
EFFICIENT DATABASE SUPPORT FOR WWW IMAGE

RETRIEVAL

By

Heng Tao Shen

SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

AT

NATIONAL UNIVERSITY OF SINGAPORE

REPUBLIC OF SINGAPORE

JUNE 2003

c© Copyright by Heng Tao Shen, 2003

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48626573?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

NATIONAL UNIVERSITY OF SINGAPORE

DEPARTMENT OF

COMPUTER SCIENCE

The undersigned hereby certify that they have read and recommend

to the Faculty of Graduate Studies for acceptance a thesis entitled

“Efficient Database Support for WWW Image Retrieval”

by Heng Tao Shen in partial fulfillment of the requirements for the

degree of Doctor of Philosophy.

Dated: June 2003

External Examiner:
Professor

Research Supervisor:
Professor Beng Chin Ooi

Examing Committee:
Professor

Professor

ii

To My Parents

iv

Table of Contents

Table of Contents v

List of Tables ix

List of Figures x

Acknowledgements xiii

Abstract xiv

1 Introduction 1

1.1 Content-Based Image Retrieval (CBIR) 2

1.1.1 What is CBIR? . 2

1.1.2 Problems of CBIR . 3

1.1.3 Searching Images from WWW 6

1.2 The Objectives and Contributions . 7

1.2.1 Semantic-based WWW Image Retrieval 7

1.2.2 High-dimensional Indexing . 8

1.2.3 Hyper-dimensional Indexing 9

1.2.4 Multi-features Indexing . 10

1.3 Organization of the Thesis . 12

2 Related Work 13

2.1 Introduction . 13

2.2 Image Retrieval Systems . 14

2.3 High-dimensional Indexing . 17

2.3.1 Dimensionality Reduction . 17

2.3.2 Data Approximation . 18

2.3.3 One Dimensional Transformations 19

2.4 Multiple Feature Indexing . 20

v

3 Semantic-based Retrieval for WWW Images 22

3.1 Introduction . 22

3.2 ChainNet: A Semantic Model for WWW Images 25

3.2.1 Image Representation Model 25

3.2.2 Semantic Measure Model . 32

3.2.3 Relevance Feedback . 35

3.3 ICC: Incremental Clustering of ChainNet 39

3.3.1 Incremental Clustering Algorithm 39

3.3.2 Summarization of ChainNet 46

3.3.3 Time and Space Complexity 49

3.4 Architecture of ICICLE . 50

3.5 Performance Study . 52

3.5.1 Experimental Setup . 52

3.5.2 Tuning the Weight ChainNet Model 53

3.5.3 Feedback Mechanisms . 58

3.5.4 Comparative Study on Clustering Techniques 60

3.6 Extended ICICLE for Multiple Features 63

3.7 Implementation of Extended ICICLE 64

3.8 Summary . 65

4 Indexing High-dimensional Image Feature 67

4.1 Introduction . 67

4.2 Definitions . 70

4.3 Multi-level Mahalanobis-based Dimensionality Reduction (MMDR) . 75

4.3.1 MMDR Algorithm . 75

4.3.2 Optimization on Distance Computation 80

4.3.3 Scalability for Large Datasets 81

4.4 Indexing Reduced Subspaces . 82

4.4.1 Extended iDistance . 83

4.4.2 Handling of Dynamic Insertions 86

4.5 Performance Study . 89

4.5.1 Query Precision . 92

4.5.2 Query Efficiency . 94

4.5.3 Scalability . 97

4.5.4 Effect of Dynamic Insertions 98

4.5.5 Effect of Outliers . 99

4.6 Summary . 99

5 Indexing Hyper-dimensional Image Feature 101

5.1 Introduction . 101

5.2 Local Digital Coding (LDC) . 104

vi

5.2.1 Structure of the LDC tree . 105

5.2.2 Constructing the LDC Tree 106

5.3 KNN Query Processing . 108

5.3.1 Partial Distance . 109

5.3.2 Selecting the values m and n 113

5.3.3 The KNN Search Algorithm 117

5.3.4 Optimizing the Generation of (n,m) 122

5.3.5 A Cost Model . 124

5.4 Performance Study . 125

5.4.1 Effect of Θ . 128

5.4.2 Effect of Φ . 129

5.4.3 Effect of Data Size . 130

5.4.4 Effect of Dimensionality . 133

5.4.5 Effect of Skewness . 134

5.4.6 Effect of Dynamic Insertion 135

5.4.7 Effect of LDC in Extended ICICLE 135

5.5 Summary . 136

6 Indexing Multiple Image Features 138

6.1 Introduction . 138

6.2 Representing and Indexing Multiple features 140

6.2.1 A Compact Multi-Feature Representation 140

6.2.2 A Two-Tier Indexing Structure 143

6.2.3 Tuning Bit Sequence Generation 145

6.3 KNN Query Processing . 147

6.3.1 Lower Bounded Partial Distance 147

6.3.2 Adaptive Searching by Aggressive Partial-distance 149

6.3.3 A Cost Model . 155

6.4 Performance Study . 157

6.4.1 Experiment SetUp . 157

6.4.2 Insight of DIM’ . 158

6.4.3 Effect of c . 160

6.4.4 Effect of Dimensionality . 160

6.4.5 Effect of Data Size . 161

6.4.6 Effect of Skew . 163

6.4.7 Effect of Weighted Queries . 164

6.4.8 Effect of Access Order . 166

6.4.9 Effect of Number of Features 166

6.4.10 Effects of Dynamic Insertion 166

6.5 Summary . 168

vii

7 Conclusions 169

7.1 Contributions . 169

7.1.1 Semantic-based Image Retrieval 170

7.1.2 High-dimensional Indexing . 171

7.1.3 Hyper-dimensional Indexing 171

7.1.4 Multiple Feature Indexing . 172

7.2 Future Work . 172

Bibliography 174

viii

List of Tables

3.1 A Table of Notations in Chapter 3 . 25

3.2 LCs in ChainNet of the image in Figure 3.2. 30

3.3 LCs after Vertical Summarization step for Table 3.2. 48

3.4 The final summarized ChainNet for image in Figure 3.2. 49

3.5 Test Queries. 53

4.1 A Table of Symbols and default values in Chapter 4 74

4.2 Table of input parameters and description 90

5.1 A Table of Notations in Chapter 5 . 108

5.2 A query with its key, DC and rank. 122

5.3 A cluster of data points with keys and DCs. 123

5.4 Ratio of total response time over sequential scan. 136

6.1 A Table of Notations in Chapter 6. 147

ix

List of Figures

3.1 Image Semantic Representation Model - Weight ChainNet 28

3.2 An example WWW image from ABCNEWS Website 30

3.3 F/Q ChainNet in Semantic Accumulation 37

3.4 F/Q ChainNet in Semantic Integration and Differentitaion 38

3.5 ICC Main Routine. 40

3.6 Overview of HC-ST. 41

3.7 Illustration of the Merge operation 43

3.8 Illustration of the Split operation . 44

3.9 VP-ST structure . 46

3.10 Overall ICICLE system structure in client-server form 50

3.11 Utility by each Type LC alone to Represent Image 54

3.12 Effect of Match Level. 57

3.13 Effect of Match Scale. 57

3.14 Effect of Feedback Mechanisms . 59

3.15 One-step Feedback Results for Q1 . 59

3.16 On Retrieval Effectiveness . 60

3.17 On Retrieval Efficiency . 62

3.18 Extended ICICLE system structure in client-server form 64

4.1 Mahalanobis vs. Euclidean . 69

4.2 Illustration of Ellipticity . 70

4.3 Two projection distances . 73

4.4 MMDR Algorithm . 76

4.5 LDR vs MMDR . 79

x

4.6 Scalable MMDR Algorithm . 81

4.7 Searching for NN queries q1, q2 and q3 85

4.8 Dynamic MMDR Algorithm . 87

4.9 Two ellipsoids intersect with same elongation 89

4.10 Synthetic Datasets Generation . 90

4.11 Effect on precision . 92

4.12 Effect of dimensionality on query precision 94

4.13 Effect of dimensionality on I/O cost 95

4.14 Effect of dimensionality on CPU cost 95

4.15 Effect on total response time . 95

4.16 Effect on dynamic insertion . 98

4.17 Effect on outliers . 98

5.1 The overall structure of an LDC tree. 105

5.2 Local Digital Coding Algorithm . 106

5.3 Dimensions Ranking Array. 113

5.4 Searching space in a 2-d space . 114

5.5 Main KNN Search Algorithm in LDC 117

5.6 SPA Algorithm . 120

5.7 Effect of dimensionality on total response time. 127

5.8 Effect of n
m

on I/O. 129

5.9 Effect of number of candidates on precision for uniform datasets. . . . 130

5.10 Effect of number of candidates on precision for real dataset. 131

5.11 Effect of Data Size on Uniform Dataset. 132

5.12 Effect of Data Size on Color Histogram Dataset. 132

5.13 Effect of Dimensionality on Uniform Dataset. 133

5.14 Effect of Data Skewness. 133

5.15 Effect of Dynamic Insertion on Uniform Dataset. 136

6.1 Bit sequence generation algorithm. 143

6.2 The indexing structure. 144

6.3 Patterns of distance histogram. 145

xi

6.4 The ASAP KNN searching algorithm. 150

6.5 Space Pruning by ASAP. 153

6.6 Pruning Effect of DIM’. 159

6.7 Effect of c. 159

6.8 Effect of Dimensionality on Corel Image Features. 160

6.9 Effect of Data size on Corel Image Features. 162

6.10 Effect of Data size on WWW Image Features. 162

6.11 Effect of Skew. 163

6.12 Effect of Weighted Queries. 164

6.13 Effect of Access Order on Corel Feature 165

6.14 Effect of Number of Features. 165

6.15 Effect of Dynamic Insertion on Corel Image Features. 167

xii

Acknowledgements

There are a number of people who guided and assisted me in one way or another

to accomplish this research. First of all, I wish to thank Professor Beng Chin Ooi,

my supervisor, for his bright guidance, insightful suggestions and constant support.

During the past years, he built my confidence and shaped my research capability

to stand higher. His guidance, trust and confidence on me are the keys for me to

succeed in this research. Without him, I would not have been awarded for the Dean’s

Graduate Award in School of Computing, National University of Singapore.

Another important person for this research is Professor Kian-Lee Tan, who advised

me in various ways to improve my research acumen. His comments on writing skills

made me understand how to present a paper well. Moreover, his excellent edition has

greatly polished this thesis’s readability.

Next, I would like to thank Nick Koudas, from AT&T Shannon Laboratory USA,

and H V Jagadish, Professor from University of Michigan Ann Arbor, for their dis-

cussion and cooperation in part of this research, especially on the hyper-dimensional

indexing and multi-features indexing. They provided insightful suggestions and com-

ments on the research proposals.

Working with my buddies, Shu Guang Wang, Bin Cu, Wee Siong Ng, and all other

members in the Database groups, colored my research life.

Finally, but not the last, I would like to thank my beloved parents, for their endless

love, forever.

xiii

Abstract

WWW is exploding and shaping the current research direction. To enhance the

WWW page content, images are increasingly being embedded in HTML documents.

Such documents over the WWW essentially provide a rich and interesting source of

image collection from which users can query.

WWW images are described by both high-level feature - text, and low-level fea-

tures - color, shape, and texture. Typically, each feature is represented as a high-

dimensional feature vector. Unfortunately, most WWW image search engines fail to

exploit image semantics and give rise to low precision. On the other hand, existing

indexing techniques fail to provide more efficient retrieval than sequential scan as the

dimensionality of image features reaches high due to the well-known ’dimensionality

curse’. Moreover, the problem of indexing multiple image features is too hard to have

been addressed.

In this thesis, we first propose an effective semantic-based WWW image retrieval

system, and extend it with multiple visual features. To provide efficient database

support, we then study the problem of high-dimensional indexing, from which we

further address the problems of hyper-dimensional1 indexing and multiple high-

dimensional indexing.

To improve the retrieval accuracy of WWW images system, we present ICICLE

(Image ChainNet & Incremental CLustering Engine), a prototype system that we

have developed to effectively and efficiently retrieves WWW image by using the sur-

rounding text, the high-level feature of images, to represent the semantics of images.

1The term hyper-dimensional is used to differentiate the problem we are addressing from the
present norm of 30- to 50- (high) dimensional space

xiv

xv

ICICLE has two distinguishing features. First, it employs a novel image representa-

tion model called Weight ChainNet to capture the semantics of the image content.

Second, to search a large set of images quickly, we partition the images into clusters.

ICICLE employs an incremental clustering mechanism, ICC (Incremental Clustering

on ChainNet), that narrows the search space of the retrieval process to the relevant

partitions. Moreover, ICC facilitates incremental updates and can adaptively adjust

the number of clusters and cluster sizes. We conducted an extensive performance

study to evaluate ICICLE. Our results show that ICICLE provides better precision

and efficiency than existing techniques. To include image’s low-level features, we ex-

tend ICICLE architecture to be adaptive for multiple features. Three novel indexing

techniques are embedded in the extended ICICLE to speed up image searching.

To efficiently support image retrieval with high-dimensional feature, we present

an adaptive Multi-level Mahalanobis-based Dimensionality Reduction (MMDR) tech-

nique to index the image databases in reduced much lower dimensional subspace. Our

MMDR technique has four notable features compared to existing methods. First, it

discovers elliptical clusters using only the low-dimensional subspaces to perform ef-

fective dimensionality reduction. Second, data points in the different axis systems

are indexed using a single B+-tree. Third, our technique is highly scalable in terms

of data size and dimension. Finally, it is also dynamic and adaptive to insertions. An

extensive performance study was conducted, and the results show that our technique

not only achieves higher precision, but also enables queries to be processed efficiently.

However, the image features, such as texture and shape, can reach up to hun-

dreds or more. Such hyper-dimensional features pose significant problems to existing

high-dimensional indexing techniques. To support efficient querying and retrieval on

hyper-dimensional databases, we propose a methodology called Local Digital Coding

(LDC) which can support K-Nearest Neighbors (KNN) queries on hyper-dimensional

databases and yet co-exist with ubiquitous indices, such as B+-trees. LDC extracts

a simple bitmap representation called Digital Code(DC) for each point (or feature

vector) in its nature space. Pruning during KNN search is performed by dynamically

selecting only a subset of the bits from the DC based on which subsequent compar-

isons are performed. In doing so, expensive operations involved in computing L-norm

xvi

distance functions between hyper-dimensional data can be avoided. Extensive exper-

iments are conducted to show that our methodology offers significant performance

advantages over other existing indexing methods on hyper-dimensional datasets.

To speed up retrieval with multiple high-dimensional image features, we devise a

novel image representation that compactly captures f features into two vector com-

ponents: the first component is an f -dimensional vector where the ith feature is

transformed into a value in a single dimension space, and the second component is a

bit sequence, with two bits per dimension, obtained by analyzing each feature’s dis-

tance histogram. This representation leads to a single two-level index structure where

the first tier indexes the first component using a standard multi-dimensional index

structure such as an R-tree, and the second level is a compact list of bit sequences

accessible from the leaf node entries of the first level. The proposed two-tier structure

automatically brings about dimensionality reduction. It also permits features to be

weighted on a per query basis, so that a single index structure can support a variety

of different similarity measures. In particular, it can also support queries that do

not specify all features. We also propose an efficient algorithm for processing KNN

queries. Our extensive experiments indicate that the proposed index structure offers

significant performance advantages over sequential scan and retrieval methods using

single and multiple existing indexes.

In short, ICICLE [50, 49, 48, 40] is a more effective and efficient WWW image

retrieval system. The proposed indexing techniques MMDR [31] for high-dimensional

feature indexing, LDC [33] for hyper-dimensional feature indexing, and single two-

tier index structure [30] for multi-features indexing provide strongly efficient database

support for extended ICICLE.

Chapter 1

Introduction

Modern advances in image processing technology have made the image retrieval an

active research topic. As the Internet bandwidth increases rapidly and hardware

technologies develop quickly, free publishing of images in World Wide Web (WWW)

pages have become very prevalent. However, the semantics of WWW images has

never been fully explored to support effective retrieval. Beside the effectiveness issue,

the other essential issue for an image retrieval system is its efficiency to support fast

retrieval.

Database management systems are standard tools for manipulating large database.

To speed up access in a database, data organization structures, known as indexes, are

usually deployed. It is known that indexes are the primary means for speeding up

data retrieval and designing effective indexing structures are one of the most impor-

tant research areas in the database literature. Images are described by their features,

such as color, shape, texture, and text. Each feature of an image is typically trans-

formed into a high-dimensional (up to hundreds or more) point after some feature

transformation techniques. The state-of-art indexing methods have been shown not to

be scalable to high-dimensional spaces due to the well-known ’dimensionality curse’.

An image is typically described by multiple features. Thus image databases are in

multiple high-dimensional spaces. Unfortunately, the problem of indexing multiple

1

2

high-dimensional spaces is seldom addressed.

In this thesis, we propose an effective semantic-based WWW image retrieval sys-

tem, and study the problem of indexing image database to provide efficient support.

1.1 Content-Based Image Retrieval (CBIR)

1.1.1 What is CBIR?

The use of images in human communication can be traced back to thousands of years.

Our cave-dwelling ancestors painted pictures on the walls, and used maps to convey

needed information. As time goes on, images now play a crucial role in fields as diverse

as medicine, journalism, advertising, design, education, entertainment, and so on. As

the volume of images is increased rapidly, the need for effective and efficient retrieval

of relevant images from a large and varied collection is recognized. As a result, image

retrieval has been an active research topic and has gained steady momentum as a

result of the dramatic increase in the volume of images. More recently, the term -

Content-Based Image Retrieval (CBIR) has been widely used to describe the process

of retrieving desired images from a large collection on the basis of features which

refer to the most common low-level/visual features: color, shape and texture. In

the literature, many CBIR systems, such as [44, 53, 39, 46] etc, have been proposed.

However, retrieval of images by manually-assigned keywords is definitely not CBIR

as the term is generally understood - even if the keywords describe the image content.

CBIR operates on a totally different principle from keyword indexing. Retrieval

of images are based on the similarity of images with respect to a given image as a

query. Image features are usually represented as high-dimensional feature vectors (or

points), i.e., each feature vector contains D values, which corresponds to coordinates

in a D-dimensional space. The similarity between images are measured by some

3

distance functions i.e., comparing the feature vectors of the images. The result of

this process is a quantified similarity score that measures the visual distance between

the two images represented by the feature vectors. Queries are expressed through

visual examples, which can either be formulated by users or selected from randomly

generated image sets. If multiple features are involved, the similarity from each feature

is integrated to get an overall score. And feature characteristics of the query image

can be specified and weighted against each other. Searching queries returns a ranked

result set instead of exact matches. Besides, the user mostly wants to see only the K

top-ranked images. Low-level/visual features characterizing image content, such as

color, shape and texture, are computed for both stored and query images, and used

to identify the top K most similar images.

1.1.2 Problems of CBIR

However, the techniques for effective and efficient image retrieval have not kept pace

with the technology of image production and speed of image increase.The effectiveness

of all current CBIR systems is inherently limited by the fact that they can operate

only at the low-level feature level. High-level/semantic features such as the type of

object and the event presented in the image are harder to extract, though this remains

an active research topic. None of them can search effectively for, say, a photo of ’Bill

Clinton’. There is evidence that combining low-level image features with high-level

features (i.e., text description) can overcome some of these problems. Some existing

systems combined keywords and low-level features [64, 65, 5, 12, 37, 21, 54, 52] in

order to improve the accuracy. However, it is not practical to manually enter the

keywords for a large collection of images. Furthermore, too few key words may not

be enough to describe an image.

On the other hand, the efficiency of all current CBIR systems is limited by the

4

long retrieval time for large collections. As the number of images reaches millions or

billions, scanning every stored image for matching is definitely not desirable. Hence,

while people in image retrieval research area focus more on effectiveness issue, image

database application has also attracted database researchers to design effective index-

ing methods to support efficient retrieval. The problem of finding the K top-ranked

images is equivalent to K-Nearest Neighbors (KNN) problem that has been addressed

by the database community. Due to the large quantity of images and high dimen-

sionality of image features, efficient indexing methods are necessary to speed up the

searching and retrieval. Indexing high-dimensional data has been an active area of

research for a long time and many indexing techniques have been proposed, including

early works on multi-dimensional indexing structures (less than ten) [22] and recent

indexing structures for high-dimensional data (less than hundred) [8]. However, the

performance of these indexes degrades rapidly with increasing dimensionality due to

the known ’dimensionality curse’. Moreover, image features usually have hundreds or

more dimensionality. Existing structures are not scalable for such high-dimensionality

[9].

Hyper-dimensional databases are databases which contain hundreds or even

thousands of dimensions. Apart from image database, recent advances in several

research fields including other multimedia types, bioinformatics, data mining on audio

and text, as well as networking, have resulted in such databases which pose significant

challenges to existing high-dimensional indexing techniques, that are usually capable

of handling databases (commonly) up to tens of dimensions. The problem of indexing

and searching in a hyper-dimensional database is a challenging one, due to three main

reasons:

• First, according to several studies (e.g., [9]), the expected minimal distance

between any two points in a hyper-dimensional space is very large (becoming

5

larger with increasing dimensionality) while the difference between the minimal

and maximal distance to a point is expected to be small (becoming smaller with

increasing dimensionality). These two characteristics of a hyper-dimensional

space mean that the search radius for a k-nearest neighbor query is expected to

be large. This in turn results in a large number of “false positives” since most

points are expected to have almost equal distance to the query point. This

phenomenon leads to significant deterioration of the query performance in most

existing indexing methods.

• Second, due to the extremely high dimensionality, the fanout for most indexes

built on a hyper-dimensional space is typically very small, resulting in an in-

crease in the height of the indexes (e.g., in a 200 dimensional space, we can’t

expect more that ten entries in an 8K page if 4 bytes are needed for each di-

mension).

• Finally, the computation of the distance (e.g., Euclidean distance) between

two points in a hyper-dimensional space, becomes processor intensive as the

dimensionality increases. This implies that the processor time is expected to

become a significant portion of the overall query response time for a hyper-

dimensional database. Proposed techniques for optimizing the performance of

most indexing techniques do not take this into consideration.

Another interesting aspect for image databases is that images are typically de-

scribed by multiple features (or multi-feature). For example, an image may be de-

scribed by a 64-dimensional color, a 64-dimensional shape, and a 64-dimensional

texture. This phenomenon also occurs in many other emerging database applica-

tions, such as exploratory data analysis, market basket applications, bioinformatics

and time-series matching. A query consisting of multiple features are referred as

6

multi-feature or complex query. To support multi-feature queries, we can build a

high dimensional index on the feature space obtained from all dimensions of the mul-

tiple features. In the above image example, this corresponds to an 192-dimensional

feature space. Unfortunately, such an approach is not likely to be effective because

of the high dimension. Moreover, existing high-dimensional indexing techniques typ-

ically treat all the different dimensions homogenously. An alternative approach is to

build one index for each feature. In this case, multi-feature queries are evaluated by

integrating results from each index to get the final rank-ordered results. However,

combining answers from multiple indexes for ranked queries may require examining

a large portion of each index.

1.1.3 Searching Images from WWW

With the increase in Internet bandwidth and CPU processing speed, the use of images

in WWW pages has become very prevalent. Images are used to enhance description

of content, to capture attention of readers and to reduce the textual content of a

WWW page. An image is worth 1,000 words. Images have become an indispensable

component of WWW pages today. Hence WWW provides an interesting and super-

large special pool of images, which consists of both high-level and low-level features.

This pool of WWW images becomes a very rich source from which users can obtain

interesting images. However, as the web crawler keeps crawling, the growing number

of images embedded in WWW pages makes the WWW a gigantic image database. To

retrieve relevant images from this collection poses two challenges to the research com-

munity. First, as an improvement of CBIR, more semantic-based effective (measured

in terms of recall and precision) method should be designed. Second, the exponential

growth rate of images in WWW would eventually, if not already, render any existing

techniques ineffective and inefficient.

7

1.2 The Objectives and Contributions

In this thesis, we present our solutions to address the issues of effectiveness and

efficiency for WWW image retrieval. To tackle the effectiveness problem , we employ

a novel scheme to capture the semantics of an image within a HTML document. To

speed up the searching process, two research approaches are considered: clustering

and indexing. One cluster clustering method and three novel indexing methods are

proposed. Extensive performance study are conducted to demonstrate the superiority

of the proposed methods.

1.2.1 Semantic-based WWW Image Retrieval

To capture the semantics of WWW images, we propose a novel image representation

model called weight ChainNet. This is based on the observation that an image in

a Web page is typically semantically related to its surrounding texts, with the ex-

ception of functional images (such as new symbol and under construction symbol).

These surrounding texts are used to illustrate some particular semantics of the image

content, i.e., what objects are in the image, what is happening and where the place

is. In particular, in a HTML document, certain components are expected to provide

more semantic information than other portion of the text. These include the caption

of the image, its title and the title of the document. Weight ChainNet is based on

Lexical Chain obtained from an image’s nearby text, where Lexical Chain is defined

as a sentence of words. A new formula, called list space model, for computing seman-

tic similarities is also introduced. To further improve the retrieval effectiveness, we

also propose two relevance feedback mechanisms.

To overcome the efficiency problem for our semantic-based retrieval, we propose

that the database be split into multiple smaller partitions based on the semantic

8

representation model mentioned above. To this end, we propose a novel clustering

scheme, called ICC (Incremental Clustering on ChainNet) that clusters images with

similar semantics into the same partition. ICC facilitates incremental updates. In

this way, the newly added data are inserted into the relevant partitions or a ”noise”

partition. In addition, ICC can dynamically adjust the number of partitions and

the partition size by splitting larger partitions or merging small partitions. ICC is

supported by two important mechanisms. First, it employs a hierarchical tree struc-

ture, Hierarchical-ChainNet Summarization Tree (denoted HC-ST), whose leaf nodes

represent summary information of clusters (one leaf node per cluster), and whose

internal nodes contain summary data on their children nodes. Second, the summary

data at internal nodes are obtained using a two-step novel scheme, called Vertical and

Pyramidal Summarization Tree (VP-ST). Given a query image, we first locate the

partitions that contain images that are relevant to it. This is done by comparing its

ChainNet with that of the summary ChainNet at internal nodes. Finally, the relevant

partitions are examined.

We implemented a prototype WWW image retrieval system, called ICICLE (Im-

age ChainNet & Incremental Clustering Engine) that employed the proposed mech-

anisms. And the system is further extended to take visual features into account,

i.e., integrate with content-based retrieval. To provide efficient database support for

the extended ICICLE, we propose three indexing techniques to tackle the problem of

high-dimensional indexing and multi-feature indexing.

1.2.2 High-dimensional Indexing

To minimizing the effect of ’dimensionality curse’, one approach is to reduce the

number of dimensions of the high-dimensional data before indexing on the reduced

dimension [42, 13]. Data is first transformed into a much lower dimensional space

9

using dimensionality reduction methods and then an index is built on it. Transform-

ing data from a high-dimensional space to a lower dimensional space without losing

critical information is not a trivial task. We propose a dimensionality reduction tech-

nique called Multi-level Mahalanobis-based Dimensionality Reduction (MMDR) for

indexing based on the following two observations. First, elliptical shaped (correlated)

clusters are more suitable for dimensionality reduction than spherical shaped clus-

ters. Second, we observe that certain level of the lower dimensional subspaces may

contain sufficient information for correlated cluster discovery in the high-dimensional

space. In the MMDR, Principal Component Analysis(PCA) [32] is employed to find

the lower dimensions for dimension reduction. Most of the information in the original

space can be condensed into a few dimensions along which the variances in the data

distribution are the largest. We make use of the Mahalanobis distance (MahaDist) in

our approach instead of the standard well-known L-norm distance functions. Maha-

lanobis distance could be applied to find ellipsoidal correlated data, by taking local

elongation into account. Based on multi-level low-dimensional projections produced

by PCA and the Mahalanobis distance function, the MMDR can quickly identify

highly correlated elliptical clusters. After the dimensionality reduction, each cluster

of data is in a different axis system. Instead of creating one index for each cluster,

we build one index for all the clusters for KNN queries. We extend a recently pro-

posed B+-tree based index - iDistance[61, 62], to index the data projections from the

different reduced-dimensionality spaces. The extended iDistance allows us to index

data points from different axis systems in a single index efficiently.

1.2.3 Hyper-dimensional Indexing

To enable searching in hyper-dimensional space, we propose an effective methodology

called Local Digital Coding (LDC) for finding KNN in a hyper-dimensional space.

10

LDC is developed to address the problems mentioned above and provide a substan-

tial reduction on both I/O and processor time when searching on hyper-dimensional

datasets consisting of hundreds of dimensions. It is compatible with ubiquitous in-

dices, such as B+-trees and thus can be easily deployed. Given a cluster of points in

a high-dimensional data space, LDC transforms each point into a bitmap which we

refer to as the point’s Digital Code (DC). Each dimension of the point is represented

by a single bit in its DC. The DC of a point is generated by comparing the coordinates

of the point with the coordinates of the cluster center the point belongs to. A bit is

set to 1, if the value of the dimension it corresponds to, is larger than the value of the

corresponding dimension of the cluster center, and 0 otherwise. Since there is a bit in

the DC for each dimension, indexing a D-dimensional space will result in DCs with D

bits. The data points in a cluster can thus be separated into 2D partitions with points

in each partition sharing the same DC. Based on LDC, we propose a novel searching

algorithm, called Searching on-the-fly by PArtial-distance (SPA). Given the DCs of

both the query point and a partition, SPA dynamically selects a subset from the DCs

(say n bits) to perform matching. A partition is pruned off if the number of matching

bits in the two DCs is less than m bits. The intuition behind such an approach is

that the points in the pruned partition are on different sides of some cutting planes

with respect to the query point and thus are too far away to be in the answer set.

1.2.4 Multi-features Indexing

To support multi-feature queries, we devise a novel representation that compactly

captures f multi-dimensional features into two vector components. The first compo-

nent is an f -dimensional vector obtained by transforming each of the f features into

a value in a single dimension space. The second component is a bit sequence of size

2
∑f

i=1 di where di is the number of dimensions of the ith feature, i.e., each dimension

11

contributes two bits. The bits are set by analyzing each feature’s distance histogram.

This representation leads to a two-level index structure where the first tier indexes

the first component using a standard multi-dimensional index structure such as an

R-tree, and the second level is a compact list of bit sequences accessible from the leaf

node entries of the first level. Our technique results in more effective indexing, as we

experimentally demonstrate, for several reasons. First, high-dimensional indexing is

hard, and most systems attempt to reduce dimensionality to the extent possible. Our

two level decomposition automatically brings about this dimensionality reduction.

Second, explicit identification of semantically meaningful features makes it easy to

weight these features as desired, on a per query basis. For example, a query that cares

only about color and shape (ignoring texture) as well as a query that cares about all

four features can both be supported using one single index on image objects in our

database. Third, high-dimensional indexing techniques often use a low-dimension

projection for indexing [7, 62]. These techniques assume geometric homogeneity –

all dimensions are considered equivalent – an assumption that is valid only within

the dimensional attributes of a single feature. Our two-level decomposition permits

these powerful reduction techniques to be applied one feature at a time. We also pro-

pose a novel KNN query searching algorithm called Adaptive Searching by Aggressive

Partial-distance (ASAP) that iteratively prunes the search space aggressively based

on the most critical dimensions of highly selective features.

Our extensive experiments show that the above methods improve the existing

ones significantly and provide the efficient database support for the proposed effective

WWW image retrieval system.

12

1.3 Organization of the Thesis

The organization of the rest of the thesis goes as follows:

In Chapter 2, we review an extensive related work in image retrieval literature.

From the point of effectiveness, we review the existing image retrieval systems. On the

other hand, from the point of efficiency, we review the existing indexing techniques

which support fast retrieval.

In Chapter 3, we present the effective semantic-based WWW image retrieval sys-

tem called ICICLE and its extension to adapt multiple features. In the next three

chapters, we focus on the efficient database support on the image retrieval.

In Chapter 4, we propose a novel high-dimensional indexing technique called

Multi-level Mahalanobis-based Dimensionality Reduction (MMDR) to effectively re-

duce the dimensionality of the original data space by adaptively identifying the cor-

relation among the dimensions, then an index is built on the reduced subspaces.

In Chapter 5, we introduce a new methodology called Local Digital Coding (LDC)

to support efficient querying and retrieval on hyper-dimensional space. LDC ex-

tracts a simple bitmap representation called Digital Code (DC) for each point in the

database.

In Chapter 6, we devise a novel image representation that compactly captures f

features into two vector components: the first component is an f -dimensional vector

where the ith feature is transformed into a value in a single dimension space, and

the second component is a bit sequence, with two bits per dimension, obtained by

analyzing each feature’s distance histogram. This representation leads to a two-level

index structure to support efficient retrieval on multiple feature spaces.

Chapter 7 concludes this thesis with some discussion on future work.

Chapter 2

Related Work

2.1 Introduction

A number of image retrieval systems have been proposed in image retrieval literature.

However, most of them are content-based and not for WWW images. The advances

in database management have enabled fast access to image databases. In practice,

indexing techniques have to be employed to index large database so as to meet the

performance requirement. Many indexes have been proposed for high-dimensional

(up to tens) databases in database literature. They are designed for typical oper-

ations of range search and KNN search. However, image features can be hundreds

of dimensions or more. Recent research has shown that the performance of existing

indexes deteriorates quickly as dimensionality increases and turns to be worse than

sequential scan when dimensionality reaches few tens only.

In this chapter, we shall first review the existing work on image retrieval systems,

followed by existing work on high-dimensional indexing techniques to support efficient

retrieval. Finally, research efforts on indexing multiple features will be surveyed.

13

14

2.2 Image Retrieval Systems

With the increasing need in WWW image retrieval, many recent WWW image search

engines have been developed in last decade. However, most of the existing image re-

trieval systems cannot adequately address the issue of effectiveness and efficiency.

Text-based systems use keywords or free text description of images supplied by the

authors as the basis for retrieval. These systems can be adopted for WWW images

since the textual content of the HTML page in which the image is embedded provides

the free text description. However, the entirety of the textual content does not rep-

resent the semantics of the image adequately for them to be useful in retrieving the

images. In other words, while the textual content may contain information that cap-

tures the semantics of the embedded image, it also contains other descriptions that

are not relevant to the image. These ”noises” may lead to poor retrieval performance

if query contains some of these noises. Many first generation of WWW text engines,

like Lycos and Alta Vista, extracted keywords using standard algorithm that consider

keyword placement, frequency, etc. They do not require solving the image’s semantic

structure indicated by image’s surrounding text for better image understanding.

Typically, [51] conducted experiments on using semantic distances between words

in image caption retrieval. They calculated word similarity between related words in

a thesaurus. Similarity between words is used to identify if two images are relevant.

Meanwhile, only image caption are involved for identification. More recently, [26]

considered hyperlinks for WWW-based image collections. In [26], an image’s content

is given by the combined content of the text nodes. An image’s set of text nodes

include textural content (e.g., caption) obtained from the document in which it is

embedded, as well as those obtained from its neighboring pages (those pages that

are reached by a single hyperlink from the embedded page). This model was further

15

extended to take into account not only the textual content of the immediate neighbors

of an image, but also all nodes that can be reached from the image by following

at most two hyperlinks (a two-step link), thus considering more information about

an image node. However, there are no explicit image/query semantics considered.

The inner semantic relationship within a text node was lost based on this model.

Moreover, while keeping more information is desirable, the approach extracted too

much unrelated information, as relatively low precision can indicate. For example, an

image’s own caption usually describes its content, but its neighboring pages’ image

captions do not reflect the same content. In addition, the similarity measure did not

take into account any semantic structure. Such a similarity measure may not be good

enough to show the real semantic similarity between an image and a query. Relevance

feedback (RF) is a very important way to improve the accuracy. The system refines

the query by using feedback information from users to improve subsequent retrieval.

The use of relevance feedback using multiple attributes of color has been investigated

in [16]. Their results showed significant improvement in retrieval effectiveness by

applying RF mechanisms.

On the other hand, content-based image retrieval systems such as [44, 53, 39, 46]

etc, capture the visual content of an image (such as color, texture and shape) as its

semantics and use these features as the basis for similarity matching. Unfortunately,

retrieval by content is still far from perfect and their results are not reliable. First,

their effectiveness depends on how precise the user specifies the query. Second, they

are at very low performance levels as they cannot capture the more useful image

semantics, like object, event, and relationship. Finally, they do not scale well. For

the WWW image database, content-based image retrieval systems are not reliable,

since low-level visual features cannot represent the high-level semantics of WWW

images.

16

A combination of textual and visual features has been used in integrated image

searching, such as [64, 65, 5, 12, 37, 21, 54, 52] etc. Works in above engines uses

image features and associated text for automatic indexing of images. However, the

key issue is how to obtain the high-level semantic features. Unfortunately, the image’s

surrounding descriptive texts are not well identified, but used to extract keywords

for words matching purpose only. The internal semantic relationships among words

are not remained anymore, which leads to poor precision in text-based searching

component. Thus the overall performance is not very satisfied, as content-based

systems are still in performance low level.

In terms of efficiency, most of the existing works employ indexing methods such

as R-trees and its variants [41], the signature file [18] and hashing technique [11]

to speed up the retrieval process for image database. While efficient for up to tens

of dimensional databases, recent research [59] proved that these methods are not

expected to scale well with very large image collections in high dimensions. Another

direction to improve the efficiency of the system is to cluster the image collection into

partitions. Most of the existing clustering schemes, however, are designed for static

databases. Existing static clustering schemes, such as [43, 3, 4, 29, 47, 63, 24, 27]

that have to perform the clustering from scratch should there be any new data to

be added. Clearly, because the WWW image database keeps updating over time,

they are not suitable for such kind of database. Few incremental clustering methods

[15, 19] have been also proposed. However, they impose a fixed number of clusters

as a constraint on the solution. Next, we review existing works on high-dimensional

indexes which serve the basis for our design of scalable indexing methods.

17

2.3 High-dimensional Indexing

Indexing techniques have been the focus of extensive research both in low [22] as well

as high-dimensional databases [8]. With the demand for even higher-dimensional

databases, consisting of hundreds of or more dimensions, earlier high-dimensional

indexes face significant challenges. Indexing techniques have been designed typically

for 30-50 dimensions, and fail to improve the performance of sequential scan [59] due to

the known “dimensionality curse”. To tackle this phenomenon recent proposals adopt

one of the three approaches: (1) Dimensionality reduction, (2) Data approximation,

and (3) One dimensional Transformation.

2.3.1 Dimensionality Reduction

Dimensionality reduction methods [13] map the high dimensional space into a low

dimensional space which can be indexed efficiently using existing multi-dimensional

indexing techniques. The main idea is to condense the original space into a few dimen-

sions along which the information is maximized. In dimension reduction for indexing,

[13] proposed two strategies. In the first strategy, called the Global Dimensionality

Reduction (GDR), all the data is reduced as a whole down to a suitable dimension on

which search time and access costs are optimized. This strategy is unable to handle

datasets that are not globally correlated. The other strategy, called the Local Dimen-

sionality Reduction (LDR), divides the whole dataset into separate clusters based

on correlation of the data and then indexes each cluster separately. Unfortunately,

the LDR is not able to detect all the correlated clusters effectively, because it does

not consider correlation nor dependency between the dimensions. Such methods re-

port approximate nearest neighbors however, since dimensionality reduction incurs

information loss.

18

To find meaningful clusters, clustering algorithms have been studied recently in

the domain of data mining and pattern discrimination. Methods proposed for high-

dimensional data clustering are related to our work. PROCLUS [3] clusters the data

based on the correlation among the data along certain original dimensions. OptGrid

[28] finds clusters in a high-dimensional space by projecting the data onto each axis

and partitioning the data by using cutting planes at low-density points. Wavelet

transform [56] and discrete cosine transform [34] based techniques rely on the parti-

tioning of the data space into grids similar to OptGrid. These approaches do not work

well when well-separated clusters in the actual space overlap after they are projected

onto certain axis.

[2] presents various results of qualitative behaviors of L-norm distance matrices

for measuring the proximity in high-dimensional spaces, and examines the meaning-

fulness of similarity in such spaces. They show that the clustering quality and answer

sets vary from one distance metric to another. Beside L-norm distance functions,

Mahalanobis distance has been used in face detection to discover actual non-isotropic

face patterns among thousands of face images using a k-means like algorithm called

the elliptical k-means method [55]. It is a nested loop algorithm, where the inner

loop is to perform k-means using Mahalanobis distance and the outer loop is to re-

compute the covariance matrix of each cluster. Both loops stop when there is no

change to the cluster membership. Such method is too expensive to be used for large

high-dimensional image database, leaving optimization issues to be addressed.

2.3.2 Data Approximation

Representations of the original data points using smaller, approximate representa-

tions have also been proposed, as a means of aiding high dimensional indexing and

searching. Such proposals include, the VA-file [59], the IQ-tree [6] and the A-tree [45].

19

The VA-file (Vector Approximation file) represents the original data points by much

smaller vectors. The VA-file [59] employs a bit representation of the feature vector

and has been shown to be superior to sequential scan in a uniformly distributed fea-

ture space. The main drawback of the VA-file however, is that it defaults in assessing

the full distance between the approximate vectors, which imposes a significant over-

head, especially if the underlying dimensionality is very large. Moreover, the VA-file

does not adapt gracefully to highly skewed data. The IQ-tree was proposed recently.

It maintains a flat directory which contains the minimum bounding rectangles of the

approximate data representations. The basic idea of the A-tree is the introduction of

virtual bounding rectangles (VBRs) which contain and approximate MBRs or data

objects. VBRs can be represented quite compactly and thus affect the tree configu-

ration both quantitatively and qualitatively.Each A-tree node contains an MBR and

its children VBRs. Therefore, by fetching an A-tree node, information on the ex-

act position of a parent MBR and the approximate position of its children can be

obtained.

2.3.3 One Dimensional Transformations

One dimensional transformations provide another direction for high-dimensional in-

dexing. Such techniques include the Pyramid technique[7]. iMinMax[42] and iDistance[62].

The Pyramid technique[7] divides the D-dimensional data space into 2D pyramids and

then cuts each pyramid into slices each of which forms a data page. It provides a map-

ping from D-dimensional space to single-dimensional space. The iMinMax[42] trans-

forms a high-dimensional point into either maximum or minimum of values among the

various dimensions of the point. iDistance[62] transforms a high-dimensional point

into a single-dimensional distance value with reference to its corresponding reference

20

point. They suffer however, from the fact that any meaningful search operation in-

volves assessing distances between the full high dimensional representation of the

data points; thus, pruning during search becomes problematic as the dimensionality

increases.

Other techniques utilizing approximate data representations, such as hash-based

method [23], return approximate, as opposed to exact, results on high-dimensional

searches.

2.4 Multiple Feature Indexing

Little work has been reported on the problem of indexing multiple features, each of

which is high-dimensional. Most existing image retrieval systems employ the method

of multiple indices, i.e., building one index structure for each individual feature. To

search for the relevant images from database, query processing has to be utilized

among all the indices. Such operation is so called ’multi-feature query processing’ [25,

20]. The major challenge here is to optimally combine the scores from all features in

order to minimize the access cost. [25] proposed a method so called ’Quick-Combine’

to combine multi-feature queries. It introduces an improved termination condition

in tuned combination with a heuristic control flow adopting itself narrowly to the

particular score distribution. KNNs can then be computed and output incrementally.

[20] analyzes a simple and elegant algorithm so called ’the Threshold Algorithm’

which is optimal in a much stronger sense.

The exception is the work by Ngu et al [38] that constructs a single M-tree [17]

index for all the features. For efficient indexing, its method incorporates both the

Principle Component Analysis and non-linear neural network techniques to reduce

the dimensions of feature vectors so that an optimized access method can be applied.

21

To incorporate human visual perception into our system, experiments that involved a

number of subjects classifying images into different classes for neural network training

were also conducted. However, this method may not be practical for real usage.

First, its neural network training process is tedious and undesirable for very large

datasets. Second, existing indexing structures, such as M-tree, are known to degrade

in performance for dimensionality larger than 20 [59]. This may result in significant

information lost that may affect retrieval effectiveness.

Chapter 3

Semantic-based Retrieval for
WWW Images

3.1 Introduction

With the increase in Internet bandwidth and CPU processing speed, the use of images

in WWW pages has become very prevalent. Images are used to enhance description

of content, to capture attention of readers and to reduce the textual content of a

WWW page. An image is worth 1000 words. Images have become an indispensable

component of WWW pages today. This pool of WWW images becomes a very rich

source from which users can obtain interesting images. However, as the web crawler

keeps crawling, the growing number of images embedded in WWW pages makes the

WWW a gigantic image database. To retrieve relevant images from this collection

poses two challenges to the research community. First, more semantic-based effective

(measured in terms of recall and precision) method should be designed. Second,

the exponential image growth rate would eventually, if not already, render existing

techniques inefficient.

In this chapter, we present our solutions to address the issues of effectiveness and

efficiency for semantic-based image retrieval, and extend it to take low-level features

into consideration. To tackle the effectiveness problem, we employ a novel scheme

22

23

to capture the semantics of an image within a HTML document. This is based on

the observation that an image in a Web page is typically semantically related to its

surrounding texts, with the exception of functional images (such as new symbol and

under construction symbol). These surrounding texts are used to illustrate some

particular semantics of the image content, i.e. what objects are in the image, what

is happening and where the place is. In particular, in a HTML document, certain

components are expected to provide more semantic information than other portion of

the text. These include the caption of the image, its title and the title of the document.

We propose a novel image representation model called weight ChainNet. Weight

ChainNet is based on lexical chain obtained from an image’s nearby text. A new

formula, called list space model, for computing semantic similarities is also introduced.

To further improve the retrieval effectiveness, we also propose two relevance feedback

mechanisms.

To speed up the searching process, we propose that the database be split into mul-

tiple smaller partitions based on the semantic representation model mentioned above.

To this end, we propose a novel clustering scheme, called ICC (Incremental Cluster-

ing on ChainNet) that clusters images with similar semantics into the same partition.

ICC facilitates incremental updates. In this way, the newly added data are inserted

into the relevant partitions or a ”noise” partition. In addition, ICC can dynamically

adjust the number of partitions and the partition size by splitting larger partitions or

merging small partitions. ICC is supported by two important mechanisms. First, it

employs a hierarchical tree structure, Hierarchical-ChainNet Summarization Tree (de-

noted HC-ST), whose leaf nodes represent summary information of clusters (one leaf

node per cluster), and whose internal nodes contain summary data on their children

nodes. Second, the summary data at internal nodes are obtained using a two-step

novel scheme, called Vertical and Pyramidal Summarization Tree (VP-ST). The first

24

step generates the summary of each cluster (or node), while the second step further

combines the summary data into a more concise form. Each summary information

is also represented in the form of a summary ChainNet. Given a query image, we

first locate the partitions that contain images that are relevant to it. This is done

by comparing its ChainNet with that of the summary ChainNet at internal nodes.

Finally, the relevant partitions are examined.

We implemented a prototype WWW image retrieval system, called ICICLE (Im-

age ChainNet & Incremental Clustering Engine) that employed the proposed mech-

anisms. We evaluated the system on a collection of 10,000 images obtained from

documents identified by more than 2,000 URLs. Our results show that ICICLE is

both effective and efficient compared to existing techniques. In particular, the Weight

ChainNet model outperforms known techniques - Vector Space Model (VSM)[60] and

[51] in terms of recall and precision. Moreover, the relevant feedback mechanisms can

lead to significantly better retrieval effectiveness. In addition, ICC can also lead to

faster retrieval time without sacrificing on the quality of the images retrieved.

The rest of this chapter is organized as follows. In Sections 3.2, we present our

models for retrieval effectiveness, including image semantic representation model,

the similarity measure, and the relevance feedback approaches to refine queries for

further retrieval. In section 3.3, we present our efficiency methodologies, including

incremental clustering algorithm and the summarization technique. In Section 3.4,

we present the prototype system - ICICLE. In Section 3.5, we report the results of a

performance study conducted on ICICLE. ICICLE is futher extended to take visual

features into consideration in 3.6, and finally, we summarize this chapter in Section

3.8.

25

Symbols Description
LC Lexical Chain
TLC Title Lexical Chain
ALC Alt Lexical Chain
PLC Page title Lexical Chain
SLC Sentence Lexical Chain
RSLC Reconstructed Sentence Lexical Chain
QLC Query Lexical Chain
N Number of images
L Length of Lexical Chain
D Number of Lexical Chain in an image
C Number of Cluster
U Upper bound of cluster size

Table 3.1: A Table of Notations in Chapter 3

3.2 ChainNet: A Semantic Model for WWW Im-

ages

Two key issues must be addressed in designing an effective image retrieval system to

support WWW images:

• Determine a representation for a WWW image and the query semantics.

• Determine a similarity measure between an image and a query based on their

representations.

To further improve the precision, Relevance Feedback (RF) is an important tool.

Before we move to next, here we provide a table (as shown in Table 3.1) which

contains the used notations for easy reference.

3.2.1 Image Representation Model

An effective semantic model for WWW images must possess several desirable prop-

erties:

• Exactness: To be effective, it has to capture the essential image/query seman-

tic meanings.

26

• Computationally inexpensive similarity matching: It should be fast to

compute the similarity between the representations.

• Preservation of the similarity: The similarity between the image/query

semantic meanings should be preserved for the representation.

• Automatic extraction: The representation should be automatically extracted,

rather than manually generated.

• Insensitivity to noise, distortion, rotation: Any noise or distortion should

not affect the representation drastically.

To understand the relationship between an image embedded in a HTML document

and its surrounding text, we conducted a preliminary study on a collection of images

obtained from HTML documents, which are from domains of BBC news and World

Travel Guide. We randomly choose 500 images and to see if the embedded image is

well described by its surrounding text. Based on our findings, out of 500 images, 94%

can be semantically identified by the combination of the following four textual parts

for our image collection. These are:

• Image title: Image file title (simply image title) is a single word that basically

indicates the main object that the image is concerned with.

• Image ALT (alternate text): The image ALT tag in HTML document is a

phrase that usually represents an abstract of the image semantics.

• Image caption: The image caption usually provides the most semantics about

an image. It is the image’s surrounding text in the HTML document. It can

range from one sentence to a paragraph of text that contains many sentences.

27

• Page title: Since images are used for enhancing the Web page’s content, page

title is most probably related to the image’s semantics. It is usually a short

sentence that summarizes the Web page’s content.

From our founding, we can see that at least 6% of images in WWW may be missed

in text-based retrieval because the text is not informative. Content-based searching

can be used to reduce this ratio. However, this is not this article’s focus. We argue

that these four parts are reliable to represent image’s semantic since 94% images can

be well described by them. There are also some other parts which may provide some

information about the image, such as other HTML meta data, However, they contain

too much unrelated information. We have also excluded the textual content of the

whole HTML document as part of the image’s semantics for the same reason, i.e., that

some information may be completely unrelated to the image content, and indexing

the whole HTML document for each image in a very large database is not expected

to provide an efficient solution. Therefore, we just use these four parts to represent

image content. We note that all these four parts – image title, image ALT, page title

and image caption – can be automatically extracted from the HTML document based

on hypertext structures.

Based on the above findings, we propose representing the image semantics using

the Weight ChainNet model that is based on the concept of lexical chain [36, 57].

Figure 3.1 illustrates an example. [36] defined a Lexical Chain (LC) as a sequence of

semantically related words in a text. Inspired from that, here we re-define a LC as a

sentence in image’s surrounding text. In grammar, a sentence can be regarded as a

sequence of semantically related words. As an image title is just a single word, we say

it’s a trivial lexical chain - Title Lexical Chain (TLC). The text obtained from the

ALT tag is referred to as the Alt Lexical Chain (ALC). The page title is represented

as a LC too - Page Lexical Chain (PLC). Finally, since a caption comprises multiple

28

Image ALT

Image Caption

5 14

13

12

11

10

4

3

9

 8

 7

 6

 2

1

Image Title

Page
Title

Figure 3.1: Image Semantic Representation Model - Weight ChainNet

29

sentences, we represent it as three types of lexical chains. Type one is called Sentence

Lexical Chain (SLC), which represents one single sentence in an image caption. In

Figure 3.1, each sentence is shown as one column in the caption component, i.e., each

column is a SLC. Type two is called Reconstructed Sentence Lexical Chain (RSLC),

and it represents one new sentence reconstructed from related sentences. RSLC was

inspired from that two sentences are usually related if both share one or more words.

One identical word in two SLCs splits each SLC into two. Based on the first common

word, the second SLC’s second half is connected to the first SLC’s first half to form

a RSLC (Notice that the SCLs are checked in order). In Figure 3.1, a RSLC exists if

there is an arrow from one column to another column. The last type is called caption

lexical chain (CLC), which represents the whole image caption. A CLC is formed

by connecting SLC one after another. In Figure 3.1, the connections are made by

dotted arrows. To illustrate, the followings are some examples from Figure 3.1: SLC

(1→2→3→4→5), RSLC (1→2→8→9), CLC (1→2· · · 13→14).

The ChainNet model is built by these 6 types of lexical chains. Each chain captures

a portion of the semantic structure of the image. A TLC indicates the main subject of

an image. An ALC provides short description about an image. A PLC shows part of

its content. An SLC captures the semantics of a single sentence in the image caption.

An RSLC captures related sentences’ semantics, and a CLC keeps the image’s overall

semantics. That’s why we call it ChainNet, which is basically made of a chain of LCs.

A real example can be found in Figure 3.2 and corresponding Table 3.2.

However, the ChainNet treats each type of LC as of equal importance, Now, simply

representing an image in this way without capturing the relative importance of the

various components is not expected to lead to good performance. For example, the

image title, ALT, page title and image caption play different roles in representing an

image’s semantics. The reason we have divided the entire image caption into three

30

Figure 3.2: An example WWW image from ABCNEWS Website

LC Type Description
TLC ap china nuclear h
ALC China Clinton
PLC ABCNEWS Experts Bristle at Nuclear Security
SLC President Clinton and Chinese counterpart Jiang Zemin during their 1997

summit
Shortly before the summit, DOE officials warned the White House of possible
nuclear spying by the Chinese

RSLC None
CLC President Clinton and Chinese counterpart Jiang Zemin during their 1997

summit. Shortly before the summit, DOE officials warned the White House
of possible nuclear spying by the Chinese.

Table 3.2: LCs in ChainNet of the image in Figure 3.2.

31

types of lexical chains is that we want to differentiate the importance of each type

of sentences due to their positions and inner relationship within an image caption.

The three types of lexical chains in an image caption are not equally important. The

importance order from high to low is expected to be like this: SLC > RSLC > CLC.

For instance, if all the same words in a query appear in an SLC, an RSLC and a

CLC respectively, the SLC possesses the most semantic meanings among the three,

followed by RSLC and finally CLC. For example, if a query is contained in an SLC

(CLC also) in the first image, is contained in an RSLC (CLC also, but not SLC) in the

second image, and is contained in a CLC (but not RSLC or SLC) in the third image,

it’s most likely the case that the first image is most relevant to the query, followed

by the second image and then the third image, because an SLC is more semantically

structured than an RSLC, which is more semantically structured than a CLC.

To capture the relative importance of the various types of LCs, we assign weights

to the various LCs such that LCs that are deem to be more representative of the

image content are assigned larger weight values. We shall see how these weights come

into play in the similarity measure to be discussed in the next section. We note that

for the caption, one word in the caption may have up to three different weights with

respect to the lexical chains it belongs to. Of course, each word has at least two

weights: a SLC weight and a CLC weight. If the word belongs to one RSLC, it will

have three weights. One image caption may have several SLCs and several RSLCs,

but only one CLC. If only one SLC exists, CLC and SLC are identical. The different

weight for each type of LC can be confirmed from figure 3.11 in section 3.5.

Thus, the resultant Weight ChainNet model can be formally defined as: a network

that is composed of the collection of the different types of lexical chains with different

weights. It uses a well-structured notion of image’s content to capture the semantic

relationship between an image and its nearby text. Such a model can be seen as a

32

semantic representation of the content of an image. This model has the properties

of exactness, since it captures an image’s essential semantic meanings by an image

title, ALT, page title and caption. The content can be automatically extracted.

Finally, similarity matching is computationally inexpensive using the proposed list

space model that we shall introduce in the next section. For a user query, it’s usually

a free sentence that describes the image content. Naturally, we represent it as a Query

Lexical Chain - QLC.

3.2.2 Semantic Measure Model

In this subsection, we will present our similarity measure model between two lexical

chains, and between an image and a query respectively.

Similarity between two Lexical Chains

We have presented the model for representing image/query semantics. To calculate

the semantic similarity between a query and an image, we start from determining

the similarity between two basic components in an image ChainNet - LC. In our

implementation, we store terms of each LC as a list. All the lists belonging to an

image are connected to the image root as shown by the ChainNet model (see Figure

3.1). We propose a list space formula to compute the similarity between two LCs

as follows:

Similaritylist1,list2 ≡

Set.size()∑
i=0

e1.weight ∗ e2.weight

√
list1.size() ∗

√
list2.size()

∗MatchScale

where Set is the set of all word pairs (e1, e2) such that e1 is from list1 and e2 is

from list2 and e1 and e2 are same word. We say two words are matched if both are

same. The e1.weight is the weight of LC that e1 belongs to. The denominator of the

formula keeps longer lists from automatically getting higher similarities.

33

In the formula, one important parameter is considered: MatchScale. Match scale

is defined as the closeness of two lists from the view of match order. For example,

one LC is ”US president Clinton and wife visited China in 1997”, and the other one

is: ”China president Jiang Zemin welcomed Clinton and wife in Tian’an square”. For

these two LCs, there are four matching words. For the first LC, the matched words

are in order of ”president Clinton wife China”, and in the other, they are ”china pres-

ident Clinton wife”. We treat each one as a child LC of its original LC. Let v1 and v2

represent the child LC of the first and second original LCs respectively. That is, v1

is (president→Clinton→wife→China) and v2 is (China→president→Clinton→wife).

Obviously, both child LCs have exactly the same set of words and the same size. How-

ever, the orders of matched words in the two child LCs are not the same. Obviously,

the closer the matched order of two children LCs are, the closer the semantics of the

original two LCs are. Inspired from the formula for the angle between two nonzero

vectors in 2d-space, we define the match scale as below:

MatchScalev1,v2 ≡ v1 • v2

||v1|| ∗ ||v2||

where v1 and v2 represent the child LC of the first and second original LCs

respectively. The element value in v1 and v2 is the position of the word in their

respective LC. But the dot product between two child LCs is redefined as the following:

v1 • v2 ≡
v1.size()∑

i=1

v1i ∗ v2j

where v2j is the matched word in v2 for v1i in v1. As mentioned, two words

are matched as long as they are the same. For instance, the positions of words

”president Clinton wife China” in v1 and v2 are (1,2,3,4) and (2,3,4,1) respectively.

The dot product between v1 and v2 is 1*2+2*3+3*4+4*1=24. Since ‖v1‖*‖v2‖ is

12 + 22 + 32 + 42=30, the MatchScale between v1 and v2 is 24/30=0.8. We can see

34

that 20% of the similarity is deducted due to different orders of words. Obviously,

when two child LCs are same, MatchScale becomes 1.

The above measure determines the similarity between two LCs. However, the two

LCs may not be semantically related. For example, consider the query ”Singapore

Map”. An image about Singapore Food, say I1, that contains several occurrences of

”Singapore” in CLC may result in a high similarity value even though the images are

not semantically related. On the other hand, another image about Singapore Map,

say I2, contains only one occurrence of ”Singapore” in CLC may result in a lower

similarity value despite the fact that it is a desired image. To ensure that two LCs

are semantically related, we need another parameter called: Match Level. Match

Level is the number of the distinct matched words by a LC and a QLC, denoted as:

LCMatchLevel (LC, QLC). The match level threshold is the minimum match level

for a LC to keep its original semantics. We say one LC is semantically related to a

QLC, if and only if the LC’s match level is equal to or greater than QLC’s match

level threshold. Therefore, in our semantic measure model, semantic similarity for

a LC with respect to a QLC is indicated by the similarity calculated by list space

formula in its match level. The match level determines if the LC is semantically

related to the QLC. And the similarity calculated by list space model shows how well

it is semantically related to the QLC.

Similarity between ChainNet and QLC

Now it is time to calculate the semantic similarity between an image and a query.

From the discussion above, we know that an image is represented by a Weight Chain-

Net, and a query is in the form of a lexical chain. To calculate their similarity, we

35

use the following formula:

ImageSimilarityimage,query ≡ S(TLC, QLC) + S(ALC, QLC)+
SLC.number∑

i=1

S(SLC, QLC) +
RSLC∑

i=1

S(RSLC, QLC) + S(CLC, QLC)

where S is the similarity between two LCs. The image match level is defined as:

ImageMatchLevel(ChainNet, QLC) = MAX

(TLC.weight ∗ LCMatchLevel(TLC,QLC),

ALC.weight ∗ LCMatchLevel(ALC, QLC),

PLC.weight ∗ LCMatchLevel(PLC,QLC),

SLC.weight ∗ LCMatchLevel(SLC, QLC),

RSLC.weight ∗ LCMatchLevel(RSLC, QLC),

CLC.weight ∗ LCMatchLevel(CLC,QLC))

We say one image is semantically related to a query if and only if its match level

is equal to or greater than the query’s match level threshold. It has the similarity

calculated by the above formula with the query in its match level. From the formula,

we can see that a query is more related to the image with more related LCs.

3.2.3 Relevance Feedback

Because of the large image collection and the impreciseness of a query, it is important

to provide mechanisms to help users in specifying their queries more accurately. One

such mechanism is to exploit feedback from users based on resultant images returned

from the initial query. By allowing users to indicate the relevant (and irrelevant)

images, the original query can be refined to further improve the retrieval effectiveness.

For this purpose, we develop two techniques: semantic accumulation and semantic

integration and differentiation.

Semantic Accumulation

The first method, called semantic accumulation, allows the user to pick the most

relevant image (from the user’s subjective judgment) from the result of previous

36

retrieval as the feedback image. The method accumulates all the previous feedback

images’ semantics to construct a new query for the next retrieval. The resultant query

is represented as a kind of ChainNet called Weight F/Q ChainNet (Feedback/Query

ChainNet) since it is constructed by query and the feedback image’s ChainNet. This

kind of new query is represented in Figure 3.3.

Obviously, the combination of every entire ChainNet from each previous feedback

images is tedious if the user searches again and again. More seriously, more noise

will be added into the new query. Therefore, rather than a whole image ChainNet,

we use just one single lexical chain which is most semantically related to the original

query in the previous feedback image’s ChainNet. This is calculated by the list space

model. The steps for this method are:

1. Perform search using the F/Q Weight ChainNet (or Weight ChainNet for first

attempt).

2. User selects the current feedback image.

3. Construct the feedback image’s Weight ChainNet

4. Extract the closest lexical chain to the original query from the feedback image

by list space model.

5. Use the QLC and the feedback image’s weight ChainNet to construct F/Q

ChainNet

6. Use that extracted LC in step 4 and old QLC to construct new QLC by adding

together from head to tail

7. Go to step 1

37

In this algorithm, the semantic is accumulated by adding one most related LC

from every previous ChainNet to QLC to form a new QLC. Therefore, the QLC

carries richer and richer semantics as users provide more feedback.

Image CaptionPage TitleImage ALTImage Title

 QLC

 Selected Image

Figure 3.3: F/Q ChainNet in Semantic Accumulation

Semantic Integration and Differentiation

In the semantic accumulation feedback approach, users can only select one image

at a time as the feedback information. To save time and to filter more unrelated

images, we introduce another technique: semantic integration and differentiation. In

this method, users can select several relevant and irrelevant images simultaneously.

By relevant, we mean images that are semantically related to the query as judged

by the user and hence should be retrieved. On the other hand irrelevant images are

those that the user considers to be unrelated and should not have been retrieved. The

system integrates the related semantics obtained from the relevant feedback images to

construct a new query for the next try. After that, the system combines the semantics

38

Selected Good Images

 QLC

LC1 LC2 LC3 LCi

Image iImage 3Image 2Image 1

Figure 3.4: F/Q ChainNet in Semantic Integration and Differentitaion

from irrelevant images to differentiate the irrelevant images from the returned results.

The new query is also represented by a F/Q Weight ChainNet as shown in Figure

3.4.

The steps for this method are:

1. User selects a number of relevant and irrelevant images.

2. Extract the most semantically related LC from each relevant image’s ChainNet

to form a new F/Q ChainNet with QLC as a new query.

3. Extract the most un-semantically related LC from each irrelevant image’s Chain-

Net to form a ChainNet for bad images.

4. Submit the query

5. From each returned image, remove it from results if it’s more related to the bad

images’ ChainNet.

39

6. Go to step 1

The semantic similarity formula between two ChainNets can be easily extended

from the formula for measuring the similarity between an image and a query.

3.3 ICC: Incremental Clustering of ChainNet

In this section, we present our approach to speed up the retrieval process. As current

indexing methods, like inverted file, are all based on analysis of words (mostly nouns

and verbs), they are not applicable to ChainNet, where the basic unit is LC and the

semantic relationship between LCs should be kept. So as to the current incremental

clustering techniques. Here our basic idea is to partition the image collection so that

only the relevant partitions need to be examined during the retrieval process. Instead

of predetermining the partitions (e.g., fixing the number of partitions and the types

of images that belong to the partitions), we propose using a clustering strategy based

on ChainNet. Moreover, our clustering strategy can dynamically adapts the number

of partitions and partition sizes. We shall use the example shown in Figure 3.2 as our

running example in this chapter. Its corresponding Weight ChainNet representation

is shown in Table 3.2.

3.3.1 Incremental Clustering Algorithm

We define the incremental clustering problem as follows: for a continuously growing

data sets, maintain a collection of reasonable number of clusters and cluster size corre-

sponding to data size. Whenever a new point is presented, either it is assigned to one

of the existing clusters or treated as noise, or it triggers a merge or split process. Our

Incremental Clustering on ChainNet (ICC) model has the following salient features:

(1) it can construct arbitrary shaped cluster, (2) it handles the temporary ”noise”

by using a ’noise box’ we introduced, (3) its overall cluster structure is indexed in

40

a Hierarchical ChainNet Summarization Tree (HC-ST), (4) it can adapt the number

of clusters and the cluster sizes dynamically, (5) it is not sensitive to the data order,

and (6) it requires little main memory storage and has O(N2) time complexity.

Figure 3.5 shows the main flow of the ICC algorithm. ICC starts as the first data

point comes into the database. Initially for the first few points, we treat them as

noise. There are several issues involved in this routine. (1) how to identify a cluster?

(2) how to decide when to merge and when to split? (3) how to merge and how to

split? (4) how to decide when to construct a new cluster from the noise dataset? (5)

how to update the HC-ST in all cases? In the following, we will discuss them one by

one.

Figure 3.5: ICC Main Routine.

Hierarchical ChainNet Summarization Tree Structure

In ICC, we employ a hierarchical tree structure, Hierarchical ChainNet Summariza-

tion Tree, to facilitate the clustering and retrieval process. Figure 3.6 shows a HC-ST

41

structure. In HC-ST, the leaf nodes are the summary information of clusters, one leaf

node per cluster and each leaf node is linked to its corresponding real data level. The

higher level (or internal) nodes are the summarized representation of all its children

nodes. We shall defer the discussion on how the summary information is obtained to

the next subsection.

All the nodes employ the same uniform data structure - ChainNet. The root

node will represent the whole database’s description. As we may notice, there is a

’noise box’ in HC-ST. This ’noise box’ contains all the temporary noises that are not

related to any of the current clusters. Completely new clusters (i.e., those not related

to existing clusters) are generated from the ’noise box’. This HC-ST starts with the

generation of new clusters from the ’noise box’, and is updated by merge and split

operations. It may not be balanced as the split process goes on, but it always keeps

a binary tree (except for the root node). The Split operation is a new operation that

never occurs in static clustering methods. This hierarchical tree structure can speed

up the process of finding the right cluster. To construct this tree, there are four main

operations: insert, merge, split and generate new cluster. The first thing, of course,

is to find the right cluster given a new point.

 Database

C1 C2 Ci Cj

..
..

Potential Clusters

Figure 3.6: Overview of HC-ST.

42

Find the Right Cluster

When a new image is to be inserted, we first determine which cluster it belongs to.

ICC will traverse the HC-ST from the root until either a relevant cluster is found

or no relevant internal node is found. To decide whether an image’s ChainNet is

semantically related to any node’s ChainNet, we use the proposed List Space Model

with MatchScale. If the sum of the similarity and MatchScale is not less than the

relevance threshold, the two ChainNets are semantically related. This threshold is a

linear function of the query’s ChainNet. The traversal will stop if an image’s ChainNet

is not related to any child of the current node. It’s possible that an image’s ChainNet

is related to the current node, but not to any of its children, since the current node

contain summarized information that is a combination of all its children.

Insert

If a right cluster is found, we insert it to that cluster and build interconnection with

relevant images (i.e., all related images are linked); otherwise, we put it into the ’noise

box’ and check if there are any related noise or small group. If there exists related

group, we build the interconnection too. Any connected group in the ’noise box’ may

potentially become a cluster.

Merge

When a new image matches two or more clusters, a merge phrase may occur. However,

merging will only occur for clusters that are related (based on the list space model).

If the clusters are not related, we assign the new point into the closest cluster. To

perform the merging, we merge the one with a longer path into the other to avoid long

path; the cluster in the longer path is then removed. A new cluster representative

will then be constructed for the merged cluster. This is done by combining the two

43

old clusters’ ChainNets to generate their summary information.(as shown in Figure

3.7, the cluster with longer path is merged with the cluster with shorter path and two

clusters form a new cluster indicated as bold node). This will help to keep the tree as

balanced as possible. Since the tree is binary (except root level), once the cluster has

been removed from its original position, its sibling will move up to replace its parent

(as shown in Figure 3.7, after its sibling moves up, the height of tree is reduced by

one). Finally, all accessors of updated nodes are updated correspondingly.

Merge

Up

Figure 3.7: Illustration of the Merge operation

Split

For a large cluster, it is possible that it may comprise a number of smaller clusters.

When a cluster’s size keeps increasing and reaches a certain predetermined upper

bound on the size of the cluster, the cluster may be split if it has smaller clusters.

To decide whether a cluster is made up of smaller clusters, we need not go through

44

.
.

...

Split

......

Figure 3.8: Illustration of the Split operation

the data sets at all. By analyzing the cluster’s ChainNet structure, the Split process

breaks a large cluster node into two smaller clusters, and replaces the original node

with the parent node of the two newly created smaller clusters (see Figure 3.8). The

Split process forces the cluster’s data structure in a binary hierarchical tree.

We note that there is a correlation between the number of clusters (denoted as

C) and the upper bound on the size of a cluster (denoted as U). As the database

keeps growing, it is better for C and U to be correspondingly increased. If we fix

the cluster number, its size will be too small and too large during the early and late

stage respectively. On the other hand, there are too few and too many clusters for

early and late stage respectively. We found that it’s not so good to define U as the

linear function of C. As more images are inserted into database, linear relationship

will drive U to increase very slowly, which leads to rapid jump on C. Clearly, too

many clusters will increase the height of the tree. Exponential function can express

the relationship more by nicely controlling the height of the tree. Hence, we define U

45

as:

U = α ∗ C2

where α is a scalable parameter. This formula provides a good adjustment between

cluster number and cluster’s upper bound. The relationship among data size (denoted

as N), cluster number (denoted as C), and cluster upper bound (denoted as U) can

be shown as:

N < U ∗ C = α ∗ C3

Generate new cluster

We define the upper bound to control the cluster’s size and indicate whether it’s time

to split a large cluster. We also define the cluster lower bound to decide when to

generate a new cluster from the ’noise box’. In the ’noise box’, either all points are

not related, or a few points are connected to form small groups, but the number is

fewer than the lower bound. These small groups are potential clusters. While small

group keeps growing and reaches the lower bound, a new cluster is generated and

connected to the root node in HC-ST. Here we relax the binary tree to be a tree in

which each internal node has two children, except for the root node.

Update HC-ST

For all the operations mentioned above, updating HC-ST is necessary, from the leaf

nodes to the root node. For a new image assigned into a cluster, the system will

generate a new summarized ChainNet for the cluster by combining the image Chain-

Net and the summarized ChainNet of the cluster (see next subsection). All internal

nodes’ summarized information are updated in the same manner.

For merging, all the original cluster’s ancestor nodes have to extract its seman-

tics and all the newly created cluster’s ancestor nodes have to add in that cluster’s

46

semantics. For splitting, it is simpler. The only thing to do is to create two new sub-

clusters’ representatives, and treat the original cluster’s ChainNet as their parent.

There is no need to update the ancestor nodes.

3.3.2 Summarization of ChainNet

To construct Hierarchical ChainNet Summarization Tree Structure (HC-ST), sum-

marization technique has to be proposed. Here, we present a two-step mechanism,

called Vertical and Pyramidal Summarization Tree (VP-ST), that is used to generate

summary data for the nodes of HC-ST. The goal here is to create compact and short,

but effective representation. The difficulty is how to retain as much semantics as pos-

sible. VP-ST will summarize all the data points within one cluster and produce the

cluster’s summary information - cluster representative, as the leaf nodes of HC-ST.

Leaf nodes are then further summarized to form upper level nodes, and so on so for,

until the root is reached. The proposed VP-ST mainly consists of two steps: Vertical

summarization, followed by Pyramidal summarization (see Figure 3.9).

ChainNet
Cluster

ChainNet
 Summarized

ChainNet
Image

Figure 3.9: VP-ST structure

47

Vertical Summarization

In this step, we will summarize each image’s ChainNet into a summarized ChainNet.

As shown in Figure 3.9, the original ChainNet is the node at the lowest level, and the

summarized ChainNet is the middle-level node. Recall that the ChainNet comprises

6 types of LCs. Our solution is to reduce the LC length, and the number of LCs. To

make a successful summarization, we will stress on these two means one after one.

We shall illustrate how the LC length can be reduced using the example in Figure

3.2, and the initial set of LCs of the ChainNet in Table 3.2.

Recall that an LC is basically a sentence that carries certain semantics by its

words. Since RSCL and CLC are generated from SLCs, the key is to reduce SLCs.

It’s known that in a sentence, the most important parts are subject, verb, and object.

All other information is auxiliary. Therefore, we parse each LC into several parts:

subject, verb, object and some auxiliary parts. Auxiliary parts can be identified by

prepositions in LC. Auxiliary parts will be removed from the LC provided they are

not semantically related to any other LC without considering CLC and RSLC. For

instance, the second SLC can be parsed as 6 parts. The subject is ”DOE officials”, the

verb is ”warned”, and the object is ”the White House”, and there are 3 auxiliary parts:

”Shortly before the summit”, ”of possible nuclear spying”, and ”by the Chinese”.

After computing the similarity by using the list space model, ”of possible nuclear

spying” and ”by the Chinese” can probably be retained. This will depend on the

threshold value that the user set. The last one ”Shortly before the summit”, should

be removed from that SLC. The same process is applied to all the other LCs. Finally,

the new ChainNet LCs is shown in Table 3.3 after reducing the LC length, stop words,

and applying word stem (we assume ”by the Chinese” is removed. ”Nuclear” word

appears both in ALC and PLC).

The next step is to reduce the number of LCs. There are two ways to do so.

48

LC Type Description
TLC ap china nuclear h
ALC China Clinton
PLC Experts Bristle at Nuclear Security
SLC President Clinton Chinese counterpart Jiang Zemin

DOE official warn White House nuclear spy
RSLC None
CLC President Clinton Chinese counterpart Jiang Zemin. DOE official warn

White House nuclear spying.

Table 3.3: LCs after Vertical Summarization step for Table 3.2.

The first is remove some LCs. It was shown in [50] that TLC, ALC and the first

SLC play the most important roles in identifying an image’s semantics. They cannot

be removed directly. If one LC is not semantically related to any other LC (except

CLC), it should be removed. In this example, the second SLC has little similarity

with TLC and PLC. It is likely to be removed. PLC is similarly dealt with. The

other approach is to combine similar LCs. If one LC’s semantics can be identified by

another similar LC, then we can merge one into the other by assigning the common

words’ weight as the sum of both LCs’ weights, and move uncommon words into the

other also. In this example, ALC in fact is contained completely in the first SLC.

Therefore, there is no need to keep ALC. But we have to increase the common words’

weights by adding ALC’s weight. If there is only one SLC left, keeping a single copy

is enough. Therefore, CLC is not needed any more. And the weight for SLC becomes

the sum of both SLC and CLC. Finally, the summarized ChainNet for the example

image is shown in Table 3.4 (we assume the second SLC is removed).

Comparing to the original ChainNet, some information is lost, like ”white house”

and ”DOE official”. But by the inter-relevance, we can confirm that that information

is not relatively important in determining the image semantic. By adjusting relevance

threshold, we also can decide how much we want to lose. This will definitely affect the

retrieval precision. The point is how much this will affect. We will show such effect

49

LC Type Description
TLC ap china nuclear h
PLC Experts Bristle at Nuclear Security
SLC President Clinton Chinese counterpart Jiang Zemin

Table 3.4: The final summarized ChainNet for image in Figure 3.2.

in the performance study. The purpose of generating each summarized ChainNet for

each image is to try to represent all the points as close as possible.

Pyramidal Summarization

After we have obtained all the summarized weight ChainNet for each data point in the

cluster, it’s time to integrate them into one. In this phase, we want to keep as much

information as possible. Every LC is very short, and important in deciding its image’s

semantics. Since all images within a cluster are related, many LCs from different

images must be related to each other. This provides much space for merging LCs.

We apply the same methods as combining two LCs in the Pyramidal Summarization.

In this step, no information is lost since all LCs are reconstructed into a more compact

form.

3.3.3 Time and Space Complexity

The time complexity for list space model is O(L2), where L is the length of LCs. To

compute the similarity between a query and an image, we need O(L2 ∗D), where D

is the number of LCs in the image ChainNet. Here L and D are very small compared

to N, the data size. Since the HC-ST is binary in nature (except the root), given the

number of cluster C, the average height of tree is a ∗ ln(C) where a is a linear factor.

To find the right cluster, we need to traverse O(ln(C)) nodes at most. Therefore, the

time to find a cluster is: O(L2 ∗D ∗ ln(C)) in average. Next is the update time. We

take insert, which is the most frequent operation, as our example. Summarizing time

50

is the same as comparing two ChainNets, which is O(L2∗D2). And we need to update

ln(C) internal nodes. Therefore, updating needs O(L2∗D2∗ln(C)) too. So the overall

time complexity is: O(L2 ∗ D2 ∗ ln(C)) in average. For N data points insertion, we

need average time complexity O(N ∗L2 ∗D2 ∗ ln(C)). In this time complexity, there

is no square on the large parameter N. And we believe L2 ∗D2 ∗ ln(C) will be much

smaller than N when database is very large. Therefore, we argue that our ICC is very

efficient to construct its HC-ST.

3.4 Architecture of ICICLE

In this section, we present the architecture of ICICLE, a prototype system that we

have implemented. Our overall system architecture is shown in Figure 3.10.

Figure 3.10: Overall ICICLE system structure in client-server form

In our implementation, the system consists of five basic components: a Web

51

Crawler, a QLC Generator, an Image Search Engine, a F/Q ChainNet Generator

and an ICC Module. The database consists of three parts: WordNet, Query Profile,

and Image Database.

The Web Crawler that operates in the background automatically searches the

WWW for documents with embedded images. The crawler also extracts the image

title, image ALT, page URL, page title and image caption from the HTML documents

as the images’ semantic content. After the above information has been extracted,

image’s ChainNet is constructed consequently. It then loads the meaningful images

(or their URLs) with their representations into the database. For purpose of testing

the model, we ”centralized” the image collection (instead of simply extracting the

image at runtime from the various Web sites/pages in the form of a search engine).

In total, we collected 10,000 images from over 2,000 different URLs, which are mainly

from web sites of BBC and World Travel Guide.

Whenever a new image comes, ICC module clusters it into the right partition.

Whenever a query comes, the QLC Generator transforms a user query (free text de-

scription) to a query lexical chain (QLC). Image Search Engine then passes the QLC

to ICC to allocate the right partition for comparison. The Image Search Engine com-

pares the QLC against the ChainNet of the images returned from ICC module, and

returns all semantically related images. The images are displayed in order of decreas-

ing degree of similarity. Finally, the F/Q ChainNet Generator is used to generate

extended query from the user query and the feedback images. Given the selected

images from users, the F/Q ChainNet Generator creates a new weight ChainNet by

combining the selected image’s ChainNet, and the QLC. Depending on the feedback

mechanisms adopted, different new weight ChainNet may be obtained. Finally, the

Image Search Engine will perform the next round of retrieval based on the output of

F/Q ChainNet Generator. A demo system has been shown in [49].

52

3.5 Performance Study

ICICLE employed the Weighted ChainNet model to capture the semantics of WWW

images, and the Incremental Clustering on ChainNet model to speed up the retrieval

process. We also study both the effectiveness and the efficiency of the proposed

methods through an extensive performance study. We report our study and findings

here. For the effectiveness improvement, we compared our image representation and

measure models with [51]. We also compared our clustering strategy with two recently

proposed clustering algorithms: CURE [24] and DBS [43].

3.5.1 Experimental Setup

We run the experiments on a 600 MHz CPU Pentium III PC with 128M RAM. In our

experiments, we used 12 text descriptions, as shown in the following Table 3.5, as our

queries. These queries are generated from the surrounding text of images which are

randomly selected from database. Given that we have over 10,000 images, it is not

practical to scan all images to obtain the relevant images for each query. To determine

the set of relevant images for the queries, we adopt the following realistic approach.

For each query, we expand the query terms to include terms that are related. This is

done using the WordNet [35]. For example, the term girl may be expanded to include

the term woman. Each term is then used as a query to extract the list of images

whose semantics (or rather the LCs) contain that term. The union of the results

from each term form a candidate set of relevant images. We then manually examine

the candidate set to eliminate those that are not semantically related to the query to

get the final set of relevant images. To remain the judgement fair, the examination

of the candidate set was done by one person using human-judge, without looking at

the text content of the images.

53

Query Query Description
Q1 Singapore map
Q2 Travel in Spain
Q3 Valentine flower
Q4 Island in the sky
Q5 California beach girl
Q6 England football league
Q7 Green lizard on a red leaf
Q8 National University of Singapore
Q9 Hollywood superstar Jennifer Lopez
Q10 Husband is kissing his wife
Q11 Elephant in the beautiful national park
Q12 Celebrations for new millennium of 2000

Table 3.5: Test Queries.

3.5.2 Tuning the Weight ChainNet Model

In this set of experiments, we ”turn off” the clustering strategy. This allows us to

study the effectiveness of the Weighted ChainNet model in isolation.

Tuning the Weights

Weight ChainNet model calls for some tuning to be performed. As mentioned earlier,

there are 6 types of LCs and different LC types may have different significance in iden-

tifying the image semantics. In the first experiment, we evaluate the performance of

each type of LCs exclusively to study their different impact on retrieval effectiveness.

Figure 3.11 shows the changes of precision and recall, as more images are returned

for queries.

From Figure 3.11, we can see that for TLC, it cannot achieve >20% recall, al-

though it has high precision. This is due to the lack of information in TLC. For

similar reasons, PLC and ALC are not very effective also. For RSLC, since quite a

number of images do not have RSLC, it cannot achieve high recall. Only CLC and

SLC can result in high recall, but the precision is not satisfactory. TLC, ALC, PLC

and RSLC can be used to improve the precision a lot. On the other hand, SLC and

54

CLC can improve the recall. From this result, we have a rough picture of the relative

importance of each type of LCs. Clearly, SLC is the most important, followed by

TLC, RSLC, ALC or PLC, and finally, it is CLC.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Pr
ec

is
io

n

Recall

OPT
VSM
SLC
CLC
PLC
ALC

RSLC
TLC

Figure 3.11: Utility by each Type LC alone to Represent Image

To determine the weights to be assigned to the proposed model that combines all

the LCs, we tested different weight combinations from values in 0, 0.2, 0.4, 0.5, 0.6,

0.8 and 1 for each type of LCs. However, we narrowed the search space based on

the result from Figure 3.11 by adopting some simple heuristics. For example, since

SLC is the most important, we fixed its weight at 1.0. Moreover, for a LC that is

more important, the weights assigned to the other less important LCs cannot be more

than its weight. In total, we tested 22 combinations and obtained the following weight

assignment for the various LCs: TLC (0.8), ALC(0.6), PLC(0.6), SLC(1), RSLC(0.5),

55

CLC(0.2). In this experiment, we have fixed the scale parameter coef of the match

level to be 0.6 (see Tuning the Match Level). We shall refer to this scheme as OPT.

We also presented the result of OPT in Figure 3.11. As shown, we can get more than

80% precision with recall of 60%. Clearly, the results show that using a single LC

exclusively cannot provide the best performance, even though such an approach is

clearly simple. Moreover, it shows that proper combinations of the various LCs can

lead to very effective retrieval results.

Though this experiment is meant to tune the proposed method, we note that it is

also a comparative study among the different schemes. We compare our OPT scheme

with well-known text document representation model - Vector Space Model (VSM)

[60]. However, VSM has to be extended so that it can be employed to represent an

image. Using VSM, we constructs an image vector by considering all the words in

the image’s title, page title, image’s Alt, and image’s caption. The similarity between

a query vector and an image vector is measured by using standard cosine similarity

[60]. Figure 3.11 shows that the performance of VSM is close to that of SLC alone.

Although VSM contains all the words of an image, its performance is unsatisfactory.

The obvious telling reason is that VSM has completely lost the sematic structure

among the words. However, the semantics are more carried by the relationships

among words. We also note that the exclusive CLC scheme can be viewed as a form

of text-based system [51] without any semantic structure involved, which is even much

worse than VSM. This is because that VSM also includes the information of image

title, image Alt and page title, except image caption. Obviously, OPT outperforms the

existing schemes - VSM and [51]. This confirms that our WWW image representation

model is more effective.

56

Tuning the Match Level

There is another parameter that we have to tune, the match level. Recall that the

match level is the number of common terms shared by two lexical chains. It de-

termines whether two LCs are semantically related, and then derives if two images

are semantically related. In our evaluation system, only those semantically related

images are returned.

One single word cannot reflect the semantic meaning of a whole query. If the

match level threshold is too small, too many images may be returned to the users.

On the contrary, too few images are displayed if the match level threshold is too high.

Therefore, it is necessary to choose the best match level thresholds. Since the length

of a query is a random variable, a fixed value for match level is not applicable to

various queries. We thus define the match level as a linear function of query length:

MatchLevelThreshold = coef ∗ query.length() + constant

where the coef is the scale parameter we need to explore in order to get the best

results in a reasonable volume. And the constant is just an adjustable value.

We tested those 12 queries in Table 3.5 in order to select the best coef. Figures

3.12a and 3.12b shows the relationship between precision and coef , and recall and

coef respectively.

From Figure 3.12a, when coef is > 0.6, the precision will be greater than 85%.

From Figure 3.12b, we can see that when coef is < 0.6, the recall is greater than

60% which is very satisfactory to a large image database. Therefore, observing the

combined effect, we select 0.6 as the optimal value of coef.

Impact of Match Scale

Match scale explores the importance of match order in the lexical chain. It has the

effects in terms of image ranking during presentation of the returned images. Images

57

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Pr
ec

is
io

n

Coef

(a) Precision Vs. Coef

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
ec

al
l

Coef

(b) Recall Vs. Coef

Figure 3.12: Effect of Match Level.

(a) Q1 results before Applying Match Scale (b) Q1 Results after Applying Match Scale

Figure 3.13: Effect of Match Scale.

58

with higher similarity measures will be returned to users ahead of images with lower

similarity values. Figure 3.13 shows a sample results obtained from Q1. As shown, by

considering the match scale, we can get more relevant images being displayed earlier,

i.e., ranked higher.

3.5.3 Feedback Mechanisms

In this experiment, we study the effectiveness of the two proposed feedback mecha-

nisms: semantic accumulation and semantic integration and differentiation. Figure

3.14a shows the improvement by the two methods respectively. OPT is the basic

Weight ChainNet model without feedback. Accu denotes the semantic accumulation

method. And I&D represents the semantic integration and differentiation method.

We note that Accu and I&D represents one application of the feedback loop after

OPT returns its resultant images.

To clearly see the effect of the noise that semantic accumulation brought, Figure

3.14b presents the results for the first feedback and second feedback by semantic accu-

mulation. We can see that the second searching actually has a bit lower precision, but

with relatively higher recall. But semantic accumulation method has the advantage

that the returned images are more semantically related to the specific image selected

by user - the feedback image.

Figure 3.15a shows a sample feedback run of the Accu method for Q1. Com-

pared to the results generated from OPT (the basic Weight ChainNet model without

feedback, see Figure 3.13b), we see that the set of images retrieved are more relevant.

Figure 3.15b shows a sample feedback run of the I&D method for Q1. As we can

see, the resultant images are not only more relevant than OPT and Accu approaches,

the irrelevant image has also been pruned. In addition, more relevant images have

been retrieved.

59

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Pr
ec

is
io

n

Recall

I&D
Accu

Opt

(a) Comparison of feedback mechanisms

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Pr
ec

is
io

n

Recall

1st Accu
2st Accu

(b) 1st and 2nd try by Semantic Accumulation

Figure 3.14: Effect of Feedback Mechanisms

(a) One-step feedback of Accu for Q1. (b) One-step feedback of I&D for Q1.

Figure 3.15: One-step Feedback Results for Q1

60

3.5.4 Comparative Study on Clustering Techniques

In this experiment, we compare ICC with two static clustering algorithms proposed

recently: CURE (Clustering by Representatives) [24] and DBS (Density Biased Sam-

pling) [43]. For both CURE and DBS, sampling is used. We set the default sample

size to 125, and the number of representative per cluster is 10, as indicated in [24].

We also compared against the original ChainNet model (i.e, without ICC).

Effect on Retrieval Effectiveness

We note that the retrieval effectiveness with and without ICC can be different. This

is because, under ICC, only some relevant partitions will be searched. It is not

impossible that some relevant images fall into a partition that is not examined during

the retrieval process.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Pr
ec

is
io

n

Recall

Original
ICC

DBS
CURE

Figure 3.16: On Retrieval Effectiveness

61

Figure 3.16 shows the retrieval effectiveness of the various schemes. First, we

note that the original scheme without clustering performs the best. This is expected

since partitioning the database implies some data may be put into a partition that

is not searched. Second, the proposed ICC performs nearly as well as the original

scheme. We observe that the retrieval precision is slightly lower when recall is greater

0.3. Given the same precision, the original system has higher recall as it checked

every single point. But the difference is not so much. At a reasonable recall of

0.6, the different is as little as 5%, with greater than 80% precision also. When

recall is less 0.3, the precision is even higher. This is because ICC has the ability to

separate some irrelevant new coming images when they are trying to find the right

clusters. Third, ICC outperforms DBS and CURE by a wide margin. Because DBS

has a better cluster’s representation by density weighting than CURE, DBS achieved

better performance. One possible reason for this that CURE and DBS are based on

sampling and sampling techniques are not well suited for textual data. For textual

data, once some information is lost, it’ s hard to recover by sampling points, if not

impossible. Finally, CURE and DBS cannot achieve 100% recall. This means that

both do not cluster well for relevant images. Some are either clustered into other

cluster or still in the ’noise box’.

These results clearly demonstrate that our ICC can produce quality clusters. It

can cluster most similar points together and separate unrelated points way by split.

By applying ICC, we still can achieve high precision with high recall.

Effect on Retrieval Efficiency

The main goal of clustering is to improve the retrieval efficiency at the expense of

retrieval effectiveness. Figure 3.17 shows the results on the retrieval efficiency.

As shown in Figure 3.17, the original scheme (without clustering) performs poorly

62

0

1

2

3

4

5

6

7

8

9

10

11

12

13

0 1 2 3 4 5 6 7 8 9 10

T
im

e
(S

)

Data Size (K)

Original
CURE

DBS
ICC

Figure 3.17: On Retrieval Efficiency

in terms of efficiency. This is expected since the scheme examines the entire database,

while the cluster-based scheme only examines some relevant partitions. We also

observe that both DBS and CURE are not as efficient as we expected. There are

several possible reasons. First, both are quadratic time complexity to N. To scan

the whole database, the complexity is O(N2 ∗ L2 ∗ D2). While for ICC, it’s O(N ∗
L2 ∗ D2 ∗ (ln(C) + U)). With the data size increasing, the difference between ICC

and the other schemes widens as (U+ln(C)) becomes smaller and smaller compared

to N. Second, there is no automatic control on cluster’s size and cluster number in

CURE and DBS. There is a danger to cluster many images into a single cluster if

they are from the same website. For example, if most images are from BBC websites,

both methods may probably cluster them into a single group. In fact, this group

may contain several sub- groups about sports, nature, entertainment, and so on. To

63

confirm what we thought, we explore the inner clusters in the database resulting

from these two methods. There are two extremely large clusters regarding BBC and

National University of Singapore. Whenever searching these two, it takes longer time

than ICC. Due to the split operation with well control on cluster’s upper bound,

ICC can always split extremely large clusters into smaller ones after identifying its

sub-shapes.

To summarize, ICC speeds up the original retrieval significantly. The larger the

data set, the greater is the gain. From Figure 3.16 and Figure 3.17, we have reason

to argue that our ICC can perform very well in WWW image retrieval, both in

effectiveness and efficiency.

3.6 Extended ICICLE for Multiple Features

In Section 3.4, we have seen the proposed semantic-based retrieval system - ICICLE,

for WWW images, by considering image’s text description only. It is also interesting

to include image’s low-level or visual features, such as shape, color, and texture, to

provide more functionalities for users to query on any type of features that is of

user’s interest. Next, we present an extended ICICLE for a generalized WWW image

retrieval system in Figure 3.18 by considering image’s multiple features.

Similarly to ICICLE, the extended ICICLE system also consists of five basic com-

ponents: a Web Crawler, a Query Model Generator, an Image Search Engine, a

Feedback Model Generator, and an Indexing/Clustering Module.

The Web Crawler that operates in the background automatically searches the

WWW for pages with embedded images. The crawler analyzes the image and its

HTML document to generate its multi-features representation model. It then loads

the images with their representations models into the database. For fast database

retrieval, Indexing/Clustering Module builds effective indices or clusters on top of the

64

Figure 3.18: Extended ICICLE system structure in client-server form

images models. Whenever a query comes, the Query Model Generator transforms

a user query to a query representation model (multiple features). Image Search

Engine then passes the Query Model to Indexing/Clustering Module to facilitate the

retrieval of relevant images. The Image Search Engine compares the Query Model

against the Image Models returned from Indexing/Clustering Module, then integrate

the similarities from all features and finally returns top related images. The images

are displayed in order of decreasing degree of similarity. Finally, the Feedback Model

Generator is used to generate extended query from the user query and the feedback

images in the same way as ICICLE.

3.7 Implementation of Extended ICICLE

We have implemented the extended ICICLE under UNIX operating system. The

Web Crawler works in background and collects meaningful images into database.

65

It is separated from other modules. We implemented the crawler in JAVA. Three

image features are extracted from the collected images. The image’s text feature

is represented by Weight ChainNet model. As for visual features, color histogram

feature and wavelet feature are considered. We use the 159-dimensional LUV color

histogram. Wavelet features describe an image’s shape, texture and location infor-

mation in a single representation. Here we truncate the 64 most dominating wavelet

coefficients as an image’s visual feature. We use Daubechies’ wavelet[58] to extract

wavelet feature. As a result, color histogram and wavelet features are in 159- and

64-dimensionality respectively. All other modules are implemented in C/C++. The

graphic user interface is designed in HTML form. And the communication between

the sever and users is connected by CGI. Users may initialize the searching by either

keying in text or selecting one of sample images as a query. From the returned im-

ages, users have the flexibility to consider any subset of three features and possible

integration techniques. Furthermore, users may select any subset of returned images

to perform feedback search for more accurate results.

As discussed in Related Work, indexing very high-dimensional points and multi-

ple high-dimensional points are big challenges in database community. To provide

efficient database support for extended ICICLE which considering multiple features,

effective indexing techniques have to be proposed to tackle the ’dimensionality curse’.

In the next chapters, we focus on the Indexing/Clustering Module and introduce

three novel indexing techniques in order to indexing image database efficiently.

3.8 Summary

In this chapter, we have presented several techniques to solve the issues involved in

an effective and efficient WWW image search engine. We first introduced a new

model to represent the content of images embedded in WWW pages. The proposed

66

Weight ChainNet model combines different types of lexical chains obtained from the

surrounding text of an image. Our experimental study showed that the approach can

be used as an effective means to represent image semantics. We also proposed two

novel feedback mechanisms. In particular, the semantic integration and differentiation

method returned more accurate results than semantic accumulation with higher recall.

Moreover, we have also presented a new incremental clustering algorithm ICC

for the increasingly growing large database collection of WWW images. Our experi-

ments showed that ICC can produce quality clusters, and can adapt the cluster size

and cluster number dynamically. Without looking at the actual data points, ICC can

identify the sub-clusters within a large cluster by checking the cluster representative’s

property. It can also handle temporary noise well by using a special ’noise box’ from

which new clusters can be generated. To improve efficiency, ICC employs a summa-

rization step called Vertical and Pyramidal Summarization Tree. VP-ST starts from

all the data points in the cluster, and finally converges all summarized points into

single representative of the cluster. Our experiments indicated that this vertical and

pyramidal technique provides quality representative, especially compared with ran-

dom sampling. To further speed up searching right cluster, the clusters’ structure is in

Hierarchical ChainNet Summarization tree. A prototype system, called ICICLE, that

employs the proposed models have been deployed. ICICLE is then further extended

to include multiple visual image features.

Chapter 4

Indexing High-dimensional Image
Feature

4.1 Introduction

Image retrieval involve high-dimensional data which represent image’s features. In-

dexing high-dimensional data has been an area of active research for a long time

and many indexing techniques have been proposed [61]. However, the performance

of these indexes attempting to scale up to high dimensions degrades rapidly with

increasing dimensionality [9].

One approach to minimizing the effect of ’dimensionality curse’ is to reduce the

number of dimension of the high-dimensional data before indexing on the reduced

dimension [42, 13]. Data is first transformed into a much lower dimensional space

using dimensionality reduction methods and then an index is built on it.

Transforming data from a high-dimensional space to a lower dimensional space

without losing critical information is not a trivial task. In this chapter, we propose

a dimensionality reduction technique called Multi-level Mahalanobis-based Dimen-

sionality Reduction (MMDR) for indexing based on the following two observations.

First, elliptical shaped (correlated) clusters are more suitable for dimensionality re-

duction than spherical shaped clusters. Second, we observe that certain level of the

67

68

lower dimensional subspaces may contain sufficient information for correlated cluster

discovery in the high-dimensional space. In the MMDR, Principal Component Analy-

sis(PCA) [32] is employed to find the lower dimensions for dimension reduction. Most

of the information in the original space can be condensed into a few dimensions along

which the variances in the data distribution are the largest. We make use of the Ma-

halanobis distance (MahaDist) in our approach instead of the standard well-known

L-norm distance functions.

Mahalanobis distance could be applied to find ellipsoidal correlated data, by taking

local elongation into account. Instead of equally treating all values, MahaDist weights

the differences by the range of variability in the dimension of the data points. It

weights the variation along the axis of elongation less than that in the shorter axis of

the ellipse. It can be shown that the surfaces on which MahaDist is a constant are

ellipses.

Euclidean distance-based clustering algorithms that use Euclidean distance values

to partition data are not meant to discover elliptical shape since the clusters identified

are in circular shape. Figure 4.1 illustrates two clusters, one obtained using Euclidean

distance and the other obtained by Mahalanobis distance. Point A is a valid point

and point B is a noise in the cluster of the circle if Euclidean distance is employed.

However, in terms of Mahalanobis measurements, point B has a substantially smaller

distance to the centroid than point A since it lies along the direction of the group

that has the largest variance. Thus point A is a noise while point B is valid. There-

fore, while Euclidean distance based algorithms produces circular subsets as shown

in Figure 4.1, Mahalanobis distance based algorithms will produce elliptical clusters

where data points are well correlated and more natural for dimensionality reduction,

as dimensions with large variance of data are kept and dimensions with small variance

of data are eliminated.

69

Figure 4.1: Mahalanobis vs. Euclidean

Based on multi-level low-dimensional projections produced by PCA and the Maha-

lanobis distance function, the MMDR can quickly identify highly correlated elliptical

clusters. After the dimensionality reduction, each cluster of data is in a different axis

system. Instead of creating one index for each cluster, we build one index for all the

clusters for K nearest neighbor (KNN) queries. We extend a recently proposed B+-

tree based index - iDistance[61, 62], to index the data projections from the different

reduced-dimensionality spaces. The extended iDistance allows us to index data points

from different axis systems in a single index efficiently. Performance studies using real

and synthetic datasets were conducted to evaluate the effectiveness and precision of

the technique. The results show significant performance gain over an existing method

[13]. Experiments on datasets with very high dimensionality (up to 200 dimensions)

and datasets with dynamic insertions show that the proposed method is scalable in

terms of both size and dimensionality and is able to adapt to dynamic insertions

The rest of this chapter is organized as follows. In Section 4.2, we provide the

70

definitions for using Principal Component Analysis and Mahalanobis distance in di-

mensionality reduction. We present our MMDR algorithm and its variant in Section

4.3. In Section 4.4, we propose an extended iDistance for indexing data points in

reduced-dimensionality spaces and for handling dynamic insertions. Experiments are

presented in Section 4.5 and conclusion is drawn in Section 4.6.

4.2 Definitions

In this section, we provide the basic definitions.

Definition 3.1 Ellipticity

Ellipticity(e) is the deviation of an ellipse or an ellipsoid from the form of a circle

or a sphere, which is the ratio of the difference of the two sub-axes to the minor axis.

a

b

Minor/2nd PC

Major/1st PC

Figure 4.2: Illustration of Ellipticity

e =
b− a

a

where b is the radius along the major axis and a is the radius along the minor axis,

as shown in Figure 4.2.

71

Assuming all the points are clustered inside the ellipse. To reduce the dimension-

ality, all the points are projected onto the major axes. Thus, the minor axes can be

eliminated. Obviously, the larger the e is, the more effective dimensionality reduction

can be obtained. When e =0, the data points form a circle, and the dimensionality

reduction technique becomes ineffective.

Definition 3.2 Mahalanobis Distance

The covariance of data in two feature spaces measures their tendency to vary

together. In a multi-dimensional space, the variance measures the relative ‘radius’ of

a cluster along each dimension, and the covariance indicates the orientation of the

cluster. Both the variance and the covariance co-determine the shape of the cluster.

Collecting them together, we get the covariance matrix C. Now let us look at the

distance function called Mahalanobis Distance by using the inverse of covariance

matrix.

Given a cluster centred at O, the Mahalanobis Distance between a point P and

O is given as follows:

MahaDist(P, O) = (P −O)T C−1(P −O)

where C is covariance matrix describing cluster’s shape.

From Mahalanobis Distance, we get a normalized measure: Normalized Maha-

lanobis Distance.

MahaDistn(P,O) =
1

2
(d ln(2Π· | C |) + (P −O)T C−1(P −O))

where d is the dimensionality, Π is the trigonometric number 3.14 and | C | is the

determinant of C. Notice that given a spatial displacement between a point and an

ellipsoid, the standard Mahalanobis Distance tends to be smaller for long clusters with

large covariance matrices than that for small clusters. With standard Mahalanobis

72

Distance, the larger cluster will keep increasing in size and eventually overwhelm the

smaller clusters. Normalized Mahalanobis Distance avoids such situation [55].

Definition 3.3 Multi-level Projections

Principal Component Analysis (PCA) [32] examines the variance structure in the

dataset and determines the directions along which the data exhibits high variance.

The first principal component is the eigenvector corresponding to the largest eigen-

value of the dataset’s covariance matrix C, the second component corresponds to the

eigenvector with the second largest eigenvalue and so on. It is interesting to note

that the Principal Components in PCA are just the eigenvectors of the covariance

matrix in Mahalanobis Distance which describes the dataset’s shape. An example is

shown in Figure 4.3, where the preserved dimension is the first principal component,

and the eliminated dimension is the second principal component. In dimensionality

reduction, given a point P in a dataset, it has two projections. One is the projection

on the preserved subspace P ′ that we are interested in; the other is the projection on

the eliminated subspace P ′′. The dr-dimensional projection P ′
dr

can be defined as:

P ′
dr

= P · Φdr

where Φdr represents the matrix containing 1st to dth
r principal components. Change

dr with different value, we can generate multi-level projections of the data for cluster

discovery purpose in Multi-level Mahalanobis-based Dimensionality Reduction algo-

rithm.

Definition 3.4 Projection Distance

From the above two projections, ProjDistr measures the distance from P to P ′

and ProjDiste measures the distance from P to P ′′ on the eliminated subspace. More

73

specifically, ProjDistr is the information lost from original representation P to its re-

duced dr-dimensional representation P ′. ProjDiste is the information retained. Fig-

ure 4.3 illustrates the two projection distances. In the following paragraphs, ProjDist

represents ProjDistr.

Projection distance to
eliminated subspace Projection distance to

remained subspace

Figure 4.3: Two projection distances

Based on the above two projection distances, we extend the definition of elliptic-

ity to multidimensional space as:

e =
Max(ProjDiste)−Max(ProjDistr)

Max(ProjDistr)

where Max(ProjDiste) is the radius along the remained subspace, and Max(ProjDistr)

is the radius along the eliminated subspace. The cluster’s Mahalanobis radius r is

Max(ProjDistr). For dimensionality reduction, the larger the ellipticity value, the

more effective dimensionality reduction can be performed.

Definition 3.5 Mean ProjDistr Error (MPE)

Mean ProjDistr Error is defined to be the average representation error when

points are mapped from original space to eliminated subspace.

MPE =

∑N
i=1 ProjDistr(Pi, O)

N

74

Symbols Descriptions V alue

N Data Size
d Original Dimensionality
dr Optimal Dimensionality
s dim Subspace Dimensionality
e Ellipsoid’s Ellipticity
r Mahalanobis Radius
C Covariance Matrix
ProjDistr Dist to remained subspace
ProjDiste Dist to eliminated subspace
MPE Mean Projection Error
σ Outlier Set
β ProjDistr Threshold 0.1
MaxMPE Max MPE Allowed 0.05
EC Elliptical Cluster
MaxEC Max EC allowed 10
MaxDim Max Remained Dim allowed 20
ε Data Stream Percentage 0.005
ξ Outlier Percentage 0.005
k Num of IDs in lookup table 3

Table 4.1: A Table of Symbols and default values in Chapter 4

75

Table 4.1 gives a summary of the symbols in this chapter and their respective

description with default values used in experiments.

4.3 Multi-level Mahalanobis-based Dimensionality

Reduction (MMDR)

4.3.1 MMDR Algorithm

The Multi-level Mahalanobis-based Dimensionality Reduction (MMDR) algorithm,

which is outlined in Figure 4.4, consists of two major steps, namely: Generate

Ellipsoid and Dimensionality Optimization.

In Generate Ellipsoid, we recursively apply multi-level projections from low to

high dimensionality until ellipsoids are fully discovered. At each level, Mahalanobis

distance is applied to detect possible ellipsoids. Any unqualified ellipsoid is passed

to Generate Ellipsoid with a higher subspace dimensionality so that more informa-

tion can be used for clustering. We adopt this divide-lower-before-conquer-upper

approach based on the following observations. First, in high dimensional space, some

dimensions may contain little information, which may not be very helpful when it

comes to identify the cluster membership. Second, for the well-separated clusters in

the subspace, their correspondences in the higher dimensional space are usually well

separated because of the property of PCA. In our algorithm, MPE indicates how

much information is lost during the projection process. It is used as the parameter to

determine if the subspace projections carry enough information to reflect the shape

of their correspondence in the original space.

The Generate Ellipsoid is invoked with a small subspace dimensionality - s dim.

76

MMDR Algorithm

Generate Ellipsoid (GE)
Variable: ellipsoid array, subspaces;
GE(data, d, s dim)
1. projections ← getProj(data, s dim);
2. semi ellip ← ellip k means(projections,s dim);
3. // process each semi ellips
4. for each semi ellip with size > 0
5. semi ellip data ← restoreData(semi ellip);
6. semi ellip ← getProj(semi ellip data, s dim);
7. MPE ← getMPE(s dim);
8. if MPE > MaxMPE and 2*s dim > d
9. GE(data, d, 2*s dim);
10. else
11. add semi ellip data into ellipsoid array

Dimensionality Optimization
12. for each ellipsoid array[i]
13. dr ← min(MaxDim, s dim);
14. MPE ← getMPE(dr);
15. while change of MPE < threshold
16. dr −− ;
17. MPE ← getMPE(dr);
18. projections ← getProj(ellipsoid array[i],dr);
19. for each projection
20. ProjDist ← getProjDist();
21. if ProjDist ≤ β
22. add it to this subspace;
23. else
24. add it to noise set

Figure 4.4: MMDR Algorithm

77

In line 1 of Figure 4.4 the low dimensional projections are produced from the orig-

inal d-dimensional space, followed by elliptical k-means clustering [55] in this low

dimensional subspace, line 2. The data are then partitioned into semi-ellipsoids at

s dim-dimensional subspace. We call this semi − ellipsoid since we have not de-

cided yet whether it properly indicates the shape of its correspondence in the original

space. From line 3 to line 11, each semi-ellipsoid is handled individually. For each

semi-ellipsoid discovered above, its corresponding shape is restored in the original

dimensional space (line 5), and its local s dim-dimensional subspace is generated(line

6). The newly produced projections are local to individual semi-ellipsoid and different

from the projections produced in line 1. At line 7, the MPE to s dim-dimensional

subspace is computed.

If a semi-ellipsoid has smaller MPE than the maximum error allowed, it suggests

that the s dim-dimensional subspace can approximately represent its original data.

Otherwise, there are two possible reasons for the big MPE. First, it could be due to

the overlap of several clusters in the subspace such that each point did not project

to its local subspace. Higher subspace dimensionality should be retained in order to

distinguish each cluster. Second, though it is a single cluster, the s dim could be

too small for a subspace to represent original dimensional data. To further discover

ellipsoids in each semi-ellipsoid, we increase the s dim twofold without losing gener-

ality and recursively call Generate Ellipsoid (line 9). Therefore, the semi-ellipsoid is

repeatedly partitioned locally. This step produces possible ellipsoids. It should be

noted that the process of discovering ellipsoids in the subspaces is the first step of

dimensionality reduction, where the remained subspace dimensionality of each ellip-

soid at this stage is their respective s dim, and further dimensionality optimization

is performed in the next step.

Since the above step produces possible ellipsoids in their respective s dim-dimensional

78

subspace, and ellipsoids are effective for dimensionality reduction, the s dim of the

subspaces discovered in Generate Ellipsoid can be further reduced (it should be noted

that each ellipsoid may correspond to a different s dim value). That is, if the change

of MPE is less than the pre-set threshold, we decrease the dimensionality by 1 and the

process is repeated till the above condition is false (line 15-17). The final dimension-

ality is treated as the ‘optimal’ one and denoted as dr. The points are projected into

this dr-dimensional subspace (line 18). A threshold value β is employed to determine

whether a point belongs to a cluster. If the projection distance on (d−dr)-dimensional

eliminated subspace for a point is greater than β, this point is taken as an outlier

(line 23-24). Otherwise, it is classified as a member of the subspace (line 21-22).

The final output of the algorithm is a set of subspaces and outliers. Each subspace

may have a different optimal number of reduced dimensions. The outlier set remains

in the original space since its data points are not well correlated.

In a dataset, some clusters are elongated along certain directions and yet they

are locally correlated. Such elongation may be detected in its lower dimensional

subspaces. Given a 2-dimensional subspace as shown in Figure 4.5 projected from

a higher dimensional space (say 4-dimensional). This 2-dimensional subspace can

represent the original dimensional space with very little information being lost. The

LDR technique [13] is able to discover correlated clusters on the original 4-dimensional

space and produces two 1-dimensional subspaces as shown in Figure 4.5a. In order to

partition the bigger shape cluster for dimensionality reduction, the clustering radius

must be suitably large. However, this will result in smaller clusters being grouped

together as one. Obviously, substantial information is lost for the smaller shaped

clusters. The situation is even worse for small shaped clusters with a high density.

Figure 4.5b shows three 1-dimensional subspaces produced by MMDR algorithm.

MMDR first projects the original dimensional space into 1-dimensional subspace, then

79

(a) Clusters generated by LDR using Eu-
clidean distance

 MMDR generates 3 1-d subspaces.
Cluster 1 is discovered in 1-d subspace;
cluster 2 & 3 are discovered in 2-d subspace.

cluster 3

cluster 2 cluster 1

1-d subspace for whole data

(b) Clusters generated by MMDR using Maha-
lanobis distance

Figure 4.5: LDR vs MMDR

elliptical k-means method partitions 1-dimensional projections of whole data into two

partitions: cluster 1’s 1-dimensional subspace and cluster 2 and 3’s 1-dimensional sub-

space. After restoring cluster 1’s 1-dimensional subspace back to original dimensional

space and performing local 1-dimensional projections (line 5-6), MMDR detects that

it is an ellipsoid since its MPE is small. The 1-dimensional subspace projected from

clusters 2 and 3 overlaps heavily with the high MPE and thus its corresponding full

dimensional shape/data are passed to Generate Ellipsoid by increasing the subspace

dimensionality to be 2-dimensional. At the 2-dimensional subspace, these 2 ellip-

soids can be discovered by the Mahalanobis Function. Dimensionality reduction is

further performed in Dimensionality Optimization so that both can be reduced to

1-dimensional subspaces with less information lost than using LDR method.

In summary, MMDR has the following advantages. First, the ellipsoids can be

effectively discovered at data’s subspace level, rather than at the original space. Sec-

ond, the ellipsoids are able to be discovered as soon as the shapes can be identified.

Third, the cost to perform clustering using Mahalanobis distance can be reduced

80

dramatically since it is performed in the low dimensional subspace.

The cost of MMDR comes mainly from elliptical k-means method (line 2), which

takes O(Iterout ∗ Iterinn ∗ d sim2 ∗ N ∗ MaxEC), where Iterout and Iterinn is the

number of iterations for outer and inner loop respectively, d sim2 comes from distance

computation. However, in MMDR, the input dimensionality s dim is very small

compared to the original d. The input data size N becomes smaller as s dim increases,

which leads to Iterout and Iterinn being reduced also. We further reduce the cost in

the next subsection.

4.3.2 Optimization on Distance Computation

We note that the most time consuming step of the MMDR algorithm is the Maha-

lanobis distance computation between centroids and data points in elliptical k-means

method. In this subsection, we reduce the computational cost by using the following

techniques. The factor MaxEC can be reduced to a small number by avoiding com-

puting all the distances between MaxEC centroids and a data point. We only need to

re-compute the distance between the k most closest centroids which might change the

membership of a point, where k << MaxEC. This is based on the following observa-

tions. First, if a data point is to be re-assigned to another cluster, that cluster is most

probably the one with the closest distance except the current assignment. Second, in

each iteration, only a small portion of data points might change their membership. As

the converging process continues, the number of data points changing memberships

decreases quickly. Third, some data points may never change their membership.

A lookup table is designed to store the k most closest centroids’ IDs computed in

the previous iteration for each data point. In the next iteration, only those centroids

whose IDs are stored in the lookup table are taken to compute and find the closest

centroid. A data point entry in the lookup table is updated only when its membership

81

is changed. By doing so, the factor MaxEC is removed from the overall cost.

To further reduce the cost for large datasets, we introduce one additional field

called Activity to the lookup table to indicate how frequently a data point changes

its membership. It records the number of iterations that a data point does not change

its membership. If the value of Activity is larger than a threshold, we say this data

point is inactive, otherwise active. Inactive data points need not make any further

distance computation and re-assignment unless the number of clusters is changed.

This reduces the value of N dramatically at each iteration. Assume that at each

iteration, only 1
Iterinn

of the dataset change their memberships, the factor of N is

replaced by N
Iterinn

. As the converging process continues, the number of points which

change their membership decreases dramatically. Therefore, the time complexity

becomes O(Iterout ∗ d sim2 ∗N). Comparing with the LDR’s time complexity of

O(N ∗ d2 ∗MaxEC), MMDR has a smaller dimensionality of d sim than d, but with

a larger factor of Iterout than MaxEC.

4.3.3 Scalability for Large Datasets

Scalable MMDR Algorithm

1. Initialize the Ellipsoid Array;
2. Divide dataset into 1

ε
data streams;

3. For each data stream
4. Pass it to Generate Ellipsoids;
5. Add newly generated ellipsoids into EA;
6. Form a new data stream using all centroids in EA;
7. Pass this new data stream to Generate Ellipsoids;
8. Re-assign point membership to the ellipsoids;
9. For each ellipsoid
10. Pass it to Dimensionality Optimization;

Figure 4.6: Scalable MMDR Algorithm

82

For a very large dataset which cannot be completely loaded into the main memory

buffer, the data scan at each iteration is extremely expensive. To make the MMDR

scalable for very large datasets, we divide the dataset into a number of data streams,

which is defined as a sequence of data points read in order of indices, and we process

one data stream at a time. We set the size of a data stream to be ε percent of the data

size. A temporary array called Ellipsoid Array (EA) is created to store the ellipsoids’

centroids generated for each data stream. Scalable MMDR loads a single data stream

at a time and performs Generate Ellipsoid operation to generate small size ellipsoids.

These small ellipsoids’ centroids are stored in the Ellipsoid Array. After all the data

streams have been processed, only the Ellipsoid Array is in the buffer. By calling

Generate Ellipsoid on Ellipsoid Array, Scalable MMDR forms bigger size of ellipsoids

by merging smaller ellipsoids whose centroids are stored in Ellipsoid Array. The

detailed algorithm is outlined in Figure 4.6.

The size of data stream is much smaller than original data size N. Empirically,

it is reasonable to expect that Iterdatastream < Iteroriginaldata. Hence, the total time

required to cluster 1
ε

data streams of size ε∗N is generally less then the time required

to cluster N data points.

4.4 Indexing Reduced Subspaces

After dimensionality reduction, the projections in reduced dimensionality subspaces

have to be indexed using efficient indexes. Instead of using an index for each subspace,

we want all the projections to be indexed in a single structure for ease of maintenance.

We selected the iDistance [61] as our base index due to its efficiency and its B+-tree

base structure.

83

The design of iDistance was motivated by two factors. One, the triangular in-

equality relationships enable the (dis)similarity between a query point and a data

point to be derived with reference to a chosen reference point. Two, data points

can be ordered based on their distances to a reference point, and indexed based on

such distance value. This enables one to represent high-dimensional data in a single

dimensional space and use an existing B+-tree. However, the iDistance has to be

extended to index subspaces in different axis systems and handle dynamic insertion

of data points.

4.4.1 Extended iDistance

The data partitioning strategy and reference point selection are straight forward, as

the data partitions are determined by the MMDR algorithm and the centroid of each

cluster is the ideal choice as the reference point. For each subspace (outliers as a

subspace in its original dimensionality), all data points in subspaces are represented

in a single dimensional space with reference to its centroid of cluster. This is achieved

by the following mapping function:

y = i× c + dist(P, Oi)

where the P is a data point in the subspace of ith ellipsoid ECi, and Oi is its centroid.

dist(P, Oi) is the distance function that returns distance between Oi and P. y is the

index key for P. c is some constant to stretch the data range so that distance values

are range partitioned based on reference points. That is, it serves to partition the

single dimension space into regions so that points in the ith cluster will be mapped

to the range [i × c, (i+1) × c].

Extended iDistance employs three data structures:

84

• A B+-tree is used to index the transformed single value points to facilitate

speedy retrieval.

• An array is required to store the centroids and Principal Components of ellip-

soids, and their respective nearest and farthest radius that define the subspace.

This array is used for searching purpose.

• An array is required to store covariance matrices of ellipsoids, Mahalanobis

radius, and the dimensionality retained. This array is used for the purpose of

dynamic insertion.

To search for the K nearest neighbors of a query point q, the distance of the

Kth nearest neighbor to q defines the minimum radius required for retrieving the

complete answer set. Such a distance cannot be predetermined, and hence, an iter-

ative approach that examines increasingly larger sphere in each iteration has to be

employed.

The algorithm works as follows. Given a query point q, finding K nearest neigh-

bors (NN) begins with a query sphere defined by a relatively small radius R around

q. For each cluster ECi, the query point is mapped into qi, which is the projection

of q on the ith subspace.

Figure 4.7 shows an example with 3 clusters’ max radius ranges in the different

axis systems, where EC1 is in XY plane, EC2 in XZ plane and EC3 in YZ plane.

Here, for a query point q, its projection on 3 subspaces are q1, q2, and q3 respectively.

The shaded regions are the areas that need to be checked.

Searching in extended iDistance begins by scanning the auxiliary structure to

identify the centroids whose data space (sphere area of cluster) overlaps with the

query sphere defined by qi and R. The search starts with a small global radius R for

all subspaces, and step by step, the radius is increased to form a bigger query sphere.

85

O1

O2

q2

q3

O3

q1

 R

R

 R

R3

 R1

R2

 Z

 Y

X

Figure 4.7: Searching for NN queries q1, q2 and q3

For each enlargement, there are three main cases to consider.

• The data space ECi contains qi. In this case, we want to traverse the data space

sufficiently to determine the K nearest neighbors. This is done by first locating

the leaf node where qi may be stored. Since this node does not necessarily

contain points whose distance are closest to qi compared to its sibling nodes,

we need to search left and right (inward and outward of data space) from the

reference point accordingly. This situation is illustrated by the subspace EC1

and q1.

• The data space intersects the query sphere. In this case, we only need to search

leftward (inward) since the query point is outside the data space. This situation

is illustrated by the subspace EC3 and q3.

• The data space does not intersect the query sphere. Here, we do not need to

86

examine the data space. This situation is illustrated by the subspace EC2 and

q2.

The search stops when the distance of the Kth NN object to q is less than search

radius R. The search is correct as the distance between image query point and data

point always lower bounds the actual distance between the actual query point and

data point in the original space. The searching subspace can be fast pruned by using

triangle inequality property.

‖Q− P‖ ≥ ‖Qj − Pj‖ ≥ ‖Qj −Oj‖ − ‖Pj −Oj‖ ≥ ‖Qj −Oj‖ −Rj

Where Q is query, P is original data point, Qj is the projection in jth subspace, Pj

is the projection of P in jth subspace, Oj is the reference point in jth subspace, and

Rj is the max radius in jth subspace. ‖Qj −Oj‖−Rj specifies the tightest searching

bound for jth subspace.

4.4.2 Handling of Dynamic Insertions

In the real world, the database is not static, and it is too costly for a dimensionality

reduction algorithm to reanalyze the whole database after some insertions. It is

granted that for a very large database, a single data point insertion should not greatly

affect the effectiveness of clustering and dimensionality reduction. However, over time,

the query accuracy and efficiency will be affected if the indexing mechanism is not

adaptive to new data insertions.

To handle dynamic insertions, the MMDR algorithm is made to be adaptive to

new insertions by splitting and merging subspaces if necessary. In the algorithm

below, we treat a set of insertions as a batch insertion of a small dataset, which is a

data stream described described in Section 4.3.

87

Dynamic MMDR Algorithm

1. for each point P in data stream
2. O ← nearestEllipsoid(P);
3. distmin ← minMahaDist(O);
4. if distmin ≤ O.r
5. projection ← getProj(O.dr);
6. y ← getKey(O);
7. insertIntoIndex(y);
8. removeFromDataStream(P);
9. subspaces ← MMDR(data stream);
10. for each subspace
11. if merge(i)
12. deleteFromIndex(i*c, (i+1)*c);
13. form a new subspace with same ID - i;
14. else
15. Treat it as new subspace with new ID;
16. for each new subspace Onew

17. for each point
18. y ← getKey(Onew);
19. insertIntoIndex(y);

Figure 4.8: Dynamic MMDR Algorithm

88

For each data point P in data stream, we first get the ellipsoid with minimal

MahaDist to P and denote it as O (line 2-3). If this distance is less than O’s Ma-

halanobis radius - r, get its projection in O’s subspace (line 5), followed by mapping

it to indexing value (line 6) and inserting it into the index (line 7), then remove it

from data stream. Next, the updated data stream is passed to MMDR to generate

subspaces (line 9). For each subspace, if it has same elongation and intersects with

an existing subspace i, delete all the entries whose indexing values are in the range

of [i ∗ c, (i + 1) ∗ c] (line 12) and form a new subspace with same ID - i (line 13).

Otherwise, treat this subspace as a new subspace with a new ID (line 15). Finally

for each new subspace (line 16-19), map each data point into indexing value with

corresponding subspace, then insert into the index.

One important step in the above algorithm is to merge two subspaces when nec-

essary. The following condition must be satisfied in order to merge two subspaces:

their ellipsoids have the same elongation and intersect with each other. Figure 4.9

illustrates such scenario. In Figure 4.9, we only indicate the circumscribing ellipse

of the cluster and r is the Mahalanobis radius. If the MahaDist of two centroids of

ellipsoids is not greater than the sum of their Mahalanobis radius, these two ellipsoids

intersect. In this case, two ellipsoids are merged as a new ellipsoid. Based on the new

centroid, we re-map the points into indexing values with the existing ellipsoid’s ID,

followed by standard insertion operation.

It is important to note that the algorithm does not require us to rebuild the whole

tree. Instead, it only affects the partitions where merging is performed.

89

r1

r2

O1

O2

MahaDist(O1,O2) <= r1+r2

Figure 4.9: Two ellipsoids intersect with same elongation

4.5 Performance Study

In this section, we present the performance study to evaluate the effectiveness of

MMDR and the efficiency of extended iDistance. For the experiments, we use the

default values as shown in Table 4.1, and all experiments were done with Ultra-10

SunOS 5.7 processor (333 MHz CPU and 256 MB RAM).

We have two categories of test data.

• Real life datasets: We have two sets of real life datasets. One consists of 64-

dimensional Daubechies’ wavelet[58] features extracted from 73,715 WWW im-

ages randomly crawled from over 40,000 websites by ICICLE system. Wavelet

features describe an image’s shape, texture and location information in a single

representation. Here we truncate the 64 most dominating wavelet coefficients as

an image’s visual feature. The other consists of 64-dimensional color histogram

extracted from 70,000 color images from Corel Database, used in LDR[13].

• Synthetic datasets: We have four sets of synthetic datasets. One small synthetic

dataset contains 100,000 points in 64-dimensional space. Three large synthetic

datasets with 1,000,000 points are in 50-, 100-, and 200-dimensional spaces

respectively. For each synthetic dataset, we use the algorithm 4.10to generate

90

Parameters Descriptions

N Data Size
d Original Dimensionality
s dim Subspace dimensionality
EC Number of elliptical clusters
EC size Size of elliptical cluster
s r dim Starting remained dimension for EC
variance e Variance for eliminated subspace
variance r Variance for remained subspace
lb Lower bound value for EC

Table 4.2: Table of input parameters and description

correlated clusters in different subspaces with different distensibilities. Each

subspace has different size, orientation and ellipticity.

In order to generate the local correlated datasets, we use the algorithm outlined

in Figure 4.10 to generate different clusters in different subspaces with different ori-

entations and distensibilities retained. Table 4.2 gives the descriptions of input pa-

rameters.

Generate Correlated Dataset (GCD)

input: N,d,EC,EC size[EC],s dim[EC],s r dim[EC],
variance e[EC],variance r[EC], lb[EC]
Output: datasets[EC]
Algorithm:
1. for i from 0 to EC-1 do
2. for j from 0 to EC size[i]-1 do
3. for k from 0 to s remained dim[i]-1
4. datasets[i][j*d+k]= gen float(lb[i], variance e[i])
5. for k from s r dim[i] to s r dim[i]+s dim[i]-1
6. datasets[i][j*d+k]= gen float(lb[i], variance r[i])
7. for k from s r dim[i]+s dim[i] to d-1
8. datasets[i][j*d+k]= gen float(lb[i], variance e[i])
9. rotate datasets[i] to be arbitrarily oriented

Figure 4.10: Synthetic Datasets Generation

91

In this algorithm, array s dim[i] contains the dimensions which should be remained

for each cluster.We can randomly choose which dimension should be retained. For

simplicity, we make remained dimensions continuous starting with s r dim[i]. For

example, if s r dim[i]=6, then the remained dimensions for ith cluster starts from 6th

to (6+s dim)th dimensions. Specifying the different values for each cluster allows each

reduced subspace in different axis systems. Method gen float() will return a random

float value in [lb,lb+variance]. It can also return a value based on other distribution

functions, such as Zipfian. For each cluster, we also specify their different lower bound

values, which can be used to control the positions of centers of each cluster together

with its variance. Along each of the remaining s dim[i] dimensions, we assign a

randomly chosen value falling in range of [lb[i], lb[i]+variance r[i]] to all the points in

the cluster. Along each of the reduced (d-s dim[i]) dimensions, we assign a randomly

chosen value falling in range of [lb[i], lb[i]+variance e[i]] to all the points in the cluster.

The ratio between variance r[i] and variance e[i] in fact specifies the ratio between the

energy carried by remained and reduced dimensions for each cluster, or the degree

of correlation/ellipticity. Both values can be adjusted for different clusters in order

to have different level of correlation. To make the subspace arbitrarily oriented, we

can generate a random orthonormal rotation matrix (generated using MATLAB) and

rotate the cluster by multiplying the data matrix with the rotation matrix.

We used 100 queries to obtain the mean precision and query cost on 10NN, and

L2 distance was used for searching (Note that the Mahalanobis distance is used for

discovering intrinsic ellipsoids, not for searching). The query precision is defined as

follows:

Precision =
Rdr

⋂
Rd

Rd

where Rd and Rdr are the results respectively returned from the original space and

92

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20

Pr
ec

is
io

n

Ellipticity

MMDR
LDR
GDR

(a) Effect of ellipticity

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10

Pr
ec

is
io

n

Number of correlated clusters

MMDR
LDR
GDR

(b) Effect of number of clusters

Figure 4.11: Effect on precision

reduced subspaces.

4.5.1 Query Precision

Here dimensionality reduction methods serve for the purpose of efficient indexing.

However, they are lossy in nature. When a dimensionality method tries to reduce

more, it may cause bigger loss of information and hence query precision. The query

precision is also affected by correlation between data points and number of correlated

clusters. Here we use the small dataset with 100,000 points.

Figure 4.11a shows the query precision with respect to increasing ellipticity. As we

can see, the MMDR method performs much better than the LDR and GDR methods.

The GDR method can achieve at most 15% of precision as the dataset is not globally

correlated. As ellipticity decreases, LDR drops faster than MMDR. Obviously, less

correlation has more negative effect on the query precision of LDR then MMDR. In

the next experiment, we varied the number of correlated clusters to test its effect

on query precision. The results in Figure 4.11b show that all MMDR, LDR and

GDR perform equally well when there is only one correlated cluster. But as the

93

number of correlated clusters increases, the MMDR is able to locate all correlated

clusters effectively and maintains its query precision. However, the query precision

of the LDR drops rapidly, and so does the GDR method. It indicates that when

clusters intersect and have different ellipticities and scales, LDR can not discover all

of them. As more such clusters exist, LDR performs worse. In contrast, the MMDR

can discover the intrinsic number of correlated cluster based on Mahalanobis distance

and thus is independent of the number of correlated cluster.

To see the effect of the number of eliminated dimensions on the effect of query

precision, we conducted experiments using the small synthetic dataset and two real

datasets. In this experiment, we set the maximum remained subspace dimensionality

MaxDim to be 20. Figure 4.12 presents the effect of the number of dimensions re-

tained after dimensionality reduction on the query precision on two datasets. All the

three methods show increasing precision as the remained dimensionality increases for

three datasets. MMDR achieves much higher precision. As shown in Figure 4.12a

for the synthetic dataset, at 20 dimensions, LDR only can achieve at most 60% of

precision. and GDR cannot achieve more than 25% of precision due to uncorrelated

property. Figure 4.12b shows the effect of retained dimensionality on the query pre-

cision using the color histogram dataset. It is interesting to note all three methods

are not performing as well as before. Nevertheless, the MMDR method performs

the best and is least affected. The higher precision obtained by the MMDR method

confirms two important observations. First, there exist some local elongated clusters.

Second, some intrinsic local elongated shapes/correlations cannot be detected by

LDR. Compare to the synthetic dataset (Figure 4.12a), the precision of the methods

on color histogram dataset are much worse. One reason could be that the real dataset

may have clusters that are highly uncorrelated. Too many outliers may be another

reason. This is possible, as for each image in the real dataset, the color histograms

94

tend to be very skewed towards a small set of colors, with many attributes being 0.

Figure 4.12c shows the effect of retained dimensionality on the query precision using

the wavelet feature dataset. It has the similar trend as Figure 4.12b, but with lower

precisions than color histogram dataset for all three methods. The reason is possibly

that higher uncorrelated property exists in our WWW images. Since our images were

randomly crawled from WWW, their wavelet features may not be well correlated in

some clusters. However, the gap between LDR and MMDR becomes even larger for

this dataset.

The above experiments confirm that the MMDR method is a much more effec-

tive dimensionality reduction technique in correlated environments with lower loss of

distance information, as it can achieve the better reduction performance with higher

precision, which should lead to faster searching and retrieval.

0

0.2

0.4

0.6

0.8

1

5 10 15 20

P
re

c
is

io
n

Number of dimensions

MMDR
LDR
GDR

(a) Synthetic data

0

0.2

0.4

0.6

0.8

1

5 10 15 20

P
re

c
is

io
n

Number of dimensions

MMDR
LDR
GDR

(b) Color histogram

0

0.2

0.4

0.6

0.8

1

5 10 15 20

P
re

c
is

io
n

Number of dimensions

MMDR
LDR
GDR

(c) Wavelet features

Figure 4.12: Effect of dimensionality on query precision

4.5.2 Query Efficiency

In this experiment, we examine the query performance of the index methods on re-

duced dimensionality data points. Note that the final purpose of performing effective

dimensionality reduction by using MMDR is to improve the query performance, as it

95

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

10 20 30

I/
O

 C
o

st
 (

N
u

m
b

e
r

o
f

p
a
g

e
 a

c
c
e
ss

)

Number of dimensions

Seq-scan 30-d
Seq-scan 20-d
Seq-scan 10-d

iMMDR
iLDR
gLDR

(a) Synthetic data

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

10 20 30

I/
O

 C
o

st
 (

N
u

m
b

e
r

o
f

p
a
g

e
 a

c
c
e
ss

)

Number of dimensions

Seq-scan 30-d
Seq-scan 20-d
Seq-scan 10-d

iMMDR
iLDR
gLDR

(b) Color histogram

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

10 20 30

I/
O

 C
o

st
 (

N
u

m
b

e
r

o
f

p
a
g

e
 a

c
c
e
ss

)

Number of dimensions

Seq-scan 30-d
Seq-scan 20-d
Seq-scan 10-d

iMMDR
iLDR
gLDR

(c) Wavelet features

Figure 4.13: Effect of dimensionality on I/O cost

0

0.5

1

1.5

2

2.5

3

10 20 30

C
P

U
 C

o
st

 (
S

e
c
o

n
d

s)

Number of dimensions

iMMDR
iLDR
gLDR

(a) Synthetic data

0

0.5

1

1.5

2

2.5

3

10 20 30

C
P

U
 C

o
st

 (
S

e
c
o

n
d

s)

Number of dimensions

iMMDR
iLDR
gLDR

(b) Color histogram

0

0.5

1

1.5

2

2.5

3

10 20 30

C
P

U
 C

o
st

 (
S

e
c
o

n
d

s)

Number of dimensions

iMMDR
iLDR
gLDR

(c) Wavelet features

Figure 4.14: Effect of dimensionality on CPU cost

50

100

150

200

250

300

0 200 400 600 800 1000

T
R

T
 (

M
in

ut
es

)

Data Size (K)

MMDR

(a) Effect of data size

0

100

200

300

400

500

600

700

50 100 150 200

T
R

T
(M

in
ut

es
)

Number of dimensions

MMDR

(b) Effect of dimensionality

Figure 4.15: Effect on total response time

96

is well known that existing multi-dimensional indexing structures are not be able to

index very high (30 or greater) dimensional data space. Here we have three indexing

schemes to compare: extended iDistance on MMDR data (iMMDR), extended iDis-

tance on LDR data (iLDR) and Global indexing method [13] on LDR data (gLDR).

The Global indexing method makes use of one Hybrid tree [14] for each cluster, and

maintains the information about each cluster and index in an array. Here we use the

same datasets as in the last sub section.

Figure 4.13 shows the I/O cost for three indexing schemes, and sequential scan

in reduced subspaces, when the subspace dimensionality varies from 10 to 30. Fig-

ure 4.13a shows that for synthetic dataset, as the dimensionality increases, the iM-

MDR has much lower I/O cost than the iLDR, which confirms that a more effective

dimensionality reduction method leads to an overall improved query efficiency. We

also notice that the gLDR is worse than the iLDR, and when the dimensionality

reaches 20, its cost is higher than that of direct sequential scan. The extended iDis-

tance is more efficient in terms of I/O cost as it has to traverse only one index, and this

index is smaller since only the 1-dimensional distance values are used in the internal

nodes. Figure 4.13b and Figure 4.13c shows the similar trends for color histogram.

and wavelet feature datasets respectively.

Figure 4.14 provides the CPU cost of three indexing schemes for three datasets.

From Figure 4.14a, we can see that as the dimensionality increases, the gap becomes

wider between iLDR and gLDR. iMMDR is the best. Performance difference between

iMMDR and iLDR is relatively small. When the dimensionality reaches 30, the CPU

cost for gLDR is an order of magnitude higher than that for iMMDR and iLDR.

The main reason is clear. In gLDR indexing structure, tree nodes contain multi-

dimensional data points. However, in extended iDistance structure, tree nodes contain

1-dimensional key values. Extended iDistances (iMMDR and iLDR) incur single

97

dimensional value comparison in searching while L-norm computation is involved

in the Global structure’s Hybrid-Tree. Thus computation in gLDR is much more

expensive. Again, Figure 4.14b for color histogram dataset and Figure 4.14c for

wavelet feature dataset shows the similar trend as Figure 4.14a. In terms of both

CPU and I/O cost, the single dimensional extended iDistance index outperforms the

Global indexing structure significantly. Furthermore, more effective dimensionality

reduction method leads to more efficient indexing.

4.5.3 Scalability

All high-dimensional indexes are affected by the data size and number of dimensions.

In this experiment, we look at scalability of MMDR. We set the data stream ratio ε

as 0.005, and the k value in the lookup table to be 3 and the number of iterations

that indicates a point as inactive as 10. The parameter we used here is the total

response time (TRT) for MMDR to generate the optimal subspaces from the original

data.

Figure 4.15a describes the effect of data size on the total response time. We keep

the number of dimensions fixed at 100, while we vary the data size from 50,000 to

1,000,000. From Figure 4.15a we make the following observation. The response time

increases linearly to the data size. When the data size reaches the limit of buffer -

500K, there is no jump in response time for scalable MMDR since we need only scan

the whole dataset once. Figure 4.15b shows the effect of the number of dimensions

on the total response time. For this experiment, we used 1,000,000 data points and

varied the number of dimensions from 50 to 200. As expected, the total response time

is nearly quadratic to the dimensionality. The results again exhibit that the limited

buffer has no effect on the total response time.

98

4.5.4 Effect of Dynamic Insertions

5000

10000

15000

20000

25000

30000

100 200 300 400 500 600 700 800 900 1000

I/
O

 C
os

t (
N

um
be

r
of

 p
ag

e
ac

ce
ss

)

Number of data points(K)

Sequential Scan
iMMDR

(a) I/O cost

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500 600 700 800 900 1000

Pr
ec

is
io

n

Number of data points(K)

K=100
K=10

(b) Precision

Figure 4.16: Effect on dynamic insertion

5000

6000

7000

8000

9000

0 0.01 0.02 0.03 0.04 0.05

I/
O

 C
os

t (
N

um
be

r
of

 p
ag

e
ac

ce
ss

)

Percentage of Outliers

(a) I/O cost

0

0.2

0.4

0.6

0.8

1

0 0.01 0.02 0.03 0.04 0.05

Pr
ec

is
io

n

Percentage of Outliers

(b) Precision

Figure 4.17: Effect on outliers

The dimensionality reduction algorithm and the associated indexing structure

must be dynamic and adaptive in order to handle dynamic insertions effectively. In

this experiment, we see how Dynamic MMDR adapts and keeps its precision high,

while keeping the KNN search cost low. For this experiment, we used the 1,000,000

100-dimensional dataset. We used 10NN and 100NN queries. We constructed the

99

index using the first 100,000 points and then we inserted 100,000 points at a time.

At each insertion step, we performed KNN queries, and measured their query cost

and precision.

Figure 4.16a shows that as more data points are inserted, a higher I/O cost is

incurred. This is due to a bigger index, rather than the inefficiency of the index.

However, the performance gain of iMMDR over sequential scan becomes larger and

larger. Figure 4.16b shows that as more data points are inserted, the algorithm

adapts dynamically and yields better precision. This again confirms the suitability

of Mahalanobis distance in identifying effective clusters for dimensionality reduction.

4.5.5 Effect of Outliers

Outliers are data points that do not form effective clusters and are not included in

any clusters obtained during dimensionality reduction. They form a cluster of its

own, and they are indexed in their actual data space. Since outliers compose of

‘abnormal’ points, its cluster’s maximum radius is very large after mapping them

into 1-dimensional distance values. Hence it is searched for most queries. We used

the 1,000,000 100-dimensional dataset. Figure 4.17a shows that as more outliers are

introduced, the higher I/O cost is incurred. However, as shown in Figure 4.17b, it is

interesting to note that outliers do not affect query precision severely since they are

grouped into outliers set and are searched like other clusters.

4.6 Summary

In this chapter, we have presented an effective and fast dimensionality reduction al-

gorithm – Multi-level Mahalanobis-based Dimensionality Reduction, which is able to

100

reduce the number of dimensions while keeping the precision high, and able to effec-

tively handle large datasets and dynamic insertions. We used an extended iDistance

to index the data points in different reduced subspaces. We conducted extensive ex-

perimental studies using both real and synthetic datasets to compare the algorithm

with existing approaches. The results show that the proposed technique, as a whole,

is very effective and efficient in supporting KNN search in very high-dimensional

space. Furthermore, it is scalable for very large databases and able to hand dynamic

insertions adaptively.

Chapter 5

Indexing Hyper-dimensional Image
Feature

5.1 Introduction

An image feature, like texture, can contain hundreds or even thousands of dimen-

sions. Such hyper-dimensional databases pose significant problems to existing high-

dimensional indexing techniques which have been developed for indexing databases

with (commonly) less than a hundred dimensions.

The problem of indexing and searching in a hyper-dimensional database is a chal-

lenging one, due to three main reasons:

• First, according to several studies (e.g., [9]), the expected minimal distance

between any two points in a hyper-dimensional space is very large (becoming

larger with increasing dimensionality) while the difference between the minimal

and maximal distance to a point is expected to be small (becoming smaller with

increasing dimensionality). These two characteristics of a hyper-dimensional

space mean that the search radius for a k-nearest neighbor query is expected to

be large. This in turn results in a large number of “false positives” since most

points are expected to have almost equal distance to the query point. This

101

102

phenomenon leads to significant deterioration of the query performance in most

existing indexing methods.

• Second, due to the extremely high dimensionality, the fanout for most indexes

built on a hyper-dimensional space is typically very small, resulting in an in-

crease in the height of the indexes (e.g., in a 200 dimensional space, we can’t

expect more that ten entries in an 8K page if 4 bytes are needed for each di-

mension).

• Finally, the computation of the distance (e.g., Euclidean distance) between

two points in a hyper-dimensional space, becomes processor intensive as the

dimensionality increases. This implies that the processor time is expected to

become a significant portion of the overall query response time for a hyper-

dimensional database. Proposed techniques for optimizing the performance of

most indexing techniques do not take this into consideration.

In this chapter, we propose an effective methodology called Local Digital Coding

(LDC) for finding KNN in a hyper-dimensional space. LDC is developed to address

the problems mentioned above and provide a substantial reduction on both I/O and

processor time when searching on hyper-dimensional datasets consisting of hundreds

of dimensions. It is compatible with ubiquitous indices, such as B+-trees and thus

can be easily deployed.

Given a cluster of points in a high-dimensional data space, LDC transforms each

point into a bitmap which we refer to as the point’s Digital Code (DC). Each di-

mension of the point is represented by a single bit in its DC. The DC of a point

is generated by comparing the coordinates of the point with the coordinates of the

cluster center the point belongs to. A bit is set to 1, if the value of the dimension it

corresponds to, is larger than the value of the corresponding dimension of the cluster

103

center, and 0 otherwise.

Since there is a bit in the DC for each dimension, indexing a D-dimensional

space will result in DCs with D bits. The data points in a cluster can thus be

separated into 2D partitions with points in each partition sharing the same DC. Based

on LDC, we propose a novel searching algorithm, called Searching on-the-fly by

PArtial-distance (SPA). Given the DCs of both the query point and a partition,

SPA dynamically selects a subset from the DCs (say n bits) to perform matching.

A partition is pruned off if the number of matching bits in the two DCs is less than m

bits. The intuition behind such an approach is that the points in the pruned partition

are on different sides of some cutting planes with respect to the query point and thus

are too far away to be in the answer set. A summary of our contributions is as follows:

• We present LDC, an efficient methodology for indexing a hyper-dimensional

space. LDC has the following advantages over existing methods for handling

hyper-dimensional data:

– LDC is optimized to take both processor and I/O time into account. This is

important since processor time for comparing vectors becomes significant in

a hyper-dimensional space. Our work is the first to address this important

problem to the best of our knowledge.

– LDC’s method of spatial inference for pruning the search space is based on

cutting-planes instead of direct distance computation. Because of this, the

proposed algorithm, SPA, that performs KNN search, has significantly less

false “positives” compared to methods using direct distance computation.

– LDC adopts a bit representation instead of storing the actual dimensional

values, thus, its storage requirements are the smallest possible (without

considering the option of using compression methods) for representing the

104

location of any D-dimensional partition. This effectively reduces the num-

ber of I/Os that are required to search the index. While LDC exploits bit

representation, it is fundamentally different from the VA-file in three ways:

1) LDC uses one bit for each dimension, while the VA-file uses multiple

bits. 2) Pruning in LDC is achieved dynamically by selecting a subset of

DC for bitwise operation, while the VA-file involves full distance compu-

tation between approximation vectors. 3) LDC is adaptive to skewed data

distributions while the VA-file has been shown to be effective mainly for

uniform datasets [45].

• We identify the parameters that affect the performance of LDC and present the

results of a detailed analysis identifying how these parameters can be tuned for

certain objectives given a query point.

• We present the results of a detailed experimental evaluation of our methodol-

ogy supporting our claims that LDC is capable of handling hyper-dimensional

databases more efficiently, compared to other applicable methods.

The rest of this chapter is organized as follows. LDC is presented in Section 5.2.

In Section 5.3, the novel SPA algorithm is introduced. An extensive performance

study on our method is presented in Section 5.4. Finally, Section 5.5 summarizes this

chapter.

5.2 Local Digital Coding (LDC)

In this section, we start by presenting the LDC methodology. Since LDC can easily

co-exist with B+-tree indices, we refer to a B+-tree employing LDC as an LDC tree.

Then, we will discuss how to efficiently construct an LDC tree.

105

5.2.1 Structure of the LDC tree

 Key Key

...

...

...

Data PointsData PointsData Points

... ...

...

 Key

 DC... DC...

 Key

 DC DC

Figure 5.1: The overall structure of an LDC tree.

The structure of the LDC tree can be essentially separated into three levels. Fig-

ure 5.1 presents an example. The first level of the LDC tree is a B+-tree which is

formed by simply transforming each point in the hyper-dimensional space into a one-

dimensional value. Several methods can be utilized to perform this transformation;

we choose the method proposed in [62], due to its simplicity. In [62], the whole data

space is first grouped into clusters with each point in the data space belonging to one

of the clusters.

Assuming each cluster is assigned a unique ID, the one-dimensional value for a

data point P in cluster i is computed as:

key(P) = i ∗ c + d(P,Oi)

where Oi is the center of cluster i, c a constant and d(.) a distance function, assessing

the distance between two points in the hyper- dimensional space. The minimum and

maximum value of Key() among all points in a cluster, define a range of values,

which we refer to as the range of cluster i. Constant c, which we refer to as the

scaling constant is chosen as to increase the range of each cluster, so that the ranges

106

of different clusters are disjoint and can thus be distinguished easily. This way, the

range of each cluster i, is [i ∗ c, (i + 1) ∗ c]. An additional auxiliary array is used

to store the center and range for each cluster. Given a D-dimensional point P , the

cluster with center O, that P belongs to, can be determined by computing Key(P)

and checking membership of the value Key(P) in a cluster’s range.

The second level of the LDC tree is the Digital Code (DC) level. The basic idea

of a DC is to produce an effective single bit representation for each dimension of a

data point. Given a D-dimensional data space, we encode each data point into a

D-dimensional DC representation by applying the algorithm in Figure 5.2. Given a

D-dimensional point P and a cluster center O, initially, the DC is set to 0 (line 1).

For each dimension, if its value is equal or greater than the value of the corresponding

dimension of the cluster center, we set the corresponding bit of the DC representing

that dimension to 1 and 0 otherwise (lines 3 and 4).

The third level of the tree is the data level where the actual data points are stored.

Local Digital Coding Algorithm
LDC(P,O)
Input: P, O;
Output: DC;
1. unsigned int DC=0;
2. for i=0 to D-1
3. if (P[i] ≥ O[i])
4. DC | = 1 << i;
5. return DC;

Figure 5.2: Local Digital Coding Algorithm

5.2.2 Constructing the LDC Tree

The LDC tree is built in three steps. In the first step, the data space is partitioned

into clusters. A plethora of proposals exist for clustering high dimensional data sets

107

[24, 63]. For hyper-dimensional datasets, this process can be computationally expen-

sive even as a pre-processing step. A variety of approaches exist for clustering high

dimensional datasets approximately, trading accuracy for speed [10]; such techniques

can be readily utilized in our setting, significantly improving the performance of this

preprocessing step.

For simplicity we adopt the following approach for partitioning the data set into

clusters. We first select the edge points as done in [62] and then group the data

points into clusters by assigning them to the nearest edge point. While doing so, the

centroid of each cluster can be approximated. This is done by estimating the median

of the cluster on each dimension through the construction of a histogram along each

dimension. The centroid of each cluster is then used as the cluster center.

The Key() value for each point (relative to its cluster center) is then computed. A

single B+-tree index is then built on these values. The second step links each distance

value in the leaf nodes of the B+-tree to the corresponding point’s DC representation

in order. This way the DC level of LDC is populated. Pages containing DC’s are

sequentially stored so that a sequential scan on DCs can be performed.

Finally, the third step links each DC to the corresponding data point in order.

This way, for each point in the data space its corresponding DC value is under its

corresponding Key() value in the leaf nodes of the B+-tree, and above the actual

coordinates of the point.

Dynamic maintenance operations arising from insertions/deletions on an LDC

Tree can be easily performed. When a new point is added in the dataset, its cluster

membership is first determined by identifying the nearest cluster center. Then its one-

dimensional distance and DC representation is computed, followed by the standard

insertion operation in B+-trees. Correspondingly, the point’s linked DC and data are

inserted into the correct position in the DC level and data level of the tree respectively.

108

Notation Description
Q,P, O Query, data point, cluster center
Q[i], P [i], O[i] The ith dimension value for Q,P ,O
DCQ, DCP The DC for Q and P

DCQ[i], DCP [i] The corresponding bit for the ith dimension in the DC of Q and P

rank A dimension ranking array
rank[i] The ith element of the dimension ranking array
D Dimensionality of the database
DIM The set of dimensions for the database, |DIM | = D

DIM ′ A proper subset of DIM

s, t Number of dimensions
m Pruning length
n Candidate pruning length
pd Partial distance
Θ Threshold for search space or n

m

Φ Maximal number of candidates allowed

Table 5.1: A Table of Notations in Chapter 5

Deletion operations are quite similar. After the point’s one-dimensional distance value

is computed, the standard deletion operation in a B+-tree is then performed, followed

by removing the corresponding linked DC and data point.

5.3 KNN Query Processing

We now turn our attention on hyper-dimensional searching and show how a K-Nearest

Neighbor (KNN) search can be effectively performed on the LDC tree. Without

loss of generality and to simplify our presentation we will assume that the distance

function adopted in the search is the Euclidean distance. Thus, in the remainder

of this chapter d(.) refers to the Euclidean distance between a pair of points. We

summarize the notation used in Table 5.1 for quick reference. We first present the

theoretical foundation of our algorithm.

109

5.3.1 Partial Distance

We begin by formally defining partial distance:

Definition 5.3.1 (Partial Distance pd(Q,P,DIM ′)). Let Q and P be two points in a

D-dimensional space and let Q[i], P [i] denote the values of dimension i in Q and P

respectively. We denote the set of D dimensions as DIM . Given DIM ′ ⊂ DIM , the

partial distance between Q and P is defined as

pd(Q,P,DIM ′) =

√ ∑

i∈DIM ′
(Q[i]− P [i])2

2

Thus, the partial distance between two D-dimensional points P and Q is in fact

the Euclidean distance computed on a subset of the D dimensions. In what follows,

when the parameters of partial distance are clearly implied by the context, we will

denote partial distance simply using pd. We thus have the following corollary:

Corollary 5.3.1. Let d(Q, P) denote the Euclidean distance between Q and P , then

pd(Q,P, DIM ′) ≤ d(Q, P). 2

Next, we derive a lower bound on the distance of a query point Q and a data

point P , from their corresponding DC representations:

Theorem 5.3.1. Let Q be a query point and P be a data point. We use DCQ and

DCP to denote the DCs that are computed with respect to a cluster center O. In

addition, we use DCQ[i] and DCP [i] to denote the corresponding bit in dimension i in

both DCs. Let DIM ′ be a set of dimensions such that ∀i ∈ DIM ′, DCQ[i] 6= DCP [i],

then

d(P,Q) ≥
√ ∑

i∈DIM ′
(Q[i]−O[i])2

110

Proof:

Since DCQ and DCP differ on the ith bit, this implies that Q and P are located

on different sides of a plane that is parallel to the ith dimension and passes through

O. We can thus infer that |Q[i] − O[i]| ≤ |Q[i] − P [i]| for all i ∈ DIM ′. Thus, we

conclude that

√ ∑

i∈DIM ′
(Q[i]−O[i])2 ≤ pd(Q,P, DIM ′)

Corollary 5.3.1 completes the proof.

2

We now provide an upper bound on the number of mismatches that can

occur between DCQ and DCP (computed with respect to O) if the distance between

Q and P is less than a pruning distance - pd. To do so, we first introduce the notion

of a dimension ranking array.

Definition 5.3.2 (Dimension Ranking Array). Let Q be a query point and O be a

cluster center. The dimension ranking array for Q and O is an array, rank, of D

positions such that:

1. Each dimension in the data space is uniquely represented by one element rank[i]

in the array.

2. (Q[rank[0]]−O[rank[0]]) ≥ Q[rank[1]]−O[rank[1]]) ≥ ≥ Q[rank[D−1]]−
O[rank[D − 1]])

2

Thus, each element rank[i] in the dimension ranking array for O and Q is the

dimension in which |Q[rank[i]]−O[rank[i]]| is the ith largest among all the D dimen-

sions.

111

Theorem 5.3.2. Let DCQ and DCP be the DCs of two D-dimensional points which

are computed with respect to a cluster center O. Let rank be the dimension ranking

array for Q and O. Given a pruning distance pd, we use s to denote the largest

number such that
√√√√

D-1∑
i=D-s

(Q[rank[i]]−O[rank[i]])2 ≤ pd

If d(P, Q) ≤ pd, then the number of bit mismatches between DCQ and DCP cannot

be more than s.

Proof:

Assume DCQ and DCP have t mismatches, t ≥ s and let DIM ′ represent the set

of dimensions in which the t mismatches between DCQ and DCP occurred. According

to Theorem 5.3.1,

d(P,Q) ≥
√ ∑

i∈DIM ′
(Q[i]−O[i])2

To minimize the R.H.S of the inequality, we should pick DIM ′ to be the set of t

dimensions in which |Q[i]− O[i]| are the smallest i.e. the dimensions represented by

rank[D − t] to rank[D − 1]. Since s is the largest value such that
√√√√

D−1∑
i=D−s

(Q[rank[i]]−O[rank[i]])2 ≤ pd

and t > s, we can thus conclude that
√√√√

D−1∑
i=D−t

(Q[rank[i]]−O[rank[i]])2 > pd

By combining the inequalities, we will have d(P, Q) > pd. 2

Figure 5.3 illustrates the relationship between D, s and t on the ranking array.

Notice that given a pruning distance pd, Theorem 5.3.2 enables pruning of candidate

112

data points. Given a query Q, a cluster center O and a pruning distance pd, one can

derive the suitable value of s according to Theorem 4.2 and all DCs, with more than

s mismatches to the query DC, can be pruned away. Such a strategy for pruning has

two main drawbacks: (a) it involves performing bitwise operations on vectors of D

bits, for a possibly very large D and (b) it provides no way to control the amount of

actual pruning performed.

To overcome these drawbacks, we will compare the DCs on only those bits that

correspond to the top (largest) n dimensions in the dimension ranking array. Com-

paring on only n < D dimensions effectively reduces the number of bits examined,

offering additional savings in processor time. Assuming n is sufficiently large, we can

still determine a value m based on Theorem 5.3.2, such that having more than m

mismatches among the n bits will mean that d(P, Q) > pd. Comparing on the n

largest dimensions, for a specific value of pd, assures that n is as small as possible.

Moreover, as we will see, it enables a flexible strategy that allows the user to control

the amount of pruning performed.

We note that selecting a good value for n can be difficult. A large value of n

will not bring substantial savings in processor time. Even more importantly, a small

value of n could result in a low probability of pruning off candidate data points. For

example, in the extreme case where n = 1 and m = 0, only 1 bit of the DCs is

compared and there is only a 50% chance of pruning off a candidate DC if we assume

a uniform distribution of the data points. In the next section, we will illustrate the

relationship between the probability of pruning a partition and the selection of n and

m.

113

rank[0]

rank[1]

rank[2]

rank[D-1]

rank[D-2]

m

t

s

D

n

Figure 5.3: Dimensions Ranking Array.

5.3.2 Selecting the values m and n

In our analysis on the relationship between n and m, we shall assume that data are

uniformly distributed in the hyper-dimensional space.

Lemma 5.3.1. A D-dimensional DC representation divides the portion of the hyper-

dimensional space spanned by the points belonging to a cluster into 2D partitions.

Proof: Since the ith bit of a DC represents the two sides of a plane that is orthogonal

to the ith dimension and passes through a cluster center O, having D bits indicates

that there are D orthogonal planes passing through O. Each of these mutually inde-

pendent planes divides the original data space into half which gives us 2D partitions.

2

Figure 5.4 shows an example in 2-dimensional space. It is evident that the cluster

space is divided into four partitions by two orthogonal planes. The partitions are

114

O1

11

 00

01

10

Q1
r

 DC for Q1 is 11

x

y

 dy

 dx

max

Figure 5.4: Searching space in a 2-d space

identified by their DCs as 11, 10, 01, and 00 respectively.

Lemma 5.3.2. Let DCQ be a query DC and DIM ′ be a subset of any n dimensions.

If comparisons are made only on the n bits of the DCs that correspond to DIM ′,

then the average number of partitions which share exactly m common bits with DCQ

is

n

m

 ∗ 2(D−n)

Proof: We first notice that each axis-aligned hyperplane, in expectation, will parti-

tion the points in the cluster into half. Hence, each bit in a data point’s DC has equal

probability of matching or not matching the corresponding bit of DCQ. The probabil-

ity that a DC has exactly m common bits with DCQ is thus

n

m

∗(1

2
)m∗(1

2
)n−m =

n

m

 ∗ 1

2n . Since we consider only n bits, there will be 2n different combinations

115

of the n bits. The number of DCs associated with each of these combination will

be 2(D−n). Thus, the average number of DCs with exactly m common bits with the

query DC is

n

m

 ∗ 1

2n ∗ 2n ∗ 2(D−n) =

n

m

 ∗ 2(D−n). 2

From Lemma 5.3.2, the have the following corollary:

Corollary 5.3.2. When comparing with a query DC on a subset of n bits, the average

number of DCs which have no more than m mismatches with the query DC is:

n∑

k=n-m

n

k

 ∗ 2(D−n)

or equivalently

m∑

k=0

n

k

 ∗ 2(D−n)

The next theorem provides an estimate on the average percentage of partitions

that are accessed when pruning is performed based on a subset of n bits from the

query DC.

Theorem 5.3.3. If a bitmap of length n, extracted from the query DC, is compared

with the partitions of a cluster and partitions are pruned if there are more than m

mismatches between the query and partition DCs, then the percentage of partitions

that are searched is:

Prob(n,m) =

m∑
k=0

n

k

2n

Proof: From Corollary 5.3.2, the number of partition DCs having no more than m

mismatches with the query DC has an expected value of
m∑

k=0

n

k

 ∗ 2(D−n). Since

116

the total number of partitions is 2D, the percentage of partitions being searched will

be: Prob(n,m) =
m∑

k=0

n

k

 ∗ 2(D−n)/2D =

mP
k=0

0BBBB@ n

k

1CCCCA
2n . 2

The expression for Prob(n,m) indicates that increasing n or reducing m results

in a reduction of the search space. Hence by adjusting the values of n and m, we

can control the number of candidates. We refer to such a value of m as the pruning

length and n as the candidate pruning length.

The ideal case in a KNN search is to maximize pd and minimize Prob(n,m).

When pd is larger, the KNN can be discovered earlier, since a larger pruning distance

will return more neighbors (hopefully K). However, when Prob(n,m) is too small (a

small m and a large n will result in a very small partial distance), a small fraction of

a cluster is searched and thus, too few candidates are returned. In this case, there is

a danger to filter out the KNN and further search has to be performed. So there is a

trade-off between Prob(n,m) and pd.

From Theorem 5.3.2, given specific values for n and pd, we derive that m is the

largest number such that√√√√
n−1∑

i=n−m

(Q[rank[i]]−O[rank[i]])2 ≤ pd

The above formula indicates the relationship among n, m and pd. Given m and

pd, the n will be the largest number (to minimize Prob(n,m)) which satisfies the

following partial distance constraint:
√√√√

n−1∑
i=n−m

(Q[rank[i]]−O[rank[i]])2 ≥ pd

We refer to this formula as the partial distance constraint. Theorems 5.3.2, 5.3.3,

and the partial distance constraint pave the way for the search by partial distance

algorithm - SPA.

117

5.3.3 The KNN Search Algorithm

Having established the relationship among m, n, and the partial distance, we are now

ready to present the KNN search algorithm.

KNN Algorithm in LDC
Input: Q - Query point
Output: knn[] - k-nearest neighbors to Q
Variables:

O[N]: Array of N cluster centers
rank[][]: Rank array for each cluster center
QDC[][] : Query DC for each cluster center
∆r : Step for adjusting search radius r
∆Θ : Step for adjusting search space

1. for i=0 to N-1
2. rank[i] ← rank dimension(Q,O[i]);
3. QDC[i] ← LDC(Q,O[i]);
4. set r, Θ, Φ;
5. do //start searching
6. candidates[] ← SPA(Q,QDC[],rank[],r,O[],Θ,pre r,pre pd[]);
7. if candidates.size > Φ
8. Θ = Θ - ∆Θ;
9. continue;
10. if candidates.size < K
11. Θ = Θ + ∆Θ;
12. continue;
13. knn[] ← compute distance(candidates[],Q);
14. r = r + ∆r;
15. until the Kth-NN is found

Figure 5.5: Main KNN Search Algorithm in LDC

Figure 5.5 shows the main routine for the KNN search in the LDC tree, given

the query point Q. At the start of the search, the dimension ranking array is first

filled based on relative position of the query point to the cluster centers in O (line 2).

Relative to each cluster center, a DC for the query point can be computed based on

the LDC algorithm in Figure 5.2 (line 3).

The search process is iterative in nature. It consists of incrementally adjusting the

118

search radius (by ∆r), until all the KNNs are discovered (line 5-15). The incremental

search process is controlled by three parameters, r the search radius, Θ, the desired

maximal fraction of space to search and Φ, the desired maximal number of candidates.

The initial values of these parameters are set in line 4.

Conventionally, we determine the initial value of r by the difference between the

index key of the query point and index key of its nearest point in the same leaf node,

where the query point possibly resides. The parameter, Θ, indicates the desired

maximal fraction of space to be searched within the whole data space. It will be

adjusted to control the number of candidates being considered as searching process

goes on. Its initial value can be estimated based on sampling or from past historical

records. While such an approach will work for uniformly distributed data, things are

less straightforward if the data distribution varies in different part of the data space.

In such situation, the number of candidates cannot be accurately estimated based

on Θ. Hence having the same Θ value may correspond to largely different number

of candidates for different queries. To ensure retrieval efficiency, small numbers of

candidates are always desired. Φ, the desired maximum number of candidates, is

used to adjust Θ to avoid overflow by candidates. We defer the discussion on ∆r and

Φ to Section 5.3.5.

The SPA method (line 6), utilizes partial distances to rapidly prune the candidates

to a very small set by searching on-the-fly, employing Prob(n,m). In particular, the

threshold Θ and the search radius r are used to compute the suitable pair of (n,m) such

that the number of candidates being considered is less than the desired fraction Θ of

the points in the database. The parameter pre r is used to detect if the search radius

has been increased from previous SPA call. And the parameter pre pd[] remembers

the previous pruning distances to avoid the same computation as previous SPA call

did. Both are initialized to 0 before the search starts.

119

In the KNN algorithm, the parameter, Θ can be adjusted (line 7-12) if the number

of candidates returned by SPA is larger than Φ. By reducing Θ, fewer candidates will

be produced in the next round of search (line 8). On the other hand, if the number

of candidates is smaller than K, Θ will be increased to include more candidates (line

11). ∆Θ can be set based on the volume of candidates returned from SPA. Higher

volume corresponds to a larger ∆Θ, and vice versa.

If the Kth-NN’s distance is equal to or smaller than the min(pre pd[i]), all KNNs

are found (line 15). Notice that the minimal value among all pre pd[i], instead of r,

is the final pruning distance.

Now we proceed to the core of the search algorithm - the Search on-the-fly by

PArtial-distance (SPA) algorithm. SPA consists of three steps: allocate the DCs,

generate suitable values of m and n, and prune data by DC comparison. Figure 5.6

describes the algorithm.

Given a search radius r and a query Q, SPA first checks if the searching space

intersects with a cluster range. For each cluster center i, O[i].min and O[i].max

indicate the min and max values in the cluster range. If they intersect, SPA allocates

two key values nearest to the values of max(i ∗ c − dist − r, i ∗ c + O[i].min) and

min(i ∗ c + dist + r, i ∗ c + O[i].max) respectively in the cluster space (line 6-7),

followed by allocating their corresponding DCs (line 8-9). Since all DCs at the DC

level of the LDC tree are linked to each other, DCs within a range can be sequentially

scanned and retrieved for DC comparison thus avoiding random I/O access.

Next, SPA aims to identify the pair (n, m) such that Prob(n,m) satisfies the de-

sired fraction of space to search - Θ (line 10-16). Given a pd value which is initialized

to be r, the method generate pruning length tests values of m from 1 to D and gen-

erate the corresponding n by enforcing the partial distance constraint. The (n,m) pair

which minimized Prob(n,m) can be computed this way. If the minimum Prob(n, m)

120

SPA Algorithm
Input: Q, QDC[], rank[], r, O[], Θ, pre r, pre pd[];
Output: candidates[];
1. for i=0 to N-1
2. dist = compute distance(O[i], Q);
3. if O[i].min > dist+r and O[i].max+r < dist
4. continue;
5. // allocate the starting and ending DCs
6. l leaf ← alloc leaf(btree,max(i*c-dist-r,i*c+O[i].min));
7. r leaf ← alloc leaf(btree,min(i*c+dist+r,i*c+O[i].max));
8. l DC ← alloc DC(l leaf);
9. r DC ← alloc DC(r leaf);
10. // generate m and n given a pd as pruning distance
11. pd = r;
12. do
13. generate pruning length(n,m,pd,Q,rank[i],O[i]);
14. pd = pd - ∆r;
15. while Prob(n,m) ≥ Θ & (r=pre r || pd > pre pd[i])
16. pre r = r; pre pd[i] = pd + ∆r;
17. // pruning on-the-fly
18. for each DC from l DC to r DC
19. num diff bit=0;
20. for j=0 to n-1
21. if DC[rank[i][j]] & 1 6= QDC[i][rank[i][j]] & 1
22. num diff bit++;
23. if num diff bit < m
24. add DC to candidates[];
25. return candidates[];

Figure 5.6: SPA Algorithm

121

is still too large, pd will adjusted to a smaller value so that a new (n,m) pair (and

corresponding a new minimum Prob(n,m)) is generated.

After finalizing the pair (n,m), further processing takes place by application of

Theorem 5.3.2 (line 17-24). Any DC with m or more different bits from the query DC

is safely pruned. At this step, the DC comparison involves only bitwise operations

on n bits (instead of D) making it CPU efficient.

Consider Figure 5.4 again. A cluster space is divided into four partitions by the

cluster center. Given a search radius r, pd is first initialized to r. Since pd < dy

and pd < dx, the best (n,m) pair is identified as (2,1). Thus, any point in the space

having a DC with 1 or more mismatches can be pruned. The query DC is encoded as

11, thus the partitions identified by DCs of 10, 01, and 00 can be safely pruned. The

final searching space is the light shaded area in the partition identified with a DC of

11. We shall use another example to illustrate the concept of SPA.

Example 5.3.1. An Example on SPA: For illustration purposes, we assume the L1

norm (instead of L2) as the metric function. Consider a 2NN query with query point

Q=(0.9, 0.1, 0.55, 0.7, 0.35) and a cluster center O=(0.5, 0.6, 0.5, 0.5, 0.5). The

respective DC, the indexing key and rank array for Q are depicted in Table 5.2, and

a cluster of data points is shown in Table 5.3. It can be derived manually that the

2NNs are P3 and P5 with distance 0.4 and 0.42 respectively.

Our main KNN algorithm initializes the search radius r = 1.0, Θ = 0.4 and Φ = 3.

We set ∆r to 0.5. SPA first allocates the left node by a point search on the B+-tree on

key value = max(dist(Q,O)-r,O.min)=1.05. Similarly, the right node is allocated by

point search on key value = min(dist(Q,O)+r,O.max)=2.3. Obviously, all the DCs,

except P9’s, will be scanned for DC comparison.

Next, SPA generates a pair (n,m) which minimizes Prob(n, m), given the value

122

Q (0.9, 0.1, 0.55, 0.7, 0.35)
|Q[i]−O[i]| (0.4,0.5,0.05,0.2,0.15)

key 1.3
DC 10110
rank [1,0,3,4,2]

Table 5.2: A query with its key, DC and rank.

of pd. When pd=1.0 and under the partial distance constraint of

n−1∑
i=n−m

(|Q[rank[i]]−O[rank[i]]|) ≥ pd

the pair (5,4) will minimize Prob(n, m). However, since Prob(n,m) is still higher

than Θ, the value of pd will be reduced by ∆r to have a value of 0.5. With this new

value of pd, SPA will minimize Prob(n,m) to a value of 5
24 =0.31 by setting (n,m) to

(4,2).

In the final step, since (n,m) is set to (4,2), the candidates with 2 or more different

bits in the 4 most distinguishable dimensions (from the rank array, we can see that

they are dimension 1,0,3 and 4) will be pruned. In this example, only P3 and P5 will

remain. Since the number of candidates is less than Φ and equal to K, only data

points P3 and P5 are accessed.

After computing the distance on the full dimension, the distance to the second

nearest neighbor is 0.42, which is less than pd=0.5 (notice that current r is 1.0), and

the search stops.

5.3.4 Optimizing the Generation of (n,m)

There are three main cost terms comprising the overall cost of SPA. First, it is the

point search in the LDC tree. Since a point search in a B+-tree is extremely fast,

this part can almost be neglected. Second, it is the cost of generating the pair (n,m).

And third, it is the cost of comparing DCs using bitwise operations.

123

P Data key DC

P1 (0.1,0.9,0.3,0.55,0.0) 1.45 01010
P2 (0.35,0.2,0.95,0.8,0.9) 1.7 00111
P3 (0.85,0.15,0.6,0.65,0.45) 1.1 10110
P4 (0.2,0.8,0.65,0.95,0.4) 1.2 01110
P5 (0.92,0.15,0.4,0.6,0.25) 1.32 10010
P6 (0.65,0.8,0.1,0.4,0.3) 1.05 11000
P7 (0.15,0.9,0.3,0.1,0.7) 1.45 01001
P8 (0.4,0.1,0.25,0.7,0.75) 1.3 00011
P9 (1.0,0,0.99,0.05,0.95) 2.49 11011

Table 5.3: A cluster of data points with keys and DCs.

It is evident that for large values of n and m, computing Prob(n,m), becomes

prohibitively expensive. The following theorem alleviates this complication:

Theorem 5.3.4. As the value of n
m

increases, Prob(n,m) decreases if n>2m.

Theorem 5.3.4 states that as n
m
↑ (increases), Prob(n,m) ↓ (decreases). Hence,

the problem of identifying the (n,m) pair that minimizes Prob(n,m) becomes equiv-

alent to the problem of identifying the (n,m) pair with the maximal n
m

value. This

observation leads to a much more efficient procedure for setting the parameters (n,m).

The meaning of the Θ threshold has to be refined however, as it becomes a thresh-

old for the value n
m

. By doing so, the computational cost reduces to computing n

given m and the partial distance constraint. Furthermore, the range of m values

to be tested (identifying n given a pd value, such that n
m

> Θ) can be less than

D
Θ

and greater than the value of m, such that (assuming the L1 distance is used)
m−1∑
i=0

(Q[rank[i]]−O[rank[i]]) > pd.

Let us revisit Example 5.3.1. We use n
m

rather than Prob(n,m) and set Θ to be 2.

Given pd=1.0, we find that m should be larger than 3. Since the dimensionality is 5,

m should be less than 5
2
. Thus no suitable m can be produced. In the next iteration,

a value pd = 0.5 is used. In this iteration, we conclude that m should be larger than

1. Thus, only m=2 is tested and n=4 is generated. Since 4
2

=2 which is equal to Θ,

124

the pruning length and candidate pruning length are generated. From this example,

we can see that n
m

and Prob(n, m) have the same capability to control the number of

candidates. However, by using n
m

, the computational cost is very little. In the rest of

paper, Θ refers to the threshold value of n
m

.

5.3.5 A Cost Model

The I/O cost of SPA can be calculated as:

IOtotal = IOB+ + IODC + IOcandidate ≈ IODC + IOcandidate

where IOB+ is the number of pages required for point search on a B+-tree, IODC

is the number of pages required for sequential scan at the DC level, and IOcandidate

is the number of pages required to access the candidate data points. IOB+ is very

small and can be neglected, as B+-trees have guaranteed logarithmic access cost.

An index technique has to be more efficient than sequential scan to be effective. A

sequential I/O is usually a factor of 10 times faster then random access. Hence one of

the important factors affecting the I/O cost is the number of candidates for random

access. Next, we derive the proper value for Φ (the maximal number of candidates

allowed for random access to ensure the efficiency of the indexing structure) for LDC

tree. In the LDC tree, the size of DC level is only 1
32

(assuming 32-bit precision) of

data level. The KNN in the LDC tree is iterative and parts of DC level are scanned

in each iteration. In the worst case, the whole DC level is scanned (only when the

whole space is searched). Notice that each candidate is accessed only once. To ensure

SPA is more efficient than sequential scan, the following relationship has to be true

assuming that a sequential I/O is 10 times faster than random I/O:

Φ ∗ 10 + α ∗ Pagescan

32
≤ Pagescan

125

where α represents the number of iterations for a query to finish its KNN search

and Pagescan represents the total number of pages for the whole data set. Following

the above formula, we have:

Φ ≤ (32− α)

320
∗ Pagescan

From the above formula, we can see that in the best case when only one iteration is

processed, Φ can reach nearly 10% of the data size. Generally speaking, running tens

of iterations for KNN is not desirable. Setting ∆r based on the difference between

the cluster’s minimal and maximal radii can prevent the number of iterations to be

large. Even when α reaches 10 or more, let’s say 16, Φ can still be as large as 5% of

the data size. The above formula assumes that the whole DC level is scanned in each

iteration. In a real situation, only part of the DC level is scanned. Hence Φ can be

set to even a larger value.

The processor cost of SPA can be calculated as:

CPUtotal = CPUn,m + CPUDC + CPUcandidate ≈ CPUDC + CPUcandidate

where CPUn,m is the computational cost to generate the (n,m) pair, CPUDC is

the cost to compare DCs by performing bit operations, and CPUcandidate is the cost to

compute the distance on the complete set of dimensions on the candidate data points.

Using the optimization of Section 5.3.4, the cost of CPUn,m becomes negligible.

5.4 Performance Study

Otherwise stated, all experiments were performed on a Sun UtraSparc II 450Mhz (2

CPU), with 4G memory. We used a page size of 4K (different page size may have

different effect on the results. However it is not our focus here). Unless otherwise

126

stated, all results reported are averages over 100 queries, for 10NN. We adopted the

L2 norm for indexing and searching. Our experiments were conducted using the

following data sets:

1. Real datasets: We created one data set extracted from 73,715 WWW images

randomly crawled from over 40,000 web sites by ICICLE system. It consists of

159-dimensional color histograms extracted from these images.

2. Synthetic datasets: We have created several uniformly distributed datasets

in order to be able to effectively vary the dimensionality. The first four sets of

100K points each are in 128-, 216-, 512-, and 1024-dimensional space. We used

three additional datasets consisting of 50K, 100K, and 200K 1024-dimensional

data points to evaluate the effect of increasing data size on SPA. Note that a

1024-dimensional data point spans the 4K page boundary and hence a random

access of each point involves reading two pages. The last two sets we used,

consist of 100,000, 512-dimensional data points constructed by generating each

coordinate independently using a Zipfian distribution, with skew parameters

0.7 and 1.0 respectively.

The most popular techniques in the literature, suitable for indexing spaces of high

dimensionality are the VA-file[59] and the IQ-tree[6]. Each dimension in the VA-file

is uniformly represented by 5 bits. We also tested the effectiveness of iDistance [61].

Our experiments indicated that the IQ-tree structure does not scale gracefully to very

large dimensionality. Figure 5.7 presents the results of an experiment showing SPA’s,

VA-file’s, IQ-tree’s and iDistance’s total response time as the dimensionality of the

underlying uniform data space increases 1. Among all methods, SPA performs best.

1This experiment was conducted under windows XP with a Pentium III processor (600Mhz) and
128RAM.

127

It is evident that the total response time for IQ-tree increases nearly exponen-

tially with respect to the dimensionality. This phenomenon is pronounced when the

dimensionality reaches hundreds or higher. The total response time for the IQ-tree

is two times that of sequential scan in a 256-dimensional space. The main reason

for IQ-tree’s behavior, in our opinion, is the use of Minimum Bounding Rectangles

(MBRs). In very high dimensionality, there are three main drawbacks associated with

MBRs: First, the distance between each MBR and random query points becomes ex-

tremely small. Most MBRs intersect with the searching spheres defined by queries,

which leads to accessing most of the points in the underlying space. Second, the

distance computation between an MBR and a query is expensive in a data space of

very high dimensionality. Third, the representation of each MBR is too large. Given

a D-dimensional space, representing MBRs in this space requires 2D-dimensional vec-

tors. For a 512-dimensional space given a page size of 4K, the size of each MBR is

exactly the page size (assuming 4 byte coordinates).

0

2

4

6

8

10

64 128 192 256

T
ot

al
 R

es
po

ns
e

T
im

e

Dimensionality

SPA
VA-file
IQ-tree

iDistance
Seq scan on 256-d

Figure 5.7: Effect of dimensionality on total response time.

128

For iDistance, its performance degrades with the increase in dimensionality and is

slightly worse than sequential scan in a 256-dimensional space. The reason is obvious.

As the dimensionality increases, the transformation from full dimensionality to one

dimensional distance value causes more information loss. Thus the ability to prune

the search space is degraded. Clearly, more candidates will be included for random

access as the dimensionality increases.

The performance of the VA-file structure, which is better than the IQ tree and

iDistance, is known to be linear to the dimensionality and better than sequential scan

if the dataset is uniformly distributed. Thus, we adopt the VA-file as a basis for our

comparison.

5.4.1 Effect of Θ

In SPA, the Θ (or the threshold value for n
m

) affects the number of candidate accesses

at the data level of the LDC tree. When the dimensionality is up to hundreds, the

search radius r needs to be set very large which eventually requires a sequential scan

of a large portion of the DC level of the LDC tree.

SPA can automatically drive the ratio n
m

to approach Θ by adjusting the value of

pd. In the following experiment we investigate the effect that different (n,m) pairs

have on the total number of disk accesses, given a specific value of pd qualified to

return the correct 10NN. When the (n,m) pair, maximizes the ratio n
m

, the best

performance is achieved. Here we use an 100K uniform dataset of dimensionality

128. Figure 5.8 shows the effect of n
m

on page IO. As expected, when n
m
↑, the I/O

cost drops. When n
m

reaches its maximum value, the I/O cost is minimal. Clearly,

the larger the Θ is, the less the I/O cost becomes.

129

0

2000

4000

6000

8000

10000

12000

14000

2.2 2.4 2.6 2.8 3 3.2 3.4

N
um

be
r

of
 P

ag
e

A
cc

es
s

n/m

Figure 5.8: Effect of n
m

on I/O.

5.4.2 Effect of Φ

One interesting thing about SPA is that it can control the number of candidates

to be less than Φ by adjusting Θ. Hence it is necessary to know the relationship

between the retrieval precision for KNN search and the number of candidates. Next,

we investigate such a relationship in SPA by testing uniform datasets with 100,000

points and the real dataset. Figure 5.9 shows the precision for uniform datasets as

the number of candidates increases for different dimensionalities. We can see that the

precision is not sensitive to the dimensionality. For all dimensionalities, the precision

reaches nearly 100% after the number of candidates is above 3000, which is around 3%

of the data size. Hence 3% of data size might be a good choice for the value of Φ for

uniform datasets. Figure 5.10 shows the precision for the real dataset as the number

of candidates increases. As we can see, the precision grows up to almost 100% after

the number of candidates is more than 400, which is less than 0.6% of the data size.

Comparing with 3% of the data size for uniform datasets, the color histogram dataset

requires a much smaller number of candidates relatively to the data size. This is due

130

to the skewness of the color histogram dataset.

0

20

40

60

80

100

0 1000 2000 3000 4000 5000 6000

%
 P

re
ci

si
on

Number of candidate

128-d
256-d
512-d

1024-d

Figure 5.9: Effect of number of candidates on precision for uniform datasets.

5.4.3 Effect of Data Size

We now investigate the effect of data size on both I/O and processor cost. In this

experiment, we tested a 1024-dimensional uniform dataset varying its size from 50K

to 200K, and an 159-dimensional color histogram, varying its size from 10K to 70K.

Figure 5.11 shows the improvement achieved by SPA over the VA-file. Both the

I/O and processor cost of VA-file increase faster than that of SPA, as the data size

increases. It is evident that SPA offers an improvement over the IO and processor cost

of VA-file, by nearly four times. Sequential scan on processor cost is not presented as

its cost is too large to fit in the figure. This is also applied to the following figures.

The I/O cost of SPA mainly consists of two parts: sequential scan on part of the

DCs and access to the candidate data points. The I/O cost of the VA-file consists

of sequential scan on the VA-file and access to the candidate data points. The DC

level of the LDC tree is just 1
5

of the size of VA-file. Although the KNN search in

131

0

20

40

60

80

100

0 200 400 600 800 1000

%
 P

re
ci

si
on

Number of candidate

159-d Color histogram

Figure 5.10: Effect of number of candidates on precision for real dataset.

the LDC tree is iterative (i.e., DC level may be scanned more than one time), it can

outperform the VA-file since SPA controls the number of candidates.

The main processor cost for SPA is the DC comparison, where only bit operations

are involved. However, in the VA-file, there is a distance computation for every VA.

In a very high dimensional space, the full dimensional distance computation is too

expensive. Figure 5.11b presents an experiment that verifies this statement. In this

figure the processor cost for the VA-file reaches 7 seconds.

Figure 5.12 presents the results on the 159-dimensional color histogram dataset.

In terms of the total I/O cost (Figure 5.12a), the VA-file performs close to a sequential

scan. In contrast, SPA only requires a small number of I/Os. In this experiment, SPA

improves the I/O cost over the VA-file by more than an order of magnitude. Notice

that the color histogram is a skewed dataset (few dimensions have large values, many

have 0 or close to 0 values). Comparing with Figure 5.11a which presents the results

of the same experiment on a uniform dataset, we observe that SPA performs even

better in skewed datasets while the performance of VA-file is much worse. Recall that

132

0

10000

20000

30000

40000

50000

60000

50 100 150 200

N
um

be
r o

f P
ag

e
A

cc
es

s

Size (K)

SPA
VA-file

Seq-scan

(a) Effect on I/O

0

1

2

3

4

5

6

7

8

50 100 150 200

C
PU

 C
os

t (
Se

co
nd

)

Size (K)

SPA
VA-file

(b) Effect on CPU

Figure 5.11: Effect of Data Size on Uniform Dataset.

0

3000

6000

9000

12000

10 20 30 40 50 60 70

N
um

be
r o

f P
ag

e
A

cc
es

s

Size (K)

SPA
VA-file

Seq-scan

(a) Effect on I/O

0

0.1

0.2

0.3

0.4

10 20 30 40 50 60 70

C
PU

 C
os

t (
Se

co
nd

)

Size (K)

SPA
VA-file

(b) Effect on CPU

Figure 5.12: Effect of Data Size on Color Histogram Dataset.

SPA ranks the dimensions with respect to local reference points (cluster centers) and

chooses the most distinguishable dimensions as the candidate pruning dimensions so

that a larger partial distance can be used. In color histograms, the most distinguish-

able dimensions are obviously those dimensions with large values. Hence, comparing

to uniform data, by keeping the ratio n
m

large, a smaller value of candidate pruning

length is used and a smaller number of candidate data points remain for full distance

comparison, In contrast to SPA, the VA-file includes most of the data points as can-

didates when it computes its lower and upper bounds for skewed data. Figure 5.12b

again shows the significant advantages in terms of processor time of SPA over the

VA-file.

133

0

5000

10000

15000

20000

25000

128 256 384 512 640 768 896 1024

N
um

be
r o

f P
ag

e
A

cc
es

s

Dimensionality

SPA
VA-file

Seq-scan

(a) Effect on I/O

0

1

2

3

4

128 256 384 512 640 768 896 1024

C
PU

 C
os

t (
Se

co
nd

)

Dimensionality

SPA
VA-file

(b) Effect on CPU

Figure 5.13: Effect of Dimensionality on Uniform Dataset.

0

10000

20000

30000

40000

50000

60000

0 0.5 1

N
um

be
r o

f P
ag

e
A

cc
es

s

Skewness

SPA
VA-file

Seq-scan

(a) Effect on I/O

0

1

2

3

0 0.5 1

C
PU

 C
os

t (
Se

co
nd

)

Skewness

SPA
VA-file

(b) Effect on CPU

Figure 5.14: Effect of Data Skewness.

Our experiments indicate that SPA attains superior performance on skewed data

sets, as shown by our experiments with image color histograms, in Figure 5.12.

5.4.4 Effect of Dimensionality

With this set of experiments we demonstrate the robustness of SPA as the dimension-

ality of the underlying data space increases. We use uniform datasets of size 100K

points, of dimensionality 128, 256, 512, and 1024 respectively. Figure 5.13a demon-

strates that SPA outperforms the VA-file more substantially as the dimensionality

increases. The higher the dimensionality, the better is the performance of SPA. This

134

is mainly because the number of candidate points tested in SPA is independent of the

dimensionality and the cost of accessing DCs increases much slower than in the case

of the VA-file. Figure 5.13b again confirms the performance advantages of SPA over

a VA-file on processor time.

5.4.5 Effect of Skewness

In this experiment, we will demonstrate that SPA is even more effective for skewed

datasets, where the KNN search is more meaningful. In skewed datasets, the most

skewed dimensions are expected to be better amenable to pruning, since SPA chooses

the most distinguishable (or skewed) dimensions to maximize the partial distance.

Thus, comparing with uniform datasets, SPA is expected to have better performance.

We generated two 512-dimensional data sets, by populating the coordinates using

a Zipfian distribution with skew parameter 0.7 and 1.0 respectively. Both consist

of 100,000 data points. Figure 5.14 shows the effect of skew on both SPA and the

VA-file. Figure 5.14a indicates that as the skew parameter of the Zipfian distribution

increases, the I/O cost of VA-file increases rapidly. When the skew parameter becomes

1.0, the performance of VA-file is even worse than that of sequential scan. In contrast,

SPA still performs much better. The performance gap between the two methods gets

rapidly much wider. In real life datasets that are mostly skewed to a certain degree,

we expect SPA to achieve excellent performance as demonstrated in Figure 5.12 using

real data sets. Similar observations can be made for processor costs as shown in Figure

5.14b.

135

5.4.6 Effect of Dynamic Insertion

In this experiment, we test the effect of dynamic insertion on the efficiency of our

method. We used the 1024-dimensional uniform dataset. We constructed the LDC

tree using the first 50,000 points and then we inserted 50,000 points at a time. After

each insertion, we performed KNN search and computed their average costs.

Figure 5.15 depicts the changes of I/O cost and CPU cost as more data points are

inserted. As we can see, higher I/O costs and CPU costs are incurred. Obviously,

a larger index incurs more cost. However, we notice that the increasing rate of cost

becomes lower and lower than that of data size as more and more data points are

inserted. Comparing with Figure 5.11 which presents the results of the index rebuilt

upon each bulk insertion. we observe that dynamic insertion without rebuilding the

index does not deteriorate the performance of SPA significantly. This confirms the

effectiveness of our LDC tree structure. However, recall that the DCs of points are

encoded based on their local cluster centers. As more points are inserted into clusters,

the positions of cluster centers may change. Naturally, the movement of cluster centers

will affect the effectiveness of DCs. When the movement is beyond certain threshold,

there is a need to rebuild the index to achieve satisfactory performance.

5.4.7 Effect of LDC in Extended ICICLE

In this experiment, we show the effect of LDC on color-based retrieval in the extended

ICICLE. The dataset we searched is the 159-dimensional color histogram extracted

from 73,715 WWW image in ICICLE. We use the total response time by sequential

scan as the baseline for comparison. Table 5.4 indicates the ratio of total response

time spent by LDC and VA-file over sequential scan. As we can see, the total response

time of VA-file is almost same as that of sequential scan (0.91 of that of sequential

136

0

5000

10000

15000

20000

50 100 150 200

N
um

be
r o

f P
ag

e
A

cc
es

s

Size (K)

SPA

(a) Effect on I/O

0

0.5

1

1.5

2

2.5

3

50 100 150 200

C
PU

 C
os

t (
Se

co
nd

)

Size (K)

SPA

(b) Effect on CPU

Figure 5.15: Effect of Dynamic Insertion on Uniform Dataset.

Indexing Methods Ratio
VA-file 0.91
LDC 0.06

Table 5.4: Ratio of total response time over sequential scan.

scan). However, the total response time of LDC is just 0.06 of that of sequential

scan. Clearly, the LDC speeds up the searching by nearly 20 times. The integration

into ICICLE and experiment illustrate the practicability of the LDC in a real setup.

Indeed, the LDC could be applied effectively into a commercial DBMS.

5.5 Summary

In this chapter, we introduced a very effective data organization and representation

methodology called Local Digital Code suitable for hyper-dimensional image features.

Such representation encompasses the application of partial distance and accommo-

dates a novel KNN search algorithm - SPA.

SPA uses the minimal partial distance computed from any m dimensions among

n most informative dimensions between the query and static reference points (cluster

centers), as the partial distance. Such partial distance computation avoids accessing

137

data points so that the overall computational costs are minimized. SPA is capable of

pruning points in the data space rapidly, without computing distances among them,

employing DCs and simple bitwise operations. Moreover, SPA can minimize the

candidate point set that requires retrieval and further processing, by employing the

results of our analytical methodology. Our extensive performance study on hyper-

dimensional data demonstrated that SPA outperforms known methods significantly.

Its improvement was also reflected from the performance of extended ICICLE.

Chapter 6

Indexing Multiple Image Features

6.1 Introduction

Images are usually described by multiple features, each of which is typically high-

dimensional. In the context of CBIR, an image may be described by a 64-dimensional

color histogram, a 16-dimensional texture histogram, a 2-dimensional size, and a 1-

dimensional date.

To support multi-feature queries, we can build a high dimensional index on the

feature space obtained from all dimensions of the multiple features. In our image

example, this corresponds to an 83-dimension feature space. Unfortunately, such an

approach is not likely to be effective because of the high dimension. Moreover, exist-

ing high-dimensional indexing techniques typically treat all the different dimensions

homogenously. An alternative approach is to build one index for each feature. In this

case, multi-feature queries are evaluated by integrating results from each index to get

the final rank-ordered results. However, combining answers from multiple indexes for

ranked queries may require examining a large portion of each index.

In this chapter, we devise a novel representation that compactly captures f multi-

dimensional features into two vector components. The first component is an f -

dimensional vector obtained by transforming each of the f features into a value in

138

139

a single dimension space. The second component is a bit sequence of size 2
∑f

i=1 di

where di is the number of dimensions of the ith feature, i.e., each dimension con-

tributes two bits. The bits are set by analyzing each feature’s distance histogram.

This representation leads to a two-level index structure where the first tier indexes

the first component using a standard multi-dimensional index structure such as an

R-tree, and the second level is a compact list of bit sequences accessible from the leaf

node entries of the first level. Using our image example, we would create a top-level

index on a four-dimensional feature vector, corresponding to the four features (color,

texture, size, and date). Each of these features can then be further exploded into its

full dimensionality in a second level of index - the bit sequence level.

Our technique results in more effective indexing, as we experimentally demon-

strate, for several reasons. First, high-dimensional indexing is hard, and most systems

attempt to reduce dimensionality to the extent possible. Our two level decomposition

automatically brings about this dimensionality reduction (in our running example,

the top level index has only four dimensions instead of 83). Second, explicit iden-

tification of semantically meaningful features makes it easy to weight these features

as desired, on a per query basis. For example, a query that cares only about color

and size (ignoring texture and date) as well as a query that cares about all four fea-

tures can both be supported using one single index on image objects in our database.

Third, high-dimensional indexing techniques often use a low-dimension projection for

indexing [7, 62]. These techniques assume geometric homogeneity – all dimensions

are considered equivalent – an assumption that is valid only within the dimensional

attributes of a single feature. Our two-level decomposition permits these powerful

reduction techniques to be applied one feature at a time.

We also propose a novel K Nearest Neighbors (KNN) query searching algorithm

140

that iteratively prunes the search space aggressively based on the most critical di-

mensions of highly selective features. The VA-file [59], which employs a bit repre-

sentation of the feature vector, has been shown to be superior to sequential scan

in high-dimensional space. We therefore evaluate our proposed structure against

multiple-feature retrieval methods using single and multiple VA-files. Our extensive

experiments on both real life and synthetic datasets indicate that the proposed in-

dex structure offers significant performance advantages over sequential scan and the

VA-file based methods.

The rest of chapter is organized as follows. In in Section 6.2, we present the

multi-feature representation model and indexing scheme. In Section 6.3, a novel

KNN search scheme is presented, based on the multi-feature indexing scheme. An

extensive performance study is reported in Section 6.4, and finally, we summarize this

chapter in Section 6.5.

6.2 Representing and Indexing Multiple features

In this section, we first present our compact representation model for multiple fea-

tures. We then present a two-tier index structure that can be used to facilitate

searching under the model. Finally, we discuss how the basic model can be opti-

mized.

6.2.1 A Compact Multi-Feature Representation

Let P = (P 1, P 2, . . . , P f) be an f -feature point, where P i is the ith feature and com-

prises di dimensions. We represent P as a two vector component (Dist, BitSequence)

where Dist is a f -dimensional vector, and BitSequence is a bit sequence of length

2
∑f

i=1 di.

141

The Dist Component

The first component, Dist, is obtained as follows. We map each high-dimensional

feature into a single-dimensional space. While several methods can be utilized to

perform this mapping (e.g., the Pyramid technique [7] and iDistance[62]), we employ

the following simpler transformation:

Disti(P,O) = LP (P i, Oi)

where P is a data point and O is the center of the data space, and Disti is the

distance value between P and O on feature i. Lp is the distance function applied.

Note that different features may have different dimensionality and may apply dif-

ferent distance functions. Before combining the distances from all features to generate

the overall distance, each feature distance has to be properly normalized. We nor-

malize Disti into the range of [0,1] by the following Distance Normalization Formula

(DNF):

Distin(P, O) =
Disti(P, O)−Distimin

Distimax −Distimin

where Distimin and Distimax are the minimal and maximal distance values in the

ith feature space. Distin is the normalized single-dimensional representation of feature

i for point P . Thus, Dist of P is an f -dimensional vector given as follows:

Dist = (Dist1n, Dist2n, . . . , Distfn)

The BitSequence Component

The second component, BitSequence, is a bit sequence comprising 2
∑f

i=1 di bits. Each

dimension of each feature contributes 2 bits based on the novel concept of a distance

histogram.

142

Definition 6.2.1 (distance histogram - dh). Given a data point P and the data space

center O, let P i and Oi denote the ith feature of P and O respectively. We also denote

the number of dimensions in the ith feature be di. Let P i[j] denote the value of the

jth dimension of P i. Then, P i
min = mindi

j=1 |P i[j]−Oi[j]|, and P i
max = maxdi

j=1 |P i[j]−
Oi[j]|. The distance histogram of P in the ith feature, dhi, represents the frequency

distribution in which the widths of the bars are proportional to the distance intervals

and the height of the bar is proportional to the number of dimensions whose distances

(i.e., |P i[j]−Oi[j]|) fall in the corresponding interval. 2

Now we are ready to see the main routine, outlined in Figure 6.1, for generating

the bit sequence of the ith feature of point P . Initially, the bit sequence for P i is set

to 0 (line 1)1. Then the dhi of P i is constructed (line 2). Based on the pattern of

dhi, we can determine a threshold value ϕi for the ith feature of P (line 3). We shall

defer the discussion on ϕi to a later section. For each dimension, if its value is equal

to or greater than the value of the corresponding dimension of the data center, we

set the corresponding first bit of the sequence representing that dimension to 1 and 0

otherwise (lines 5 and 6). Similarly, if its distance to the corresponding dimension of

the data center is equal to or greater than ϕi, we set the corresponding second bit of

the sequence to 1 and 0 otherwise (lines 7 and 8). Geometrically, for each dimension,

the first bit indicates to which side of the center it lies, and the second bit indicates

if its distance to the corresponding dimension of the center is greater than ϕi.

The bit sequence generation algorithm essentially encodes the di-dimensional fea-

ture vector into a 2·di bit sequence, together with its corresponding distance threshold

- ϕi. Thus, BitSequence of P is the concatenation (denoted ⊕) of all bit sequences

generated for each feature using the above bit sequence generation algorithm:

BitSequenceP = B1
P ⊕B2

P . . .⊕Bf
P

1Multiple int or char can be used for different dimensionality.

143

Bit Sequence Generation Algorithm
BG(P i, Oi)
Input: P i, Oi;
Output: Bi

P ;
1. unsigned int Bi

P =0;
2. dhi ← construct dh(P i, Oi);
3. ϕi ← generate ϕ(dhi);
4. for j = 0 to di-1
5. if (P i[j] ≥ Oi[j])
6. Bi

P | = 1 << 2*j;
7. if (|P i[j] - Oi[j]| ≥ ϕi)
8. Bi

P | = 1 << 2*j+1;
9. return Bi

P ;

Figure 6.1: Bit sequence generation algorithm.

To summarize, the proposed multi-feature representation is clearly compact. In-

stead of storing
∑f

i=1 di dimension values for an f -feature point, we only need to

require f distance values and 2
∑f

i=1 di bits with corresponding f threshold (ϕ) val-

ues. This clearly results in a significant reduction in storage when di > 2, which it

almost always is. In the few cases where a simple feature has just one or two di-

mensions, we can store it as is, rather than use this bit encoding. All of our results

still hold, and all algorithms we present below carry through unchanged except for

additional condition checks to see for each feature whether it is BitSequence encoded.

To minimize clutter, we ignore this straightforward special case for the remainder of

this chapter, and focus our presentation on the more challenging high dimensionality

case.

6.2.2 A Two-Tier Indexing Structure

The two vector component of the multi-feature representation lends itself very nicely

to indexing. The first component can be used to prune away points based on the

144

distances within each feature: points that are similar will have similar distances,

while those that are not will be far apart. Similarly, the second component zooms in

to the dimension level of each feature. While the first component provides a global

pruning, the second component serves as a more localized pruning.

Thus, we propose a two-tier structure where the first tier indexes the first com-

ponent, and the second tier handles the second component. Moreover, since we do

not expect the number of features to be very large (not more than 20), any existing

multi-dimensional structures can be used for the first component. Since the second

component is a compact bit sequence, storing and scanning a list of bit sequences is a

practical solution. In our work, the first tier is an R-tree that is constructed by index-

ing on f dimensional vector obtained from normalized distance value of the points.

The internal nodes of the R-tree are the standard Minimum Bounding Rectangles

(MBR). Leaf nodes of the R-tree contain the f -dimensional transformed representa-

tions together with pointers to the second tier. The second tier is a list of bit sequences

corresponding to the f -dimensional point. Each bit sequence also points to the data

page containing the data point (in its full dimensions) that it represents. Figure 6.2

illustrates the proposed structure with an example comprising two features.

...

leaf level

R−tree

Data level

Bit sequence level

1 2

1 2

1 2P P

B B

n nd d

Figure 6.2: The indexing structure.

145

Dynamic maintenance operations arising from insertions/deletions on the two-tier

structure can be easily performed. When a new point is added in the dataset, its Dist

component and BitSequence component are first computed, followed by the standard

insertion operation in R-trees by inserting Dist component into R-tree. Correspond-

ingly, the point’s BitSequence component and data are inserted into the correct po-

sition in the bit sequence level and data level of the structure respectively. Deletion

operations are done in the similar way.

6.2.3 Tuning Bit Sequence Generation

Before leaving this section, we would like to discuss how the threshold value, ϕi for

ith feature of a point, and the number of intervals (bars) for the distance histogram

of ith feature, I i, can be determined. Clearly, the distance histogram of a feature

for different points will be different. As such, different ϕi values should be used

for different points. Similarly, since different features may have different number of

dimensions, the number of intervals for different features should be different also.

 Distance Distance

N
u

m
b

e
r

o
f

d
im

e
n

s
io

n
s

 Distance

N
u

m
b

e
r

o
f

d
im

e
n

s
io

n
s

lowest concave point

e. multiple concave/convex

N
u

m
b

e
r

o
f

d
im

e
n

s
io

n
s

 Distance

a. descending pattern

N
u

m
b

e
r

o
f

d
im

e
n

s
io

n
s

smallest drop step

c. convex pattern

concave point

b. ascending pattern

largest jump step
on ascending side

largest jump step

d. concave pattern

N
u

m
b

e
r

o
f

d
im

e
n

s
io

n
s

 Distance

Figure 6.3: Patterns of distance histogram.

As a first cut, we adopt simple heuristics for determining ϕi here. This is based

on the observation that there are mainly five types of trends in distance histograms,

as shown in Figure 6.3. We analyze each of them here.

146

• Descending Pattern: This is the worst case since most dimensions have small

distance to corresponding dimensions of the data center. In such circumstance,

the value occurs on the smallest drop step is selected as ϕi value, as reducing the

ϕi value by one more interval will include the smallest increase on the number

of dimensions to be set to 1.

• Ascending Pattern: This is the best case since a large number of dimensions

can be set to 1 with a large ϕi value. In this case, the value occurs on the largest

jump step is selected as ϕi value, as reducing the ϕi value by one more interval

will cause the largest decrease on the number of dimensions to be set to 1.

• Convex Pattern: In this case, most dimensions are centered at middle. To

include interval with most dimensions, the value occurs on the largest jump

step on ascending side of histogram is selected as ϕi value.

• Concave Pattern: In this case, most dimensions are distributed at both ends

of histogram. The concave point (bottom interval) is a good choice for the ϕi

value, excluding the bottom interval.

• Multiple Convex/Concave Pattern: Most histograms may have this pattern,

especially when the number of intervals is big. In this case, we choose the

smallest concave point as the ϕi value.

For I, we adopt the simple scheme that the number of intervals should be larger

for features with larger number of dimensions. Thus, for the ith feature with di

dimensions, we have its number of intervals computed as follows:

I i = ddi

c
e

where c is a constant.

147

Notation Description
pd, pdlb Partial distance, lower bounded pd

dh Distance histogram
ϕ Distance threshold value
I Number of intervals
c Constant for determining I

Distin Normalized distance on feature i
P, P i A data point, feature i
Bi

P Bit sequence of P i

Q,O A query point, Center of data space
P i[j] The jth dimension value for P i

di Dimensionality of feature i
DIM i The set of dimensions for feature i
DIM i′ A proper subset of DIM i

RIC Relative Information Carried

Table 6.1: A Table of Notations in Chapter 6.

6.3 KNN Query Processing

In this section, we shall present a novel KNN search algorithm. We note that range

query is a special case KNN, and can be performed by our KNN algorithm with little

modification. We shall thus not discuss it further. Before we look at the proposed

algorithm, we will first introduce another concept, called partial distance, that al-

lows us to lower bound the pruning distance between data points and queries in a

multi-features environment for effective pruning by comparing their corresponding bit

sequences. Table 6.1 summarizes the notation used in our discussion.

6.3.1 Lower Bounded Partial Distance

Definition 6.3.1 (partial distance - pd). Let Q and P denote a query and data point

respectively. Let Qi and P i be the corresponding ith feature of both points. We denote

the set of di dimensions as DIM i. Given DIM i′ ⊂ DIM i, the partial distance pdi in

148

feature space i between Q and P is defined as

pdi(Q,P,DIM i′) = p

√ ∑

j∈DIM i′
(|Qi[j]− P i[j]|)p

2

Thus, the partial distance between Qi and P i is the Lp distance computed on a

subset of the di dimensions. We thus have the following corollary:

Corollary 6.3.1. pdi(Q,P,DIM i′) ≤ Disti(Q, P)

2

Corollary 6.3.1 indicates that pdi lower bounds Disti. Next, we define lower

bounded partial distance from bit sequence representations.

Definition 6.3.2 (lower bounded partial dist. - pdlb). Let BQ, BP , Bi
Q and Bi

P denote

the bit sequences of Q, P, Qi and P i respectively. Let ϕi
P denote the ϕ of P i. We

also use Bi
Q[2j] and Bi

Q[2j + 1] to denote the first and second bit for dimension j of

Bi
Q. Let m=2j and ε = |Qi[j]−Oi[j]|, given DIM i′ ⊂ DIM i, then for ∀j ∈ DIM i′,

we have:

pdi
lb(Q, BP , DIM i′) = p

√ ∑

j∈DIM i′
Φ[j]p

where Φ[j] =

ε + ϕi
P if Bi

Q[m] 6= Bi
P[m] ∧ Bi

P[m + 1] = 1

ε if Bi
Q[m] 6= Bi

P[m] ∧ Bi
P[m + 1] = 0

|ε− ϕi
P| if Bi

Q[m] = Bi
P[m] ∧ Bi

Q[m + 1] 6= Bi
P[m + 1]

0 if otherwise

2

Notice that the input for pdi
lb are Q, BP , and DIM i′ since we do not use data point

P, but its bit sequence - BP . From Definition 6.3.2, we have the following corollary:

149

Corollary 6.3.2. pdi
lb(Q, BP , DIM i′) ≤ pdi(Q,P, DIM i′)

since

∀i, Φ[j] ≤ |Qi[j]− P i[j]|

2

From corollaries 6.3.1 and 6.3.2, we can easily derive the following lemma:

Lemma 6.3.1. pdi
lb(Q,BP , DIM i′) ≤ Disti(Q,P)

2

Based on lemma 6.3.1, we next introduce our complex query searching algorithm

- Adaptive Searching by Aggressive Partial-distance (ASAP).

6.3.2 Adaptive Searching by Aggressive Partial-distance

The conventional K Nearest Neighbors (KNN) searching process is iterative in nature.

It initializes a starting radius and incrementally adjusts the search radius, until all

the KNNs are found. We call a search radius on the entire data space as complex r,

and on a single feature space as atomic r. Given a query Q, its distance to a point

P is a combination of distances computed from all atomic queries. Without loss of

generality, we assume that the importance of features are linearly combined. Thus

the distance denoted as distance, between two data points P and Q with f features

can be computed as follows:

Dist(P,Q) =

f∑
i=1

wi ∗Distin(P, Q)

where Distin is the normalized distance between P and Q on feature i, and wi is

a weight that represents the importance of feature i, and we have
f∑

i=1

wi = 1.

ASAP essentially analyzes the pattern of the distance histogram of each feature of

the query, and 1) adaptively selects the access order of the features, and 2) aggressively

150

ASAP Algorithm

1. B
[]
Q ← GB(Q,O); //without setting second bit

2. dh[] ← compute dh(Q,O);
3. DIM []’ ← select DIM’(dh[]);
4. ao[] ← select accessing order(dh[], DIM []’);
5. r= initial value;
6. do //start searching
7. r = r + ∆r;
8. r[] ← get atomic r(r, w[]);
9. left right nodes[] ← search Rtree(Q,r[]);
10. BP [] ← scan bitsequence level(left right nodes[]);

11. for each BP //compute pd
[]
lb

12. for n = 1 to f

13. B
ao[n]
Q ← set 2nd bit(ϕ

ao[n]
P);

14. if
n∑

i=1

wi ∗ pd
ao[i]
lb −di

min

di
max−di

min
> r

15. break; // prune it
16. if n = f+1
17. add BP ’s offset to candidate[];
18. DIMao[n]’ ← adjust DIM’(DIMao[n]’);
19. knn[] ← compute knn(candidate[]);
20. until the Kth-NN is found

Figure 6.4: The ASAP KNN searching algorithm.

151

adjusts the partial distances based on increasingly larger subsets of dimensions for

effective pruning. Figure 6.4 outlines the proposed ASAP KNN search algorithm.

The algorithm mainly consists of the following steps:

Generate BQ (line 1): Given a complex query Q, ASAP first generates its bit

sequence representation without setting the second bit for each dimension. By com-

paring Q with respect to the space center O, the first bit is set, in each dimension.

Since each point has a different ϕ for different feature, the second bit will only be set

when the second tier of index is reached.

Generate dh (line 2): Next, the dh for each feature of query Q is constructed by

comparing with O.

Select DIM ′ (line 3): At this step, a proper subset of DIM i — DIM i′ for each

feature i of query Q is selected by analyzing its dhi. The purpose of selecting DIM i′

is for computing the lower bounded partial-distance at a later stage. Obviously, a

larger number of dimensions in DIM i′ will provide a larger pdi
lb, but this will also lead

to a higher computational overhead. Inspired by the dynamic ϕ generation scheme

in Section 6.2.3, here we also dynamically select DIM i′ based on the patterns of dhi.

The ϕi for feature i of query Q is first generated. Then we set the DIM i′ to contain

all the dimensions whose distances to the corresponding dimensions of Oi is greater

than ϕi, i.e., any dimension j that satisfies the following condition will be included

in DIM i′:

|Qi[j]−Oi[j]| ≥ ϕi

Based on dhi, DIM i′ includes all dimensions lying in the right most intervals,

starting from the ϕi (Figure 6.3). By doing so, DIM i′ contains the most distinguish-

able dimensions of Qi with respect to Oi. Meanwhile, the size of DIM i′ is much

smaller than the size of DIM i. The advantage of such selection is that it is adaptive

152

to the pattern of distance histogram without tuning any parameter while achieving a

satisfactory tradeoff between the size of DIM i′ and the value of pdi
lb.

Select Accessing Order (line 4): Given a multi-feature query Q, different features

may have different capabilities in pruning search space. Accessing features in a de-

creasing order of pruning effectiveness will have fewer false ‘positives’ and so can avoid

processing other features. This will significantly reduce the computational cost. To

evaluate the pruning effectiveness of each feature of a query, we use the parameter

called Relative Information Carried - RIC, which is defined as:

Definition 6.3.3 (RIC). Given a Qi and its DIM i′, the RIC for feature i is defined as

RIC i = wi ∗

∑
j∈DIM i′

|Qi[j]−Oi[j]| − distimin

distimax − distimin

2

In RIC, DIM i′ is the set of dimensions selected in the last step since only the

dimensions in DIM i′ will be used. The total information carried by feature i is the

sum of distances from Qi to Oi for dimensions in DIM i′. Since different features

have different importance, the total information carried will be affected by respective

importance. The features are then ordered based on their RIC values. Based on

RICs, ASAP is able to adaptively manage the access order.

R-tree Pruning (line 7-9): The search starts with an initially incremented complex

radius r. Recall that the R-tree is built on the f -dimensional distances transformed

from f features. Since different queries may place different importance on a feature,

the algorithm has to be able to handle various combinations of importance. To achieve

this, r is first parsed to generate the atomic radius for each feature. Give a query Q,

any point P qualified to be a candidate, we have:

w1Dist1(P, Q) + ... + wfDistf (P, Q) ≤ r

Min(Disti(P, Q)) = 0

}
⇒ Disti(P, Q) ≤ r

wi
⇒ ri =

r

wi

153

The above formula indicates that more important features will be searched with

smaller radii in R-tree. Using derived atomic radii, a range rectangle search is per-

formed in R-tree (line 9) and returns the left most and right most leaf nodes’ offsets.

Figure 6.5 shows an example with two features. Provided with r1 and r2 for Q1 and

Q2 respectively, their single-dimensional searching spaces will be mapped into rectan-

gles in R-tree. The results returned by R-tree are the intersection of their rectangles,

as shown in Figure 6.4.

(0, 0)

Q

rr
1

1

Q2

2

1

1

Points after R−tree pruning

Points after Bitsequence pruning

1

 Q

1

O1 O2

Figure 6.5: Space Pruning by ASAP.

Retrieve bit sequences (line 10): In the bit sequence tier, the starting and end

nodes pointed from the left most and right most nodes in R-tree’s leaf level are

allocated and a sequential scan is then performed to retrieval all the bit sequence

candidates.

154

Bit sequence pruning (line 11-17): At this step, we will see how pdlb can be used

to substantially reduce the number of candidate returned from R-tree search. For

any BP , the feature with the first order is first evaluated. The second bit of Bi
Q is

then set by comparing to its corresponding ϕi
P (line 13). Then pdi

lb(Q,BP , DIM i′) is

computed based on Definition 6.3.2. If the accumulated partial-distance computed

from the accessed features is greater than r, the point will be pruned (line 14). If the

accumulated partial-distance for all features is not greater, it is a potential candidate.

Hence the feature access order will affect the time of a point being pruned. Remem-

ber that DIM i′ contains the dimensions with largest distance to the corresponding

ones of data center. Hence we process the most distinguishable features first, and

compute lower bounded partial-distance by the most distinguishable dimensions for

each feature to reach the goal of pruning false ‘positives’ as soon as possible. As

shown in Figure 6.5, the density of the final rectangle to be accessed after the bit

sequence pruning step is greatly lower than that of the rectangle returned from the

R-tree pruning step.

Adjust DIM ′ (line 18): Notice that after each iteration, as the search radius

increases, more false ‘positives’ will be returned from the R-tree pruning step. To

strengthen the pruning effectiveness, a larger pdlb is needed to satisfy the pruning

condition. To increase pdlb, DIM ′ has to contain more dimensions. We aggressively

adjust the DIM ′ by the following method. Recall that for a feature i (with its distance

histogram dhi and threshold ϕi), DIM i′ contains all dimensions in the intervals from

j to I i where j is determined by ϕi. We then treat the intervals from 1 to j − 1

as a new distance histogram and recursively apply the ϕ selection criterion on it to

generate a smaller ϕi. We can then determine the intervals j′ that corresponds to

the new ϕi value. Dimensions in intervals from j′ to j − 1 are then added to DIM i′.

Hence DIM ′ will contain a larger number of most distinguishable dimensions. To

155

decide whether it is time to adjust, a threshold on the number of candidates can be

used to control it. To avoid duplicate computation, pdlb will be propagated to next

iteration.

Compute KNN (line 19): In the final step, random accesses are performed on can-

didates and KNNs are computed. KNNs are found if the following strictest condition

is satisfied:

Dist(knn[K − 1], Q) ≤ r

where knn[K-1] is the Kth nearest neighbor.

6.3.3 A Cost Model

Now we derive a brief cost model for ASAP in the two-tier structure.

The I/O cost of ASAP mainly consists of three parts: range searching in R-tree,

sequential scanning in bit sequence level and random access of candidates in data

level, i.e.,

I/Ototal = I/OR + I/OBS + I/OCandidate

where I/OR, I/OBS and I/OCandidate represent the I/O cost for R-tree searching,

bit sequence scanning, and candidate access respectively.

Assuming R-tree is 50% full, the number of pages for R-tree can be approximately

computed as:

PageR ≈ Pagescan ∗ 2f∑f
i=1 di

where Pagescan is the number of pages for data.

156

Similarly, assuming each dimension is a 32-bit value, the number of pages for bit

sequence level can be approximately computed as:

PageBS ≈ Pagescan ∗
2
32
∗∑f

i=1 di + f∑f
i=1 di

= Pagescan ∗ (
1

16
+

f∑f
i=1 di

)

Since f is generally far smaller than
∑f

i=1 di, searching the two-tier structure

once costs slightly more than 1
16

of data pages in the worst case (i.e., traversing the

whole two-tier structure). However, in a real situation, only a part of the structure is

searched. Hence I/OR and I/OBS are expected to be less than PageR and PageBS.

Recall that ASAP can adjust DIM’ to further tighten the searching space by user-

defined threshold on the number of candidates. A sequential I/O is usually a factor

of 10 times faster then random access. Hence the number of candidates for random

access may dominate the overall I/O cost. A large number of candidates are always

undesirable. ASAP is iterative and parts of R-tree and bit sequence level are scanned

in each iteration. In the worst case, the whole two-tier structure is scanned. To

ensure ASAP is more efficient than sequential scan, the following relationship has to

be true assuming that a sequential I/O is 10 times faster than random I/O:

Φ ∗ 10 + α ∗ (I/OR + I/OBS) ≤ Pagescan

in the worst case, i.e., when the whole two-tier structures are searched, we have

Φ ≤
Pagescan − α ∗ Pagescan(3fPf

i=1 di
+ 1

16
)

10

where Φ and α represent the number of candidates and the number of iterations

for a query to finish its KNN search.

Since usually f ¿ ∑f
i=1 di,

3fPf
i=1 di

can be neglected. Consequently, we have

Φ ≤ (1− α
16

)

10
∗ Pagescan

By enforcing the above inequality, I/O cost can be controlled so as to outperform

sequential scan.

157

6.4 Performance Study

In this section, we report the results of an extensive performance study conducted to

evaluate the proposed strategy on both real and synthetic data sets. We also compare

against three scenarios: a single high-dimensional index structure that indexes on all

dimensions of all features, a single index per feature, and sequential scan.

6.4.1 Experiment SetUp

All the experiments were performed on a Sun UtraSparc II 450Mhz (2 CPU), with 4G

memory. We used a page size of 4K. All results reported are based on 50 queries for

10NN. The queries are data points obtained from the respective databases used. We

adopted the L2 norm for indexing and searching. All our experiments were conducted

using the following data sets:

• WWW Image Features: We created a dataset of 73,715 WWW images ex-

tracted from over 40,000 web sites reached by the crawler in ICICLE system.

This dataset consists of two feature sets. One is a 159-dimensional Color His-

togram extracted from each image. The other is a 64-dimensional Daubechies’

Wavelet [58] feature. Wavelet features describe an image’s shape, texture and

location information in a single representation. We truncated the wavelet rep-

resentation to the 64 most dominant wavelet coefficients. The Color Histogram

was normalized by dmin=0 and dmax=0.5, and the Wavelet feature was normal-

ized by dmin=0 and dmax=8.

• Corel Image Features: This dataset contains image features extracted from

a Corel image collection with 62,480 images [1]. It consists of four sets of

features. The first is a 32-dimensional HSV Color Histogram. The second is

158

a 32-dimensional Color Histogram Layout. The third is a 16-dimensional Co-

occurrence Texture feature. And the fourth is a 9-dimensional Color Moments

feature. The first three sets were normalized by dmin=0 and dmax=0.5, and the

last one was normalized by dmin=0 and dmax=3.

• Zipf Data:

We created six synthetic data sets to study the effect of skew. Each set consists

of 100,000 data points, and has 2 features of 64 dimensions. We denote them as

Zipf(θ1, θ2), where θ1 and θ2 are the skew factor used in the Zipf distribution.

This is done as follows. We first generate three 100,000 64-dimensional data

points using the Zipf distribution with θ=1.0, 1.5 and 2.0 respectively. Next,

we generate Zipf(θ1, θ2) by combining the two feature points generated by us-

ing skew factor of θ1 and θ2. In our experiments, we have used Zipf(1.0,1.0),

Zipf(1.5,1.5), Zipf(2.0,2.0), Zipf(1.5,1.0), Zipf(1.5,1.5) and Zipf(1.5,2.0). All sets

were normalized by dmin=0 and dmax=8.

6.4.2 Insight of DIM’

We first conduct experiments to have an insight on the effect of DIM ′. We use the

Corel dataset but restrict to just two features - HSV Color Histogram and Color

Histogram Layout. Figure 6.6 depicts the effect of different size of DIM’ where the

x-axis represents the average number of dimensions for both features. Here, the two

features are equally important. From Figure 6.6a, we see that with only two dimen-

sions in DIM ′, ASAP can prune away more than 98% of the points. We repeated the

experiment on WWW image dataset. The weights for Color Histogram and Wavelet

features are set to 0.8 and 0.2 since Color Histogram has more dimensions. As shown

in Figure 6.6b, with only ten dimensions in DIM ′, ASAP is able to prune away more

159

than 90% of the points. This experiment confirms that a small subset DIM ′ of

the original dimensions will be sufficient for space pruning to avoid expensive full

dimensional computation.

0
10
20
30
40
50
60
70
80
90

100

0 4 8 12 16 20 24 28 32

%
 o

f P
ru

ne
d

Po
in

ts

Size of DIM’

Corel Image Features

(a) On Corel Image Features

0
10
20
30
40
50
60
70
80
90

100

0 30 60 90

%
 o

f P
ru

ne
d

Po
in

ts
Size of DIM’

WWW Image Feature

(b) On WWW Image Features

Figure 6.6: Pruning Effect of DIM’.

0

100

200

300

400

500

600

700

800

1 2 3 4 5 6 7 8 9 10

N
um

be
r o

f I
/O

c value

Corel Image Feature

(a) On Corel Image Features

3000

4000

5000

6000

5 15 25 35

N
um

be
r o

f I
/O

c value

WWW Image Features

(b) On WWW Image Features

Figure 6.7: Effect of c.

160

0

1000

2000

3000

4000

8 16 24 32

N
um

be
r o

f I
/O

Dimensionality

ASAP
SLDC

MLDC
Scan
SVA

MVA

(a) I/O Cost vs. Dimensionality

0

100

200

300

400

8 16 24 32

C
PU

 (m
s)

Dimensionality

ASAP
SLDC

MLDC
Scan
SVA

MVA

(b) CPU Cost vs. Dimensionality

Figure 6.8: Effect of Dimensionality on Corel Image Features.

6.4.3 Effect of c

Since the parameter c affects the number of intervals (which influences the construc-

tion of distance histogram), in this experiment, we study the effect of c. Figure 6.7

shows the effect of c for the above Corel and WWW image datasets’ two-feature

spaces. It is interesting to note that the performance of our scheme is not very sensi-

tive to c. We believe this is mainly because different number of intervals for a feature

vector will not greatly change the pattern of its distance histogram. Hence a c value

can be easily selected. In the subsequent experiments, we set c to 2 and 20 for Corel

and WWW image features respectively.

6.4.4 Effect of Dimensionality

In this experiment, we study the effect of dimensionality. Here we tested the Corel

images’ two-features space used above, and both features have the same number of

dimensions which we vary from 8 to 32. We shall use ASAP to denote the proposed

KNN search scheme on the proposed two-tier indexing structure. We compare our

method with two versions of LDC one single index on multiple features (called SLDC)

161

and one index per feature (MLDC), sequential scan and two versions of the VA-file,

one single index on multiple features (called SVA) and one index per feature (MVA).

The results, shown in Figure 6.8, clearly show that both the I/O and CPU cost for the

six methods increase with the number of dimensions. From Figure 6.8a, we observe

that ASAP performs the best, followed by SLDC, MLDC, sequential scan, SVA and

MVA. It is evident that the VA-file methods examine most points for data level access,

which causes the I/O cost to be even worse than sequential scan. Employing multiple

indexes with the VA-file further deteriorates the performance by searching multiple

indexes. The LDC methods outperforms sequential scan because it has ability to

control the number of candidates as explained in previous chapter.

However, the proposed ASAP scheme outperforms SLDC and MLDC by a factor

of 2-3 and outperforms sequential scan by a factor of 3-4. In fact, the gain of ASAP

over the rest becomes larger as dimensionality goes up. The figure also shows that

ASAP is robust to the size of the dimensions. Figure 6.8b depicts similar trend.

In view of the poor performance of VA-files, in all subsequent experiments, we will

compare our scheme with SLDC, MLDC and sequential scan only.

6.4.5 Effect of Data Size

Next, we tested the effect of data size on our method using the Corel’s and WWW’s

two-feature spaces mentioned above. For each dataset, we randomly picked subsets

of different sizes (from 10000 onwards). Figures 6.9 and 6.10 show the results. As

expected, the I/O and CPU costs increase as the data size increases. We also observe

that both figures (on different datasets) have similar trends. While the costs for

SLDC, MLDC and sequential scan increase linearly, the costs for ASAP increase in

a much slower rate, i.e., the gain achieved by ASAP becomes more significant with a

larger data size.

162

0

1000

2000

3000

4000

10000 20000 30000 40000 50000 60000 70000

N
um

be
r

of
 I

/O

Data Size

ASAP
SLDC

MLDC
Scan

(a) I/O Cost vs. Data Size

0

100

200

300

400

10000 20000 30000 40000 50000 60000 70000

C
PU

 (
m

s)

Data Size

ASAP
SLDC

MLDC
Scan

(b) CPU Cost vs. Data Size

Figure 6.9: Effect of Data size on Corel Image Features.

0

3000

6000

9000

12000

15000

18000

10000 20000 30000 40000 50000 60000 70000

N
um

be
r o

f I
/O

Data Size

ASAP
SLDC

MLDC
Scan

(a) I/O Cost vs. Data Size

0

200

400

600

800

1000

1200

10000 20000 30000 40000 50000 60000 70000

C
PU

 (m
s)

Data Size

ASAP
SLDC

MLDC
Scan

(b) CPU Cost vs. Data Size

Figure 6.10: Effect of Data size on WWW Image Features.

163

0

5000

10000

15000

1 1.5 2

N
um

be
r o

f I
/O

Theta

ASAP
Scan

(a) Two Concurrently varying theta

0

2000

4000

6000

8000

10000

1 1.5 2

N
um

be
r o

f I
/O

Theta

1.5-Theta
1.5-1.5

(b) One varying theta while the other un-
changed

Figure 6.11: Effect of Skew.

6.4.6 Effect of Skew

Because of its adaptive threshold, we believe that one of the greatest strengths of

ASAP is its ability to handle skew. This is so since data skew will keep the size of

DIM ′ small and result in more informative bit encodings for each such dimension.

We saw some evidence of this in the real data sets used in previous experiments.

However, to study the effect of skew in isolation, we used the synthetic Zipf(θ1, θ2)

data sets that we generated. Figure 6.11a shows the I/O cost for using the datasets

where θ1 = θ2. As expected, data skew favors the performance of ASAP. As the data

becomes more skewed, ASAP achieves better efficiency.

To see the skew effect more clearly, we repeated the experiments with data sets

Zipf(θ1, θ2) where θ1 is fixed at 1.5 while θ2 is varied from 1.0 to 2.0. As shown in

Figure 6.11b, ASAP achieves better performance for data that is more skewed. In

real life skew datasets such as our Corel and WWW image features, we can expect

good results. Now the reason for better performance on Corel features gained by

ASAP is clear. Both Corel features are Color Histograms. However, one feature in

164

WWW image is texture which is much less skew than Color Histogram. Since ASAP

performs better in a skew environment, it is not surprising that ASAP achieves greater

improvement on Corel features.

6.4.7 Effect of Weighted Queries

In this experiment, we examine effect of weights that queries placed on different

features. We used the Zipf(2.0,2.0) data set here. Figure 6.12 shows the corresponding

I/O cost when the weight of one feature changes from 0.1 to 0.9 while the sum of

the two weights is kept constant at 1.0. As we can see, ASAP achieves the best

performance when the difference between two weights is the largest (comparing to

cost when both features have same weights). Clearly, when one feature’s weight is

much larger than the other, it implicitly puts further skewness on the more important

feature. Hence it is expected to lead to even better performance when the dominating

feature is further skewed.

0

1000

2000

3000

4000

5000

6000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

N
um

be
r

of
 I

/O

Weight

varying weight
0.5-0.5

Figure 6.12: Effect of Weighted Queries.

165

0

50

100

150

200

10000 20000 30000 40000 50000 60000 70000

C
PU

 (
m

s)

Data Size

Ordered Access
Random Access

Figure 6.13: Effect of Access Order on Corel Feature

0

1000

2000

3000

4000

5000

6000

32 48 64 80

N
um

be
r

of
 I

/O

Dimensionality

ASAP
Scan

(a) I/O Cost

0

100

200

300

400

500

600

32 48 64 80

C
P

U
 (

m
s)

Dimensionality

ASAP
Scan

(b) CPU Cost

Figure 6.14: Effect of Number of Features.

166

6.4.8 Effect of Access Order

Recall that ASAP can optimize the feature access order by comparing the query

features’ RICs. It can avoid the extra computational cost by pruning the points in

the earlier stage. Figure 6.13 compares effects of ordered access by RIC and random

access on the CPU cost by using the Corel two-features space. We can see that ordered

access in ASAP always outperforms random feature access greatly. This experiments

shows the importance of selecting the right access order.

6.4.9 Effect of Number of Features

In this experiment, we test the effect of different number of features in our indexing

structure. We use the Corel image’s four features: Color Histogram, Color Histogram

Layout, Co-occurrence Texture and Color Moments, and keep adding each feature

one by one. Figure 6.14 shows the corresponding costs after each feature is added.

We can see the the performance of ASAP is independent of the number of features.

The cost increases almost linearly with the total dimensionality and has a smaller

slope than sequential scan.

6.4.10 Effects of Dynamic Insertion

In this experiment, we test the effect of dynamic insertion on the efficiency of our

single indexing structure. We used the Corel’s two-feature dataset. We constructed

the index using the first 10,000 images and then we inserted 20,000 images at a

time. After each insertion, we performed KNN search and computed their average

costs. Figure 6.15 shows the changing trends of I/O cost and CPU cost for ASAP and

sequential scan as more images are inserted. It is clear that a larger number of images

correspond to a larger index which naturally leads to larger I/O and CPU costs for

167

0

1000

2000

3000

4000

10000 20000 30000 40000 50000 60000 70000

N
um

be
r

of
 I

/O

Data Size

ASAP
Scan

(a) I/O Cost

0

100

200

300

400

10000 20000 30000 40000 50000 60000 70000

C
PU

 (
m

s)

Data Size

ASAP
Scan

(b) CPU Cost

Figure 6.15: Effect of Dynamic Insertion on Corel Image Features.

KNN queries. Figure 6.15 depicts such trends. However, comparing with the linear

increasing rate of sequential scan, the increasing rates of ASAP are much slower.

And as more images are inserted, the increasing rate of ASAP becomes smaller and

smaller.

Compared to the performance of ASAP with one-off construction given in Fig-

ure 6.9, we notice that the performance of ASAP slightly degrades by dynamic inser-

tion. Recall that the two-component representation of an image is generated based

on the center of data space. As more points arise, the center may move away from

the original one. This scenario affects the effectiveness of our representation. Ob-

viously, the larger distance the center moves away, the more negative effect on the

performance of ASAP. To preserve the effectiveness of ASAP, one way is to compute

the distance between the original center and the new center after insertion. Once the

the center has shifted more than a distance allowed, the index need to be rebuilt.

168

6.5 Summary

In this chapter, we have reexamined the issue of efficient processing of multi-feature

queries. We have devised a novel representation that compactly captures a f -feature

point into a two vector component: an f -dimensional vector and a bit sequence. This

representation leads to a two-level index structure where the first tier indexes the first

component using a standard multi-dimensional index structure such as an R-tree, and

the second level is a compact list of bit sequences accessible from the leaf node entries

of the first level. We have also proposed an efficient algorithm for processing k-nearest

neighbor queries. Our extensive experiments on both real life and synthetic datasets

show that the our proposal offers significant advantages over existing methods.

Chapter 7

Conclusions

7.1 Contributions

In this thesis, we address the problem of efficient database support for effective WWW

image retrieval. We proposed ICICLE, an effective semantic-based WWW image re-

trieval system. ICICLE is further extended to include multiple visual features. To

achieve efficient database support for the extended ICICLE, we proposed three novel

indexing techniques: Multi-level Mahalanobis-based Dimension Reduction (MMDR),

Local Digital Coding (LDC), and the two-tier indexing structure. The MMDR was

designed for high-dimensional feature with local correlations among dimensions. The

LDC was designed for hyper-dimensional feature to break the ’dimensionality curse’

by scaling the dimensionality to be thousands. And the two-tier structure was de-

signed for indexing databases with multiple features. These techniques have been

shown to be superior than existing indexing methods. As a result, by employing

them, the extended ICICLE system achieves more efficient database support in query

answering.

We are pleased to note that part of this research has been applied in a commercial

image database management system (http://www.geofoto.com). And the research

has resulted in a number of technical papers in image retrieval area [48, 49, 50] and

169

170

database area [30, 31, 33, 40].

7.1.1 Semantic-based Image Retrieval

To solve the issues involved in an effective and efficient WWW image search engine,we

first introduced a new model to represent the content of images embedded in WWW

pages. The proposed Weight ChainNet model combines different types of lexical

chains obtained from the surrounding text of an image. Our experimental study

showed that the approach can be used as an effective means to represent image

semantics. We also proposed two novel feedback mechanisms. In particular, the

semantic integration and differentiation method returned more accurate results than

semantic accumulation with higher recall.

Moreover, we have also presented a new incremental clustering algorithm ICC for

the increasingly growing large database collection of WWW images described by text

information. Our experiments showed that ICC can produce quality clusters, and can

adapt the cluster size and cluster number dynamically. Without looking at the actual

data points, ICC can identify the sub-clusters within a large cluster by checking the

cluster representative’s property. It can also handle temporary noise well by using a

special ’noise box’ from which new clusters can be generated. To improve efficiency,

ICC employs a summarization step called Vertical and Pyramidal Summarization

Tree. VP-ST starts from all the data points in the cluster, and finally converges all

summarized points into single representative of the cluster. Our experiments indicated

that this vertical and pyramidal technique provides quality representative, especially

compared with random sampling. To further speed up searching right cluster, the

clusters’ structure is in Hierarchical ChainNet Summarization tree. A prototype

system, called ICICLE, that employs the proposed models have been deployed in our

171

VIPER project (http://sloth.comp.nus.edu.sg/m̃mir/). To integrate with Content-

Based Image Retrieval (CBIR), ICICLE was also extended to consider low-level visual

features.

7.1.2 High-dimensional Indexing

To support efficient retrieval for single image feature space, we have presented an ef-

fective and fast dimensionality reduction algorithm – Multi-level Mahalanobis-based

Dimensionality Reduction (MMDR), which is able to reduce the number of dimen-

sions while keeping the precision high, and able to effectively handle large datasets

and dynamic insertions. We used a single structure to index the data points in dif-

ferent reduced subspaces. We conducted extensive experimental studies using both

real and synthetic datasets to compare the algorithm with existing approaches. The

results show that the proposed technique, as a whole, is very effective and efficient in

supporting KNN search in very high-dimensional space. Furthermore, it is scalable

for very large databases and able to hand dynamic insertions adaptively.

7.1.3 Hyper-dimensional Indexing

To support a feature space in hundreds or more dimensionality, we introduced a very

effective data organization and representation methodology called Local Digital Code

(LDC) suitable for hyper-dimensional data. Such representation encompasses the

application of partial distance and accommodates a novel KNN search algorithm -

SPA.

SPA uses the minimal partial distance computed from any m dimensions among

n most informative dimensions between the query and static reference points (cluster

centers), as the partial distance. Such partial distance computation avoids accessing

172

data points so that the overall computational costs are minimized. SPA is capable of

pruning points in the data space rapidly, without computing distances among them,

employing DCs and simple bitwise operations. Moreover, SPA can minimize the

candidate point set that requires retrieval and further processing, by employing the

results of our analytical methodology. Our extensive performance study on hyper-

dimensional data demonstrated that SPA outperforms known methods significantly.

7.1.4 Multiple Feature Indexing

To fully support efficient image retrieval in multi-feature space, we have reexamined

the issue of efficient processing of multi-feature queries. We have devised a novel

representation that compactly captures a f -feature point into a two vector component:

an f -dimensional vector and a bit sequence. This representation leads to a two-level

index structure where the first tier indexes the first component using a standard multi-

dimensional index structure such as an R-tree, and the second level is a compact list

of bit sequences accessible from the leaf node entries of the first level. We have

also proposed an efficient algorithm called ASAP for processing KNN mutli-feature

queries. Our extensive experiments on both real life and synthetic datasets show that

the proposed index structure offers significant performance advantages over existing

methods.

7.2 Future Work

As the system contains issues in both image retrieval area and database area, our

work can be extended in several ways. We plan to extend ICICLE in the following

ways. First, since we are mainly concerned with the object and event, it may be

helpful to guess the lexical chain meaning by applying AI techniques and extend

173

HTML documents to XML documents. We are currently looking into some of these

techniques. Second, the proposed approach is essentially an Information Retrieval

(text-based) approach. We plan to integrate with effective content-based retrieval

methods that capture the visual content of the images, especially the shape. Third,

WWW images could be updated frequently. In particular, some images may be

removed. We are planning to look at some more operation like delete. Fourth, we

plan to integrate our approach with access methods to further speed up the retrieval

process. Finally, we might consider the integrated adaptive double clustering on

both text representation and visual feature representations, with relevance feedback’s

semantics considered.

For the indexing techniques, they can be extended to many other new emerging

applications. Notice that some emerging research areas, such as Bioinformatics, are

shaping the current research and deal with data with thousands of dimensionality or

much more. How to perform fast sequence matching and searching has become a new

challenging. As a future work, methodologies in the spirit of LDC can be possibly

extended for biology information retrieval to support fast access. Due to LDC’s

small size and fast comparison, it can also be further designed for summarization and

indexing of data streams. As for the proposed two-tier structure, extended research

is undergoing to solve the well-known problem called ’preference query’.

Bibliography

[1] http://kdd.ics.uci.edu/databases/corelfeatures.

[2] C.C. Aggarwal, A. Hinneburg, and D. A. Keim, On the surprising behavior of

distance metrics in high dimensional spaces, ICDT, 2001, pp. 420–434.

[3] C.C. Aggarwal, J.L. Wolf, P.S. Yu, C. Procopiuc, and J. S. Park, Fast algorithms

for projected clustering, SIGMOD, 1999, pp. 61–72.

[4] M. Ankerst, M.M. Breunig, H.-P. Kriegel, and J. Sander, OPTICS: Ordering

points to identify the clustering structure, SIGMOD, 1999, pp. 49–60.

[5] Y.A. Aslandogan and C.T. Yu, Evaluating strategies and systems for content

based indexing of person images on the web, ACM Multimedia, 2000, pp. 313–

321.

[6] S. Berchtold, C. Böhm, H. V. Jagadish, H.-P. Kriegel, and J. Sander, Independent

quantization: An index compression technique for high-dimensional data spaces,

ICDE, 2000, pp. 577–588.

[7] S. Berchtold, C. Böhm, and H.-P. Kriegel., The pyramid-technique: Towards

breaking the curse of dimensionality, SIGMOD, 1998, pp. 142–153.

[8] S. Berchtold and D. A. Keim, Indexing high-dimensional spaces: Database sup-

port for next decade’s applications, ACM Computing Surveys 33(3) (2001), 322–

373.

174

175

[9] K. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft, When is nearest neigh-

bors meaningful?, ICDT, 1999, pp. 217–235.

[10] A. Borodin, R. Ostrofsky, and Y. Rabani, Subquadratic Algorithms for Approxi-

mate Clustering in High Dimensional Spaces, ACM STOC, 1999.

[11] G.H. Cha and C. W. Chung, An indexing and retrieval mechanism for complex

similarity queries in image databases, Journal of Visual Communication and

Image Representation 10(3) (1999), 268–290.

[12] G.H. Cha and C.W. Chung, An indexing and retrieval mechanism for complex

similarity queries in image databases, Journal of Visual Communication and

Image Representation 10(3) (1999), 268–290.

[13] K. Chakrabarti and S. Mehrotra, Local dimensionality reduction: A new approach

to indexing high dimensional spaces, VLDB, 2000, pp. 89–100.

[14] K. Chakrabarti and S.Mehrotra, The hybrid tree: An index structure for high

dimensional feature spaces, ICDE, 1999, pp. 322–331.

[15] M. Charikar, C. Chekuri, T. Feder, and R. Motwani, Incremental clustering and

dynamic information retrieval, ACM Sympos. on Theory of Computing, 1997,

pp. 626–634.

[16] T.S. Chua, W.C. Low, and C.X. Chu, Relevance feedback techniques for color-

based image retrieval, Multimedia Modelling, 1998, pp. 24–31.

[17] P. Ciaccia, M. Patella, and P. Zezula, M-tree: An efficient access method for

similarity search in metric spaces, VLDB, 1997, pp. 426–435.

[18] Essam A. El-Kwae and Mansur R. Kabuka, Efficient content-based indexing of

large image databases, ACM Transactions on Information Systems 18(2) (2000),

171–210.

[19] M. Ester, H.-P. Kriegel, J. Sander, M. Wimmer, and X. Xu, Incremental cluster-

ing for mining in a data warehousing environment, VLDB, 1998, pp. 323–333.

176

[20] R. Fagin, A. Lotem, and M. Naor, Optimal aggregation algorithms for middle-

ware, PODS, 2001, pp. 102–113.

[21] C. Frankel, M. J. Swain, and V. Athitsos, Webseer: An image search engine for

the world-wide web, U. of Chicago Tech. rep. TR 96-14, 1996.

[22] V. Gaede and O. Gunther, Multidimensional access methods, ACM Computing

Surveys 30(2) (1998), 170–231.

[23] A. Gionis, P. Indyk, and R. Motwani, Similarity search in high dimensions via

hashing, VLDB, 1999, pp. 518–529.

[24] S. Guha, R. Rastogi, and K. Shim, CURE: An Efficient Clustering Algorithm

for Large Databases, SIGMOD, 1998, pp. 73–84.

[25] U. Guntzer, W-T. Balke, and W. Kiessling, Optimizing multi-feature queries for

image databases, VLDB, 2000, pp. 261–281.

[26] V. Harmandas, M. Sanderson, and M.D. Dunlop, Image retrieval by hypertext

links, ACM SIGIR, 1997, pp. 296–303.

[27] M.A. Hearst and J.O. Pedersen, Reexamining the cluster hypothesis: Scat-

ter/gather on retrieval results, ACM SIGIR, 1996, pp. 76–84.

[28] A. Hinneburg and D. A. Keim, An optimal grid-Clustering: Towards breaking the

curse of diminsionality in high dimensional clustering, VLDB, 1999, pp. 506–517.

[29] A. Hinneburg and D.A. Keim, An efficient approach to clustering in large mul-

timedia databases with noise, SIGKDD, 1998.

[30] H.V. Jagadish, B.C. Ooi, H.T. Shen, and K.L. Tan, Towards Efficient Multi-

Feature Query Processing, 2003,Submitted for Publication.

[31] H. Jin, B.C. Ooi, H.T. Shen, C. Yu, and A. Zhou, An Adaptive and Efficient Di-

mensionality Reduction Algorithm for High-Dimensional Indexing, ICDE, 2003,

pp. 87–98.

177

[32] I.T. Jolliffe, Principal component analysis, Springer-Verlag, 1986.

[33] N. Koudas, B.C. Ooi, H.T. Shen, and A. Tung, LDC: Enabling Search By Partial

Distance In A Hyper-Dimensional Space, ICDE, 2004.

[34] J.H. Lee, D.H. Kim, and C.W. Chung, Multi-dimensional selectivity estimation

using compressed histogram information, SIGMOD, 1999, pp. 205–214.

[35] G.A. Miller, R. Beckwith, C. Fellbaum, D. Gross, and K.J. Miller, Introduction

to wordnet: An on-line lexical database, International Journal of Lexicography

(special issue) 3(4) (1990), 235–312.

[36] J. Morris and G. Hirst, Lexical cohesion computed by thesaural relation and an

indicator of the structure of text, Computational Linguistics 17(1) (1991), 22–48.

[37] S. Mukherjea, K. Hirata, and Y. Hara, Amore: A world wide web image retrieval

engine, World Wide Web 2(3) (1999), 115–132.

[38] Anne H.H. Ngu, Q.Z. Sheng, D.Q. Huynh, and R. Lei, Combining multi-visual

features for efficient indexing in a large image database, VLDB Journal 9(4)

(2001), 279–293.

[39] W. Niblack, R. Barber, and W. Equitz, The qibc project: querying images by

content using color, texture, and shape, Technical report, IBM RJ 9203(81511),

1993.

[40] B.C. Ooi, H.T. Shen, and C. Xia, Towards Efficient Multi-feature Based WWW

Image Retrieval, 4th Pacific-Rim Conference On Multimedia, 2003 (Invited Pa-

per).

[41] B.C. Ooi, K.L. Tan, T.S. Chua, and W. Hsu, Fast image retrieval using color-

spatial information, VLDB Journal 7(2) (1998), 115–128.

[42] B.C. Ooi, K.L. Tan, C. Yu, and S. Bressan, Indexing the edges: A simple and

yet efficient approach to high-dimensional indexing, PODS, 2000, pp. 166–174.

178

[43] C.R. Palmer and C. Faloutsos, Density biased sampling: an improved method for

data mining and clustering, SIGMOD, 2000, pp. 82–92.

[44] G. Pass, R. Zabin, and J. Miller, Computing images using color coherence vectors,

ACM Multimedia, 1996, pp. 65–73.

[45] Y. Sakurai, M. Yoshikawa, S. Uemura, and H. Kojima, The A-tree: An index

structure for high-dimensional spaces using relative approximation, VLDB, 2000,

pp. 516–526.

[46] S. Sclaro, L. Taycher, and M.L. Cascia, Imagerover: A content-based image

browser for the world wide web, IEEE Workshop on Content-Based Access of

Image and Video Libraries, 19967.

[47] G. Sheikholeslami, S. Chattajee, and A. Zhang, WaveCluster: a multi-resolution

clustering approach for Very Large Spatial Databases, VLDB, 1998.

[48] H.T. Shen, Finding similar images quickly using object shapes, ACM CIKM,

2001, pp. 498–506.

[49] H.T. Shen, B.C. Ooi, and K. L. Tan, Finding semantically related images in

WWW, ACM Multimedia, 2000, pp. 491–493.

[50] H.T. Shen, B.C. Ooi, and K.L. Tan, Giving meanings to WWW images, ACM

Multimedia, 2000, pp. 39–48.

[51] A. F. Smeaton and I. Quigley, Experiments on using semantic distances between

words in image caption retrieval, ACM SIGIR, 1996, pp. 174–180.

[52] J.R. Smith and S. F. Chang, Visually searching the web for content, IEEE Trans-

action on Multimedia 4(3) (1997), 12–20.

[53] J.R. Smith and S.F. Chang, Image indexing and retrieval based on color his-

tograms, ACM Multimedia, 1996, pp. 87–98.

179

[54] R.K. Srihari., Automatic indexing and content-based retrieval of captioned im-

ages, IEEE Computer 28(9) (1995), 49–56.

[55] K.K. Sung and T. Poggio, Example-based learning for view-based human face

detection, PAMI 20(1) (1998), 39–51.

[56] J.S. Vitter and M. Wang, Approximate computation of multidimensional aggre-

gates of sparse data using wavelets, SIGMOD, 1999, pp. 193–204.

[57] E.M. Voorhees, Query expansion using lexical-semantic relations, ACM SIGIR,

1994.

[58] J. Z. Wang, G. Wiederhold, O. Firschein, and S. X. Wei, Content-based image in-

dexing and searching using daubechies wavelets, Int’l Journal of Digital Libraries

1(4) (1998), 311–328.

[59] R. Weber, H. Schek, and S. Blott, A quantitative analysis and performance study

for similarity search methods in high dimensional spaces, VLDB, 1998, pp. 194–

205.

[60] S. K.M. Wong, W. Ziarko, V. V. Raghavan, and P. C.N. Wong, On modeling of

information retrieval concepts in vector spaces, TODS, 1987.

[61] C. Yu, High-dimensional indexing, Ph.D. thesis, Department of Computer Sci-

ence, National University of Singapore, 2001.

[62] C. Yu, B.C. Ooi, K.L. Tan, and H. V. Jagadish, Indexing the distance: An

efficient method to KNN processing, VLDB, 2001, pp. 166–174.

[63] T. Zhang, R. Ramakrishnan, and M. Livny, BIRCH: An Efficient Data Clustering

Method for Very Large Databases, SIGMOD, 1996, pp. 103–114.

[64] C. Zheng, W. Liu, C. Hu, M. Li, and H. Zhang, ifind: A web image search engine,

ACM SIGIR (demo), 2001, p. 450.

180

[65] C. Zheng, W. Liu, F. Zhang, M. Li, and H. Zhang, Web mining for web image re-

trieval, Journal of the American Society for Information Science and Technology

52(10) (2001).

