13 research outputs found

    A MODIFIED FMEA APPROACH BASED INTEGRATED DECISION FRAMEWORK FOR OVERCOMING THE PROBLEMS OF SUDDEN FAILURE AND ACCIDENTAL HAZARDS IN TURBINE AND ALTERNATOR UNIT

    Get PDF
    The proposed work presents a novel integrated decision framework, based on Intuitionistic Fuzzy (IF)- Failure Mode & Effect Analysis (IF-FMEA), and IF-Technique for Order of Preference by Similarity to Ideal Solution (IF-TOPSIS) approaches for analysing the failure risk issues of Turbine and Alternator Unit (TAU) in a chemical treatment-based sugar process industry. The proposed novel IF-FMEA approach-based modelling overcomes the various demerits of traditional FMEA approaches which are faced during the identification of critical failure causes based on Risk Priority Number (RPN) outputs. On the basis of detailed qualitative information related to plant operation, FMEA sheet was developed and linguistic ratings were collected against three risk factors such as probability of Occurrence (O), Severity (S), and Detection (D). IF- Hybrid Weighted Euclidean Distance (IFHWED) score has been computed to rank all listed failure causes under three risk factors. The ranking results based on IF-FMEA approach has been compared with the well existed IF-TOPSIS approach for evaluating the accuracy of proposed modelling results. Sensitivity analysis has been also done for checking the robustness of the framework. The analysis results were provided to maintenance executives of the TAU unit to frame optimum maintenance plan for overcoming the problems of sudden breakdown. The analysis results are also applicable to TAU systems which are installed in other chemical process industries globally.

    RISK PRIORITY EVALUATION OF POWER TRANSFORMER PARTS BASED ON HYBRID FMEA FRAMEWORK UNDER HESITANT FUZZY ENVIRONMENT

    Get PDF
    The power transformer is one of the most critical facilities in the power system, and its running status directly impacts the power system's security. It is essential to research the risk priority evaluation of the power transformer parts. Failure mode and effects analysis (FMEA) is a methodology for analyzing the potential failure modes (FMs) within a system in various industrial devices. This study puts forward a hybrid FMEA framework integrating novel hesitant fuzzy aggregation tools and CRITIC (Criteria Importance Through Inter-criteria Correlation) method. In this framework, the hesitant fuzzy sets (HFSs) are used to depict the uncertainty in risk evaluation. Then, an improved HFWA (hesitant fuzzy weighted averaging) operator is adopted to fuse risk evaluation for FMEA experts. This aggregation manner can consider different lengths of HFSs and the support degrees among the FMEA experts. Next, the novel HFWGA (hesitant fuzzy weighted geometric averaging) operator with CRITIC weights is developed to determine the risk priority of each FM. This method can satisfy the multiplicative characteristic of the RPN (risk priority number) method of the conventional FMEA model and reflect the correlations between risk indicators. Finally, a real example of the risk priority evaluation of power transformer parts is given to show the applicability and feasibility of the proposed hybrid FMEA framework. Comparison and sensitivity studies are also offered to verify the effectiveness of the improved risk assessment approach

    A systematic review on multi-criteria group decision-making methods based on weights: analysis and classification scheme

    Get PDF
    Interest in group decision-making (GDM) has been increasing prominently over the last decade. Access to global databases, sophisticated sensors which can obtain multiple inputs or complex problems requiring opinions from several experts have driven interest in data aggregation. Consequently, the field has been widely studied from several viewpoints and multiple approaches have been proposed. Nevertheless, there is a lack of general framework. Moreover, this problem is exacerbated in the case of experts’ weighting methods, one of the most widely-used techniques to deal with multiple source aggregation. This lack of general classification scheme, or a guide to assist expert knowledge, leads to ambiguity or misreading for readers, who may be overwhelmed by the large amount of unclassified information currently available. To invert this situation, a general GDM framework is presented which divides and classifies all data aggregation techniques, focusing on and expanding the classification of experts’ weighting methods in terms of analysis type by carrying out an in-depth literature review. Results are not only classified but analysed and discussed regarding multiple characteristics, such as MCDMs in which they are applied, type of data used, ideal solutions considered or when they are applied. Furthermore, general requirements supplement this analysis such as initial influence, or component division considerations. As a result, this paper provides not only a general classification scheme and a detailed analysis of experts’ weighting methods but also a road map for researchers working on GDM topics or a guide for experts who use these methods. Furthermore, six significant contributions for future research pathways are provided in the conclusions.The first author acknowledges support from the Spanish Ministry of Universities [grant number FPU18/01471]. The second and third author wish to recognize their support from the Serra Hunter program. Finally, this work was supported by the Catalan agency AGAUR through its research group support program (2017SGR00227). This research is part of the R&D project IAQ4EDU, reference no. PID2020-117366RB-I00, funded by MCIN/AEI/10.13039/ 501100011033.Peer ReviewedPostprint (published version

    Introducing a multi-criteria evaluation method using Pythagorean fuzzy sets: A case study focusing on resilient construction project selection

    Full text link
    © 2020, Emerald Publishing Limited. Purpose: Project selection is a critical decision for any organization seeking to commission a large-scale construction project. Project selection is a complex multi-criteria decision-making problem with significant uncertainty and high risks. Fuzzy set theory has been used to address various aspects of project uncertainty, but with key practical limitations. This study aims to develop and apply a novel Pythagorean fuzzy sets (PFSs) approach that overcomes these key limitations. Design/methodology/approach: The study is particular to complex project selection in the context of increasing interest in resilience as a key project selection criterion. Project resilience is proposed and considered in the specific situation of a large-scale construction project selection case study. The case study develops and applies a PFS approach to manage project uncertainty. The case study is presented to demonstrate how PFS is applied to a practical problem of realistic complexity. Working through the case study highlights some of the key benefits of the PFS approach for practicing project managers and decision-makers in general. Findings: The PFSs approach proposed in this study is shown to be scalable, efficient, generalizable and practical. The results confirm that the inclusion of last aggregation and last defuzzification avoids the potentially critical information loss and relative lack of transparency. Most especially, the developed PFS is able to accommodate and manage domain expert expressions of uncertainty that are realistic and practical. Originality/value: The main novelty of this study is to address project resilience in the form of multi-criteria evaluation and decision-making under PFS uncertainty. The approach is defined mathematically and presented as a six-step approach to decision-making. The PFS approach is given to allow multiple domain experts to focus more clearly on accurate expressions of their agreement and disagreement. PFS is shown to be an important new direction in practical multi-criteria decision-making methods for the project management practitioner

    EDAS method for multiple attribute group decision making with probabilistic dual hesitant fuzzy information and its application to suppliers selection

    Get PDF
    Probabilistic dual hesitant fuzzy set (PDHFS) is a more powerful and important tool to describe uncertain information regarded as generalization of hesitant fuzzy set (HFS) and dual HFS (DHFS), not only reflects the hesitant attitude of decision-makers (DMs), but also reflects the probability information of DMs. Score function of fuzzy number and weighting method are very important in multi-attribute group decision-making (MAGDM) issues. In many fuzzy environments, the score function and entropy measure have been proposed one after another. Firstly, based on the detailed analysis of the existed score function of PDHF element (PDHFE) and with the help of previous references, we build a novel score function for PDHFE. Secondly, a combined weighting method is built based on the minimum identification information principle by fusing PDHF entropy and Criteria Importance Through Intercriteria Correlation (CRITIC) method. Thirdly, a novel PDHF MAGDM approach (PDHF-EDAS) is built by extending evaluation based on distance from average solution (EDAS) approach to the PDHF environment to solve the issue that the decision attribute information is PDHFE. Finally, the practicability and effectiveness of the PDHF MAGDM technique is verified by suppliers selection (SS) and comparing analysis with existing methods. First published online 23 January 202

    Uncertain Multi-Criteria Optimization Problems

    Get PDF
    Most real-world search and optimization problems naturally involve multiple criteria as objectives. Generally, symmetry, asymmetry, and anti-symmetry are basic characteristics of binary relationships used when modeling optimization problems. Moreover, the notion of symmetry has appeared in many articles about uncertainty theories that are employed in multi-criteria problems. Different solutions may produce trade-offs (conflicting scenarios) among different objectives. A better solution with respect to one objective may compromise other objectives. There are various factors that need to be considered to address the problems in multidisciplinary research, which is critical for the overall sustainability of human development and activity. In this regard, in recent decades, decision-making theory has been the subject of intense research activities due to its wide applications in different areas. The decision-making theory approach has become an important means to provide real-time solutions to uncertainty problems. Theories such as probability theory, fuzzy set theory, type-2 fuzzy set theory, rough set, and uncertainty theory, available in the existing literature, deal with such uncertainties. Nevertheless, the uncertain multi-criteria characteristics in such problems have not yet been explored in depth, and there is much left to be achieved in this direction. Hence, different mathematical models of real-life multi-criteria optimization problems can be developed in various uncertain frameworks with special emphasis on optimization problems

    Multiple-Criteria Decision Making

    Get PDF
    Decision-making on real-world problems, including individual process decisions, requires an appropriate and reliable decision support system. Fuzzy set theory, rough set theory, and neutrosophic set theory, which are MCDM techniques, are useful for modeling complex decision-making problems with imprecise, ambiguous, or vague data.This Special Issue, “Multiple Criteria Decision Making”, aims to incorporate recent developments in the area of the multi-criteria decision-making field. Topics include, but are not limited to:- MCDM optimization in engineering;- Environmental sustainability in engineering processes;- Multi-criteria production and logistics process planning;- New trends in multi-criteria evaluation of sustainable processes;- Multi-criteria decision making in strategic management based on sustainable criteria

    Fuzzy Sets in Business Management, Finance, and Economics

    Get PDF
    This book collects fifteen papers published in s Special Issue of Mathematics titled “Fuzzy Sets in Business Management, Finance, and Economics”, which was published in 2021. These paper cover a wide range of different tools from Fuzzy Set Theory and applications in many areas of Business Management and other connected fields. Specifically, this book contains applications of such instruments as, among others, Fuzzy Set Qualitative Comparative Analysis, Neuro-Fuzzy Methods, the Forgotten Effects Algorithm, Expertons Theory, Fuzzy Markov Chains, Fuzzy Arithmetic, Decision Making with OWA Operators and Pythagorean Aggregation Operators, Fuzzy Pattern Recognition, and Intuitionistic Fuzzy Sets. The papers in this book tackle a wide variety of problems in areas such as strategic management, sustainable decisions by firms and public organisms, tourism management, accounting and auditing, macroeconomic modelling, the evaluation of public organizations and universities, and actuarial modelling. We hope that this book will be useful not only for business managers, public decision-makers, and researchers in the specific fields of business management, finance, and economics but also in the broader areas of soft mathematics in social sciences. Practitioners will find methods and ideas that could be fruitful in current management issues. Scholars will find novel developments that may inspire further applications in the social sciences
    corecore