2,768 research outputs found

    Visual secret sharing and related Works -A Review

    Get PDF
    The accelerated development of network technology and internet applications has increased the significance of protecting digital data and images from unauthorized access and manipulation. The secret image-sharing network (SIS) is a crucial technique used to protect private digital photos from illegal editing and copying. SIS can be classified into two types: single-secret sharing (SSS) and multi-secret sharing (MSS). In SSS, a single secret image is divided into multiple shares, while in MSS, multiple secret images are divided into multiple shares. Both SSS and MSS ensure that the original secret images cannot be reconstructed without the correct combination of shares. Therefore, several secret image-sharing methods have been developed depending on these two methods for example visual cryptography, steganography, discrete wavelet transform, watermarking, and threshold. All of these techniques are capable of randomly dividing the secret image into a large number of shares, each of which cannot provide any information to the intrusion team.  This study examined various visual secret-sharing schemes as unique examples of participant secret-sharing methods. Several structures that generalize and enhance VSS were also discussed in this study on covert image-sharing protocols and also this research also gives a comparative analysis of several methods based on various attributes in order to better concentrate on the future directions of the secret image. Generally speaking, the image quality generated employing developed methodologies is preferable to the image quality achieved through using the traditional visual secret-sharing methodology

    Fast image watermarking based on signum of cosine matrix

    Get PDF
    In the field of image watermarking, the singular value decomposition has good imperceptibility and robustness, but it has high complexity. It divides a host image into matrices of U, S, and V. Singular matrix S has been widely used for embedding and extracting watermark, while orthogonal matrices of U and V are used in decomposition and reconstruction. The proposed signum of cosine matrix method is carried out to eliminate the generation of the three matrices at each block and replace it with a signum of cosine matrix. The proposed signum of cosine matrix is performed faster on the decomposition and reconstruction. The image is transformed into a coefficient matrix C using the signum matrix. The C matrix values are closer to the S value of singular value decomposition which can preserve high quality of the watermarked image. The experimental results show that our method is able to produce similar imperceptibility and robustness level of the watermarked image with less computational time

    Pragmatic Communication in Multi-Agent Collaborative Perception

    Full text link
    Collaborative perception allows each agent to enhance its perceptual abilities by exchanging messages with others. It inherently results in a trade-off between perception ability and communication costs. Previous works transmit complete full-frame high-dimensional feature maps among agents, resulting in substantial communication costs. To promote communication efficiency, we propose only transmitting the information needed for the collaborator's downstream task. This pragmatic communication strategy focuses on three key aspects: i) pragmatic message selection, which selects task-critical parts from the complete data, resulting in spatially and temporally sparse feature vectors; ii) pragmatic message representation, which achieves pragmatic approximation of high-dimensional feature vectors with a task-adaptive dictionary, enabling communicating with integer indices; iii) pragmatic collaborator selection, which identifies beneficial collaborators, pruning unnecessary communication links. Following this strategy, we first formulate a mathematical optimization framework for the perception-communication trade-off and then propose PragComm, a multi-agent collaborative perception system with two key components: i) single-agent detection and tracking and ii) pragmatic collaboration. The proposed PragComm promotes pragmatic communication and adapts to a wide range of communication conditions. We evaluate PragComm for both collaborative 3D object detection and tracking tasks in both real-world, V2V4Real, and simulation datasets, OPV2V and V2X-SIM2.0. PragComm consistently outperforms previous methods with more than 32.7K times lower communication volume on OPV2V. Code is available at github.com/PhyllisH/PragComm.Comment: 18 page

    2D Phase Unwrapping via Graph Cuts

    Get PDF
    Phase imaging technologies such as interferometric synthetic aperture radar (InSAR), magnetic resonance imaging (MRI), or optical interferometry, are nowadays widespread and with an increasing usage. The so-called phase unwrapping, which consists in the in- ference of the absolute phase from the modulo-2π phase, is a critical step in many of their processing chains, yet still one of its most challenging problems. We introduce an en- ergy minimization based approach to 2D phase unwrapping. In this approach we address the problem by adopting a Bayesian point of view and a Markov random field (MRF) to model the phase. The maximum a posteriori estimation of the absolute phase gives rise to an integer optimization problem, for which we introduce a family of efficient algo- rithms based on existing graph cuts techniques. We term our approach and algorithms PUMA, for Phase Unwrapping MAx flow. As long as the prior potential of the MRF is convex, PUMA guarantees an exact global solution. In particular it solves exactly all the minimum L p norm (p ≥ 1) phase unwrapping problems, unifying in that sense, a set of existing independent algorithms. For non convex potentials we introduce a version of PUMA that, while yielding only approximate solutions, gives very useful phase unwrap- ping results. The main characteristic of the introduced solutions is the ability to blindly preserve discontinuities. Extending the previous versions of PUMA, we tackle denoising by exploiting a multi-precision idea, which allows us to use the same rationale both for phase unwrapping and denoising. Finally, the last presented version of PUMA uses a frequency diversity concept to unwrap phase images having large phase rates. A representative set of experiences illustrates the performance of PUMA

    Virtual Reality Aided Mobile C-arm Positioning for Image-Guided Surgery

    Get PDF
    Image-guided surgery (IGS) is the minimally invasive procedure based on the pre-operative volume in conjunction with intra-operative X-ray images which are commonly captured by mobile C-arms for the confirmation of surgical outcomes. Although currently some commercial navigation systems are employed, one critical issue of such systems is the neglect regarding the radiation exposure to the patient and surgeons. In practice, when one surgical stage is finished, several X-ray images have to be acquired repeatedly by the mobile C-arm to obtain the desired image. Excessive radiation exposure may increase the risk of some complications. Therefore, it is necessary to develop a positioning system for mobile C-arms, and achieve one-time imaging to avoid the additional radiation exposure. In this dissertation, a mobile C-arm positioning system is proposed with the aid of virtual reality (VR). The surface model of patient is reconstructed by a camera mounted on the mobile C-arm. A novel registration method is proposed to align this model and pre-operative volume based on a tracker, so that surgeons can visualize the hidden anatomy directly from the outside view and determine a reference pose of C-arm. Considering the congested operating room, the C-arm is modeled as manipulator with a movable base to maneuver the image intensifier to the desired pose. In the registration procedure above, intensity-based 2D/3D registration is used to transform the pre-operative volume into the coordinate system of tracker. Although it provides a high accuracy, the small capture range hinders its clinical use due to the initial guess. To address such problem, a robust and fast initialization method is proposed based on the automatic tracking based initialization and multi-resolution estimation in frequency domain. This hardware-software integrated approach provides almost optimal transformation parameters for intensity-based registration. To determine the pose of mobile C-arm, high-quality visualization is necessary to locate the pathology in the hidden anatomy. A novel dimensionality reduction method based on sparse representation is proposed for the design of multi-dimensional transfer function in direct volume rendering. It not only achieves the similar performance to the conventional methods, but also owns the capability to deal with the large data sets

    Efficient database support for WWW image retrieval

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Architectures and implementations for the Polynomial Ring Engine over small residue rings

    Get PDF
    This work considers VLSI implementations for the recently introduced Polynomial Ring Engine (PRE) using small residue rings. To allow for a comprehensive approach to the implementation of the PRE mappings for DSP algorithms, this dissertation introduces novel techniques ranging from system level architectures to transistor level considerations. The Polynomial Ring Engine combines both classical residue mappings and new polynomial mappings. This dissertation develops a systematic approach for generating pipelined systolic/ semi-systolic structures for the PRE mappings. An example architecture is constructed and simulated to illustrate the properties of the new architectures. To simultaneously achieve large computational dynamic range and high throughput rate the basic building blocks of the PRE architecture use transistor size profiling. Transistor sizing software is developed for profiling the Switching Tree dynamic logic used to build the basic modulo blocks. The software handles complex nFET structures using a simple iterative algorithm. Issues such as convergence of the iterative technique and validity of the sizing formulae have been treated with an appropriate mathematical analysis. As an illustration of the use of PRE architectures for modem DSP computational problems, a Wavelet Transform for HDTV image compression is implemented. An interesting use is made of the PRE technique of using polynomial indeterminates as \u27placeholders\u27 for components of the processed data. In this case we use an indeterminate to symbolically handle the irrational number [square root of 3] of the Daubechie mother wavelet for N = 4. Finally, a multi-level fault tolerant PRE architecture is developed by combining the classical redundant residue approach and the circuit parity check approach. The proposed architecture uses syndromes to correct faulty residue channels and an embedded parity check to correct faulty computational channels. The architecture offers superior fault detection and correction with online data interruption

    Information security and assurance : Proceedings international conference, ISA 2012, Shanghai China, April 2012

    Full text link

    Social Intelligence Design 2007. Proceedings Sixth Workshop on Social Intelligence Design

    Get PDF
    corecore