140 research outputs found

    Swarm intelligence and evolutionary computation approaches for 2D face recognition: a systematic review

    Get PDF
    A wide range of approaches for 2D face recognition (FR) systems can be found in the literature due to its high applicability and issues that need more investigation yet which include occlusion, variations in scale, facial expression, and illumination. Over the last years, a growing number of improved 2D FR systems using Swarm Intelligence and Evolutionary Computing algorithms have emerged. The present work brings an up-to-date Systematic Literature Review (SLR) concerning the use of Swarm Intelligence and Evolutionary Computation applied in 2D FR systems. Also, this review analyses and points out the key techniques and algorithms used and suggests some directions for future research

    On the role of metaheuristic optimization in bioinformatics

    Get PDF
    Metaheuristic algorithms are employed to solve complex and large-scale optimization problems in many different fields, from transportation and smart cities to finance. This paper discusses how metaheuristic algorithms are being applied to solve different optimization problems in the area of bioinformatics. While the text provides references to many optimization problems in the area, it focuses on those that have attracted more interest from the optimization community. Among the problems analyzed, the paper discusses in more detail the molecular docking problem, the protein structure prediction, phylogenetic inference, and different string problems. In addition, references to other relevant optimization problems are also given, including those related to medical imaging or gene selection for classification. From the previous analysis, the paper generates insights on research opportunities for the Operations Research and Computer Science communities in the field of bioinformatics

    Using MapReduce Streaming for Distributed Life Simulation on the Cloud

    Get PDF
    Distributed software simulations are indispensable in the study of large-scale life models but often require the use of technically complex lower-level distributed computing frameworks, such as MPI. We propose to overcome the complexity challenge by applying the emerging MapReduce (MR) model to distributed life simulations and by running such simulations on the cloud. Technically, we design optimized MR streaming algorithms for discrete and continuous versions of Conway’s life according to a general MR streaming pattern. We chose life because it is simple enough as a testbed for MR’s applicability to a-life simulations and general enough to make our results applicable to various lattice-based a-life models. We implement and empirically evaluate our algorithms’ performance on Amazon’s Elastic MR cloud. Our experiments demonstrate that a single MR optimization technique called strip partitioning can reduce the execution time of continuous life simulations by 64%. To the best of our knowledge, we are the first to propose and evaluate MR streaming algorithms for lattice-based simulations. Our algorithms can serve as prototypes in the development of novel MR simulation algorithms for large-scale lattice-based a-life models.https://digitalcommons.chapman.edu/scs_books/1014/thumbnail.jp

    Multi-Objective Optimization in Metabolomics/Computational Intelligence

    Get PDF
    The development of reliable computational models for detecting non-linear patterns encased in throughput datasets and characterizing them into phenotypic classes has been of particular interest and comprises dynamic studies in metabolomics and other disciplines that are encompassed within the omics science. Some of the clinical conditions that have been associated with these studies include metabotypes in cancer, in ammatory bowel disease (IBD), asthma, diabetes, traumatic brain injury (TBI), metabolic syndrome, and Parkinson's disease, just to mention a few. The traction in this domain is attributable to the advancements in the procedures involved in 1H NMR-linked datasets acquisition, which have fuelled the generation of a wide abundance of datasets. Throughput datasets generated by modern 1H NMR spectrometers are often characterized with features that are uninformative, redundant and inherently correlated. This renders it di cult for conventional multivariate analysis techniques to e ciently capture important signals and patterns. Therefore, the work covered in this research thesis provides novel alternative techniques to address the limitations of current analytical pipelines. This work delineates 13 variants of population-based nature inspired metaheuristic optimization algorithms which were further developed in this thesis as wrapper-based feature selection optimizers. The optimizers were then evaluated and benchmarked against each other through numerical experiments. Large-scale 1H NMR-linked datasets emerging from three disease studies were employed for the evaluations. The rst is a study in patients diagnosed with Malan syndrome; an autosomal dominant inherited disorder marked by a distinctive facial appearance, learning disabilities, and gigantism culminating in tall stature and macrocephaly, also referred to as cerebral gigantism. Another study involved Niemann-Pick Type C1 (NP-C1), a rare progressive neurodegenerative condition marked by intracellular accrual of cholesterol and complex lipids including sphingolipids and phospholipids in the endosomal/lysosomal system. The third study involved sore throat investigation in human (also known as `pharyngitis'); an acute infection of the upper respiratory tract that a ects the respiratory mucosa of the throat. In all three cases, samples from pathologically-con rmed cohorts with corresponding controls were acquired, and metabolomics investigations were performed using 1H NMR technique. Thereafter, computational optimizations were conducted on all three high-dimensional datasets that were generated from the disease studies outlined, so that key biomarkers and most e cient optimizers were identi ed in each study. The clinical and biochemical signi cance of the results arising from this work were discussed and highlighted

    Advances in Artificial Intelligence: Models, Optimization, and Machine Learning

    Get PDF
    The present book contains all the articles accepted and published in the Special Issue “Advances in Artificial Intelligence: Models, Optimization, and Machine Learning” of the MDPI Mathematics journal, which covers a wide range of topics connected to the theory and applications of artificial intelligence and its subfields. These topics include, among others, deep learning and classic machine learning algorithms, neural modelling, architectures and learning algorithms, biologically inspired optimization algorithms, algorithms for autonomous driving, probabilistic models and Bayesian reasoning, intelligent agents and multiagent systems. We hope that the scientific results presented in this book will serve as valuable sources of documentation and inspiration for anyone willing to pursue research in artificial intelligence, machine learning and their widespread applications

    Increasing Accuracy Performance through Optimal Feature Extraction Algorithms

    Get PDF
    This research developed models and techniques to improve the three key modules of popular recognition systems: preprocessing, feature extraction, and classification. Improvements were made in four key areas: processing speed, algorithm complexity, storage space, and accuracy. The focus was on the application areas of the face, traffic sign, and speaker recognition. In the preprocessing module of facial and traffic sign recognition, improvements were made through the utilization of grayscaling and anisotropic diffusion. In the feature extraction module, improvements were made in two different ways; first, through the use of mixed transforms and second through a convolutional neural network (CNN) that best fits specific datasets. The mixed transform system consists of various combinations of the Discrete Wavelet Transform (DWT) and Discrete Cosine Transform (DCT), which have a reliable track record for image feature extraction. In terms of the proposed CNN, a neuroevolution system was used to determine the characteristics and layout of a CNN to best extract image features for particular datasets. In the speaker recognition system, the improvement to the feature extraction module comprised of a quantized spectral covariance matrix and a two-dimensional Principal Component Analysis (2DPCA) function. In the classification module, enhancements were made in visual recognition through the use of two neural networks: the multilayer sigmoid and convolutional neural network. Results show that the proposed improvements in the three modules led to an increase in accuracy as well as reduced algorithmic complexity, with corresponding reductions in storage space and processing time

    Study of Voltage Stability Using Intelligent Techniques

    Get PDF
    The continuous increase in the demand of active and reactive power in the power system network has limits as scope for network expansion many a times poses serious problems. The power system must be able to maintain acceptable voltage at all nodes in the system at a normal operating condition as well as post disturbance periods. Voltage instability is a serious issue in the system due to progressive and uncontrollable fall in voltage level. The research presented in this thesis is concerned with several facets of the voltage stability problem. The focus of this thesis is to improve the voltage stability of the system. The sensitivity analysis plays an important role as it monitors the nearness of the system towards the voltage collapse situation. The conventional offline data as well as the online data are processed to determine the weak areas are determined. As the system is having nonlinearities it is governed by differential and algebraic equations which are in turn solved by nonlinear techniques. In this work the system is analysed with steady state model. Once the system is represented in the form of differential equations and standard form is achieved advanced control techniques can be easily applied for its solution. The main focus of this thesis is aimed at placing FACTS device known as the Static compensator (STATCOM) at weak location of the system network to address the problem of voltage instability. With its unique capability to control reactive power flow in a transmission line as well as voltage at the bus where it is connected, this device significantly contribute to improve the power system. These features turn out to be even more prominent because STATCOM can allow loading of the transmission lines close to their thermal limits, forcing the power to flow through the desired paths. This opens up new avenues for the much needed flexibility in order to satisfy the demands. The voltage instability is improved with reactive power supports of optimal values at optimal locations. Also renewable energy sources offer better option than the conventional types and hence attempt has been made to include the wind energy for this study the wind generator is considered delivering constant output and is assumed as a substitute to the conventional power generators. Finally the system voltage stability is studied with design of a controller based on probabilistic neural network. The developed controller has provided much better performance under wide variations in the system loads and contingencies and shown a significant improvement in the static performance of the system. The proposed controller is tested under different scenarios of line outages and the load increase and found to be more effective than the existing ones. The research has revealed a veritable cornucopia of research opportunities, some of which are discussed in the thesis

    Evolving machine learning and deep learning models using evolutionary algorithms

    Get PDF
    Despite the great success in data mining, machine learning and deep learning models are yet subject to material obstacles when tackling real-life challenges, such as feature selection, initialization sensitivity, as well as hyperparameter optimization. The prevalence of these obstacles has severely constrained conventional machine learning and deep learning methods from fulfilling their potentials. In this research, three evolving machine learning and one evolving deep learning models are proposed to eliminate above bottlenecks, i.e. improving model initialization, enhancing feature representation, as well as optimizing model configuration, respectively, through hybridization between the advanced evolutionary algorithms and the conventional ML and DL methods. Specifically, two Firefly Algorithm based evolutionary clustering models are proposed to optimize cluster centroids in K-means and overcome initialization sensitivity as well as local stagnation. Secondly, a Particle Swarm Optimization based evolving feature selection model is developed for automatic identification of the most effective feature subset and reduction of feature dimensionality for tackling classification problems. Lastly, a Grey Wolf Optimizer based evolving Convolutional Neural Network-Long Short-Term Memory method is devised for automatic generation of the optimal topological and learning configurations for Convolutional Neural Network-Long Short-Term Memory networks to undertake multivariate time series prediction problems. Moreover, a variety of tailored search strategies are proposed to eliminate the intrinsic limitations embedded in the search mechanisms of the three employed evolutionary algorithms, i.e. the dictation of the global best signal in Particle Swarm Optimization, the constraint of the diagonal movement in Firefly Algorithm, as well as the acute contraction of search territory in Grey Wolf Optimizer, respectively. The remedy strategies include the diversification of guiding signals, the adaptive nonlinear search parameters, the hybrid position updating mechanisms, as well as the enhancement of population leaders. As such, the enhanced Particle Swarm Optimization, Firefly Algorithm, and Grey Wolf Optimizer variants are more likely to attain global optimality on complex search landscapes embedded in data mining problems, owing to the elevated search diversity as well as the achievement of advanced trade-offs between exploration and exploitation

    Feature Selection for Document Classification : Case Study of Meta-heuristic Intelligence and Traditional Approaches

    Get PDF
    Doctor of Philosophy (Computer Engineering), 2020Nowadays, the culture for accessing news around the world is changed from paper to electronic format and the rate of publication for newspapers and magazines on website are increased dramatically. Meanwhile, text feature selection for the automatic document classification (ADC) is becoming a big challenge because of the unstructured nature of text feature, which is called “multi-dimension feature problem”. On the other hand, various powerful schemes dealing with text feature selection are being developed continuously nowadays, but there still exists a research gap for “optimization of feature selection problem (OFSP)”, which can be looked for the global optimal features. Meanwhile, the capacity of meta-heuristic intelligence for knowledge discovery process (KDP) is also become the critical role to overcome NP-hard problem of OFSP by providing effective performance and efficient computation time. Therefore, the idea of meta-heuristic based approach for optimization of feature selection is proposed in this research to search the global optimal features for ADC. In this thesis, case study of meta-heuristic intelligence and traditional approaches for feature selection optimization process in document classification is observed. It includes eleven meta-heuristic algorithms such as Ant Colony search, Artificial Bee Colony search, Bat search, Cuckoo search, Evolutionary search, Elephant search, Firefly search, Flower search, Genetic search, Rhinoceros search, and Wolf search, for searching the optimal feature subset for document classification. Then, the results of proposed model are compared with three traditional search algorithms like Best First search (BFS), Greedy Stepwise (GS), and Ranker search (RS). In addition, the framework of data mining is applied. It involves data preprocessing, feature engineering, building learning model and evaluating the performance of proposed meta-heuristic intelligence-based feature selection using various performance and computation complexity evaluation schemes. In data processing, tokenization, stop-words handling, stemming and lemmatizing, and normalization are applied. In feature engineering process, n-gram TF-IDF feature extraction is used for implementing feature vector and both filter and wrapper approach are applied for observing different cases. In addition, three different classifiers like J48, Naïve Bayes, and Support Vector Machine, are used for building the document classification model. According to the results, the proposed system can reduce the number of selected features dramatically that can deteriorate learning model performance. In addition, the selected global subset features can yield better performance than traditional search according to single objective function of proposed model

    Performance assessment and optimisation of a novel guideless irregular dew point cooler using artificial intelligence

    Get PDF
    Air Conditioners (ACs) are a vital need in modern buildings to provide comfortable indoor air for the occupants. Several alternatives for the traditional coolers are introduced to improve the cooling efficiency but among them, Evaporative Coolers (ECs) absorbed more attention owing to their intelligible structure and high efficiency. ECs are categorized into two types, i.e., Direct Evaporative Coolers (DECs) and Indirect Evaporative Coolers (IECs). Continuous endeavours in the improvement of the ECs resulted in development of Dew Point Coolers (DPCs) which enable the supply air to reach the dew point temperature. The main innovation of DPCs relies on invention of a M-cycle Heat and Mass Exchanger (HMX) which contributes towards improvement of the ECs’ efficiency by up to 30%. A state-of-the-art counter flow DPC in which the flat plates in traditional HMXs are replaced by the corrugated plates is called Guideless Irregular DPC (GIDPC). This technology has 30-60% more cooling efficiency compared to the flat plate HMX in traditional DPCs.Owing to the empirical success of the Artificial Intelligence (AI) in different fields and enhanced importance of Machine Learning (ML) models, this study pioneers in developing two ML models using Multiple Polynomial Regression (MPR), and Deep Neural Network (DNN) methods, and three Multi Objective Evolutionary Optimisation (MOEO) models using Genetic Algorithms (GA), Particle Swarm Optimisation (PSO), and a novel bio-inspired algorithm, i.e., Slime Mould Algorithm (SMA), for the performance prediction and optimisation of the GIDPC in all possible operating climates. Furthermore, this study pioneers in developing an explainable and interpretable DNN model for the GIDPC. To this end, a game theory-based SHapley Additive exPlanations (SHAP) method is used to interpret contribution of the operating conditions on performance parameters.The ML models, take the intake air characteristic as well as main operating and design parameters of the HMX as inputs of the ML models to predict the GIDPC’s performance parameters, e.g., cooling capacity, coefficient of performance (COP), thermal efficiencies. The results revealed that both models have high prediction accuracies where MPR performs with a maximum average error of 1.22%. In addition, the Mean Square Error (MSE) of the selected DNN model is only 0.04. The objectives of the MOEO models are to simultaneously maximise the cooling efficiency and minimise the construction cost of the GIDPC by determining the optimum values of the selected decision variables.The performance of the optimised GIDPCs is compared in a deterministic way in which the comparisons are carried out in diverse climates in 2020 and 2050 in which the hourly future weather data are projected using a high-emission scenario defined by Intergovernmental Panel for Climate Change (IPCC). The results revealed that the hourly COP of the optimised systems outperforms the base design. Moreover, although power consumption of all systems increases from 2020 to 2050, owing to more operating hours as a result of global warming, but power savings of up to 72%, 69.49%, 63.24%, and 69.21% in hot summer continental, arid, tropical rainforest and Mediterranean hot summer climates respectively, can be achieved compared to the base system when the systems run optimally
    corecore