32 research outputs found

    Advanced Methods and Models for Employee Timetabling Problems

    Get PDF
    This thesis is focused on the design of efficient models and algorithms for employee timetabling problems (ETPs). From our point of view, there are two significant gaps in the current state of the art. The first one, also important in practice, concerns the ETP with strongly varying workforce demand. Unlike the classical Nurse Rostering Problem (NRP) this problem considers dozens of shift types that can cover the demand more precisely than early, late and night shift type used in NRP. In this work we call this problem the Employee Timetabling Problem with a High Diversity of shifts (ETPHD). It comes as no surprise that the exact methods like Integer Linear Programming are not able to find its solution in reasonable time. Therefore, a transformation of ETPHD based on mapping of shift types to shift kinds was proposed. The transformation allows one to design a multistage approach (MSA). The aim of the first two stages is to find an initial ETPHD solution, where a rough position of assigned shifts is determined. This proved to be substantial for the last stage of MSA, where the solution is consequently improved in terms of its quality. In order to verify the MSA performance, a cross evaluation methodology was proposed. It is based on the comparison of the performance provided by more approaches on more combinatorial problems. Therefore, real life ETPHD instances from an airport ground company and also standard benchmark NRP instances were considered. The experiments confirmed the better or equal performance of our approach in the most of the cases. The second gap in the literature is an absence of parallel algorithms for ETPs. We focused on the Nurse Rerostering Problem (NRRP) that appears when a disruption in the roster occurs, e.g., when one of the employees becomes sick. For this purpose, the parallel algorithm solving NRRP was proposed in order to shorten needed computational time. This algorithm was designed for a Graphics Processing Unit (GPU) offering a massive parallelization. To the best of our knowledge, this is the first usage of GPU for ETPs. The performance of the GPU parallel algorithm was tested on the real life NRRP benchmark instances and evaluated from two points of view. Firstly, the quality of the results was compared to the known results from the state of the art. Secondly, the speedup achieved by the parallel algorithm related to the sequential one was verified. In average, the parallel algorithm is able to provide the results of the same quality 15 times faster than the sequential one.Katedra řídicí technik

    Welcome to OR&S! Where students, academics and professionals come together

    Get PDF
    In this manuscript, an overview is given of the activities done at the Operations Research and Scheduling (OR&S) research group of the faculty of Economics and Business Administration of Ghent University. Unlike the book published by [1] that gives a summary of all academic and professional activities done in the field of Project Management in collaboration with the OR&S group, the focus of the current manuscript lies on academic publications and the integration of these published results in teaching activities. An overview is given of the publications from the very beginning till today, and some of the topics that have led to publications are discussed in somewhat more detail. Moreover, it is shown how the research results have been used in the classroom to actively involve students in our research activities

    Rescheduling rehabilitation sessions with answer set programming

    Get PDF
    The rehabilitation scheduling process consists of planning rehabilitation physiotherapy sessions for patients, by assigning proper operators to them in a certain time slot of a given day, taking into account several requirements and optimizations, e.g. patient’s preferences and operator’s work balancing. Being able to efficiently solve such problem is of upmost importance, in particular as a consequence of the COVID-19 pandemic that significantly increased rehabilitation’s needs. The problem has been recently successfully solved via a two-phase solution based on answer set programming (ASP). In this paper, we focus on the problem of rescheduling the rehabilitation sessions, which comes into play when the original schedule cannot be implemented, for reasons that involve the unavailability of operators and/or the absence of patients. We provide rescheduling solutions based on ASP for both phases, considering different scenarios. Results of experiments performed on real benchmarks, provided by ICS Maugeri, show that also the rescheduling problem can be solved in a satisfactory way. Finally, we present a web application that supports the usage of our solution

    Enhanced evolutionary algorithm with cuckoo search for nurse scheduling and rescheduling problem

    Get PDF
    Nurse shortage, uncertain absenteeism and stress are the constituents of an unhealthy working environment in a hospital. These matters have impact on nurses' social lives and medication errors that threaten patients' safety, which lead to nurse turnover and low quality service. To address some of the issues, utilizing the existing nurses through an effective work schedule is the best alternative. However, there exists a problem of creating undesirable and non-stable nurse schedules for nurses' shift work. Thus, this research attempts to overcome these challenges by integrating components of a nurse scheduling and rescheduling problem which have normally been addressed separately in previous studies. However, when impromptu schedule changes are required and certain numbers of constraints need to be satisfied, there is a lack of flexibility element in most of scheduling and rescheduling approaches. By embedding the element, this gives a potential platform for enhancing the Evolutionary Algorithm (EA) which has been identified as the solution approach. Therefore, to minimize the constraint violations and make little but attentive changes to a postulated schedule during a disruption, an integrated model of EA with Cuckoo Search (CS) is proposed. A concept of restriction enzyme is adapted in the CS. A total of 11 EA model variants were constructed with three new parent selections, two new crossovers, and a crossover-based retrieval operator, that specifically are theoretical contributions. The proposed EA with Discovery Rate Tournament and Cuckoo Search Restriction Enzyme Point Crossover (DᵣT_CSREP) model emerges as the most effective in producing 100% feasible schedules with the minimum penalty value. Moreover, all tested disruptions were solved successfully through preretrieval and Cuckoo Search Restriction Enzyme Point Retrieval (CSREPᵣ) operators. Consequently, the EA model is able to fulfill nurses' preferences, offer fair on-call delegation, better quality of shift changes for retrieval, and comprehension on the two-way dependency between scheduling and rescheduling by examining the seriousness of disruptions

    Decomposition-Based Integer Programming, Stochastic Programming, and Robust Optimization Methods for Healthcare Planning, Scheduling, and Routing Problems

    Get PDF
    RÉSUMÉ : Il existe de nombreuses applications de planification, d’ordonnancement et de confection de tournées dans les systèmes de santé. La résolution efficace de ces problèmes peut aider les responsables de la santé à fournir des services de meilleure qualité, en utilisant efficacement les ressources médicales disponibles. En raison de la nature combinatoire de ces problèmes, dans de nombreux cas, les algorithmes de programmation en nombres entiers standards dans les logiciels commerciaux de programmation mathématique tels que CPLEX et Gurobi ne peuvent pas résoudre efficacement les modèles correspondants. Dans cette thèse, nous étudions trois problèmes de planification, d’ordonnancement et de confection de tournées des soins de santé et proposons des approches à base de décomposition utilisant la programmation en nombres entiers, la programmation stochastique et une méthode d’optimisation robuste. Le premier article de cette thèse présente un problème intégré de planification et d’ordonnancement dans le cadre des salles d’opération. Cette situation implique d’optimiser l’ordonnancement et l’affectation des chirurgies aux différentes salles d’opération, sur un horizon de planification à court terme. Nous avons pris en compte les heures de travail quotidiennes maximales des chirurgiens, le temps de nettoyage obligatoire alloué lors du passage de cas infectieux à des cas non infectieux et le respect des dates limites des chirurgies. Nous avons aussi empêché le chevauchement des chirurgies effectuées par le même chirurgien. Nous avons formulé le problème en utilisant un modèle de programmation mathématique et développé un algorithme «branch-and-price-and-cut» basé sur un modèle de programmation par contraintes pour le sous-problème. Nous avons mis en place des règles de dominance et un algorithme de détection d’infaillibilité rapide. Cet algorithme, basé sur le problème du sac à dos multidimensionnel, nous permet d’améliorer l’efficacité du modèle de programmation de contraintes. Les résultats montrent que notre méthode présente un écart à l’optimum moyen de 2,81%, ce qui surpasse de manière significative la formulation mathématique compacte dans la littérature. Dans la deuxième partie de cette thèse, pour la première fois, nous avons étudié l’optimisation des problèmes de tournées de véhicules avec visites synchronisées (VRPS) en tenant compte de stochasticité des temps de déplacement et de service. En plus d’envisager un problème d’ordonnancement des soins de santé à domicile, nous introduisons un problème d’ordonnancement des salles d’opération avec des durées stochastiques qui est une nouvelle application de VRPS. Nous avons modélisé les VRPS qui ont des durées stochastiques en programmation stochastique à deux niveaux avec des variables entières dans les deux niveaux. L’avantage du modèle proposé est que, contrairement aux modèles déterministes de la littérature VRPS, il n’a pas de contraintes «big-M». Cet avantage entraine en contrepartie la présence d’un grand nombre de variables entières dans le second niveau. Nous avons prouvé que les contraintes d’intégralité sur les variables du deuxième niveau sont triviales ce qui nous permet d’appliquer l’algorithme «L-shaped» et son implémentation branch-and-and-cut pour résoudre le problème. Nous avons amélioré le modèle en développant des inégalités valides et une fonction de bornes inférieures. Nous avons analysé les sous-problèmes de l’algorithme en L et nous avons proposé une méthode de résolution qui est beaucoup plus rapide que les algorithmes de programmation linéaire standards. En outre, nous avons étendu notre modèle pour modéliser les VRPS avec des temps de déplacement et de service dépendant du temps. Les résultats de l’optimisation montrent que, pour le problème stochastique de soins à domicile, l’algorithme «branch-and-cut» résout à l’optimalité les exemplaires avec 15 patients et 10% à 30% de visites synchronisées. Il trouve également des solutions avec un écart à l’optimum moyen de de 3,57% pour les cas avec 20 patients. De plus l’algorithme «branch-and-cut» résout à l’optimalité les problèmes d’ordonnancement stochastique des salles d’opération avec 20 chirurgies. Ceci est une amélioration considérable par rapport à la littérature qui fait état de cas avec 11 chirurgies. En outre, la modélisation proposée pour le problème dépendant du temps trouve des solutions optimales pour d’une grande portion des exemplaires d’ordonnancement de soins de santé à domicile avec 30 à 60 patients et différents taux de visites synchronisées. Dans la dernière partie de cette thèse, nous avons étudié une catégorie de modèles d’optimisation robuste en deux étapes avec des variables entières du problème adversaire. Nous avons analysé l’importance de cette classe de problèmes lors de la modélisation à deux niveaux de problèmes de planification de ressources robuste en deux étapes où certaines tâches ont des temps d’arrivée et des durées incertains. Nous considérons un problème de répartition et d’affectation d’infirmières comme une application de cette classe de modèles robustes. Nous avons appliqué la décomposition de Dantzig-Wolfe pour exploiter la structure de ces modèles, ce qui nous a permis de montrer que le problème initial se réduit à un problème robuste à une seule étape. Nous avons proposé un algorithme Benders pour le problème reformulé. Étant donné que le problème principal et le sous-problème dans l’algorithme Benders sont des programmes à nombres entiers mixtes, il requiert une quantité de calcul importante à chaque itération de l’algorithme pour les résoudre de manière optimale. Par conséquent, nous avons développé de nouvelles conditions d’arrêt pour ces programmes à nombres entiers mixtes et fourni des preuves de convergence. Nous avons développé également un algorithme heuristique appelé «dual algorithm». Dans cette heuristique, nous dualisons la relaxation linéaire du problème adversaire dans le problème reformulé et générons des coupes itérativement pour façonner l’enveloppe convexe de l’ensemble d’incertitude. Nous avons combiné cette heuristique avec l’algorithme Benders pour créer un algorithme plus efficace appelé algorithme «Benders-dual algorithm». De nombreuses expériences de calcul sur le problème de répartition et d’affectation d’infirmières sont effectuées pour comparer ces algorithmes.----------ABSTRACT : There are many applications of planning, scheduling, and routing problems in healthcare systems. Efficiently solving these problems can help healthcare managers provide higher-quality services by making efficient use of available medical resources. Because of the combinatorial nature of these problems, in many cases, standard integer programming algorithms in commercial mathematical programming software such as CPLEX and Gurobi cannot solve the corresponding models effectively. In this dissertation, we study three healthcare planning, scheduling, and routing problems and propose decomposition-based integer programming, stochastic programming, and robust optimization methods for them. In the first essay of this dissertation, we study an integrated operating room planning and scheduling problem that combines the assignment of surgeries to operating rooms and scheduling over a short-term planning horizon. We take into account the maximum daily working hours of surgeons, prevent the overlapping of surgeries performed by the same surgeon, allow time for the obligatory cleaning when switching from infectious to noninfectious cases, and respect the surgery deadlines. We formulate the problem using a mathematical programming model and develop a branch-and-price-and-cut algorithm based on a constraint programming model for the subproblem. We also develop dominance rules and a fast infeasibility-detection algorithm based on a multidimensional knapsack problem to improve the efficiency of the constraint programming model. The computational results show that our method has an average optimality gap of 2.81% and significantly outperforms a compact mathematical formulation in the literature. As the second essay of this dissertation, for the first time, we study vehicle routing problems with synchronized visits (VRPS) and stochastic/time-dependent travel and service times. In addition to considering a home-health care scheduling problem, we introduce an operating room scheduling problem with stochastic durations as a novel application of VRPS. We formulate VRPS with stochastic times as a two-stage stochastic programming model with integer variables in both stages. An advantage of the proposed model is that, in contrast to the deterministic models in the VRPS literature, it does not have any big-M constraints. This advantage comes at the cost of a large number of second-stage integer variables. We prove that the integrality constraints on second-stage variables are trivial, and therefore we can apply the L-shaped algorithm and its branch-and-cut implementation to solve the problem. We enhance the model by developing valid inequalities and a lower bounding functional. We analyze the subproblems of the L-shaped algorithm and devise a solution method for them that is much faster than standard linear programming algorithms. Moreover, we extend our model to formulate VRPS with time-dependent travel and service times. Computational results show that, in the stochastic home-health care scheduling problem, the branch-and-cut algorithm optimally solves instances with 15 patients and 10% to 30% of synchronized visits. It also finds solutions with an average optimality gap of 3.57% for instances with 20 patients. Furthermore, the branch-and-cut algorithm ptimally solves stochastic operating room scheduling problems with 20 surgeries, a considerable improvement over the literature that reports on instances with 11 surgeries. In addition, the proposed formulation for the time-dependent problem solves a large portion of home-health care scheduling instances with 30 to 60 patients and different rates of synchronized visits to optimality. For the last essay of this dissertation, we also study a class of two-stage robust optimization models with integer adversarial variables. We discuss the importance of this class of problems in modeling two-stage robust resource planning problems where some tasks have uncertain arrival times and duration periods. We consider a two-stage nurse planning problem as an application of this class of robust models. We apply Dantzig-Wolfe decomposition to exploit the structure of these models and show that the original problem reduces to a singlestage robust problem. We propose a Benders algorithm for the reformulated single-stage problem. Since the master problem and subproblem in the Benders algorithm are mixed integer programs, it is computationally demanding to solve them optimally at each iteration of the algorithm. Therefore, we develop novel stopping conditions for these mixed integer programs and provide the relevant convergence proofs. We also develop a heuristic algorithm called dual algorithm. In this heuristic, we dualize the linear programming relaxation of the adversarial problem in the reformulated problem and iteratively generate cuts to shape the convex hull of the uncertainty set. We combine this heuristic with the Benders algorithm to create a more effective algorithm called Benders-dual algorithm. Extensive computational experiments on the nurse planning problem are performed to compare these algorithms

    Novel heuristic and metaheuristic approaches to the automated scheduling of healthcare personnel

    Get PDF
    This thesis is concerned with automated personnel scheduling in healthcare organisations; in particular, nurse rostering. Over the past forty years the nurse rostering problem has received a large amount of research. This can be mostly attributed to its practical applications and the scientific challenges of solving such a complex problem. The benefits of automating the rostering process include reducing the planner’s workload and associated costs and being able to create higher quality and more flexible schedules. This has become more important recently in order to retain nurses and attract more people into the profession. Better quality rosters also reduce fatigue and stress due to overwork and poor scheduling and help to maximise the use of leisure time by satisfying more requests. A more contented workforce will lead to higher productivity, increased quality of patient service and a better level of healthcare. Basically stated, the nurse rostering problem requires the assignment of shifts to personnel to ensure that sufficient employees are present to perform the duties required. There are usually a number of constraints such as working regulations and legal requirements and a number of objectives such as maximising the nurses working preferences. When formulated mathematically this problem can be shown to belong to a class of problems which are considered intractable. The work presented in this thesis expands upon the research that has already been conducted to try and provide higher quality solutions to these challenging problems in shorter computation times. The thesis is broadly structured into three sections. 1) An investigation into a nurse rostering problem provided by an industrial collaborator. 2) A framework to aid research in nurse rostering. 3) The development of a number of advanced algorithms for solving highly complex, real world problems

    Nursing workload balancing: Lean healthcare, analytics and optimization in two Latin American University Hospitals

    Get PDF
    91 páginasIn most Latin American hospitals, the workload assignment of healthcare workers is a crucial process. These strategies seek to improve the level of patient care and safety while avoiding incurring unnecessary costs by hiring and maintaining excessive staff. The distribution of activities falls to the chief nurses in the hospital, taking as criteria for allocation the number of patients rather than the complexity of care that each individual carries. Specifically for the inpatient area and for nursing professionals, it is complex to determine an adequate distribution of human resources, considering the diagnosis of the patients and the number of tasks that a nursing professional must carry out throughout the day. Therefore, this work proposes the development of a strategy and a load-balancing model based on lean healthcare theory, analytics, and mathematical optimization, so that working hours do not result in the generation of stress and the presence of burnout in nurses. Likewise, mathematical modelling maximizes the use of the nursing staff’s capacity, generating awareness based on the integration of continuous improvement theories so that the clinics can be updated to technological trends. Finally, this project is part of a macro-project for the development of technologies that support hospital nursing processes, carried out by the Universidad de La Sabana Clinic in Colombia and the Universidad de los Andes Clinic in Chile, so the results of this project impact two clinics in Latin America.En la mayoría de los hospitales latinoamericanos, la asignación de carga laboral al personal de la salud es un proceso de vital importancia. Estas estrategias buscan mejorar el nivel de atención al paciente y la seguridad, sin tener que incurrir en gastos innecesarios por la contratación y manutención de un personal excesivo. Esto conlleva a la distribución de las actividades recae en los jefes de las áreas en el hospital, tomando como criterios de asignación la cantidad de pacientes y no la complejidad del cuidado que acarrea cada individuo. Específicamente para el área de hospitalización y para los profesionales de enfermería, resulta complejo determinar una distribución adecuada del recurso humano teniendo en cuenta el diagnóstico de los pacientes y la cantidad de tareas que debe realizar un profesional de enfermería a lo largo de su jornada. Por ello, este trabajo propone el desarrollo de una estrategia y un modelo de balanceo de carga a partir de la teoría lean healthcare, analítica y optimización matemática, de tal forma que las jornadas laborales no resulten en la generación de estrés y la presencia de burnout en los enfermeros. Así mismo, se logra maximizar el aprovechamiento de la capacidad del personal de enfermería, generando bases de concientización sobre la integración de teorías de mejora continua para que las clínicas puedan actualizarse a las tendencias tecnológicas. Por último, este proyecto se enmarcó en un macroproyecto para el desarrollo de tecnologías que soporten los procesos hospitalarios de enfermería, llevado a cabo por la Clínica Universidad de La Sabana en Colombia y la Clínica Universidad de los Andes en Chile, por lo que los resultados de este proyecto impactan dos clínicas en Latinoamérica.Maestría en Diseño y Gestión de ProcesosMagíster en Diseño y Gestión de Proceso

    Novel heuristic and metaheuristic approaches to the automated scheduling of healthcare personnel

    Get PDF
    This thesis is concerned with automated personnel scheduling in healthcare organisations; in particular, nurse rostering. Over the past forty years the nurse rostering problem has received a large amount of research. This can be mostly attributed to its practical applications and the scientific challenges of solving such a complex problem. The benefits of automating the rostering process include reducing the planner’s workload and associated costs and being able to create higher quality and more flexible schedules. This has become more important recently in order to retain nurses and attract more people into the profession. Better quality rosters also reduce fatigue and stress due to overwork and poor scheduling and help to maximise the use of leisure time by satisfying more requests. A more contented workforce will lead to higher productivity, increased quality of patient service and a better level of healthcare. Basically stated, the nurse rostering problem requires the assignment of shifts to personnel to ensure that sufficient employees are present to perform the duties required. There are usually a number of constraints such as working regulations and legal requirements and a number of objectives such as maximising the nurses working preferences. When formulated mathematically this problem can be shown to belong to a class of problems which are considered intractable. The work presented in this thesis expands upon the research that has already been conducted to try and provide higher quality solutions to these challenging problems in shorter computation times. The thesis is broadly structured into three sections. 1) An investigation into a nurse rostering problem provided by an industrial collaborator. 2) A framework to aid research in nurse rostering. 3) The development of a number of advanced algorithms for solving highly complex, real world problems

    Dimensionamento e escalonamento de pessoal em Call Centre

    Get PDF
    Mestrado em Métodos Quantitativos para a Decisão Económica e EmpresarialOs problemas de escalonamento de pessoal têm sido abundantemente abordados ao longo do tempo, devido ao peso elevado dos custos com pessoal na estrutura de uma organização. O projeto em desenvolvimento assenta na resolução de um problema de escalonamento com aplicação num call centre na área da saúde e visa a minimização dos custos incorridos e a consideração das preferências dos colaboradores em termos de dias e turnos de trabalho. O problema consiste na alocação dos seus colaboradores aos turnos existentes, de forma a cobrir a procura (volume de chamadas recebidas), respeitando as normas de funcionamento da organização e a legislação laboral. Na resolução do problema, adaptaram-se dois modelos: um modelo de staffing e um de rostering. O primeiro pretende determinar o número de colaboradores necessários por turno e dia da semana de acordo com a variabilidade da procura. As soluções deste modelo representam os inputs para o segundo, onde se distribuem os colaboradores pelos diferentes turnos e dias de trabalho. Ambos são formalizados em programação linear inteira e resolvidos através de métodos exatos, com recurso ao OpenSolver. Os modelos são escritos por meio de macros em VBA. Os modelos foram testados através de instâncias de pequenas dimensões, com diferentes níveis de procura, número e distribuição de turnos. Perante os resultados obtidos foi possível concluir que a distribuição dos enfermeiros pelos turnos varia consoante o número de turnos diários e o nível de procura considerado, dependendo também do número mínimo de enfermeiros a respeitar em cada turno de trabalho.Staff scheduling problems have been abundantly addressed over time, from diverse perspectives. This can be justified by the high weight of personnel costs in the structure of an organization. The project under development is based on the resolution of a scheduling problem applied to a call center, aiming both to minimize the costs incurred and to consider the preferences of employees in terms of days and shifts. The problem aims to allocate employees to existing shifts in way to cover demand, i.e. the volume of calls received, respecting the organization's operating norms and labor legislation. In the problem solving, two models were adapted: a staffing model and a rostering model. The first one determines the number of employees required per shift and day of the week according to demand variability. The solutions of this model represent the inputs to the second, where the employees are distributed through different shifts and working days. Both are formalized in integer linear programming and solved through exact methods, using OpenSolver/Excel. The templates are generated by means of macros written in VBA. The models were tested using small instances with different levels of demand, number and distribution of shifts. From the results obtained it was possible to conclude that the distribution of nurses by work shifts varies with the number of existing daily shifts and the level of demand considered and depends on the minimum number of nurses to be respected in each hour and work shift.info:eu-repo/semantics/publishedVersio
    corecore