant features from the dataset and secondly, to achieve better classification accuracy. The proposed binary versions use the concept of transformation functions for the mapping of a continuous version of the MVO algorithm to its binary versions. For carrying out the experiments, 21 diverse datasets have been used to compare the Binary MVO (BMVO) with some binary versions of existing metaheuristic algorithms. It has been observed that the proposed BMVO approaches have outperformed in terms of a number of features selected and the accuracy of the classification process

    Binary Competitive Swarm Optimizer Approaches For Feature Selection

    Get PDF
    Feature selection is known as an NP-hard combinatorial problem in which the possible feature subsets increase exponentially with the number of features. Due to the increment of the feature size, the exhaustive search has become impractical. In addition, a feature set normally includes irrelevant, redundant, and relevant information. Therefore, in this paper, binary variants of a competitive swarm optimizer are proposed for wrapper feature selection. The proposed approaches are used to select a subset of significant features for classification purposes. The binary version introduced here is performed by employing the S-shaped and V-shaped transfer functions, which allows the search agents to move on the binary search space. The proposed approaches are tested by using 15 benchmark datasets collected from the UCI machine learning repository, and the results are compared with other conventional feature selection methods. Our results prove the capability of the proposed binary version of the competitive swarm optimizer not only in terms of high classification performance, but also low computational cost

    Machine learning assisted optimization with applications to diesel engine optimization with the particle swarm optimization algorithm

    Get PDF
    A novel approach to incorporating Machine Learning into optimization routines is presented. An approach which combines the benefits of ML, optimization, and meta-model searching is developed and tested on a multi-modal test problem; a modified Rastragin\u27s function. An enhanced Particle Swarm Optimization method was derived from the initial testing. Optimization of a diesel engine was carried out using the modified algorithm demonstrating an improvement of 83% compared with the unmodified PSO algorithm. Additionally, an approach to enhancing the training of ML models by leveraging Virtual Sensing as an alternative to standard multi-layer neural networks is presented. Substantial gains were made in the prediction of Particulate matter, reducing the MMSE by 50% and improving the correlation R^2 from 0.84 to 0.98. Improvements were made in models of PM, NOx, HC, CO, and Fuel Consumption using the method, while training times and convergence reliability were simultaneously improved over the traditional approach

    Document clustering with optimized unsupervised feature selection and centroid allocation

    Get PDF
    An effective document clustering system can significantly improve the tasks of document analysis, grouping, and retrieval. The performance of a document clustering system mainly depends on document preparation and allocation of cluster positions. As achieving optimal document clustering is a combinatorial NP-hard optimization problem, it becomes essential to utilize non-traditional methods to look for optimal or near-optimal solutions. During the allocation of cluster positions or the centroids allocation process, the extra text features that represent keywords in each document have an effect on the clustering results. A large number of features need to be reduced using dimensionality reduction techniques. Feature selection is an important step that can be used to reduce the redundant and inconsistent features. Due to a large number of the potential feature combinations, text feature selection is considered a complicated process. The persistent drawbacks of the current text feature selection methods such as local optima and absence of class labels of features were addressed in this thesis. The supervised and unsupervised feature selection methods were investigated. To address the problems of optimizing the supervised feature selection methods so as to improve document clustering, memetic hybridization between filter and wrapper feature selection, known as Memetic Algorithm Feature Selection, was presented first. In order to deal with the unlabelled features, unsupervised feature selection method was also proposed. The proposed unsupervised feature selection method integrates Simulated Annealing to the global search using Differential Evolution. This combination also aims to combine the advantages of both the wrapper and filter methods in a memetic scheme but on an unsupervised basis. Two versions of this hybridization were proposed. The first was named Differential Evolution Simulated Annealing, which uses the standard mutation of Differential Evolution, and the second was named Dichotomous Differential Evolution Simulated Annealing, which used the dichotomous mutation of the differential evolution. After feature selection two centroid allocation methods were proposed; the first is the combination of Chaotic Logistic Search and Discrete Differential Evolution global search, which was named Differential Evolution Memetic Clustering (DEMC) and the second was based on using the Gradient search using the k-means as a local search with a modified Differential Harmony global Search. The resulting method was named Memetic Differential Harmony Search (MDHS). In order to intensify the exploitation aspect of MDHS, a binomial crossover was used with it. Finally, the improved method is named Crossover Memetic Differential Harmony Search (CMDHS). The test results using the F-measure, Average Distance of Document to Cluster (ADDC) and the nonparametric statistical tests showed the superiority of the CMDHS over the baseline methods, namely the HS, DHS, k-means and the MDHS. The tests also show that CMDHS is better than the DEMC proposed earlier. Finally the proposed CMDHS was compared with two current state-of-the-art methods, namely a Krill Herd (KH) based centroid allocation method and an Artifice Bee Colony (ABC) based method, and found to outperform these two methods in most cases
    corecore