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Summary 

 

The continuous increase in the demand of active and reactive power in the power system 

network has limits as scope for network expansion many a times poses serious problems. The 

power system must be able to maintain acceptable voltage at all nodes in the system at a normal 

operating condition as well as post disturbance periods. Voltage instability is a serious issue in 

the system due to progressive and uncontrollable fall in voltage level. The research presented in 

this thesis is concerned with several facets of the voltage stability problem. 

 

The focus of this thesis is to improve the voltage stability of the system. The sensitivity 

analysis plays an important role as it monitors the nearness of the system towards the voltage 

collapse situation. The conventional offline data as well as the online data are processed to 

determine the weak areas are determined. As the system is having nonlinearities it is governed by 

differential and algebraic equations which are in turn solved by nonlinear techniques. 

 

In this work the system is analysed with steady state model. Once the system is represented 

in the form of differential equations and standard form is achieved advanced control techniques 

can be easily applied for its solution. 

 

The main focus of this thesis is aimed at placing FACTS device known as the Static 

compensator (STATCOM) at weak location of the system network to address the problem of 

voltage instability. With its unique capability to control reactive power flow in a transmission 

line as well as voltage at the bus where it is connected, this device significantly  contribute to 

improve the power system. These features turn out to be even more prominent because 

STATCOM can allow loading of the transmission lines close to their thermal limits, forcing the 

power to flow through the desired paths. This opens up new avenues for the much needed 

flexibility in order to satisfy the demands. The voltage instability is improved with reactive 

power supports of optimal values at optimal locations.  

Also renewable energy sources offer better option than the conventional types and hence 

attempt has been made to include the wind energy for this study the wind generator is considered 

delivering constant output and is assumed as a substitute to the conventional power generators. 
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Finally the system voltage stability is studied with design of a controller based on 

probabilistic neural network. The developed controller has provided much better performance 

under wide variations in the system loads and contingencies and shown a significant 

improvement in the static performance of the system. The proposed controller is tested under 

different scenarios of line outages and the load increase and found to be more effective than the 

existing ones. The research has revealed a veritable cornucopia of research opportunities, some 

of which are discussed in the thesis. 
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INTRODUCTION 
 

 

 

 

 

1.0. Introduction 

 

With a growing world economy, there has been an ever increasing demand in 

generation of electrical power, facilities and interconnections to serve a widely dispersed 

load. Power system stability has been acknowledged as a key problem for secure system 

operation ever since 1926 [1]. Several numbers of blackouts affecting integrated system have 

resulted in large scale load loss and are difficult to restore [2-6]. The reason of unreliable 

power has been broadly attributed to inadequacy in reserve where as the security is affected 

more by insufficient as well as improper controls. Subsequently, these factors lead to 

instability. Moreover, as the existing corrective control mechanisms sometimes fail to the 

cope up with the increase in numbers of operating constraints, the system may start to operate 

in an insecure manner. The system security and reliability [7, 8] gets compromised in the 

process, and as a result problems in connection with the stability of the system arise. The 

operation and control of power system has become a major issue in present scenario when 

there is an ever increasing demand of load with restricted scope in generation and 

transmission system expansion. Traditionally, the stability means maintaining synchronous 

operation of the alternators with the system. Different types of system instability have come 

into view as power systems undergo changes through ongoing growth in interconnections, 

use of latest technologies and controls, and the enlarged operation in highly stressed 

circumstances [9]. As generation and transmission units need to operate at critical limits, 

voltage stability problems may take place in power system once there is an increase in the 

load in requirement of load. Sometimes due to voltage instability problems, major blackouts 

may arise in a considerable part of a system. In fact, out of many cases of voltage instability 

or voltage collapses, 12 cases of great blackouts were reported all over the world between 

1977 and 2012. The most recent blackout in India affected northern states from the country's 

Eastern border with Myanmar to its western border with Pakistan in the year 2012 [10]. 

However, voltage instability initiates in a local network and gradually to the whole system 

which leads the system to voltage collapse. The diagnosis of the problems of stability has 
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originated by understanding the reasons which affect the generator power angle, its ability to 

maintain synchronous operation and constant voltage. The power system is a highly nonlinear 

system which is operating in a constantly varying environment of loads, generator outputs 

and key operating parameters [11]. Further, with continuing growth in power demand, it has 

become necessary to the use fast and efficient technologies for stable operation and better 

controls. Apart from more complex decentralized control, a coordinated operation of many 

controllers may be beneficial in enhancing the corrective capacities of the system to alleviate 

voltage instability [12]. It is essential to study the definition and classification of power 

system stability in brief for a meaningful practical analysis of power system stability 

problems. 

 

1.2. Definition of Power System Stability 

 

The power system stability can be defined as Power system stability is the ability of 

an electric power system, for a given initial operating condition, to recover to a state of 

operating equilibrium after being subjected to a physical disturbance [13]. The power system 

stability can be classified into three types as explained in the following section. 

 

1.3. Classification of Power System Stability 

 

Similar to the definition of stability, its classification yet again depends on type of study. 

However, essentially the power system stability can be classified into three main categories 

as mentioned below: 

 

i. Rotor angle stability 

ii. Frequency stability 

iii. Voltage stability 

 

This work primarily focuses on the problem of voltage stability; therefore other categories of 

stabilities are discussed very briefly as follows. 

 

1.3.1. Rotor angle stability 

 

Rotor angle stability refers to the ability of synchronous machines of an 

interconnected power system to remain in synchronism even after being subjected to an 
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interruption [12]. In steady-state conditions, there is balance between the input mechanical 

torque and the output electromagnetic torque of every generator, and the speed continues to 

be constant. If the system is perturbed, this equilibrium is disturbed, resulting in speeding up 

or deceleration of the rotors of the machines. This tends to decrease the speed difference and 

hence the angular separation. The power-angle relationship is nonlinear and the response of 

the system differs according to different types of disturbances. The rotor angle stability is 

categorized as shown below: 

 

i. Small-disturbance rotor angle stability 

ii. Large-disturbance rotor angle stability 

 

 1.3.1.1. Small disturbance rotor angle stability 

 

The small disturbance rotor angle stability is the ability of the power system to sustain 

synchronism under small disturbances [14]. In modern power systems, small-disturbance 

rotor angle stability problem is usually related to insufficient damping of oscillations. The 

time frame of interest is usually within 10 to 20 seconds subsequent to a disturbance. 

 

1.3.1.2. Large-disturbance rotor angle stability 

 

Large disturbance rotor angle stability is mainly the ability of the power system to 

maintain synchronism after being subjected to a severe disturbance, like a short circuit on a 

transmission line [15]. The time frame of interest in transient stability studies is usually 3 to 5 

seconds after the disturbance [16]. It may extend 10 to 20 seconds for very large systems with 

prevailing inter-area oscillations. 

 

1.3.2. Frequency Stability 

 

Frequency stability means the ability of a power system to maintain constant 

frequency subsequent to a major disturbance resulting in a considerable imbalance between 

load and generation [17]. Generally, frequency stability problems are associated with poor 

response of tools, poor management of control and protection tools, or scarce reactive power 

generation reserve. As identified in Figure 1.1, frequency stability may be a short-term 

phenomenon or a long-term phenomenon.  
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Figure 1.1. Classification of power system stability. 

 

1.3.3. Voltage Stability 

 

 Voltage stability is the ability of a power system to maintain balanced voltages at all 

buses in the system even after being subjected to a disturbance from a certain initial operating 

condition [13]. It is the ability to maintain equilibrium between the demand and supply of 

both active and reactive power loads in the power system. Instability occurs in the form of a 

sudden fall or rise of voltages at some buses. A possible effect of voltage instability is loss of 

load in an area, or tripping of transmission lines leading to cascading outages. A major factor 

of causing voltage instability is the voltage drop due to real and reactive power flow in 

inductive reactance of the transmission system, which confines the capability of the 

transmission system for power transmission and voltage support [18]. The facilities of power 

transmission and voltage support are limited. The problem of voltage instability makes the 

system vulnerable with increase in reactive power demand and control mechanism of 

converter, transformer tap-changer, shunt reactors and or capacitors etc. [19]. As in the case 

of rotor angle stability, voltage stability can also be classified into two sub-categories as : 

 

i. Large-disturbance voltage stability 

ii. Small-disturbance voltage stability 

 

1.3.3.1. Large-disturbance voltage stability 

 

The large-disturbance voltage stability implies the ability of the system to maintain 

stable voltages even after being subjected to large disturbances like faults in the system, loss 
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of generation or any network contingencies. This ability is determined by load characteristics, 

and the relations between both continuous and separate controls and security schemes. The 

study period of interest may widen from a few seconds to tens of minutes.  

 

1.3.3.2. Small-disturbance voltage stability 

 

It indicates the ability of the system to maintain stable voltages when subjected to 

small changes in system load [12]. This form of stability is subjective to the characteristics of 

loads, continuous as well as distinct controls at a given point of time. This concept is useful 

in determining how the system voltages will respond to small system changes instantly. For 

analysis, system equations can be linearized with proper assumptions, thus allowing 

computation of important sensitivity information helpful in distinguishing factors which help 

maintaining stability. However, the linearization cannot make up nonlinear effects such as tap 

changer controls. Therefore, a combination of linear and nonlinear analyzes are used in a 

harmonizing manner [20]. As illustrated above, voltage instability problems may last for a 

few seconds to tens of minutes. Hence, voltage stability may be either a short-term or a long-

term incident as depicted in Figure 1.1. 

 

Short-term voltage stability includes dynamics of fast acting load apparatus like 

induction motors, loads with electronic controller, and HVDC converters. The study period is 

of several seconds, and analysis requires solution of proper system differential equations, this 

is similar to analysis of rotor angle stability. Dynamic modeling of loads is often essential 

[21]. In contrast to angle stability, short circuits close to loads are vital in the case of voltage 

stability. Long-term voltage stability involves slower acting tools like-changing transformers, 

loads with thermostatic controller as well as generator current limiters. The study last for 

many minutes, and simulations required for analysis of system dynamic aspect [22].  

 

1.4. Causes of Voltage Instability  

The various causes of voltage instability [23] are studied and explained as follows: 

1.4.1. Generator breakdown 

 

Some of the bulky generating units operating close to the load centers will be out of 

service due to abnormal operation. As a result the reactive power supply becomes deficient 

and few transmission lines become heavily loaded in order to carry sufficient reactive power 

to critical areas of the grid. 
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1.4.2. Line outage 

 

As the transmission lines are operating under heavily loaded condition for economical 

operation, there is a chance of loss of this transmission line due to a fault. Thus it results in 

further loading on the rest of the lines and the reactive power necessity in lines rises as 

reactive power demand increases rapidly for loads above surge impedance loading. Thus, 

reactive power demand boosts in the system. 

 

1.4.3. Consumption of reactive power by the motors used in the industries 

 

The operating voltage level at the load end decreases due to increase in reactive power 

demand. The added reactive power flow through transformers and transmission lines causes 

large voltage drop across each of these parts. 

 

1.4.4. Transformer tap changer 

 

The voltage decline in transmission system affects the distribution system. Substation 

transformers can bring back stable operating voltages by changing the transformer taps in a 

few minutes following up the time delay of tap changer. When transmission lines are loaded 

above surge impedance loading for each MVA increase, causes great amount of reactive 

power requirement in systems. As a result of tap changing operations, the reactive power 

output of generators increase which is another cause of voltage instability. 

 

1.4.5. Location of generators  

 

The generating stations are located at remote places according to the availability of 

the raw materials as well as land. Because of which the plants are at far distance from the 

load centers. The long transmission line results in voltage drop occurs while transmitting the 

power can also lead to voltage drop at the load end. 

 

1.4.6. Location and coordination of FACTS devices 

 

FACTS devices are used at various locations to provide the reactive power support. 

When FACTS devices are placed at unsuitable locations and there is a chance of poor co-
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ordination between the multiple devices. Due to disoperation of FACTS devices, the reactive 

power cannot be not supplied, thus the operating voltage will fall down. Ramirez et al. [24] 

proposed a method to co-ordinate stabilizers like a thyristor controlled series capacitor 

(TCSC) and a unified power flow controller (UPFC) taking into account the several operating 

conditions to enhance the dynamic stability margin of the power system.  

 

1.5. Analysis Methods for Study of Voltage Stability 

 

The power systems are forced to operate at stressed condition due to the continuous 

increase in the load demand and limited scope for the expansion of the existing network. At 

this operating condition the system voltage drops and any sudden disturbance to the system 

(i.e. line outage; generation loss; or any fault) will cause the system to face voltage instability 

leading to voltage collapse. This situation can be avoided by analyzing the voltage stability 

studies and bringing remedial measures to address the issue. Various methods are employed 

to analyze the problem as mentioned hereafter. 

 

1.5.1. Static analysis  

 

Static analysis or steady-state analysis discloses equilibrium points of a system under 

study. The power flow equations utilized in static analysis consider constant frequency of the 

system. Voltage stability studies are regularly carried out using static analysis. The use of 

static analysis is the development of P-V curves as well as Q-V curves. The P-V curves are 

the most established technique for prediction of voltage instability [25]. The main reason for 

voltage instability is the lack of sufficient reactive power in a system. Generator reactive 

power limits and reactive power requirements in transmission lines are the main causes of 

insufficient reactive power. Synchronous generators are the main devices for voltage control 

and reactive power control in power systems. In voltage stability analysis active and reactive 

power capabilities of generators play an important role. The active power limits are due to the 

design of the turbine and the boiler. Therefore, active power limits are constant. Reactive 

power limits of generators are more complicated than active power limits. There are three 

different causes of reactive power limits that are stator current, over-excitation current and 

under-excitation limits. The generator field current is limited by over-excitation limiter in 

order to avoid damage in field winding. In fact, reactive power limits are voltage dependent. 

However, in load flow programs they are taken to be constant in order to simplify analysis.  

Transfer of active and reactive power is provided by transmission lines. Since transmission 
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lines are generally long, transfer of reactive power over these lines is very difficult due to 

significant amount of reactive power requirement. The power system load is gradually 

increased and at each increment, it is necessary to re-compute the power flows till it reached 

the nose of PV curve (see Figure 1.2.). The margin between the voltage collapse point and the 

current operating point is used as voltage stability criterion. 

 

 

 

 

 

 

 

 

Figure 1.2. P-V curve. 

 

With the probable Q-V curve, the maximum reactive power can be determined and 

added to the weakest bus before reaching minimum voltage limit. The reactive power margin 

is the MVAR distance from the operating point to the bottom of the Q-V curve. The Q-V 

curve can be used as an index for voltage instability. The point at which dQ/dV becomes zero 

is the point of voltage stability limit [26]. The graph is obtained from power-flow simulation 

by monitoring a voltage at a required bus and varying the power in small increments until 

power-flow divergence is met. Each equilibrium point indicates a steady-state operating 

condition.  

 

1.5.2. Dynamic analysis  

 

Dynamic analysis is commonly applied in the study of power system stability to study 

system behaviour after a disturbance [27-28]. In comparison to static analysis in which 

equilibria points of a P-V curve are independent of time, dynamic analysis method tells the 

transient and/or the long-term stability of a power system. 
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1.5.3. CPF analysis: The method of continuation power flow  

 

The common theory behind the continuation power flow (CPF) is simple utilizing a 

predictor-corrector scheme so as to find a solution [29]. From a known base solution, a 

tangent predictor is utilized to estimate next solution for a particular pattern of load increase. 

The corrector step then gets the accurate solution using a conventional power flow. 

Thereafter a new prediction is assumed for a precise increase in load based upon the new 

tangent vector and a corrector step is applied. This process continues till critical point is 

reached. The critical point is the point at which the tangent vector is zero.  

 

1.5.4. Index analysis 

 

A number of sensitivity based analysis are carried out to determine the vulnerable 

buses where the voltage instability problem may be initiated much earlier than other parts of 

the system in the event of load increase. The condition of voltage stability in a power system 

can be known using Voltage Stability Indices (VSI). Since, the present work is based on the 

evaluation of one of similar VSI for its analysis, a preliminary understanding of some the 

methods reported by earlier research needs to be discussed here. 

 

There are many indices used to find the voltage stability limit of power system. 

Kessel and Glavitsch [30] have developed a voltage stability index L-index derived from the 

solution of the power flow equations. Gao et al. [31] proposed a method which determines 

the smallest eigen value and related eigen vectors of the reduced Jacobian matrix of the 

power system. The magnitude of each lowest eigen value gives a measure to know how near 

the system is to voltage collapse condition. The voltage collapse proximity indices (VCPI) 

addressed by Moghavvemi and Faruque [32] looked into the stability of every line of the 

system which are based on the concept of maximum power transferred in a line. The VCPI 

index varies from 0 stable to 1 unstable condition. Moghavemmi and Omar [33] derived a 

line stability index in single transmission line. The fast voltage stability index (FVSI) 

proposed by Musirin and Rahman [34] is derived utilizing a concept of power flow in a lone 

line. Aghamohmmadi et al. [35] introduced a new index based on the correlation 

characteristic of system voltage profile applicable to online voltage security evaluation. 

Rabiee et al. [36] reintroduced a new voltage stability index using scalar local measurements 
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to estimate closeness of the operating point to the nose points of P-V curves. Smon et al. [37] 

applied the Tellegen’s theorem and ad-joint networks to derive a new, local voltage-stability 

index. Gubina and Strmenik [38] introduced an analytical approach to determine index in 

radial network. Veraviah and Abidin [39] have approached a technique to investigate each 

line of the system through calculating an indicator that varies from zero (no load condition) to 

unity (maximum permissible loading condition). They have utilized the basic concepts of 

maximum power transfer through each line. Young et al. [40] have proposed an algorithm to 

calculate the smallest singular value of a Jacobian matrix used in the load flow equations 

through an incremental condition estimation method. Wang et al. [41] proposed a voltage 

stability index called the equivalent node voltage collapse index (ENVCI) based on 

equivalent system model that includes the effects of system outside the local network as well 

as the local network and uses only local voltage phasors. The ENVCI can identify weakest 

bus causing system instability. The power system voltage stability analysis based on the 

various methods indicates whether the system is stable or not. When the system voltage 

unstable, it will lead to major voltage collapse with any disturbance. This issue of voltage 

instability needs attention in order to prevent / or correct the voltage instability which may 

cause the voltage collapse subsequently. The prevention of voltage instability can be 

addressed in the following section. 

 

1.6. Prevention of Voltage Instability  

 

There are some measures that can be taken to counter voltage instability. Automatic 

voltage regulators (AVRs), under-load tap changers (ULTCs) and compensation devices are 

common means to keep bus voltage magnitude in acceptable ranges.  

 

1.6.1 Automatic voltage regulator (AVR) of a generator 

 

Generator AVRs are the main significant means of voltage control in a power system 

[12]. The terminal voltages of generators are retained constant under normal as well abnormal 

conditions. When the voltage stability problem arises because of reactive power demand, 

generators are able to supply more power to network considering field current limits. The 

AVRs take action on the exciter side of alternators. It can regulate the bus voltage within the 

availability limits of the generator.  
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1.6.2. Under-load tap changers 

 

Transformers allow various operating voltage levels in the power system [12]. 

Besides voltage transformation and transformers are used for reactive power flow and control 

of voltage respectively. Thus basically all transformers are used for large power transfer and 

some distribution transformers are offered with taps in the windings. Under-load tap 

changing (ULTC) is used when repeated turns ratio has to be changed due to coincident 

changes in load like daily load variations. Thus, in order to maintain voltage stability ULTCs 

are often used. Similar research has been carried out by Kim and Lee [42] to develop a 

control technique in minimizing the ULTC and STATCOM output and maintaining the stable 

operating substation bus voltage magnitude at a stable operating condition.  

 

1.6.3. Compensation devices  

 

The reactive compensation devices are mainly incorporated to draw or supply reactive 

power and hence control the reactive power balance in a required manner [12]. Series 

capacitors, shunt capacitors, series reactors, shunt reactors, synchronous condensers and static 

VAR compensators are used for these purposes.  

 

1.6.3.1. Shunt capacitors  

 

The shunt capacitors are applied to compensate the reactive power needed to ensure 

acceptable voltage levels when the system is heavily loaded. Capacitor banks of suitable sizes 

are connected directly to bus or to the tertiary winding of the transformer. Switched capacitor 

banks provide a convenient way of maintaining bus voltages. They are normally distributed 

all over the system so as to reduce losses and voltage drops. Mesut et al. [43] proposed a 

solution technique which transforms the problem into a master-slave problem. The master 

problem is used to resolve the location of the capacitors and the slave problem is used by the 

master problem to determine the type and size of the capacitors placed on the system.  

 

1.6.3.2. Series capacitors  

 

The capacitors connected in series with the transmission line help reduce the net 

reactance of the transmission line [12]. Therefore, the maximum power is transferred and it 

reduces the reactive power requirement of the line. As series capacitors allow economical 
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loading of long transmission lines they are used in power systems. However, problems 

related to Sub Synchronous Resonance (SSR) associated with the use of series capacitor have 

restricted their use [50].   

 

1.6.3.3. Shunt reactors  

 

The shunt reactors are used to balance the effects of line capacitance [12]. In case of 

undesirable voltage rises they are activated in order to check voltage rise. In fact, it is not a 

counter action taken to mitigate voltage collapse. Especially under light loading conditions, 

they are used so as to prevent over-voltages as power lines produce reactive power. During 

heavy loading conditions, they may have to be removed. 

 

1.6.3.4. Synchronous condensers  

 

The synchronous condenser is a synchronous machine operating with controlled 

excitation of field [12] so as to enable the machine to either generate or absorb reactive 

power. They can automatically adjust the reactive power output to maintain constant terminal 

voltage with a voltage regulator. They are mostly connected to tertiary windings of 

transformers. Nevertheless, they are not chosen frequently due to high installation and 

operating costs. 

 

1.6.3.5. Static var systems 

 

The static var compensators are connected in shunt with the bus to control individual 

phase voltages of the bus. A static var system is ideally suited for applications for direct and 

quick control of voltage. This is reported by Minguez et al. [44] that the static var 

compensators (SVCs) are placed optimally in a transmission network so as to maximize the 

loading margin. 

 

1.6.3.6. Load shedding  

 

The load shedding is another method to maintain power system voltage stability. In 

many cases, the last line of defense is to initiate load shedding. Wiszniewski [45] has 

proposed a method to avoid voltage instability by using devices which can process local 

signals, sense the decreased margin, and start the load shedding. Capitanescu et al. [46] have 
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used load shedding scheme to solve voltage instability. The decision by a controller to shed 

load is based on the comparison of voltage with a threshold value. 

 

1.6.3.7. Generator rescheduling  

 

Another way to keep system voltage stable is the activation of new generators. They 

can be activated in a few minutes to face the stability problems in short time interval. In order 

to solve this, spinning reactive power reserves have to be guaranteed by generators under 

operation. Raoufi and Mohsenar [47] have focused on the generator reactive power 

rescheduling for voltage stability enhancement. 

 

1.6.3.8. Power loss reduction  

 

Qiu and Shahidehpour [48] have emphasized on transmission line power loss 

reduction which also leads to voltage profile improvement and increase in the maximum 

transmitted power in cables and transformers by controlling the variables like transformer tap 

position and reactive power injection of the var resources. 

 

1.6.3.9. FACTS devices 

 

The flexible AC transmission systems (FACTS) devices are the examples of switched 

capacitors [49]. The FACTS devices help supplying and controlling the power flow in the 

transmission lines as well as increasing the usable transmission capacity. Hingorani and 

Gyugyi [50] have described the concept of FACTS and terms and definitions for different 

FACTS controllers. As FACTS devices are made-up using solid state controllers, their 

response is fast and accurate. Hence these devices can be utilized to enhance the voltage 

profile of the system using coordinated FACTS controllers in power systems. 

 

1.6.3.9.1. Generation of FACTS controllers 

 

Due to the development of the FACTS devices the voltage instability issues have been 

alleviated and have gained lots of interest in recent years. There are two generations of power 

electronics based FACTS controllers. The first generation uses conventional thyristor 

switched capacitor and reactors. The FACTS controllers such as thyristor controlled series 

capacitor (TCSC), static var compensator (SVC), and thyristor controlled phase shifting 
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transformer (TCPST) are developed in the first generation of FACTS controllers. The second 

generation of FACTS controllers employs gate turn off (GTO) thyristor switched convertors. 

The FACTS controllers such as static synchronous series compensator (SSSC), unified power 

flow controller (UPFC), static synchronous compensator (STATCOM), and interline power 

flow controller (IPFC) are developed in the second generation of FACTS controllers. Past 

research works have explored into the use of almost all of these categories of controllers to 

improve the system performance within several domains of interest both in the fields of static 

as well as dynamic analysis of power system. Due to their several advantages, some reported 

literatures have utilized one or more of the either generation devices and their related 

controllers in different types of systems ranging from benchmarked test systems to the actual 

ones. Therefore, they need to be reviewed here in some detail.  

 

Sharma et al. [51] have also proposed a new method known as the extended voltage 

phasors approach (EVPA) for installation of FACTS (TCSC) controllers in power systems. 

Yorino et al. [52] proposed a new formula for reactive power (VAR) planning problem to 

allocate flexible ac transmission systems (FACTS) devices. The problem is formulated as a 

mixed integer nonlinear programming problem of a large dimension. Orfanogianni and 

Bacher [53] both presented an optimization-based methodology to identify key locations in 

the ac network where placement of a series-connected FACTS device increases the maximum 

megawatt power transfer. Minguez et al. [54] also addressed the issue of the optimal 

placement of static var compensators (SVCs) in a transmission network in such a manner that 

its loading margin is maximized. In another work of similar field, Farsangi and Mezamabadi-

pour [55] proposed placement of SVCs and selection of stabilizing signals in power systems 

[54]. Among more advanced categories of FACTs Kannan et al. [56] proposed a new real and 

reactive power coordination controller for a unified power flow controller (UPFC). Similarly 

Alamelu and Devi [57] explained the method of placement of UPFC based on sensitivity 

analysis and evolutionary programming. In the domain of optimization, the problem was 

solved using the method of evolutionary programming. Donapati and Verma [58] approached 

for optimal placement of UPFC to enhance voltage stability margin under contingencies. In a 

problem of voltage stability, Singh and Erlich [59] suggested the location of the UPFC for 

enhancing power system loadability of the system. Some of the works have reported effective 

modeling of these devices for a particular application. In one such work, Niaki et. al. [60] did 

the steady state analysis of a novel hybrid flow controller. In another similar work, 

Bhowmick et. al. [61] reutilized the Newton power flow codes for an advanced IPFC power 

flow model. Zhang and Chen [62] suggested a power insertion model of IPFC for power flow 
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analysis inclusive of practical constraints. Verma and Srivastava [63] analyzed optimal 

placement of SVC for static and dynamic voltage stability. Sen [64] applied the theory and 

modeling of STATCOM applications.  

 

An extensive discussion of many other literatures in the same field is out of scope of 

this present work and therefore it is limited to the extent of highlighting its importance in 

power system. Even though there are different approaches involving methods to formulate 

and solve the problem of voltage stability, the present work mostly is focused on the domain 

of optimization and application of heuristic optimization technique in solving the problem. 

Therefore, a review of similar earlier reported works need to be discussed here.   

 

1.7. Methods and Techniques for Voltage Stability Analysis  

 

A variety of optimization methods are used to optimize the allocation of reactive 

power compensating devices in power systems. Presently the shunt var compensator 

allocation problem is generally solved using evolutionary programming techniques. 

Numerous techniques for solving the optimal capacitor location problem in power systems 

have been reported in literatures. These techniques are classified into the different categories 

which are explained in the following paragraph. 

 

1.7.1. Classical / analytical techniques 

 

The classical optimization techniques are useful in finding the best possible solution 

or unconstrained maxima or minima of functions which are continuous and differentiable. 

These are analytical methods and apply differential calculus in locating the optimum solution. 

These classical techniques of optimization figure out a foundation to develop most of the 

numerical techniques that have grown into advanced techniques more suitable to modern 

problems. Various methods are adopted for the analysis of voltage stability and optimization 

techniques are used to find the solution for the problem of voltage stability. In [65], Yang et 

al. attempted to determine the optimal locations of thyristor-controlled series capacitor 

(TCSC) and their initial compensation levels using mixed-integer programming. Granville et 

al. [66] described an application of an optimal power flow, solved by a direct interior point 

(IP) method, to restore system solvability. A sequential quadratic programming algorithm for 

optimization power system is introduced by Fletcher [67]. Then Yan et al. [68] proposed a 
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new optimal reactive power flow (ORPF) model in rectangular form. In this work, prime dual 

interior point method used for solving the problem of voltage stability. 

 

1.7.2. Heuristic techniques 

 

The heuristic-based techniques have been widely applied in solving the optimal 

capacitor placement problem. In [69], Devaraj and Roselyn presented an improved genetic 

algorithm (GA) approach for voltage stability improvement. Paterni et al. [70] have used 

series FACTS as phase shifters, where the best location for a set of phase shifters is found by 

a genetic algorithm. Sirjani et al. [71] have addressed a novel global harmony search 

algorithm (NGHS) to determine the optimal location and size of shunt reactive power 

compensators such as static synchronous compensators (STATCOMs), shunt capacitors and 

static var compensators (SVCs) in a transmission network. Xu et al. [72] have studied a 

systematic method for optimal placement of dynamic VAR support using STATCOM against 

short-term voltage instability for a multi-objective optimization model. Mozafari et al. [73] 

have suggested under voltage load shedding (UVLS) to sustain voltage stability for 

contingencies in power systems. Huang and Huang [74] have also proposed a hybrid 

approach to solve the optimal reactive power dispatch (ORPD) problem based on the original 

differential evolution (DE) algorithm. Gerbex et al. [75] presents a genetic algorithm to seek 

the optimal location of multi-type FACTS devices in a power system.  

 

1.7.3. Artificial intelligence based techniques 

 

This section reviews the coordinated control of FACTS controllers based on various 

artificial intelligence based techniques like expert system (ES), genetic algorithm (GA), and 

artificial neural network (ANN). A new formulation of multi-objective reactive power and 

voltage control for power system is proposed by Zhang and Yutian [76]. The multi-objective 

formulation requires a global performance index of the problem. A pseudo goal function 

derived on the basis of the fuzzy sets theory gives an unique expression for the global 

objective function, eliminating the use of weighing coefficients or penalty terms. A fuzzy 

adaptive particle swarm optimization (FAPSO) is proposed to adaptively adjust the 

parameters of particle swarm optimization (PSO), such as the inertia weight and learning 

factors, during the evolutionary process. Wang et al. [77] proposed a new approach for 

modeling and solving var planning problem using an enhanced simulated annealing (SA) 

algorithm taking advantage of the modified gray code. Phadke et al. [78] have suggested a 
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strategy for placement and sizing of shunt FACTS controller using fuzzy logic and real coded 

genetic algorithm. Venkatesh et al. [79] suggested a multi-objective fuzzy linear 

programming (MFLP) method for optimal reactive power scheduling. In [80], Verma and 

Niazi proposed a supervised learning approach for fast and accurate power system security 

assessment and contingency analysis. Feed-forward artificial neural network (FFNN) is 

employed that uses pattern recognition methodology for security assessment and contingency 

analysis. 

 

1.8. Motivation of the Research 

 

The study of literature review has motivated further for analyzing the issue of voltage 

instability by modeling power system in contingent condition or increased load condition 

with consideration of security constraints. The study primarily limits its field of interest in 

determining the system stability with a faster technique of stability index that is within the 

realms of static analysis of the system. In recent years classical/analytical, heuristic, artificial 

intelligence based techniques have emerged as powerful tools capable of finding the optimum 

solution of a voltage stability problem. For improving the performance in different critical 

conditions, a number of modifications of these techniques or methodologies have been 

suggested in different literatures. Some methodologies are more complex than others and 

algorithms used are also not very accurate, reliable and flexible with respect to the sensitivity 

analysis in transmission network. 

 

In the literatures, researchers have attempted to develop efficient techniques and tools 

for sensitivity analysis under practical constraints for determining the weak buses susceptible 

to the voltage instability. Various techniques of calculating performance indices are although 

surveyed in the literatures, the index calculations are basically based on the off line data, and 

local online data. The index value usually uses the parameters of the concerned network only 

and do not take into account the effects of the network outside or neighboring the (voltage 

unstable affected) network which is the point of interest to be investigated. The inclusion of 

the effect of the network outside the local network can lead to an accurate assessment of the 

system behaviour towards the voltage stability issue. Thus, the concept of including the 

outside network in the local network to get a strong indication about the system’s weakest 

bus has motivated the research work to carry out with an index named as equivalent node 

voltage collapse index (ENVCI). Further, the work is extended to find an optimal solution for 

compensation in the system to prevent voltage instability as well as to increase the load 
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margin of the whole network. Unlike other techniques, bacteria foraging optimization 

algorithm (BFOA) has attracted the attention in the field of optimization techniques when the 

number of parameters to be optimized is very much large [90]. Although GA as reported in 

literature to exhibit degraded efficiency but still it has ability to arrive at the global solution 

point swiftly. In this research, the new Modified BFOA (MBFOA) is proposed being inspired 

by the natural genetic process as some of its adaptive features lead to faster convergence. The 

results would be compared with corresponding performances in GA. The objective of 

research work is described in the following. 

 

1.8.1. Objectives of the Thesis 

 

Based on the above motivation, the primary objectives of the research work are 

mentioned as follows. 

 

 To apply the voltage stability index ENVCI as the criterion for detecting voltage 

instability and use the same in formulating an optimization problem. To determine 

the relative weaknesses of system buses in terms of voltage instability, utilizing 

ENVCI. 

 To explore the benefits of using a suitably located STATCOM in a test benchmark 

system for improving voltage instability. 

 To understand the problem of voltage instability in a system augmented by 

renewable energy generation system based on wind energy that drives doubly fed 

induction generators (DFIGs) for wind power. To study the effects of operating 

constraints of wind energy conversion systems (WECS) based on DFIGs along 

with a STATCOM in the system, on the problem of voltage stability.   

 To formulate all the problems within the framework of optimization and to solve 

them with the help of MBFOA, and test its efficiency.  

 Finally to develop a centralized corrective controller using a class of ANN, within 

the frame work of classification, that aims to predict the most sensitive control 

action selecting from a numbers of available reactive power resources. 

 

1.9. Organization of Thesis 

 

The thesis consists of seven chapters that are organized as follows. 
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In Chapter-1, literature reviews on different voltage stability studies are presented. The 

techniques used to assess the system behavior under contingencies are also discussed. The 

sensitivity analysis methods also reviewed. 

 

In Chapter-2, 39 Bus-New England Test System is considered for the study. By using 

offline method of index calculation, three different indices namely; Q-loss index, Q-V 

sensitivity index, and L-index are determined for load increased scenario. The three indices 

are combined with proper weighing to each index and a weighted average sensitivity index 

(WASI) found out. Although, the WASI value determines the weak bus but the online 

application of the stability index calculation is focused. Literature survey demonstrates 

ENVCI is an online stability index which gives more accurate information about the system’s 

weakness condition as it includes the effect of the rest of the system outside the local network 

where the load is increased to operate in stressed condition. The index calculation gives a 

clear picture about the healthiness of the system. It becomes very much approximate / 

concrete as it is compared with the established offline stability index (WASI). The study is 

made with same 39- bus New England test system. The ENVCI value becomes 1 means the 

system is healthy/ strong. The concept, modeling and equations involved in deriving the 

index are expressed in this chapter. The ENVCI is used for determining the maximum 

loading of each bus and rank the buses in the decreasing order of weakness.  

 

In Chapter-3, top five weak buses listed from the result obtained in Chapter -2, considered 

for the optimization and only two candidate buses are used for optimal location and size of 

the static VAR compensation. Four optimization techniques namely MBFOA, DE, PSO and 

GA are used. The comparisons between the techniques are studied. 

 

In Chapter-4, the system model is modified with inclusion of STATCOM in the weakest bus 

(bus no 20 from ENVCI calculation with load increase). The maximum loadability of the 

buses without STATCOM are found out. The bus with minimum value of maximum loading 

limit among all the buses is tagged as the weakest bus. The STATCOM is placed in the 

weakest bus. With the load increase in the weakest bus, it requires optimal value of VAR in 

addition to the STATCOM already installed. The objective is to increase the load margin and 

maintain the operating voltage level.  
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In Chapter-5, a generator is replaced by an equivalent wind farm in addition to the modified 

model as considered in Chapter-4 (STATCOM at bus no 20 in the IEEE-39 bus system). The 

objective function is formulated with three constraints. These are load margin, voltage 

deviation and power loss respectively. Here, the main aim is to increase the load margin and 

to improve the voltage profile for optimal location as well as size of VAR. The optimization 

is employed the MBFOA technique. The modified Y bus matrix of the system is found out. 

With the system structure, the loading margin is enhanced keeping the operating voltage at 

stable condition with the system being subjected to further load increase in the weak bus only 

as there may be demand of load increase. The optimal value of the STATCOM is obtained 

from the MBFOA technique.  

 

In Chapter-6, the New England 39 Bus system is loaded with step load increase and made to 

behave as a stressed operating system. In the stressed system the contingency case is studied. 

Some contingencies were taken up for studying voltage instability. Different control 

parameters which help improving the voltage stability are considered for this study. The 

parameters are the transformer taps, AVR setting of generators, real and reactive power 

rescheduling of generators, shunt static capacitive compensation, and selective minimum load 

shedding. For a single line outage contingency case the appropriate control action is 

determined. Similarly this process is repeated for many cases of line outages. The data are 

now trained with inputs as the line flows as well as voltage of buses. The output of the 

training set is a single output which is a control action with help of a controller. Data 

collected are fed to the artificial neural network for training. A PNN controller is designed to 

control the voltage instability. The sensitivity analysis is also carried out using ENVCI.  

 

Chapte-7 includes the conclusions and scope for future work. 
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ON LINE VOLTAGE STABILITY ASSESSMENT OF TRANSMISSION 

NETWORK THROUGH ENVCI 
 

 

 

 

 

2.1. Introduction  

 

The steady state static analysis of voltage instability in a large interconnected power 

system gives considerable idea about the vulnerability of the system. The steady state 

stability analysis is made because of the followings: 

 

a. Dynamic stability studies require dynamics of the components of a large network 

which can have a large number of equations containing nonlinearities. The 

dynamic study is time dependent. Thus the system models used in such studies are 

extensive because of the system are large, complex in interconnection with many 

machines.  

b. These machines have excitation systems and turbine governing system controls on 

the whole cannot be modeled in ordered to reveal accurately correct dynamic 

performance of the system. The nonlinear differential   equations are formed and 

this has to be solved.  

c. Dynamic stability involves the study of a large network where the disturbance to 

the system is quite large i.e  large fault for long time, loss of generators, sudden 

load changes and line switching .in dynamic stability the linearization of the 

system equations are not allowed. 

d.  Steady state analysis is the linear version of dynamic stability. The nonlinear 

differential and algebraic equations of the system are replaced by a set of linear 

equations which can be solved.   

The researchers in this field have tried to find out an effective voltage stability index, 

which should be able to forecast the voltage stability condition of the system in an accurate 

and fast manner [82-85] As discussed in the previous chapter, the vulnerable or weak areas 

(buses) of the system is usually judged by the sensitivity of any index with respect to load 
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increase in a particular bus. However, the results obtained with different indices are different 

and gives different indication about the ranking of weak buses in the system. Without 

accurate information about the relative weakness of all the system buses, it is not possible to 

do any further analysis. Therefore, to avoid the situation, a weighted index known as 

weighted average sensitivity index (WASI) is proposed and formulated in this work. Some 

other important issues also decide the accuracy of an index. One of them is that most of the 

index calculations generally neglect the effects of network portions which are distant to the 

locality (area of operation under study), but, those areas may have become more vulnerable to 

instability. Similarly, many of the indices are evaluated in an off line manner, which make 

them unfit for their application in designing online index based controllers. Therefore, this 

work selects a more recently proposed index ENVCI [41], which can also be evaluated from 

bus voltage phasor data obtained by phasor measuring units (PMUs). Since this work is 

limited to simulation and analysis only, it has utilized the power flow algorithm for its 

calculation. The index is compared for its accuracy with other indices including a relatively 

more accurate index WASI. The value obtained being very close to the respective WASI 

value, the ease of computation of this index has encouraged this work to consider it for 

formulating the same in subsequent problems.  

 

 

2.2. Steady State Voltage Stability Indices  

 

Besides P-V and Q-V curves discussed in the previous chapter, there are several other 

steady state voltage stability indices (VSIs) playing important role for assessing the state of 

system quickly as there may be a continuous load increase or occurrence of any contingency. 

The voltage stability index (VSI), can be utilized to estimate the vulnerable condition of the 

line, i.e. the proximity of the line towards voltage collapse. A brief overview gives insight 

into some of these indices with their relative merits and demerits for suitability towards their 

use described in the following section. 

 

2.2.1.  Line stability index  

 

The line stability index is obtained [33] with the value of active power, reactive 

power, voltage and reactance. The index value can be calculated by using the following 

formula as given in the equation 
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           (2.1) 

 

Where, X is the line reactance,  

Qn is the reactive power flow at the receiving bus,  

Vm and Pm are the voltage and active power at the sending bus respectively. 

To maintain a stable operating condition, the value of index should be maintained less than 1. 

 

2.2.2. V/V0 index 

 

A very elementary knowledge about the system bus voltage conditions under a 

particular operating condition can be obtained with this index. The bus voltage values are 

determined for the two different operating cases. The bus voltage (V) values are normally 

very close to 1 at base case loading and the voltage (V0) are attained which are very less than 

1 at critical loading case. The ratio V/V0 at each node yield a voltage stability record of the 

system, allowing for immediate detection of weak buses of the system for effective 

countermeasure [27].  

 

 

2.2.3. Line stability index 

 

In [33], Moghavemmi et al. have derived a line stability index based on the power 

transmission concept in a single line as shown in Figure 2.1.  

Vm        m
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Figure 2.1. A single line of an interconnected network. 

 

It illustrates a single line of an interconnected network where, R is resistance of the 

transmission line,  X  is reactance of the transmission line, Pm  and Pn are the real power at m
th

 

and n
th

 nodes respectively, Qm and Qn  are reactive power at m
th

 and n
th
 nodes respectively, Sm  
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and Sn  are conjugate power at m
th

 and n
th

 nodes respectively, θ is the line impedance angle 

and δ is the angle difference between the supply voltage and the receiving end voltage. 

 

The line stability index for this model can be expressed as 

 

           (2.2) 

 

Lines that represent values of Lmn close to 1, indicates that those lines are closer to their 

stability limit. To maintain a secure condition, the Lmn  index should be less than 1. The 

discriminant of the voltage quadratic equation is set to be greater or equal than zero to 

achieve stability. If the discriminant is smaller than zero, then the roots will be imaginary, 

which indicates an unstable condition in the system. 

 

2.2.4.  Fast voltage stability index (FVSI) 

 

The line stability index fast voltage stability index (FVSI) proposed by Musirin et al. 

[35] is based on a concept of power flow through a single line. For a typical transmission 

line, the stability index is calculated by: 

 

          (2.3)
 

 

where, Z is the line impedance, X is the line reactance, Qj is the reactive power flow at the 

receiving end and Vi is the sending end voltage. 

 

The line that gives index value closest to 1 will be the most critical line of the bus and 

may lead to the whole system instability. The calculated FVSI can also be used to determine 

the weakest bus on the system. The determination of the weakest bus is based on the 

maximum load allowed on a load bus. The most vulnerable bus in the system corresponds to 

the bus with the smallest maximum permissible load.  

 

2.2.5  Q-loss sensitivity index 

 

The basic equations used for N-R power flow method are expressed [81] in following 

equation 
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           (2.4) 

 

 

Or,            (2.5) 

 

 

From the above equation the reactive power sensitivity for the i
th

 bus is formed and expressed 

as in the following equation. Hence the equation can be termed as the Q-loss sensitivity, 

denoted by SI1 in the following equation.  

 

           (2.6) 

 

For SI1 having higher value the degree of weakness is less for a bus. 

 

2.2.6. L-index  

 

L-Index is evaluated here for any j
th 

non-generator bus in a N-Bus system having g 

numbers of generators i.e.,  1…g, and  (g+1)…..N, (N-g) numbers of load buses. It can be 

evaluated by the following equation [30]. 

 

 

           (2.7) 

 

where, Vi, Vj  are the complex voltages of the generator buses and load buses respectively. The 

elements Fji can be evaluated from the Y-bus matrix of the system as depicted below by 

equation,  

 

           (2.8) 

 

 

where, IG, IL, VG, VL are the complex currents and voltages of the generator bus and load buses 

respectively. [YGG], [YGL], [YLG], [YGG] are corresponding partitioned portions of the network 

Y-bus matrix, the equation can be rewritten by rearranging in the following way 
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           (2.9) 

 

 

where,           (2.10) 

 

The L index of the system or at a particular bus, varies in a range between 0 (no load) and 1 

(voltage collapse). For 𝐿𝑗  , the threshold value is supposed to be 1.0.  

 

2.2.7.V-Q sensitivity index 

 

The jacobian matrix employed to compute bus voltages in Newton-Raphson load flow 

(NRLF) method is given by  

 

 

11 12

21 22

    
          

J JP

VJ JQ
       (2.11) 

The i
th

 diagonal element of the matrix [J22] of Equation 2.4 is the V-Q sensitivity of the i
th 

load bus use 

 

           (2.12) 
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        (2.13) 

 

or,           (2.14) 

 

where,            (2.15) 

 

The i
th 

diagonal element of [JR]
-1

 also indicates the V-Q sensitivity of the load bus-i, 

 

when           (2.16) 

 

The slope of V-Q curve is the V-Q sensitivity of the bus. A positive V-Q sensitivity is an 

indicator of stable operation, the smaller the sensitivity the more the stable operation as the 

value increases, the system becomes vulnerable to voltage stability. A set of eigen values are 
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computed to assess the voltage stability characteristic. The reduced Jacobian matrix [JR], 

given by the following equation is [81] 

 

           (2.17) 

where,  b
= right eigenvector,    left eigenvector matrix of JR and  λ = eigen value  

Combining Equation 2.13 and 2.17 the following equation is developed 

 

           (2.18) 

 

           (2.19) 

 

Thus, from the above equation the V-Q sensitivity index at k
th
 bus can be written as  

 

           (2.20) 

 

           (2.21) 

 

 

where, i = i
th
 column right eigenvector, 

i
  i

th
  row left eigenvector matrix of JR and  λi = 

eigen value of i -bus 

 

Even though, a comprehensive study of different VSIs are not elaborated, but most 

widely used ones also possess some drawbacks, particularly when their status needs to be 

known quickly in an online manner. A fast online evaluation of the VSI is necessary so that a 

quick decision of any possible corrective action can be chosen. The limitation and drawbacks 

are elaborated below.   

 

2.2.8. Drawbacks of different VSIs 

 

The voltage stability indices possess some demerits. The major drawbacks of the 

existing indices are given below. A common demerit of the existing line-based indices is the 

fact that impacts of the rest of system outside the line have been ignored and this will lead to 

inaccurate or even incorrect results in some cases. In these indices effect of outside line 

cannot be ignored.  
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i. The existing indices may become unstable in its numerical determination near the 

Notch point of the P-V curve (the limiting point), when the loads at some buses in an 

area are gradually increased and the steady state load flow is carried out in offline 

mode taking the system voltage stability into account.  

 

ii. Even for an online application when a corrective action needs to be taken based on 

estimated bus voltage or Wide Area Measured (WAM) data, the speed and accuracy 

of the line based indices may deteriorate near the limiting loading condition. 

 

iii. The most commonly used index is the L-index. Generally, the point of voltage 

instability is reached when the value exceeds 0.9. However, in many cases it has been 

reported [30] that, the voltage collapse does not occur even when L-index is 1.7 and 

sometimes voltage collapse occurs even before when L-index < 0.9.  

 

Due to the inefficiencies of each index the formulation of another common index is made 

which is explained in the next section. 

 

2.3. Weighted Average Sensitivity Index (WASI) 

 

A weighted index termed as weighted average sensitivity index(WASI) comprising the 

effects of all the above mentioned indices is formulated, based on whose value a weak bus 

ranking could be done. This approach helps to determine a worse case loading scenario in the 

system. The WASI is defined as follows 

 

             (2.22) 

 

where, w1, ,w2 , w3 ,wn  are the weighing factor. Though any value may be chosen, in this work 

it is taken between 0.1-0.9. SI1, SI2, SI3…. SIn  are the indices, considered for its evaluation. 

The problems of considering only the local network can be solved by using a comparatively 

more recently proposed voltage stability index, called ENVCI. It is discussed in the next 

subsection. 

2.4. Equivalent Node Voltage Collapse Index (ENVCI) [41] 

 

1 1 2 2 3 3 1 2( ...... ) /( ... )n n nWASI SI w SI w SI w SI w w w w          
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  In this index, the effect of outside the local network is considered. This is the unique 

characteristic of this index. In the simulations, loads at the weaker nodes are gradually and 

proportionally increased to stress the system with multiplying a load parameter (LP) ‘λ’. This 

work uses a voltage stability index, which is called as ENVCI [41]. It has the following 

features:  

 

 Compared to the existing line-based voltage indices, the effect of the rest of a system 

outside the local network is included through an equivalent model of the system. This 

assures accuracy of the index in modeling. 

 

 Compared to the internal and external impedance method, the equivalent system 

impedance that needs to be estimated using two system states is only a small part of the 

total impedance whereas the impedances of local network (branches that are directly 

connected to the considered node) are known and need not be estimated using two system 

states. 

 

 Unlike the conventional method based on continuation power flows, and calculation of 

other indices based on conventional power flow, the computation of ENVCI is much faster 

since it is associated with very simple calculations and no system-wide power flow 

evaluation. 

 

 The calculation of ENVCI only requires the information of local voltage phasors, which 

can either be obtained via synchronized phasor measurement units (PMU) or through the 

state estimation of energy management system (EMS) at control centers of utilities. This 

enables ENVCI to be easily applied in on-line (EMS) or real time (PMU) environment. 

 

 The presented method can identify the weak nodes of the system taking into account the 

ENVCI values of all observed nodes. The ENVCI at the weakest node will be very much 

near zero when the system approaches its voltage breakdown point. Therefore, an entry of 

ENVCI can be easily set up to cause an emergency remedial scheme to avoid the system 

from voltage collapse. 

 

The formulation of ENVCI at the outset, involves the reduction of the external part of 

the entire network in terms of an equivalent local network model. The equivalent system 
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model (ESM), then includes the local network into the equivalent local network model. For 

the sake of clarity, the equivalent models are explained as follows.  

 

2.4.1. Equivalent local network model (ELNM) [41] 

 

A local network in the transmission system having N nodes is considered. The local 

network is divided into two portions. The first portion is represented by an equivalent 

outgoing power flow Pon+jQon as shown below in the Figure 2.2. The total power flowing out 

of the N
th

 node is the sum of line power flows on all the lines with outgoing flows, plus the 

load, generator power and compensated reactive power at the node N as shown in the Figure 

2.2. The second portion comprises all the lines with power flows entering the node N, each of 

which is expressed by a Π circuit at its left side. The Pn+jQn in Figure 2.2 is Pon+jQon plus 

the reactive charging powers at the receiving end of all the lines in the second portion. It is 

obvious that the outgoing current at the node N can be expressed as 

 

           (2.23) 

 

or,     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2. Original local network model. [41] 
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           (2.24) 

 

 

where,   

 

  and           (2.25) 

 

Yni and Z ni are the admittance and impedance of lines between the i
th

 and n
th

 nodes 

respectively; 𝑉  𝑖  and 𝑉  𝑛  are the voltage phasors at the i
th

 and n
th

 nodes; The superscript * 

represents conjugate in the work and thus 𝑉𝑛
∗      is the conjugate phasor of 𝑉  𝑛  and M is the 

number of lines with power flows entering the node N. Multiplying 𝑉𝑛
∗       at the both sides of 

Equation 2.23 yields 

 

           (2.26)) 

 

let,            (2.27) 

 

Assuming 
n n nV V  


 and substituting these values into Equation 2.26, the following 

equation is obtained. 

 

           (2.28) 

 

           (2.29) 

Thus from the above equation, it is found 

 

           (2.30) 

 

From Equations 2.29 and 2.30, a single line model (i.e., ELNM) which is equivalent to the 

second portion of the local network containing the lines with power flows entering the node 

N is obtained and shown in Figure 2.3.  
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Figure 2.3. Equivalent local network model (ENLM). [41] 

 

2.4.2. Equivalent system model (ESM) [41] 

 

A replica voltage source Ek with impedance Zkm is added to the ELNM to include the 

effect of the system external of the local network, as shown in Figure 2.4. 

 

 

 

 

 

 

 

 

Figure 2.4. Equivalent system model. [41] 

 

All the grounding branches representing reactive charging powers at the source end of 

the lines with power flows entering the node N have been assumed to be part of Zkm, which 

can be estimated later. The 𝐸  𝑘  and 𝑍𝑘𝑚 will have the exactly same effect as the whole system 

outside the local network as long as they can guarantee the identical voltage phasors and 

power flows for the equivalent line. These two are added to the ELNM to satisfy the 

following equation 
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where, Pkm and Qkm are the real and reactive powers flowing into the local network, which 

corresponds to i

M

i

i jQP 
1

 

The Zkm  represents the equivalent system impedance that the power flow encountered in the 

system before it reaches the local network. From Equation 2.31, the following equations can 

be derived: 

 

           (2.32) 

 

 

          (2.33) 

 

 

 

           (2.34) 

 

Assuming Zkn=Zkm+Zeq as well as a complex coefficient K yields 

 

           (2.35) 

Letting 

 

 

  

 

And let Ek and impedance Zkm are constant. Thus putting these values in Equation 2.35, we 

have the following expression: 

 

or,           

 

or, simplifying  the above equation it becomes       

 

And further simplification results        
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It is assumed that the equivalent voltage source Ek and impedance Zkm are constant 

between two adjacent system equilibrium states. It follows from Equation 2.36 that 

 

           (2.37) 

 

           (2.38) 

 

Here, subscripts 1 and 2 represent the system states 1 and 2. Solving above two Equations 

2.37 and 2.38 yields: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

           (2.39) 

 

By substituting K into Equation 2.35, 𝐸𝑘
′      can be obtained and then 𝐸𝑘 ∠(𝜃𝑘  ) can be 

calculated. With K, it is easy to calculate Zkn from Equation 2.35 
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A single line ESM is obtained with the above derivation method, which takes into 

account both the local network and the system outside the local network. By using this 

model, the two key quantities that are essential to calculate the new ENVCI, which is derived 

in the next subsection, can be considered from the node voltage phasors at two line ends in 

the second portion of the local set-up. In fact, the voltage phasor 𝑉n∠𝜃𝑛  at the n
th

 node can be 

directly measured but the equivalent source voltage 𝐸𝑘∠𝜃𝑘   can be estimated from the voltage 

phasors and line parameters through intermediate equivalent voltage phasor 𝑉𝑒𝑞 ∠𝜃𝑒𝑞  and 

equivalent admittance 𝑌𝑒𝑞  . It should be highlighted that the ESM derived here is an 

equivalence indicating the effects of the whole system on a single node (bus) in a specific 

system state. In other words, each node in a system state refers to a different ESM. These 

ESMs of individual nodes are used to compute their ENVCIs. 

 

2.4.3. Formulation of ENVCI[41] 

 

In the single line equivalent system model for the n
th

 node shown in Figure 2.4, the 

outgoing power at this node must satisfy the following power flow equations given by 

 

           (2.41) 

 

Let the voltage phasors at the two nodes of an equivalent single line model are expressed in 

the rectangular coordinates, i.e.,                 ,                      , and the line impedance is 

expressed by      . . Equation 2.41 can be separated into a real part and an 

imaginary part and expressed in the following equations respectively, 

 

     
      (2.42) 

 

           
(2.43) 

 

Equations 2.42 and 2.43 are mainly the power flow equation for solving the voltage phasor at  

n
th

 node of the equivalent line that is corresponding to the effect of both local network and 

system outside the local network. If each ESM for all equivalent lines in a network state finds 

a mathematical solution for its receiving node, it indicates that voltages at all nodes in the 

network state are present, then the system must have an overall power flow solution and the 

network voltage stability survives. On the contrary, if an ESM for at least one node does not 
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find a mathematical solution, it indicates that the operational voltage at the node does not 

exist and the system cannot result a system-wide load flow solution, and finally the system 

loses voltage stability. In other words, the system stability relies on the solvability of above 

two Equations 2.42 and 2.43 for all nodes in the system. The solvability of the equations can 

be judged by singularity of its Jacobian matrix, expressed by the following equation. 

 

           (2. 44) 

 

           (2.45) 

 

Where the symbol Det denotes the determinant of the Jacobian matrix, J. Equation 2.46 

provides a new voltage stability index, which is called the equivalent node voltage collapse 

index (ENVCI): 

 

           (2.46) 

 

Also, it is easy to derive the expression of ENVCI in the polar coordinates, which is given by 

 

           (2.47) 

 

where,                    .   It can be noticed that the calculation of ENVCI only desires voltage 

phasors at the two ends of the ESM. Each node has an ESM. When the ENVCI of at least one 

node is close to zero in a network state, the network comes near the voltage collapse point 

and the subsequent node is the weakest node that leads to system instability. The ENVCI can 

be easily applied in a real time or on-line environment since it can be estimated very fast with 

the use of the voltage phasors obtained from either the state estimator of EMS or PMU 

measurements.  

 

2.4.4. Algorithm steps for evaluation of ENVCI 

 

 Step1. Initialization 

(a) Bus data (b) Line data (c) Loading parameter( LP)=  (d) Load voltage (e) Bus 

voltage are initialized. 

 Step2. Iterative Algorithm 
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NRLF method performs for load flow. Output of NRLF used as input for ENVCI 

calculation. At load buses, LP increases in stepwise manner and corresponding 

ENVCI value is calculated. Steps are 

1. Performance of NRLF method 

2. Load bus identification (node): Total no of load buses are identified varying 

number in = [1, 2…..17] 

 3. Y-equivalent calculation from y-sparse 

Step 3: Iteration  

 1. Begin: For load bus in =1 

 2. Increment of LP ( ) by 0.01 

For ii=1:s 

      

 3. Perform load flow.  

4. Compute equivalent voltage, equivalent impedance and equivalent admittance as 

per the Chapter 2, subsection 2.2. 

 5. Again ( ) increment  

( new) = + step value 

 6. Go to step 4 

 7. Source voltage (external source, KE ) and its impedance calculation. 

 8. Calculate ENVCI.  

 9. Go to step3.2 and Repeat till (ii <= s). 

10. Save ENVCI Values in a proper format. 

 11. Go to the beginning of Step 3  

 12. End 

Step 4: Identification of buses with lower ENVCI value (i.e. near to zero). Refer these buses 

as weak buses. Evaluate the voltage stability limit by plotting different graphs 

between ‘ ’ versus ‘ENVCI’.  

 

It can be recalled here that, the step of NRLF method may not be used for the 

calculation of ENVCI and the PMU bus voltage phasor data can be utilized after proper 

estimation. However, since this work is limited to simulation and analysis, therefore in the 

first step a load flow solution is necessary for the evaluation. A brief description of NRLF 

method is reviewed below. 

 

1 ( 1)ii stepvalue    
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2.5. Newton-Raphson Load Flow (NRLF) 

 

NRLF method is applied to the problems of load flow in the network. It is found to be 

more efficient and practical and the number of iterations necessary to obtain the solutions is 

independent of the system size, but more functional evaluations are required for each 

iteration. Since in the power flow problem, real and voltage magnitude are specified for 

voltage control buses, the power flow equations are formulated in polar form. The active and 

reactive powers at each bus are functions of magnitudes and phase angles of bus voltages. 

Thus, 

 

           (2.48) 

 

           (2.49) 

 

For a system having n buses and bus no 1 designated as slack bus, the equations 

which relate the changes in active and reactive power to changes in bus voltage magnitude 

and angles take the form. 

 

 

 

          (2.50) 

 

 

iP  and iQ  represent the differences between the specified and the calculated values of iP  

and iQ . Equations 2.48 and 2.49 can be used to resolve the bus voltage magnitudes and 

angles from a random set of values through an iterative procedure. For each load bus both P 

and Q are specified and therefore Equation 2.48 exists. However, for a PV bus, Q is not 

specified and therefore, there is no equation corresponding to Equation 2.48 for PV bus. For 

an n bus system having 1 slack bus and g voltage controlled (PV) buses, the total number of 

equations is (2n-2g). Thus, the use of polar form results in lesser number of equations and 

size of Jacobian is smaller as compared to the rectangular form. This is a definite advantage 

of polar form over the rectangular form and, therefore, only polar form is used. Rectangular 

form is also used in some cases although. It has been found convenient to put 
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The set of Equation 2.51 for all the n – 1 bus can be written in the following matrix form 

 

 

      (2.52) 

 

Where  

 

                                                      , and                                                                  

 

The partial derivatives Hip, Nip, Jip, Lip are real functions of admittance matrix and the bus 

voltages. It has been found that computer computations are faster if rectangular complex 

arithmetic is used. Therefore, the partial derivatives are computed by rectangular complex 

arithmetic. 

 

2.6. Test System 

  

IEEE-39 bus test system consisting 10 generators, 46 transmission lines and 12 

transformers [83]. The structure of the system in single line diagram is presented in Figure 

2.5. The system has 29 load buses and 10 generator buses (including one slack bus). Of the 

29 buses, 17 buses are carrying load. They are i.e. 3, 4, 7, 8, 12, 15, 16, 18, 20, 21, 23, 24, 25, 

26, 27, 28, and 29 (see Appendix-A).  
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Figure 2.5.  IEEE -39 Bus Test System. 

 

 

2.7. Simulation Results and Discussions 

 

Simulations were executed on a PC with Intel core DUO processor 2.2 GHz, and 4GB 

RAM with Matlab
®
 code. In the simulations selected node loads are gradually increased in 

steps of 2% more than the nominal .here nominal means the value of line and data bus in the 

system before any study. The selected buses are loaded so as to stress the system (this is 

achieved by multiplying the nominal loads with a factor defined as loading parameter 

(LP)and denoted as  ‘λ’ by assuming a constant power factor). The details of evaluation 

procedure are described below. It is to be noted here that a loadability limit for any bus 

depicted as λ in the result, implies that the corresponding bus has reached its VSL when the 

load at that bus is increased by λ times more than its nominal value, keeping the loads at other 

buses constant. To avoid repetition this fact is not repeated every time. Moreover, loads are 

increased at a particular bus keeping the power factor constant. 
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Considering these indices to be the voltage stability criteria, the voltage stability limit (VSL) 

or loadability limit of the system are evaluated when the loads are gradually increased in all 

these buses one by one. The ENVCI values obtained are recorded in the same Table 2.2. The 

P-V curves and the ENVCI-Lambda (λ) curves are obtained from the simulation as shown in 

Figure 2.6, and Figure 2.7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.6. ENVCI versus lambda (λ) curve of load buses. 
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Figure 2.7. Voltage curve of load buses with λ=lambda 

 

 

To examine the accuracy of VSL prediction from different perspective of indices, the 

following simulations were carried out separately for each of the indices. The four numbers 
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of indices namely; P-loss sensitivity index, V-Q sensitivity index, L-index and WASI were 

selected to be evaluated out of all the voltage stability indices discussed in section 2.2. These 

three indices i.e. P-loss sensitivity index, V-Q sensitivity index, and L-index are generally 

widely used at different levels. Table 2.1 shows the Ranking of the buses with three indices 

when the system is not disturbed.  

 

Table 2.1. Ranking of load buses with indices  

 

Eigen value 

Sensitivity 
Bus No. 

Q-loss 

Sensitivity 
Bus No. L Index Bus No. WASI Bus No. 

0.0075 2 0.0054 1 0.0085 23 0.0136 20 

0.0084 19 0.0001 2 0.0093 20 0.0146 8 

0.009 25 0.007 9 0.0104 7 0.0186 29 

0.0097 22 0.0116 25 0.0109 8 0.0187 27 

0.0106 6 0.016 29 0.015 6 0.0192 28 

0.0107 10 0.0173 28 0.0188 22 0.0197 22 

0.0107 20 0.0187 22 0.021 9 0.0239 9 

0.011 23 0.0219 20 0.022 5 0.0245 5 

0.0114 16 0.0221 26 0.026 21 0.0294 1 

0.0116 5 0.0252 10 0.0287 12 0.0304 11 

0.0117 11 0.0259 19 0.0303 15 0.0333 4 

0.0119 3 0.0276 3 0.0307 24 0.0348 24 

0.0125 13 0.0319 13 0.0307 1 0.035 15 

0.0127 29 0.0325 11 0.0308 11 0.0351 2 

0.0129 17 0.0387 5 0.0329 4 0.0358 14 

0.0132 4 0.04 23 0.0361 14 0.0359 13 

0.0133 14 0.0409 4 0.0367 16 0.0359 10 

0.0147 18 0.0409 27 0.0379 13 0.037 16 

0.0148 24 0.0413 6 0.0398 10 0.0374 21 

0.015 8 0.0419 18 0.042 3 0.0382 3 

0.0154 7 0.042 14 0.0428 18 0.0404 12 

0.016 15 0.0424 12 0.0437 2 0.0413 18 

0.016 26 0.0458 8 0.0438 17 0.0417 17 

0.0162 1 0.0474 7 0.0508 29 0.044 7 

0.0172 9 0.0493 17 0.0529 27 0.0448 25 

0.0185 27 0.0632 16 0.0548 25 0.0503 23 

0.0217 28 0.0682 15 0.0583 28 0.0538 6 

0.026 21 0.0693 24 0.0653 26 0.0562 19 

0.0342 12 0.0765 21 0.0693 19 0.0566 26 
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2.7.1 Eigen value sensitivity 

 

Discrepancy of result is first observed in bus number 8, where the VSL (i.e the 

maximum loading parameter,λ) was found to be 5.38 as shown in Table 2.2. However, from 

the results of NRLF obtained at a loading of 5.36 it is seen from Figure 2.8 that, most of the 

bus voltages have reached very close to their upper limits means violations of operating limit 

on higher side.  

 

 

Figure 2.8. The voltage profile of the system at 5.36 times the nominal loading in bus 8. 

 

2.7.2 Q-loss Sensitivity 

 

In another case of loading at the bus number 25 when the load is increased to 15.88 

the results of NRLF has shown voltages reaching lower limits although it is not 

practically feasible loading as only  bus 25 among all the load buses  has reactive power 

generated value 1.0 p.u . so it can supply reactive power thus loading can be increased as 

active and reactive power load is not so high. So this bus can be further loaded) ,even 

though the index had predicted a VSL of higher magnitude of 15.89 .(from the 

comparison between Figure 2.9 and the Q-loss sensitivity index for bus number 25 , in 

Table. 2.2) 
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Figure 2.9. The system voltage profile at 15.88 times the nominal loading of bus 25. 

2.7.3 L-index 

 

The L-index calculation indicates the VSL for load bus number 20 is 4.2 referring to 

Table 2.2 where as for the same bus the NRLF study reveals the VSL 4.1as shown in Figure 

2.10.  It is to be noted that the loading parameter depends upon the nominal loading of the 

system.the higher the nominal loading the loading capacity of the bus will be less.  

 

 

 

Figure 2.10. The system voltage profile at 4.1 times the nominal loading of bus 20. 
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2.7.4 WASI 

 

In bus 28 reactive power load is very less. There is a chance of over voltage as only active 

power is increased and due to the transformer tap setting not taken into account. This is treated as 

close to the upper limit of voltage( i.e 1.5) assumed.Referring to Figure 2.11 the VSL for bus 

number 28 is 9.2, whereas with NRLF study the same is found to be 9.21  from Table 2.2.  

 

 

Figure 2.11. The system voltage profile at 9.2 times the nominal loading of bus 28. 

 

 

Table 2.2. Weak bus ranking in IEEE-39 Bus Test System. 

 

Rank 

 

Weak bus ranking in descending order from different indices perspectives 

V-Q sensitivity 

Index 

Q-loss sensitivity 

Index 

L-index WASI ENVCI 

Bus 

No. 

VSL (No. 

of times 

nominal) 

Bus 

No. 

VSL (No. 

of times 

nominal) 

Bus 

No. 

VSL (No. 

of times 

nominal) 

Bus 

No. 

VSL 

(No. of 

times 

nominal) 

Bus 

No. 

VSL 

(No of 

times 

nominal) 

1 8 5.38 25 15.89 23  6.7 20 4.2 20 4.5 

2 25 15.89 29 7.42 20 4.2 8 5.3 8 5.4 

3 20 4.56 28 8.91 7 7.9 29 7.3 29 8.4 

4 16 13.46 20 4.56 8 5.6 27 9.21 28 8.8 

5 3 11.27 26 19.58 21 6.7 28 9.4 27 9.4 
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2.7.5. ENVCI 

 

Observing all the above discrepancies in prediction of VSL by the four indices, their 

consideration for the criterion of detecting voltage stability may be uncertain. On the 

contrary, the P-V curve analysis both by ENVCI and NRLF approaches are in accordance 

with each other as shown in Table 2.2 (i.e. ENVCI column).and Figure 2.6 and Figure 2.7 

respectively. The comparison between the three indices showing the weakness of the system 

load buses are shown in Figure 2.12. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.12. The comparison of the indices nominal case. 

The maximum loading of each load bus is determined from the ENVCI calculation. The 

maximum loading parameter corresponds to the zero value of ENVCI. When LP is less the 

ENVCI is 1 approximately. With the increase in LP the ENVCI becomes less than one. With 

gradual increase of LP, ENVCI becomes gradually less and finally becomes close to zero. 

Thus LP for each load bus is found out. The maximum loading limit of each load bus for 

selected 13 load buses numbered as 3, 8, 15, 16, 18, 20, 21, 23, 24, 25, 26, 27, 28, and 29 .  

 are shown in Figure 2.13. 
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Figure 2.13. Maximum loading in the load buses with ENVCI. 

 

2.8. Conclusions 

 

The main objective of the work carried out in this chapter, is to determine the values 

of different indices and examine their accuracy in predicting the limits of voltage stability, 

when it is considered as the criterion to determine the VSL. Simulations carried out in the 

given IEEE 39 bus test system, showed that the three previously reported indices i.e., Q-loss 

sensitivity index, V-Q sensitivity index gave some erroneous prediction. Therefore, looking 

at the accuracy of different indices, a new index known as WASI is defined. Properly 

selected weighting factors when multiplied to formulate WASI, gave better accuracy of 

prediction with the same. However, the variation of ENVCI with load increase was found to 

be more conforming to the P-V curves obtained for load increase at a particular bus. 

Moreover, due to the advantage of ease of calculation of ENVCI, and the non requirement of 

load flow solution for an online evaluation and application, it can be preferred over other 

indices.  

 

After examining the accuracy of different indices and selecting ENVCI as the 

criterion for the determination of voltage instability, the weak bus ranking of the system is 

done, similar to other indices. To alleviate the problem of instability, suitable amount of 

compensation needs to be done by different means at the weak buses. In the subsequent  
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Chapter-3, the fixed capacitor compensation is decided to be carried out within the 

framework of optimization for voltage stability study. 
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OPTIMAL PLACEMENT AND SIZING OF FIXED SHUNT REACTIVE 

COMPENSATION TO INCREASE LOAD MARGIN WITH MBFO ALORITHM 

 

 

 

 

 

3.1. Introduction 

 

Generally, the steady state static analysis of voltage instability in a large interconnected 

power system gives considerable idea about the vulnerability of the system [12]. A scenario of 

gradual load increase in some weak areas of the system as discussed in Chapter-2, gives an 

indication about the limits of loadability (using ENVCI [41]) in it, before the system breaches its 

own secure operation. For even more practical understanding few contingencies in the form of 

outage of lines, generators etc, gives a better idea about the system’s load bearing capacities at 

some specific points in the network [29, 82]. As the system is continuously changing its 

operating conditions therefore, a close watch on the present operating regions is necessary. 

Because, a decision of specific corrective control measure that ensures a voltage secure operation 

of the system, largely depends on the operating condition. In this regard, the speed of decision 

making also plays an important role. Moreover, voltage stability margin can be improved by 

suitably sizing and placing VAR compensating devices [85] in the system. The main issue of 

optimal size and location has been determined by several researchers after formulating the 

problem as an optimization problem [87, 88]. For solving them, conventional algorithms like 

interior point based methods and Sequential Quadratic Programming (SQP) [66, 67] and 

intelligent search algorithms like, Genetic Algorithm (GA) and Particle Swarm Optimization 

(PSO) [69, 85], have been applied. This work aims at optimizing the suitable location and 

capacity of fixed compensation (FC) in the IEEE 39-Bus New England power system so as to 

increase the system load margin using a Modified Bacteria Foraging Optimization Algorithm 

(MBFOA) [89] that is different from original version [90] and has been tested in wide varieties 

of power system problems mentioned above.   
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3.2. Problem Formulation 

 

The problem is formulated, as an optimization problem in the same IEEE 39 bus Test 

system as in Chapter 2. The objective of this work is to determine the most suitable two locations 

in the system where a suitable amount of injected reactive power would maximize the loadability 

limit or VSL of the system when the same is subjected to load increase at some weak buses of 

the system one after other. To limit the numbers of optimizing variables only two locations are 

chosen for the purpose. With this, there are in total four different optimizing variables, i.e., two 

numbers of locations with their respective percentage of compensations. It may be recalled that 

the maximum loadability limit of the system is maximum possible increase in real power flow at 

some load buses, before the system witnesses a voltage collapse condition. The load buses are 

already ranked from the perspective of relative weakness, utilizing ENVCI as the criteria.  

 

3.2.1. Statement of the problem  

 

The optimization problem may be stated in a general form as explained in Equation 3.1. 

Similar to most of the problems of optimization, there are sets of equality and inequality 

constraints that needs to be satisfied simultaneously. 

 

            (3.1) 

 

The parts F1 and F2 of the objective function F, take into account respectively, the maximization 

of VSL and minimization of real power loss of the system under the maximum load condition. 

Each part of the objective function is suitably normalized, so that they can be added together. It 

may be recalled that both the individual objectives essentially aid one another and they are not 

contradictory in nature. However, the third part FC consists of penalty factor that gets added to 

the objective functions in the case of any limit violation. The details of these three components 

of the objective function F is explained below. 

 

 

 

 

1 2 CF F F xF  
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3.2.1.1. Maximization of steady state VSL of loading 

 

Increasing the margin of loadability or VSL in a stressed operating condition without 

compromising on voltage stability, requires proper selection of location and amount of FC in the 

system by external means. Therefore, the primary objective F1 of the work aims to maximize the 

VSL of the system, considering locations of system buses and the amounts of percentage 

compensation at those locations as two types of variables of optimization. The loads are 

increased in the weakest bus for determining the VSL of the system. The objective function F1 is 

therefore defined as follows in Equation 3.2.  

 

 F1 = min (λi
Max

)         (3.2) 

 

where, λi
Max

 = set of maximum load parameter, λ for i
th

 bus. λi = Load parameter of i
th

 bus, i = 

1,…, 5 for the 5 numbers of selected weak buses considered for load increase during 

optimization. The minimum value among the set,  λi
Max

  corresponds to the weakest bus and if the 

VSL of weakest of the selected buses is improved then there can be overall improvement in the 

system VSL. 

 

3.2.1.2. Minimization of active power loss  

 

It is well known that, when the real power loss of the transmission lines in the system 

increases due to increase in line currents. Then the reactive power loss also increases thereby 

increasing the overall line voltage drops in the system. This results in overall reduction in system 

bus voltages. By choosing suitable locations and amounts of capacitive reactive power injection 

in the system, the loss can be reduced and voltage profile can be improved for the same condition 

of load increase [81]. Therefore, one of the two objectives is to reduce system real power loss. 

Hence, F2 can be written as follows. 

 

F2  =  Ploss (x, u) = Ploss         (3.3)  

 

where, Ploss is the real power loss in the system for all i numbers of transmission lines in the 

system for a particular operating condition. In the same equation, 
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 x = {V1, all node voltages} where x is set of all the node voltages Vn and node angles δn  

 u = Vector of control variable comprising of the position and size of shunt FC in the system. 

 

As the system is operating with constraints, and the solution needs to satisfy them. The 

remaining objective is avoid the violation of any of the inequality constraints, which is fulfilled 

with the help of the penalty factors, formed by taking into account the operational constraints of 

the system as defined in the following section.   

 

3.2.2. Equality and inequality constraints 

 

 Any problem of optimization needs to be solved within the limits of different types of 

equality and inequality constraints. For the present problem, they are detailed below. 

 

3.2.2.1. Equality constraints 

 

The equality constraints are the active and reactive power balance described by a set of 

power flow equations as explained in Equations 3.4 and 3.5 respectively and in general form as 

in Equation in 3.6 

 

(i) Real power balance equation  

The real power balance equation for load in i
th 

bus can be expressed as 

            (3.4) 

Assuming  

(ii) Reactive power balance equation 

The reactive power balance equation for load in i
th 

bus can be expressed as 

 

            (3.5) 

 

  0),,( uxG           (3.6) 

1

1

cos sin 0 1,2,3,4,.....
gN

i i j ij ij ij ij g

j

P V V G B i N  
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cos sin 0 1,2,3,4,.....
gN
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Where x and u are the set of state and control variables. Similarly, λ is the load parameter 

related to the condition of load increase. The equality constraint in this case is achieved by 

solving the power flow equations with the help of NRLF method explained earlier in Chapter 2. 

 

3.2.2.2. Inequality constraints 

 

The, transformer apparent power ST, line apparent power Sline, bus voltage magnitude VL 

are considered as follows: 

 

(i) Transformer apparent power (ST) limit 

The i
th 

transformer apparent power can be expressed in the following equation as 

 

            (3.7) 

 

(ii) Transmission line apparent power (        ) limits 

The i
th

 transmission line apparent power limit can be expressed by the following equation 

as 

            (3.8) 

 

(iii) Bus voltage limit 

The i
th

 bus voltage limits can also be expressed in the following equation as 

 

            (3.9) 

 

The set of inequality constraints defined by the same sets of state, control variables and the 

load parameter, can be written in a general form as follows. 

 

 0),,( uxH            (3.10) 

 

In this work, the transformer apparent power ST, line apparent power STi line, bus voltage 

magnitude VL, are required to remain within their respective maximum and minimum limits as 

min max
, 1...Li Li Li LV V V for i N  

min max
, 1......Ti Ti Ti TS S S for i N  

min max
, 1...

Line Line Linei i i LineS S S for i N  

Line
S
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follows. where, the above constraints are included in the objective function, in the form of 

penalty factors as explained in the subsequent section. 

 

3.2.2.3. Penalty factors  

 

Three penalty factors are considered to take care of any violation limits of bus voltage, 

line flow and transformer capacity limit violations. In the event of any violation a large valued 

factor gets added up with the original objective function thereby penalizing its objective of 

minimization. Each of them is explained below.  

 

F3 = Pf1 = Penalty factor for limit violation of bus voltages. 

 

            (3.11) 

 

 F4 = Pf2 = Penalty factor for limit violation of transformer MVA capacity violation. 

 

             (3.12) 

 

F5 = Pf3 = Penalty factor for limit violation of line flow capacities of all the lines in the system.   

 

            (3.13) 

 

FC = penalty factor = F3+F4+F5,        (3.14) 

 

Min F(x, u, λ) is designed as below. 

 

            (3.15) 

 

The problem is formulated as a static constrained non-linear optimization problem. Where, 

 λi
Max

  is a set of 5 values corresponds to maximum loading capacity among the 17 load buses 

when the bus is subjected to load increase scenarios. The first and second parts of the objective 

functions formulated in Equation 3.15 allow the P-loss minimization and improvement in load 

     1 min max10* 0.9 1 10* 1.1 1rated ratedPf abs sign V abs sign V     

2 max10* ( ( 15) 1)ratedpf abs sign trans  

3 max10* ( ( 20) 1)ratedpf abs sign line  

1 2 1 2 3F = max f +min f +Pf +Pf +Pf
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margin respectively. Each part of the objective function is suitably scaled. When the limits are 

violated then there is a penalty factors. The penalty factors pf1, pf2, and, pf3 will be zero as long 

as there is no violation of limit. The load parameter of the load bus evaluated by increasing the 

loads in steps and the load is equally shared by the generators till the unstable point is reached. 

This is illustrated as 

 

 

            (3.16) 

 

 

where, PLi, QLi  are  the active power, reactive power of the load and PGi is the active power of the 

generator of the i
th 

bus. λ is the load parameter, multiplied in steps of 2% to increase the real and 

reactive powers from their respective nominal values. The system load margin is evaluated with 

the help of ENVCI. With the increase in load, ENVCI value reduces reaching towards zero near 

the LM. Hence the corresponding λ value is the LM of the system. 

 

3.3 Optimization Algorithms 

 

Any problem of constrained optimization can be solved with the help of numbers of 

conventional and modern heuristic optimization techniques. However, as discussed previously, if 

the problem is highly non-linear and non convex with numbers of epistatic (interdependent) 

variables required to be optimized, then a conventional gradient based optimization method or 

even many of heuristic optimization algorithms fail to produce promising results. The 

computational burden and duration increases considerably with large dimension like that of a 

multi generator power system. Therefore, this work focuses on MBFOA, which has been 

employed in optimization of numerous power system problems and compared its performance 

with that of the Genetic Algorithm (GA). Before proceeding to the methodology of the 

optimization problem, brief overviews of the two algorithms are discussed here. 
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3.3.1. Genetic Algorithm  

 

The Genetic algorithm [86] is a search based optimization algorithms, inspired from the 

phenomena found in living life. They always produce high quality solutions because they are 

independent of the choice of the initial configurations. Moreover, they are computationally 

simple and easy to implement. Based on stochastic techniques, the mechanism of the algorithm is 

influenced from natural selection and genetics. GA starts with an initial set of random solutions 

called population, whose every individual is called a chromosome, that can be a solution to the 

problem. A chromosome is a binary or real valued string structure that is an aggregated list of 

binary digits representing the code of control parameters in the problem. The chromosomes 

evolve through successive iterations, called generations. During each generation, the 

chromosomes are evaluated, using some measure of fitness. To create the next generation, new 

chromosomes called offspring are formed by either (a) merging two chromosomes from the 

current generation using a crossover operator or (b) replacing one bit from the parent 

chromosome by its complement using the mutation operator. A new generation is formed by 

selecting, a few of the parents and offspring according to the fitness value and rejecting others, to 

keep the population size constant. Suitable chromosomes having higher probabilities are being 

selected for the mating pool. The selection rule used is a roulette-wheel selection. After several 

generations, the algorithms converge to the best chromosome, which represents the optimal or 

near optimal solution to the problem [86]. To obtain optimality the algorithms combine the 

solution evaluation and randomized, structured exchanges of information between the results.  

One of the drawbacks is their possibility to converge prematurely to a suboptimal solution. 

 

The goal here is to allow the ‘‘fittest” individuals to be selected more often to reproduce. 

There are a number of operators proposed for selection operation. Hence, each individual in the 

population consists of a combination of these variables.  Then the genetic operators are applied 

on the genetic population to improve the solution. This process is continued until the 

convergence criterion is satisfied. This is pictorially represented in Figure 3.1 The crossover 

operator is principally responsible for the global search property of the GA, and its probability 

usually in the range of 0.7-1.0. The parameters used for GA are given in Table 3.1. The GA has a 

tendency to converge in sub-optimal solution. 
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Figure 3.1 Flow chart for Genetic Algorithm. 

 

Table  3.1. Parameters used in GA. 

 

Parameters Value/Type 

Population size 50 

Maximum generations 100 

Selection operator Roulette wheel 

Crossover probability 0.85 

Mutation probability 0.05 

Termination method Maximum generation 
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3.3.2. Modified bacteria foraging optimization algorithm: 

 

Modified Bacteria Foraging Optimization Algorithm (MBFOA) [89], is a modified 

version of the BFOA proposed by Passino [90]. Although BFOA is developed, and applied in 

optimization problems in many fields including some in the field of power system, the work gets 

its motivation to use the same algorithm with some modifications in original BFOA [90], for 

having better efficiency and quicker convergence of the result. A real E.coli bacterium (denoted 

by              )  performs two basic operations in its process of foraging. It either tumbles or swims 

with help of flagella [89]. When the flagella rotate in the clockwise direction, a bacterium 

tumbles, whereas in counter clockwise rotation the same gets the indication to swim. This 

important process is known as chemotaxis.  

 

The bacteria undergo chemotaxis, when they move towards richer nutrient locations 

(favourable solution space). The bacteria replicate themselves over the process of chemotaxis 

when they find favourable nutrient space. This occurrence has motivated Passino to set up the 

process of reproduction in MBFOA. In the process of evolution, the newer bacteria try to follow 

the most successful ones, by the process of swarming. But the most unique feature in the entire 

process involves the concept of elimination and dispersal, in which the entire set of bacteria 

might get eliminated altogether due to unfavorable ecological changes, and get dispersed to a 

newer region of nutrient. This uniqueness of the algorithm when done with a lesser probability of 

elimination and dispersal, improves the overall chemotactic growth of the bacteria instead of 

adversely affecting the solution. Therefore, the MBFOA essentially mimics the four primary 

mechanisms observed in a real E. Coli bacterial system, in the form of chemotaxis, swarming, 

reproduction, and elimination dispersal.  

 

A virtual bacterium is one trial solution that moves on the functional surface to locate the 

global optimum. Let us define a chemotactic step to be a tumble followed by a tumble or a 

tumble followed by a swim or run. Let j be the index for the chemotactic step. Let k be the index 

for the reproduction step. Let l be the index of the elimination-dispersal event. The algorithm 

begins with the process of initialization. That is to let  

 

p 
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( , , ) { ( , , ) 1,2,......, }iP j k l j k l i S 

p: Dimension of the search space 

S: Total number of bacteria in the population, 

Nc : The number of chemotactic steps, 

Ns: The swimming length. 

Nre : The number of reproduction steps, 

Ned : The number of elimination-dispersal trials, 

Ped : Probability of elimination-dispersal, 

C (i): The size of the step taken in the random direction specified by the tumble. 

Let 

is the position of each member of S bacteria at the j
th

 chemotactic step, k
th

 reproduction step, and 

l
th

 elimination-dispersal event in the population of the S bacteria. Here, let J (i, j, k, l) denote the 

value of objective function at the location of the i
th

 bacterium denoted by                           . For 

actual bacterial populations, S can be very large, but the choice is problem specific and varies for 

different problems.                                     denote the P dimensional positions in the search space. 

The main four prime processes in MBFOA are described below. 

 

3.3.2.1. Chemotaxis 

 

As explained earlier, this process simulates the progress of an E.coli bacterium through 

swimming and tumbling by the use of flagella  represents i
th

 bacterium at j
th

 

chemotactic, k
th

 reproductive and l
th

 elimination-dispersal step. C(i) is the size of the step taken 

in the random direction specified by the run length unit. Then in computation of chemotaxis the 

movement of the bacterium may be represented as below 

 

            (3.17) 

 

Where,     represent the vector in random direction whose element lie in a range of -1 and 1. 

 

3.3.2.2. Swarming 

 

The group behavior of swarm is found in many evolutionary motile species, and the 

characteristic of the one seen in E.coli bacteria is closer to that of S. typhimurium. The cells 
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release an attractant aspertate, the magnitude of which is modeled by the values of dattractant, 

Wattractant. The process helps them to combine into groups and thus move as concentric patterns of 

swarms with high bacterial density. Similarly, the opposite process of repelling is modeled by, h 

repellant ,Wrepellant. The cell-to-cell signaling in E.coli swarm may be represented by the following 

function.  

  

 

           (3.18) 

 

Where,                            is the objective function value to be added to the actual objective 

function J, to be minimized. dattractant, Wattractant, h repellant ,Wrepellant are different attractant and 

repellent coefficients that needs to be chosen properly.  

 

3.3.2.3. Reproduction 

 

The least healthy bacteria ultimately die while the healthier bacteria (those yielding lower 

value of the objective function) replicate into another set of bacteria, which are then placed in the 

same location. This keeps the bacterial size constant. 

 

3.3.2.4. Elimination and dispersal 

 

Gradual or sudden unforeseen event similar to rise in temperature may annihilate the 

entire group of bacteria which have evolved till now and currently in favourable region of 

nutrient gradients. These events may subsequently disperse the original set into a new location. 

Instead of destroying the process of evolution, this process is unique feature of MBFOA and tend 

to speed up convergence as the population of newly created species may find themselves in more 

favourable environment. The probability Ped of this process is kept low, to avoid the natural 

cycle of chemotaxis. The flowchart of MBFOA is presented in Figure 3.2 [89]. The details of the 

algorithm steps of the original version are as follows. 
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[Step 1] Initialize parameters p, S, Ns, Nc, Nre, Ned, Ped, C(i)=(i=1,2,3….S), and  Algorithm: 

 

[Step 2] Elimination-dispersal loop: l=l+1 

 

[Step 3] Reproduction loop: k=k+1 

 

[Step 4] Chemotaxis loop: j=j+1  

 

[a] For i =1,2…S. take a chemotactic step for bacterium i as follows. 

[b] Compute fitness function.                  add on the cell-to cell attractant–repellant profile to 

simulate the swarming behavior.  

 

                                                                                                                (3.19) 

 

[c] Let  to save this value since we may find a better health or cost via a 

run. 

 

[d] Tumble: Generate a random vector with each element a 

random number on [0, 1]. 

 

[e] Move: Let 

 

                                                                                                 (3.20)  

 

This results in a step size in the tumble direction. 

 

[f].compute                         and let 

                                                                                                    (3.21) 

 

[g] Swim 

i) Let m=0 (counter for swim length). 

ii) While m < Ns (if have not climbed down too long). 
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• Let m=m+1.  

• If                                     (if doing better), let                                    and let 

 

            (3.22) 

 

and take                          to compute new                          as done in [f] 

Else, let m = Ns . This is the end of the while statement. 

 

[h] Go to next bacterium i+1, if                 (i.e., go to [b] to process the next bacterium). 

 

[Step 5] If j <Nc , go to step 4. 

 

[Step 6] Reproduction 

 

[a] For the given k and l, and for each i =1, 2,..., S , let 

 

       (3.23) 

 

be the health of the bacterium i. Sort bacteria and chemotactic parameters C(i) in order of 

ascending cost J health (higher cost means lower health). 

 

[b] The S r bacteria with the highest Jhealth values die and the remaining S r bacteria with the best 

values split. 

 

[Step 7] If        , go to step 3. In this case, the number of specified reproduction steps is not 

reached; start the next generation of the chemotactic loop. 
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Figure 3.2. Flow chart of MBFOA. 

 

 

[Step 8] Elimination-dispersal: For i =1, 2..., S with probability Ped, eliminate and disperse each 

bacterium (this keeping a constant number of bacteria in the population). To do this, if a 

bacterium is eliminated, simply disperse another one to a random location on the optimization 

domain. If  l <Ned , then go to step 2, otherwise end. 
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The parameters used for simulation discussed above problem are given in Table 3.2. 

 

Table 3. 2. Parameters used in MBFOA 

 

Parameters Value/type 

Depth attractant 1.8 

Width attractant 0.06 

Width repellant 10 

Height repellant 1.8 

Run length unit 0.06 

Elimination probability 0.25 

Elimination dispersal probability 0.25 

 

 

3.3.3. Differential evolution 

Differential Evolution (DE) algorithm is a population-based stochastic optimization 

algorithm recently introduced [120]. DE works with two populations such as: old generation and 

new generation of the same population. The population size is adjusted by the parameter NP. The 

population having real valued vectors of dimension D is equal to the number of control variables. 

The population is initialized within random initial factor bounds. The optimization process is 

accomplished by use of three key operations, namely mutation, crossover and selection. In every 

generation, individuals of the current population develop into target vectors. For every target 

vector, the mutation operation generates a mutant vector, by means of addition of the weighted 

difference between two randomly chosen vectors to a third vector. In crossover operation, a new 

vector is generated, called trial vector, which is the result of combination of the parameters of the 

mutant vector and that of the target vector. If the trial vector obtains a better fitness value than 

the target vector, then the trial vector replaces the target vector in the next generation. The 

evolutionary operators are described below [121-124]. The flow chart is given in Fig. 3.3. 

 
 

3.3.3.1. Initialization 

For each parameter j with lower bound 
L

jX  and upper bound 
U

jX , initial parameter values are 

usually randomly selected uniformly in the interval [
L

jX ,
U

jX ]. 
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Fig.3. 3.    Flow chart for DE 

 

3.3.3.2. Mutation 

For a given parameter vector  GiX , , three vectors ( GrX ,1 , GrX ,2 , GrX ,3 ) are randomly selected such 

that the indices i , 
1r , 

2r and 3r are distinct. A donor vector 1, GiV  is created by adding the 

weighted difference between the two vectors to the third vector as: 

).( ,3,2,11, GrGrGrGi XXFXV          ( 3.24) 

Where F is a constant ranges between (0-2) 
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3.3.3.3. Crossover 

Three parents are selected for crossover and the child is a perturbation of one of them. The trial 

vector 1, GiU is developed from the elements of the target vector ( GiX , ) and the elements of the 

donor vector  

( GiX , ).Elements of the donor vector enters the trial vector with probability CR as: 

, , 1 ,

, , 1

, , 1 ,

j i G j i rand

j i G

j i G j i rand

V if rand CR or j I
U

X if rand CR or j I







 
 

 

 


















randijGij

randijGij

Gij
IjorCRrandifX

IjorCRrandifV
U

,1,,

,1,,

1,,
      (3.25 ) 

With ijrand , ~ )1,0(U , randI is a random integer from ),.....2,1( D where D is the solution’s 

dimension i.e. number of control variables. randI  ensures that  GiGi XV ,1,  . 

3.3.3.4. Selection 

The target vector GiX , is compared with the trial vector 1, GiV  and the one with the better fitness 

value is admitted to the next generation. The selection operation in DE can be represented by the 

following equation: 
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    (3.26 ) 

where ],1[ PNi . 

 

3.3.4. Particle swarm optimization algorithm  

 

The PSO method is a member of wide category of Swarm Intelligence methods for 

solving the optimization problems. It is a population based search algorithm where each 

individual is referred to as particle and represents a candidate solution. Each particle in PSO flies 

through the search space with an adaptable velocity that is dynamically modified according to its 

own flying experience and also to the flying experience of the other particles. In PSO each 

particles strive to improve themselves by imitating traits from their successful peers. Further, 

each particle has a memory and hence it is capable of remembering the best position in the 
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search space ever visited by it. The position corresponding to the best fitness is known as pbest 

and the overall best out of all the particles in the population is called gbest. The features of the 

searching procedure can be summarized as follows [121, 125]: 

 Initial positions of pbest and gbest are different. However, using the different direction 

of pbest and gbest, all agents gradually get close to the global optimum. 

 The modified value of the agent position is continuous and the method can be applied 

to the continuous problem. However, the method can be applied to the discrete 

problem using grids for XY position and its velocity. 

 There are no inconsistency in searching procedures even if continuous and discrete 

state variables are utilized with continuous axes and grids for XY positions and 

velocities. Namely, the method can be applied to mixed integer nonlinear 

optimization problems with continuous and discrete state variables naturally and 

easily. 

The modified velocity and position of each particle can be calculated using the current velocity 

and the distance from the pbestj,g to gbestg as shown in the following equations :                                

 

                              (3.27) 

                                                                 (3.28)

        

        

                                                                                                               

With                                        and  

 

Where 

n =number of particles in a swarm; 

m = number of components in a particle; 

t = number of iterations (generations); 

)(
,
t
gjv

= g-th component of velocity of particle j at iteration t, ; 

w = inertia weight factor; 

c1 , c2 = cognitive and social acceleration factors respectively; 

r1 , r2 = random numbers uniformly distributed in the range (0, 1); 
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( )

,

t

j gx = g-th component of position of particle j at iteration t; 

= pbest of particle j; 

gbestg = gbest of the group. 

The j-th particle in the swarm is represented by a d-dimensional vector xj= (xj,1, xj,2, ……,xj,d) and 

its rate of position change (velocity) is denoted by another d-dimensional vector vj = (vj,1, vj,2, 

……, vj,d). The best previous position of the j-th particle is represented as pbestj=(pbestj,1, 

pbestj,2, ……, pbestj,d). The index of best particle among all of the particles in the swarm is 

represented by the gbestg. In PSO, each particle moves in the search space with a velocity 

according to its own previous best solution and its group’s previous best solution. The velocity 

update in a PSO consists of three parts; namely momentum, cognitive and social parts. The 

balance among these parts determines the performance of a PSO algorithm. The parameters 

c1and c2 determine the relative pull of pbest and gbest and the parameters r1and r2 help in 

stochastically varying these pulls. In the above equations, superscripts denote the iteration 

number. The flow chart of PSO is shown in Fig. 3.4. 
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Fig. 3.4 . Flow chart of PSO algorithm. 
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3.4. Simulation Results and Discussions 

 

The methodology adopted to determine the optimum size and location of VAR 

compensating devices at two different locations in the system is with the help of optimization. 

Five numbers of weakest buses according to the ranking of the system load buses (found in 

Chapter-2) are selected. This is done to simulate the scenarios of worst case loading in the 

system.The loads of these 5 buses are increased gradually in steps of 2% of their respective 

nominal values one by one until VSL for each bus in terms of λi is reached. Obtaining the values 

of λi for all the five bus numbers i=1 to 5 the value of min (λi
Max

 ) representing the least load 

increase among them is retained to maximize F1 explained in Equation 3.3. Other cost functions 

defined in Equations 3.4 and 3.5 are also obtained for every run. It is to be noted that, the above 

procedure is repeated for each bacterium, which are four randomly generated numbers. Two of 

them represent the location and two for the amounts in terms of percentages of compensation at 

these load buses. Proper scaling is done before these random numbers can be used. Moreover, 

the load increase at the weak buses is done along with the simultaneous compensation at the 

random locations being operational. Therefore, the load increase essentially denotes the same for 

a compensated condition.  

 

The maximum size of the compensating device is 90 MVAr (Qmax). The 17 load buses, i.e 

3, 4, 7, 8, 12, 15, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, and 29 are chosen for this purpose. 

Similarly, for the amount of compensation at any particular load bus, a maximum of 50% 

compensation is chosen.  The optimization carried out with MBFOA and GA and the system 

with optimized condition compensation are tested finally for accuracy. Methodology adopted in 

each of the optimization algorithm is explained below. 

 

3.4.1 Optimization using GA 

 

Conventional GA with binary coded chromosomes is used for optimization. The location 

and amount of reactive power compensation at two locations are randomly initialized, to 

represent a single chromosome. For each location two random numbers are generated. One 

random number represents the location and the other represents the amount of reactive power 

compensation in terms of percentage (-40% to +40%) of nominal load at that location. Therefore 
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4 random numbers represent randomly selected location and amount at two locations in the 

system. Each random number is then converted to a binary string, by multiplying the number 

with a large number Ω = (2
17

-1). All the 4 random numbers converted to binary strings having a 

length of 17 bits each, are then joined together to form a chromosome. 50 such randomly 

initialized chromosomes constitute the initial set to represent the population set in the first 

generation.  

 

The crossover and mutation probabilities are assumed to be 0.85 and 0.05 respectively. 

Similarly, a maximum of 100 generations of the algorithm solution produce convergence to 

optimized result. The convergence characteristic is represented in terms of numbers of objective 

function evaluations to have a better possible comparison with MBFOA. Because, in each 

generation GA and MBFOA evaluate the objective function different number of times, but the 

duration of a function evaluation remains constant. Therefore a comparison in terms of function 

evaluation instead of generation would give better idea of speed of optimization in both the 

algorithms. 

 

3.4.2. Optimizing with DE and PSO 

 

With the DE optimization it is seen that the objective function is not converging as 

compared to the MBFOA and GA . Also the result obtained with PSO technique, the 

optimization characteristic is not promising one when compared with the GA and MBFOA and 

DE . as shown in Fig.3. 5.  Also it is found that with DE the compensation required at bus no 29 

with 42.84 % of ratedVAR compensation and 42.88% of the installed VAR compensator is 

required at bus no 28 with PSO as shown in Table 3.3. 

Table.3. 3. Optimized compensation results with GA, MBFOA, DE, and PSO 

 

Compensation Specifications 
(Constant Q-Load) 

GA MBFOA  DE PSO 

1
st
 location of static compensation Bus No. 28 Bus No. 24 Bus No.29 Bus No.28 

1
st
 amount of static compensation 43.35% 42.78% 42.84% 42.88% 

2
nd

 location of static compensation Bus No. 20 Bus No. 15 Bus No.25 Bus No.27 

2
nd

 amount of static compensation 31.57% 08.68% 20.25% 9.78% 
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Figure 3.5. Convergence characteristics for increased load. 

 

From the convergence characteristics shown in Figure 3.5, it can be seen that the algorithm 

converges to solution after 10 generations with GA. The optimized results, which give the two 

locations and the corresponding amount of compensation, are shown in Table 3.3. The load 

margin is increased to 4.51 times of the nominal load with GA. The optimization with GA for 

this case gives the two optimal locations and sizes of FC which are at bus no. 28 with 

compensation of + 45.35% of Qmax (= 90 MVAr) and at bus no. 20 with compensation required 

to be + 31.57% of Qmax respectively.  

 

3.4.3. Optimization using MBFOA 

 

Four random solutions represent a single bacterium, and 4 such bacteria are evolved in the 

process of chemotaxis for several generations. Unlike GA, the binary coded strings are not 

required. The parameters of MBFOA used for the sake of optimization are given in Table.3.1. 

From the convergence curves shown in Figure 3.5, it can be seen that MBFOA converges faster 

than GA optimization. The final solution with MBFOA proposes a 42.78 % of rated FC at bus 

number 24 and 8.68% of rated compensation at load bus number 15. Keeping the location and 
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amounts of compensation obtained with both the methods, separate PV curves are drawn when 

the load was increased in the weakest bus of the system, i.e., bus number 20. 

 

It shows that for this bus the VSL with both the optimization results have improved upon the 

value of VSL obtained without compensation. Moreover, MBFOA solution has provided better 

compensation with respect to GA. Similar PV curves are also drawn for all the five weak buses. 

The results for load increase shown five weak buses 8, 20, 27, 28 and 29 are depicted in Figure 

3.6 to 3.10 respectively. From all the results the MBFOA case compensation has shown 

improved performance compared to GA, even though the amount of improvement is only 

marginal for other four weak buses. The voltage profiles obtained one step prior to the VSL 

conditions for load increased at bus numbers 8, 20, 27, 28 and 29 separately. The result obtained 

with the GA and MBFOA is shown in Figure 3.6 (a) as the load increased in the weak bus no.8, 

the voltage profile of all 29 buses are depicting the nominal loading and maximum loading 

without compensation, with GA and MBFOA at optimized compensations. Similarly the load 

margin for the same bus is depicted in the Figure 3.6 (b).  
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Figure 3.6.(a) System voltage profile for P increase in weak bus (bus No 08). 
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Figure 3.6 (b). Loadability limit of weak bus 8. 

 

The voltage profile of load bus 20 is observed with the simulation results that there is a 

chance of overvoltage in the bus 20 can cause voltage instability when the bus is at maximum LP 

(λ). In nominal case all the bus operate close to the standard value 1.0 pu. As load increased in 

bus 20 gradually to a maximum load shown in Fig.3.7 (a), the voltage became close to 1.5, 

which is the upper limit of operating voltage assumed. This can violate the operating voltage 

limit. This voltage is brought back close to nominal value with compensation by MBFOA 

method. It is clear that the MBFOA makes the operating voltage very much close to the nominal 

operating compared to GA. Thus MBFOA is better than the GA optimisation technique.  
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Figure 3.7 (a). System voltage profile for P increase in weak bus (bus No 20). 
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The load margin in this bus was 4.08 without compensation, where as it can be increased to 

4.5 with GA but can further be increased to 4.55 with MBFOA shown in Fig.3.7(b) . 
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Figure 3.7 (b). Loadability limit of weak bus 20. 

 

 

 

In Fig 3.8(a) the voltage profile of bus 27 at nominal case is very much in the stable state 

as compared to the maximum loading which is more than 1.1 pu causing over voltage leading to 

voltage instability. The voltage instability is avoided by reactive power compensation with  GA 

and MBFOA optimisation techniques. But MBFOA gives more stable value(0.95pu) than GA 

0.9 pu. The load margin for load bus 27 was 8.9 without compensation , which was enhanced to 

9.4 as compensation  made with GA. But with MBFOA technique for compensation the load 

margin enhanced to 9.5.this is shown in Fig. 3.8 (b)  

(λ) 



Chapter-3 

77 | P a g e  

0 5 10 15 20 25 30
0.7

0.8

0.9

1

1.1

Bus no.

B
u

s 
V

o
lt

a
g
e 

in
 p

.u
.

 

 

Nominal

Maximum loading case 

With MBFOA

With GA

 

 

Figure 3.8 (a). System voltage profile for P increase in weak bus (bus No 27). 

 

1 2 3 4 5 6 7 8 9 10
0.4

0.6

0.8

1

Loading Parameter

B
u

s 
v

o
lt

a
g
e 

(p
.u

)

 

 

With MBFOA

 With GA

Without compensation

 

 

Figure 3.8 (b). Loadability limit of weak bus 27. 
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In Fig 3.9(a) , it is seen that bus no 28 becomes very small (0.89 pu)at maximum loading  

than the nominal loading (1.05pu). the voltage in the bus 28 becomes 1 pu when it is optimally 

fed with reactive power using MBFOA. This is stable operating voltage than that of voltage(1.1 

pu)  obtained with GA optimisation technique. The load margin of bus 28 increased to 8.8 in 

optimisation case from 8.7 in nominal case. Although the load margin is same for the both GA 

and MBFOA techniques but the voltage is more stable in MBFOA than the GA.this is shown in 

Fig. 3.9(b) . 
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Figure 3.9 (a). System voltage profile for P increase in weak bus (bus No 28). 
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Figure 3.9 (b). Loadability limit of weak bus 28. 

In Fig 3.10(a) the voltage of load bus 29 is 1.15pu at maximum loading from 1.05 pu at 

nominal loading. The voltage becomes 0.95pu with MBFOA technique where as with GA it is 

0.96 pu. Further the load margin is increased to 7.2 with GA and enhanced further to 7.3 with 

MBFOA from 7.1 without any compensation as shown in Fig. 3.10(b) shows the load margin 

study.  
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Figure 3.10 (a). System voltage profile for P increase in weak bus (bus No 29). 
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Figure 3.10. (b). Loadability limit of weak bus 29. 

 

The compensation parameters with GA and MBFOA are shown in Figure 3.11. It clearly shows 

the compensation amount be very less (9% and 30%) in two capacitors for MBFOA  than GA 

which are (45 % and 46 %) . The ENVCI –Lambda(λ) curve after optimisation is shown in 

Figure 3.12 and justifies increase in 06% (in p.u system of 100 MVA base) of LM with MBFOA 

than GA. 
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Figure 3.11.  Compensation with GA and MBFOA. 
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Figure 3.12. ENVCI-Lambda curve for load increase after optimization. 

 

3.7. Conclusions 

 

With the increasing power demand and reduced opportunity of generation and 

transmission system expansion available to the system operator, the power system is operating in 

ever increasing stressful condition. In this scenario, the systems are operating very near their 

loadability limits. To relieve the system operation and improve the operating voltages in it proper 

optimized compensation of reactive power resources has become mandatory for secure 

operation. To alleviate the problem, fixed capacitive compensation of proper size at proper 

location in the system improves the operation increasing the VSL. In this work, some 

modifications are done in a basic intelligent optimization technique known as BFOA. With the 

proposed modifications, MBFOA is applied to optimize a suitably designed objective function to 

obtain the optimum location and size of FC, which can improve the system VSL. The 

optimization efficiency and accuracy is compared with the results obtained with GA, DE, and 

PSO and found to be better than the rest. The system PV curves in the case of loading done at 

almost all the buses improved, giving the best result when the loads are increased at the weakest 

bus in the system. The choice of the proposed algorithm is based on the fact that it has some 

unique characteristics of elimination and dispersal not found in other algorithms and that the 

original version of the algorithm has already been tested in many problems of power system. 

(λ) 
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Thus, the subsequent chapters are dealt with the MBFOA optimization techniques only with the 

modified models of the system.   

 

However, by placing only FC at some optimum location may not solve the purpose of 

improvement in voltage profiles under wider ranges of system operating conditions. To improve 

upon the performance, the role of FACTs device in the form of a STATCOM placed at a suitable 

location in the system, is tested in Chapter-4. 
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IMPROVEMENT OF LOAD MARGIN WITH THE INCLUSION OF 

STATCOM IN TRANSMISSION SYSTEM 
 

 

 

 

 

4.1. Introduction  

 

Transmission network operation becomes stressful due to increase in the reactive power 

consuming loads, contingencies in the form of line outage and generator mal-operation, over 

load etc, leading to voltage insecure operation. The solution to the problem is addressed by 

supplementing the shortfall in reactive power by external means to the network at desired 

locations. Further, the optimized VAR supplement will make the system operation much 

healthier. The optimized value of reactive power can be obtained if the VAR generating systems 

are variable type. According to the continuously changing reactive power needs of the system 

due to the changes in the operating conditions, if the amount of required VAR support can be 

supplied by external means then the problem is best alleviated. The planning for reactive power 

compensation in maintaining the operating voltage to increase the loadability of the system is the 

main objective. In chapter 3 only fixed capacitors were taken into account as the simplest and 

first form of reactive power support. As the fixed capacitors have limitations of having fixed 

values but not of variable capacity, to a varying load the fixed capacitor cannot provide variable 

value. Practically variable reactive power cannot be provided from a fixed capacitor. Thus 

switched capacitors are better option than fixed capacitors which are used to operate quickly and 

swiftly to supply the optimized value of reactive power. 

Different types of FACTs devices can meet the above requirement. Among the category 

of series devices in the family of FACTs, the concept of TCSC was introduced in [50]. However, 

for the purpose of control of system voltage, the category of shunt devices is found to be more 

suitable compared to the series devices. In [110], the usefulness of STATCOM for alleviating 

issues related to voltage stability was probed. For obtaining the suitable settings of the devices 

for effective operation of the same in a stressed power system, different techniques of 

optimization have been applied. In [108], GA is used to optimal location of four devices namely 
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TCSC, TCPST, TCVR and SVC to compare the efficiency of each device in a multi generator 

power system to study the problems of voltage stability in the same. Similarly, a widely accepted 

optimization algorithm, enhanced-PSO [111] is utilized to determine optimal value and location 

of STATCOM the extent of improvement in the system loadability margin. In this work a 

STATCOM is placed at the weakest bus in the test system (introduced earlier in Chapter 2) to 

improve upon the performance of fixed capacitor (FC) compensation scheme in Chapter 3. 

Further, to have even better performance the generator PV bus settings of all the 10 generators 

are also considered as control variables during optimization. The problem is identically 

formulated with the same objective as considered in the previous chapter. Before, going to the 

details of formulation of the problem, some more elucidation on the operation of STATCOM is 

presented at the outset. 

 

4.2. Fundamental Concept of STATCOM 

 

The static synchronous compensator (STATCOM) is a GTO based device of Flexible AC 

Transmission Systems (FACTS) family. The STATCOM is a static synchronous generator 

operated as a static VAR compensator which can inject lagging or leading VAR into the system 

when connected in shunt. Simple diagram of STATCOM is shown in Figure 4.1 (a) and (b) 

respectively. The DC source voltage is converted into AC voltage by the voltage source 

converter using GTO and AC voltage is inserted into the line through the transformer. In a 

heavily loaded condition, if output of VSC is more than the line voltage, converter supplies 

lagging VARs to the transmission line. During light load condition, if line voltage is more than 

the line voltage then converter absorbs lagging VAR from the system. If output voltage of 

converter is equal to line voltage, then the STATCOM is in floating condition and this shunt 

device does not supply or absorb reactive power to the system or from the system. 
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Figure 4.1. (a) & (b). Schematic diagram of STATCOM. 

 

 

4.2.1. Operating principle of the STATCOM 

 

The STATCOM regulates voltage at its terminal by controlling the amount of reactive 

power injected into or absorbed from the power system. It is to note that for the system voltage 

being low, the STATCOM generates reactive power (STATCOM capacitive) and with the 

system voltage being high, the latter absorbs reactive power (STATCOM inductive) as well. The 

variation of reactive power is performed by means of a Voltage-Sourced Converter (VSC) 

connected on the secondary side of a coupling transformer as shown in Figure 4.1 (a). The VSC 

uses forced-commutated power electronic devices (GTOs, IGBTs or IGCTs) to synthesize a 

voltage from a DC voltage source. The schematic diagram and equivalent circuit of the 

STATCOM is shown in the Figure 4.1 (a) and Figure 4.1 (b) above. In this figure, Vk represents 

the system voltage to be controlled and Vsh is the voltage generated by the VSC. The active and 

reactive power transfer between sources Vk and Vsh are given by the following two equations. 

 

            (4.1) sin
 k shV V

P
X
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            (4.2) 

 

In steady state operation, the voltage Vsh generated by the VSC is in phase with Vk (δ = 0), 

so that only reactive power is flowing (P = 0) and the reactive power is given by the equation 

 

            (4.3) 

 

If Vsh is lower than Vk, Q is flowing from Vk to Vsh (STATCOM is absorbing reactive power). On 

the reverse, if Vsh is higher than Vk, Q is flowing from Vsh to Vk (STATCOM is generating 

reactive power). The amount of reactive power is given by the same above equation. A capacitor 

connected on the DC side of the VSC acts as a DC voltage source. In steady state the voltage Vsh 

has to be phase shifted slightly behind Vk in order to compensate for transformer and VSC losses 

and to keep the capacitor charged.  

 

4.2.2. V-I characteristic of STATCOM in different modes of operation 

 

The STATCOM can be operated in two different modes: 

 

 In voltage regulation mode (the voltage is regulated within limits as explained below), 

 In VAR control mode (the STATCOM reactive power output is kept constant). 

 

When the STATCOM is operated in voltage regulation mode, it implements the following V-I 

characteristic. As long as the reactive current stays within the maximum and minimum current 

values (-Imax, Imax) imposed by the converter rating, the voltage is regulated at the reference 

voltage Vref. However, a voltage drop is normally used (usually between 1% and 4% at maximum 

reactive power output), and the V-I characteristic has the slope indicated in the Figure 4.2. In the 

voltage regulation mode, the V-I characteristic is shown in the same figure and is described by 

the following equation: 

  

            (4.4) 

( cos )
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Q
X
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Figure 4.2. V-I characteristic of STATCOM. 

 

4.2.3. Advantages of STATCOM over SVC 

 

The STATCOM has several advantages. It has no rotating parts, very fast in response, 

requires less space as bulky passive components are eliminated, inherently modular and re-

locatable, less maintenance and no problem as loss of synchronism [50]. The STATCOM 

performs the same function as the SVC. However at voltages lower than the normal voltage 

regulation range, the STATCOM can generate more reactive power than the SVC [92]. This is 

due to the fact that the maximum capacitive power generated by a SVC is proportional to the 

square of the system voltage (constant susceptance) while the maximum capacitive power 

generated by a STATCOM decreases linearly with voltage (constant current). This ability to 

provide more capacitive reactive power during a condition of fault, is one of the important 

advantages of STATCOM over the SVC. In addition, the STATCOM will normally exhibit a 

faster response than the SVC because with the VSC, the STATCOM has no delay associated 

with the thyristor firing (in the order of 4 ms for a SVC).  

 

4.3. STATCOM in the Test System 

 

The STATCOM provides effective voltage support at the bus which it is connected to. 

The STATCOM is placed as close as possible to the load bus for various reasons. The first 

reason is that the location of the reactive power support should be as close as possible to the 
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XSL
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point at which the support is needed. Secondly, in the test system under consideration the 

location of the STATCOM at the load bus is more appropriate because the effect of voltage 

deviation is the highest at this point. Finally, the 20
th
 bus in the test system is the weakest bus 

that is most vulnerable to the possibility of voltage collapse condition. Therefore, STATCOM is 

located on the same bus and the structure of the new system i.e. STATCOM in the system is 

shown in Figure 4.3. The size of the STATCOM taken here is 200MVAR.  

 

Before formulation of the problem, the fundamental concepts of the power flow condition 

model of STATCOM is elaborated in some detail here. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3. STATCOM in IEEE-39 Bus system. 
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4.3.1. Power flow model of STATCOM 

 

A schematic representation of the STATCOM is shown in Figure 4.1(a) and the equivalent 

circuit is shown in Figure 4.1 (b) respectively. The equivalent circuit represents the Thevenin 

equivalent when seen from bus k, with the voltage source Esh being the fundamental frequency 

component of the VSC output voltage. In steady-state fundamental frequency studies the 

STATCOM may be represented in the same way as a synchronous condenser, which in most 

cases is the model of a synchronous generator with zero active power generation. A more 

flexible model may be realized by representing the STATCOM as a variable voltage source Esh, 

for which the magnitude and phase angle may be adjusted, using a suitable iterative algorithm to 

satisfy a specified voltage magnitude at the point of connection with the AC network. The shunt 

voltage source of the three-phase STATCOM may be represented by 

 

            (4.5) 

 

The voltage magnitude, Vsh, is given maximum and minimum limits, which are a function 

of the STATCOM capacitor rating. However, δsh may take any value between 0 and 2π radians. 

With reference to the equivalent circuit shown in Figure 4.1(b), and assuming three phase 

parameters, the following transfer admittance equation can be written: 

 

            (4.6) 

 

The bus at which the STATCOM is connected is represented as a PQ bus. In such a case, 

the generated or absorbed reactive power would correspond to the violated limit. Unlike the 

SVC, the STATCOM is represented as a voltage source for the full range of operation, enabling 

a more robust voltage support mechanism. The STATCOM equivalent circuit shown in Figure 

4.1(b) is used to derive the mathematical model of the controller for inclusion in power flow 

algorithms. The power flow equations for the STATCOM [93] are mentioned below assuming 

the following voltage source representation. Based on the shunt connection shown in Figure 

4.1(b), the following may be written using [93] 
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            (4.7) 

 

The expression for active and reactive power equations is obtained for the converter and bus k, 

respectively.  

 

            (4.8) 

 

            (4.9) 

 

            (4.10) 

 

            (4.11) 

 

Using these power equations, the linearized STATCOM model is given below, where the voltage 

magnitude Vsh and phase angle δsh are taken to be the state variables: 

 

 

 

 

            (4.12) 

 

 

 

Where the augmented Jacobian is given by 
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With the above modifications in the Jacobian matrix of power flow, the STATCOM is included 

in the test system and the load flow is performed to study behavior of the system under condition 

of load increase. In summary, the power flow of the system is performed with NRLF involving 

the above modifications in the power flow equations and the Jacobian matrix. 

 

4.4. Problem Formulation 

 

The problem is formulated with the three objectives same as considered in Chapter 3 and 

taking into the account of the operating constraints as mentioned in the same chapter as 

expressed below: 

 

 

           (4.14) 

      

 

        ( , , )F x u    is expressed below 

 

is the objective function ( details already explained in 

section 3.2 of chapter 3, Equation No. 3.15)  

 

is the equality constrained (explained in section 3.2 , Ch.- 3, Equation No. 3.6) 

 

 is the compact form of the inequality constraints ( explained in sec.3.2 Ch- 3, 

Equation 3.10) 

 

4.5. Optimization 

 

The problem formulated in the previous section is optimized with modified bacteria 

foraging optimization algorithm (MBFOA) technique as it is seen in the last chapter that 

MBFOA performs better than GA. The problem is taken up as described below. The weakness 

sensitivity is estimated by the ENVCI calculation. Further simply the weakest bus (in this case 

bus 20) is connected with a STATCOM. More active power load is increased (as demand load) 

in the weakest bus and the optimized value of two reactive power as well as two optimal location 
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of these compensators are achieved. For a load increase in 50% from the nominal value the 

voltage stability is studied and the VSL is enhanced with proper optimized value of reactive 

power support at optimal location. Load flow study is made with NRLF method. The width 

attractant, repellant are 1.05 and 1.03 respectively. The run length unit is 0.07.  

 

4.6. Simulation Results and Discussions 

 

The simulation was carried out in Intel
®

 core IV quad processor using Matlab
®
 software. 

The proposed MBFOA was applied to solve the problem formulated above.  

 

 

 

Figure 4.4. Convergence characteristic. 
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obtained among the weak buses, i.e. 8, 20, 27, 28, 29. The result of optimization is shown in the 

convergence characteristics depicted in Figure 4.4. Function calculations means calculations in 

local search procedure.  Let 30 seconds to run for a function evaluation then it might take few 
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calculations may involve evaluating the objective function and constraints, if any, at points near 

the current iterate xi. For example, the solver may estimate a gradient by finite differences. At 

each of these nearby points, the function count (F-count) is increased by one. 

 

 If there are no constraints, the F-count reports the total number of objective function 

evaluations. 

 If there are constraints, the F-count reports only the number of points where function 

evaluations took place, not the total number of evaluations of constraint functions. 

 If there are many constraints, the F-count can be significantly less than the total number 

of function evaluations. 

 

F-count is a header in the iterative display for many solvers. For an example, see interpreting the 

results. F-count appears in the output structure as output func Count. This enables you to access 

the evaluation count programmatically. For more information on output structures, sometimes a 

solver attempts a step, and rejects the attempt. The trust-region, trust-region-reflective, and trust-

region-dogleg algorithms count these failed attempts as iterations, and report the (unchanged) 

result in the iterative display. The interior-point, active-set, and levenberg-marquardt algorithms 

do not count such an attempt as iteration, and do not report the attempt in the iterative display. 

All attempted steps increase the F-count, regardless of the algorithm. The optimum values of 

generator bus voltages and amount and locations of compensation at two locations are given in 

Table.4.1. The profiles of system bus voltages obtained for different conditions of arbitrary load 

increases at some weak buses are discussed below  

 

Table 4.1. Compensation for load increase in bus 20. 

 

Compensation Specifications Constant Q-Load 

1
st
 location of  compensation Bus no 21 

1
st
 amount of compensation 25.86% 

2
nd

 location of compensation Bus No.25 

2
nd

 amount of compensation 14.2 % 
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Figure 4.5. Voltage profile for load increase in bus no 8 with STATCOM in bus 20. 

 

The system bus voltage (voltage in other buses also vary) as shown in Figures 4.5 to 4.12 

respectively. In Figure 4.5 the load increased by 50% of its rated value and the simulation result 

shows that the voltage at the same bus is very much close to the lower limit 0.8 p.u. The value of 

lower limit (0.8 p.u.) is considered for in depth study only. It means the system has crossed too 

far the limit of voltage violations. With the reactive power support the voltage is improved by 

3% (with FC) and 6% with STATCOM. 

 

 

Figure 4.6. Voltage profile for load increases in bus no 20 with STATCOM in bus 20. 
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Figure 4.7. Voltage profile for load increases in bus no 27 with STATCOM in bus 20. 

 

Similarly in bus 20, the bus voltage at bus 20 is constant (1 p.u) as it is connected with 

STATCOM, treated as PV bus as shown in Figure 4.6. The compensation made by STATCOM 

as well as FC enhance the voltage profile in the other buses also, where as keeping the voltage of 

bus no 8 to be almost same except for a negligible change. Similarly the voltage profile of the 

system indicating the better performance of STATCOM over FC for the load increase in bus no 

27, 28, and 29 are depicted in Figure 4.7 to Figure 4.9 . 

 

 

Figure 4.8. Voltage profile for load increases in bus no 28 with STATCOM in bus 20. 
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Figure 4.9. Voltage profiles for load increase in bus no 29 with STATCOM in bus 20. 

 

Also the system is studied for some contingencies in the system along with increased load in a 
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observed. Then after optimization, the voltage magnitude obtained with use of STATCOM and 

FC which is plotted in Figure 4.10. Comparison between the two compensators justifies the 

better result with STATCOM. In Figure 4.11, the voltage profile of the load buses obtained in 
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optimization). Although the results obtained after optimization with FC shows the voltage dip is 

improved but with STATCOM the voltage level is improved more after optimization. The 

voltage in all the 29 load buses are plotted from the simulation made in the Figure 4.12 for 50% 

load increase in the load bus 16 with a line outage of 15-16. The profile at nominal case is in 

stable condition where as in the contingency case it shows the closeness towards the lower hit 

limit, but the profile after optimization with STATCOM improves the voltage level in all the 

load buses and also with FC, the same is improved but less improvement compared to 

STATCOM. 
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Figure 4.10. Voltage profile for load increase in bus no 23 with LO 10-11. 

 

 

Figure 4.11. Voltage profile for load increase in bus no 4 with LO 2-3. 
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Figure 4.12. Voltage profile for load increase in bus no 16 with LO 15-16. 

 

 

 

Figure 4.13. Loading limit of bus 8 with FC and with STATCOM. 
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Figure 4.14. Load margin of bus 20. 

 

The results obtained for bus 20 is shown in Figure 4.14. It is very much evident that the load 

margin of the bus 20 is also increased with STATCOM compared to the FC. Similarly for load 

bus 27, 28 and 29 the results obtained are shown in Figure 4.15 to Figure 4.17.  

 

 

Figure 4.15. Load margin of bus 27. 
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Figure 4.16. Load margin of bus 28. 

 

 

 

Figure 4.17. Load margin of bus 29. 
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The loading limit versus ENVCI curve obtained after optimization of the load bus 20 with the 

STATCOM in it as one of the candidate buses is shown in Figure 4.18 giving good reason for the 

use of STATCOM over FC.  

 

 

 

Figure 4.18. Loading limit of the load bus 20 with the STATCOM and without STATCOM. 
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settings are also simultaneously optimized to improve the system operation. A optimum settings 

obtained with MBFOA is then tested for their operational efficiency. The performance of 
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1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
0

0.2

0.4

0.6

0.8

1

Loading parameters

E
N

V
C

I

Loading limit with BFOA

 

 

For conventional generator with STATCOM

 For conventional generator without STATCOM



Chapter 4 

102 | P a g e  

To reduce the dependency on thermal power, which leads to increased cost and 

environmental pollution, renewable energy sources are gaining ground. One such sources is wind 

power. When the penetration level of wind power increases, due to the operating constraints of 

power electronics based converter used in these systems, the reactive power capacity of the 

system gets degraded. In the subsequent chapter, wind generators are integrated in the test 

system to test the efficacies of wind power in providing secure operation. In that chapter some 

more test cases of contingencies are compared when the STATCOM is operating with wind 

power or without it.  
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VOLTAGE STABILITY STUDY OF TRANSMISSION SYSTEM WITH 

WIND GENERATION 
 

 

 

 

 

 

5.1. Introduction 

 

Among various sources of generation of electrical power, fossil fuel based plants share 

the largest percentage. However, due to combustion of fast depleting fossil fuel and the related 

emission of greenhouse gas, their use needs to be discouraged. Therefore, renewable energy 

sources are gaining ground to have larger share in the overall energy mix. Among many sources 

of renewable energy, there is good potential for wind energy to generate electrical power [95-

98]. According to the experts, global wind energy has the potential to supply more than 20% of 

electricity demand of the globe. In order to meet the challenge of the ever increasing power 

demand, larger generation capacity expansion is required. In this scenario, wind energy 

conversion system (WECS) can be integrated with the electrical grid, which is primarily 

sustained by conventional power sources. There are numerous approaches of designing the 

WECS. There are different types of synchronous and induction generator based systems 

proposed for the power generation [99, 100]. However, as the nature of wind flow is uncertain, 

therefore the variable speed type of induction generator has been the preferred choice due to 

many advantages. Among them, double fed induction generator (DFIG) has gained more interest. 

The concept of DFIG is discussed in later section. It consists of a wind turbine that is connected 

via a gear train to the rotor shaft of the induction generator. The rotor terminals of the induction 

machine are connected to the four-quadrant power electronic converter capable of supplying both 

real and reactive powers from the grid to the rotor as well as supplying power from the rotor to 

the grid [101,102]. Moreover, the nature of intermittency of wind flow needs a complex and 

challenging task of scheduling both conventional and wind powered units in a wind integrated 

system. There is always a chance of erroneous estimation of available wind power during actual 
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operation. During the stage of under estimation, there may be actual shortfall in the overall 

capacity of reactive power resources in the system. This is due to the fact that the DFIG based 

WECS has limited capacity of reactive power [103, 104] as it depends on the limited current 

carrying capacity of converters which are connected to the grid. Therefore, during the 

operational stage of DFIG integrated system, these practical or physical constraints of the later 

cannot be neglected. This would give incorrect picture of voltage instability in a DFIG integrated 

system. Taking these factors into account, this chapter focuses on modeling of reactive power 

capability limits of DFIG based WECS, as some of the conventional units of the IEEE 39 bus 

test system are replaced with DFIG based wind farm of equivalent capacities. During the 

modeling of real and reactive power generations of these units, the uncertainty of wind flow is 

taken into consideration. For better voltage control, the presence of STATCOM at the weakest 

bus of the system is also modeled. The chapter is organized by beginning with the need of wind 

power in general proceeding gradually with its modeling concepts with regards to its real and 

reactive power output when DFIG based systems are integrated. Various optimization techniques 

are applied for the study of voltage stability [104, 105] with index analysis [106, 107]. The 

recent study is carried out applying MBFOA to avoid voltage instability with ENVCI. 

 

5.2 Advantages of Wind Power 

 

The following advantages studied for consideration of the wind system as a non 

conventional source of electricity for the analysis of the voltage stability.  

 

It is one of the least-cost renewable energy tools available in modern world as shown in 

Figure 5.1, costing about 0.1 to 0.14 US dollar per kilowatt-hour, depending on the wind speed 

availability and installation cost at a particular project site. Wind energy system pollution free 

unlike thermal power plants that rely on combustion of coal. Wind generators don't produce 

atmospheric emissions that cause acid rain or greenhouse gasses. The statistics of the wind 

power is shown in Figure 5.2. The wind generation (WG) promotes the economy in rural areas, 

where the finest sites for wind generators are found. Farmers and ranchers can continue to work on 

the land, as the wind generators need a fraction of the land. Wind power plant owners make 

payments to the farmer for the use of the land on rent basis, supplying the landowners with extra 

income. 

http://energy.gov/eere/wind/distributed-wind
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Figure 5.1. Average energy cost per KW-hour [94]. 

 

Figure 5.2. Carbon Dioxide emission per GW-Hour [94]. 

 

5.3. Generation of Wind Power  
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the mechanical energy to the electrical form. Due to intermittent nature of wind flow, the low 

speed shaft of the rotor blades need an arrangement of gear box to convert the speed to higher 

levels for the shaft of the generator. The use of multi-pole generator sometimes is a good 

alternative approach of a gearless system. The electrical power generated from the generator is 

transferred to the transmission level utilizing a transformer that steps up the voltages of the 

generator. Generally the voltages from the generator are typically in a hundreds of volts. The 

kinetic energy of the blowing air with mass m at velocity vw
 
is expressed as 

 

              (5.1) 

 

The instantaneous power of the wind flowing in an area ‘A’ with air density ρ is expressed as 

 

              (5.2) 

 

In the view point of variable speed wind turbines, the rotor blades rotates with a speed 

ranging between 12 m/s to 20 m/s. The power drawn from the wind is dependent on the rotor 

power efficiency. As per Betz limit, the mechanical power captured by the wind turbine depends 

on the rotor power efficiency of the turbine and expressed as  

 

            (5.3) 

 

The rotor power efficiency of the turbine 𝐶𝑝  is a function of the blade tip speed ratio λ and blade 

pitch angle β. In order to avoid the effects of wake, the turbines are placed at distances nearly 

three times of their rotor radius. When the tip speed ratio is less than 3, the wake effect reduces 

the maximum rotor power efficiency. The tip speed ratio can be calculated as 

 

            (5.4) 

 

where ⍵𝑏 is the rotor speed in radian/sec and R is the rotor radius from axis to tip in meter.  
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The variability of wind speed and therefore the power output from it is the most 

challenging aspect for a successful grid interconnection. Thus the accurate forecasting of wind 

power is an important role in the system integration of the large-scale wind farms. Wind power 

generation is mostly dependent on the local wind resources. Hence the wind power distribution is 

a seasonal as well as the environmental issue that is specific to the area. Wind forecasting has 

been done following different approaches based on techniques using time series, fuzzy logic, 

neural network etc. Each method has its own uniqueness and features and therefore gives definite 

degree of accuracy in the prediction result. But, the statistical data can have weak variations and 

changes, leading to much incorrect results. The wind forecasting programs can be broadly 

divided into two types, i.e., physical and statistical methods. Physical processes try to model the 

wind farm equations according to the aero dynamical performance of wind turbines and local 

effects of wind speed in the real site. Statistical methods try to reproduce the behavior of the 

wind farm from previous data in different condition. Although various probability distribution 

models were proposed for the statistical analysis of documented wind speeds, the most widely 

used probability density function (PDF) to describe the wind speed is the Weibull functions [95] 

as wind speed profile at a given location follow a Weibull distribution over time. The PDF for 

Weibull distribution is given by 

 

            (5.5) 

 

The Weibull distribution function with a shape factor k of 2 is also known as the Rayleigh 

distribution. In [98], the advantages of the Weibull distribution are noted as  

 

i. It gives a good fit to the observed wind speed data  

 

ii. For known shape factor k and scale factor c parameters at one height, there are methods 

accessible to get the equivalent parameters at another height. Normally the shape parameter 

ranges from 1 to 3 and the scale factor range between 5 and 25 for any wind speed 

characteristics.  
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5.3.1. Relation between wind power and the wind speed 

 

 The wind speed is assumed as a random variable and the output power of the WECS can 

also be characterized as a random variable during a transformation from wind speed to wind 

power. Generally, the power output of the wind generator will be in three ranges as below  

 

(i) vo < v < vi. In this range the power output is zero. 

(ii) vi  < v < vr. In this range the power output increases linearly towards the rated power.  

(iii) vr < v < vo. In this range the power output remains constant at the rated value.  

 

where, vo = cut out wind speed and vi = cut in wind speed, vr = rated wind speed. Mathematically 

the above ranges power output from WECS can be expressed as  

 

 

 

 

            (5.6) 

 

 

 

5.4. Doubly Fed Induction Generator (DFIG) 

 

The schematic layout of a DFIG is shown in Figure 5.3 consisting of a wind turbine 

connected by means of a gear box to the rotor shaft of the induction generator [99]. The rotor 

terminals of the induction machine are connected to the converter capable of receiving and 

supplying real and reactive power from the grid [99]. There are two converter systems namely 

the grid side converter (GSC) and the generator or the rotor side converter (RSC). The GSC 

maintains the DC link capacitor voltage. On the contrary, the RSC is assigned with the job of 

controlling the active and reactive power output from the machine. Each of the converters is 

coupled in decoupled manner by two independent controllers. In addition the DFIG also has a 

wind turbine control to maximize the output power from the turbine with the help of pitch angle 

controller thereby guiding the power output control of the RSC. The machine is connected to the 
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grid via a step up transformer at the GSC. If required, additional reactive power compensating 

unit may be connected at the point of interconnection. The DFIG is a three phase induction 

generator with rotor containing three phase windings, which are fed from the RSC through slip 

rings. The power electronic converter is able to handle power flow in both directions permitting 

the DFIG to work at both sub-synchronous and super synchronous speeds. The DFIG produces 

controlled voltage 𝑉1 at grid frequency 𝑓1 at the stator with the help of the GSC. However, 

variable voltage 𝑉2 is provided at the rotor due to variable frequency 𝑓2, as it is dependent on the 

rotor speed that is affected by the variation of angular velocity of the turbine due to a variable 

wind speed. Considering 𝑓𝑟 to be the slip frequency of the rotor, it is defined as follows. 

 

           (5.7) 

 

The positive sign in Equation 5.7 implies a super synchronous operation and a negative 

sign is meant for the sub synchronous operation. At super synchronous speed the phase sequence 

of the rotor currents being in the same direction to that of the stator, the rotor now supplies 

power to the grid along with the stator. For sub synchronous operation, power is drawn by the 

rotor like an induction motor. The DC link capacitor forms a common link that maintains DC bus 

voltage for both the converters at their interconnection. The steady state operation of the DFIG is 

restricted by the ratings of the RSC and GSC. The maximum power rating 𝑃𝑚𝑎𝑥 of the RSC is 

normally 25% - 30% of the rating of the induction machine and can be expressed by the 

following equation 

 

            (5 8) 

 

Where, the 𝑃𝑚𝑎𝑥 maximum rotor power supplied/absorbed, Prated is the rated power output of the 

DFIG and Smax the maximum magnitude of slip. 
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Figure 5.3. Variable-speed wind turbine with a doubly-fed induction generator (DFIG). 

 

5.4.1. Reactive power capabilities of conventional generator and DFIG 

 

The reactive power capability of a generation unit on the power system is crucial in the 

study of voltage stability. The synchronous generators have limitations in terms of maximum 

current and heating of the machines. The active power of the machine is restricted by the prime 

mover capability. The reactive current output capability is dependent on the limits of armature 

and field currents and the temperature. Therefore, the reactive capability of the synchronous 

generator depends on the machine limitations.  

 

Similarly, the reactive power capability limit of the DFIG depends on the 

electromechanical characteristics of the generator and the power supplying capacity of the 

converters. Since the DFIG is a variable speed machine the rotor speed and the slip play an 

important role. The three limiting parameters for the reactive power capability of the DFIG are 

[98]: 
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a. stator current,  

b. rotor current , and  

c.  rotor voltage.  

 

The stator voltage is supplied from the grid, and is not affected by the design of the wind 

turbine. Similarly the stator current limit relies on the design of the generator, while the 

constraint of the rotor voltage and rotor current depend on the design of the generator and power 

converters. The rotor voltage varies with rotor speed and therefore the required rotor voltage is 

directly proportional to the slip.  

 

Further, the effects of wind variation on the real and reactive power capability 

characteristics of DFIG systems must be analysed [100]. The GSC is based on power electronics 

switches which operate with voltage and current limits. Therefore, the generator real and reactive 

power capacities are also constrained by these limits. During the under estimation of wind 

power, the available power is more than the estimated value of real power output. This results in 

reduction of reactive power generating capacity of DFIG system. Modeling the DFIG system in 

d-q reference frame, the instantaneous values of real and reactive powers output from the system 

is expressed in terms of stator, rotor voltages and currents. These quantities may be represented 

as follows: 

 

            (5.9) 

 

            (5.10) 

 

            (5.11) 

 

            (5.12) 

 

            (5.13) 

 

            (5.14) 
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In the above expressions subscript r and s represent the rotor and stator side quantities 

respectively. Similarly, the subscripts d and q represent the direct and quadrature axis 

components respectively. Where, 𝜔𝑠  is the synchronous speed, Rs, is the stator resistance, Ls is 

self inductance, Rr, denotes the rotor resistance, Lr denotes the self inductance and Lm  represents 

the magnetizing inductance of the DFIG system. The value of 𝑣𝑞𝑠  is made equal to the stator 

terminal voltage, by assuming the d-axis aligning with the axis of maximum stator flux. Rs is 

neglected in the study. The rotor current can be expressed as  

 

                                        (5.15) 

 

The reactive power required by the stator (Qs) is delivered by the GSC, and therefore, the 

lower and upper bounds of reactive power generating capacity limits of GSC puts constraints on 

the capability of DFIG system to supply Qs. As the converters are based on power electronics 

switches, therefore a stator current limit is also imposed. To determine the maximum and 

minimum limits of Qs the following approach is adopted. As the q axis is aligned with the grid 

voltage vector, it makes the 𝑣𝑑𝑠  equals to zero and therefore, 𝑣𝑞𝑠  equals to 𝑣𝑠 . Substituting these 

values in Equations 5.13 and 5.14 respectively, the values of Ps and Qs may be expressed as 

 

           (5.16) 

 

           (5.17) 

 

From the Equation 5.17, it can be observed that as Qs is dependent on direct axis 

component ids alone, therefore the limits depend on the limits of ids. Keeping vqs at 1 p.u., the 

range of Qs between sub-synchronous and super-synchronous conditions can be expressed as 

follows, considering the sign of iqs 
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where       is the maximum limit of        Moreover, obtaining        from Equation 5.10 and 

replacing in Equation 5.17, the expression of reactive power exchanged with the grid at the stator 

terminal is represented as follows 

 

            (5.19) 

 

In the above equation the first and second terms represent the magnetization of the stator 

and the net reactive power exchanged with the grid. As vqs is maintained at 1 p.u, the Qs is 

controlled by idr alone. Substituting Equation 5.16 in Equation 5.9, the       is expressed as 

 

           (5.20) 

 

Represented by the maximum limit of             may be expressed as  

 

            (5.21) 

 

Finally, substituting the values of      from Equations 5.20 and 5.21 in Equation 5.19,  

the upper and lower limits of Qs can be expressed in terms of       as  

  

             (5.22) 

 

 

             (5.23) 

 

5.5. Test System 

 

IEEE-39 bus system is considered with the modification as shown in Figure 5.4. A 

STATCOM is used at the bus number 20 has already been discussed in Chapter 4. In addition to 

this an equivalent wind farm is considered to be located at bus number 30 replacing the 

conventional generator No.10 at the same location. The real power rating of the same is kept as 

that given in the data sheet, that is 2.5 p.u. at 100 MVA base. Keeping all the system data 

unaltered, the simulation is carried out. The problem is formulated in the next section. 
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Figure 5.4. Schematic diagram of IEEE-39 bus test system with STATCOM and WG 

 

5.6. Problem Formulation 

 

When dealing with wind power, a very important factor to be taken into account is the 

system damping. When there are too many wind firms other conventional coal fired plants have 

to be reduced as such the overall damping of the system reduces, this causes serious problems in 

many power systems worldwide. To avoid such issue of damping, specific assumptions made for 

the WG as follows.  The damping of the system improves as the inherent short-term storage that 

exists within the mechanical linkage includes the blade aero elasticity, the kinetic energy in and 

out of the rotating mass (shaft, gearbox, generator, blades), and potential energy within the shaft 

and gearbox stiffness. Short-term storage also includes the inherent damping in the blade-air 

interaction, the gear-to-gear in the oil bath of the gearbox, the windage from the air-cooled 

generator, and/or liquid friction losses in the water- or oil-cooled generator. All of these actually 
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provide some kind of buffer to smooth out the energy spikes presented to the turbines by the 

presence of turbulence or other sources. The problem is formulated with the same objective 

subjected to the same operating constraints as considered in the previous chapter. The subsequent 

section details the simulation and results along with their brief methodologies. 

 

5.7. Simulation Results and Discussion 

 

As discussed earlier, the 10
th
 generator at bus number 30 in the test system is replaced by 

equivalent sized DFIG based wind farm. The system is subjected to same patterns of load 

increase at the five weak buses as done previously. Before proceeding for optimization, a test 

solution is obtained to verify the accuracy of modeling of the DFIG based wind farm at the 30
th

 

bus of the system. Three different load flows are carried out for the operating conditions of 

nominal, 30 % and 40% load increases at the 20
th
 bus.  

 

 

 

Figure 5.5. Voltage profiles of wind generator with load increase at the bus no 10. 
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newer limits of Qs, found after every iteration of NRLF. The process continues in every iteration 

0 1 2 3 4 5 6 7 8 9 10 11
0.5

1

1.5

 Generator Bus no.

B
u

s 
V

o
lt

ag
e 

in
 p

.u
.

Wind generator at the bus no 10

 

 

Nominal case

30% load increase

40% load increase



Chapter 5 

116 | P a g e  
 

of load flow, till the later converges. After confirming the accuracy of the procedure to model the 

reactive power constraints of DFIG, the MBFOA algorithm is applied to optimize the generator 

bus voltages and the location and amount of compensations. The convergence characteristic is 

shown in Figure 5.6. The result of the optimized variables is shown in the Table 5.1.  

 

 

 

Figure 5.6. Convergence characteristic. 

 

Table 5.1. Compensation for load increase in the system with WG and STATCOM. 

 

Compensation Specifications Constant Q-Load 

1
st
 location of compensation Bus no 21 

1
st
 amount of compensation 57.87% 

2
nd

 location of compensation Bus No.25 

2
nd

 amount of compensation 12.37% 

 

Moreover, the PV Curves obtained at all the 5 weak buses, after setting the optimized 

operating values of generator voltages and compensation are shown in Figures 5.7-5.11. The 

corresponding variation of ENVCI values with load increase is also depicted in Figure 5.12. It 

can be seen that in this condition also the chosen index has proven its accuracy as it has given the 

same result as PV curves. Both from the PV-curves and ENVCI, it can be seen that, when DFIGs 

are operating in the system VSL of the system is getting reduced compared to STATCOM 
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operating in a conventional generator environment. Therefore, due to the limiting constraints of 

reactive power capability of DFIG, the system VSL is getting compromised.  

 

 

 

Figure 5.7. System load bus profile for 50% load increase in bus 8. 

 

 

 

Figure 5.8. System load bus profile for 50% load increase in bus 20. 
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Figure 5.9. System load bus profile for 50% load increase in bus 27. 

 

 

Figure 5.10. System load bus profile for 50% load increase in bus 28. 
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Figure 5.11. System load bus profile for 50% load increase in bus 29. 

 

 

Figure 5.12. ENVCI- loading limit parameter curve for bus no 20 with MBFOA. 
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locations. For the load increase in the bus number 8 when STATCOM was present only without 

the wind generator, the system voltages of all the bus numbers above 20 (i.e., 20 to 29) have 

given better voltages, but between bus no 1 to 19 all the bus voltages have degraded. However, 

when the wind generator is connected then the overall bus voltages have remained more close to 

the nominal condition of loading compared to all other cases.  

 

For the case of load increase at the 20
th

 bus, the only STATCOM operation, the bus 

voltage of the 25
th
 bus has increased to very high value as shown in Figure 5.8. In this case 

without compensation, the bus voltage of the 20
th

 bus has hit its limit showing instability. 

Analyzing all the conditions of load increase two distinct patterns are observed. 

 

i) The voltages of bus number 20 and 8 have not deteriorated by large amount when 

the STATCOM is in operation. 

 

ii) Even though the system loadability limit, obtained with STATCOM in the 

environment of conventional generators alone has given the best result, the 

connection of DFIG based WECS at the 30
th
 bus operating with STATCOM has 

provided bus voltages closer to the nominal condition of loading. 

 

After three arbitrary conditions of line outages along with load increase are simulated to 

verify the performance of different schemes of compensation and generator systems. They are as 

follows: 

 

i) Case 1: With the optimized settings of bus voltages and compensation 

amounts and locations, different scheme voltage profiles are tested when the load at bus number 

4 is increased by 50% along with a simultaneous line outage of line number 2-3. With this 

contingency, the wind generator system operating with STATCOM has given a degraded 

performance of voltages compared to the case when only STATCOM was connected in the 

conventional test system. The profile is shown in Figure 5.13. 
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Figure 5.13. System load bus profiles for 50% load increase in bus 4 with line outage 2-3. 

 

 

 

Figure 5.14. System load bus profiles for 50% load increase in bus 23 with line outage 2-3. 
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Figure 5. 15. Loading limit of bus no 8. 

 

 

 

Figure 5. 16. Loading  limit of bus no 20. 
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Figure 5. 17. Loading  limit of bus no 27. 

 

ii) Case 2: Finally, the line number 2-3 is removed to simulate an outage 

condition, when the load at the bus number 23 is raised by 50% from the nominal value. The 

pattern of voltage profile is similar to the one obtained in Case 1, where after connection of the 

DFIG, the system voltages have degraded marginally at some buses compared to STATCOM 

alone as depicted in Figure 5.14. 
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Figure 5. 18. Loading limit of bus no 28. 

 

The loadability of bus no 8 is shown in the Figure 5.15 justifying the combinational performance 

of wind and STATCOM to be more effective than the FC and STATCOM respectively. The 

same is seen in the load buses namely 20, 27, 28, and 29 in the respective Figures 5.16 to 5.19. 

 

 

 

Figure 5. 19. Loading  limit of bus no 29. 
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5.8. Conclusions 

 

To reduce the dependency on fossil fuel based conventional generation system which 

pollutes the environment quite significantly; the renewable energy sources are increasing their 

percentage share in the overall generating capacities in modern power system. The abundance of 

wind power has come out as a potential candidate in this field. This study limits itself to the 

augmentation of DFIG based WECS in to a test system, replacing one of the conventional 

generator with it. A STATCOM is assumed to be present at the weakest bus as before. During 

the modeling the reactive power limits of the grid side converter is taken into consideration. 

Therefore, the solution is expected to get constrained even further in terms of getting a better 

VSL compared to the case as shown in Chapter 4, when the STATCOM was operating within the 

constraints of conventional system and generators. Optimizing the generator voltages and 

transformer taps after formulating the same objective function as done previously, it was found 

that the MBFOA converges to the final solution quickly. From the P-V curves, it is seen that the 

VSL of the system even though better than the fixed compensation scheme discussed in Chapter 

2, has degraded marginally with respect to the VSL obtained in conventional generator 

environment as elaborated in Chapter 4. The overall bus voltage profiles obtained for line outage 

of different line with the condition of load increase at different buses also depict the same 

pattern. The values of ENVCI under the optimized condition of load increase have followed the 

patterns obtained with P-V curves. Therefore, it can be said that with realistic modeling of DFIG 

based WECS in the system, the gain in terms of environment and generation cost is getting 

somewhat compromised interims of voltage profiles in the system. 

 

With the ever changing policies of real power generation with newer conventional and 

renewable sources getting augmented, the amount and numbers of available controls in the 

system are also increasing day by day. By doing a simple optimization of controls within the 

framework of an OPF may not be sufficient to meet the changing reactive power management of 

the system to maintain healthy voltages. Therefore, corrective control acting in the system 

operating from a base of optimized settings of controls may be a good solution in this regard. 

The subsequent chapter looks into the aspect of designing an intelligent Artificial Neural 

Network (ANN) based centralized controller that would take some corrective control decision to 

maintain system voltages during contingent conditions of the system. 
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APPLICATION OF PROBABILISTIC NEURAL NETWORK FOR 

VOLTAGE STABILITY ENHANCEMENT IN POWER SYSTEM 

BASED ON STABILITY INDEX  
 

 

 

 

6.1. Introduction 

 

Modern power systems operate under stressed condition, due to ever increasing demand 

of load and limited scope of generation and transmission system capacity expansion. 

Therefore, the task of maintaining the operating system bus voltages within their specified 

limits has become challenging with limited availability of active and reactive power resources 

[105]. Moreover, improper coordination between continuous as well as discrete controls has 

also led to voltage deteriorations [12]. Research works show that the main reasons behind 

voltage instability are insufficient supply of reactive power and their improper planning and 

location [72]. Previous chapters have highlighted the need of sensitivity analysis [106, 107] 

based on different stability indices and the use of optimization techniques [108, 109] for 

static voltage security improvement. In order to include the effect of external system on the 

voltage stability analysis of the system, the recently proposed ENVCI [41] has been utilized 

as a criterion to determine the stability limit. The simplicity and faster computation of this 

index, has encouraged this study to consider its use.  

 

The benefit of utilization of FACTs devices have also been demonstrated, as the voltage 

stability margin of power system has improved. The finding further reinforces the outcomes 

of earlier reported works [110-112]. However, it may not be sufficient to optimally allocate 

the reactive power resources using conventional or intelligent technique based optimization 

methods. During the process of optimization, a limited range system operating conditions are 

taken into consideration expecting the optimum allocation of control settings which would 

show some robustness during the operational stage of the system. After optimization, the 

system operating performance is tested for some new operating scenarios. To make the 

system more robust and adaptive to the changes in the operating conditions the Artificial 

Neural Network (ANN) and Fuzzy Logic may be beneficial, as they sometimes depict good 

adaptability to system variations. Moreover, some other studies [113, 114] have also 
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proposed the use of the theory of fuzzy logic and ANN based remedial control actions that 

would restore the system from regions of instability. Among various categories and structures 

of ANN, the Probabilistic Neural Network (PNN) has been a better alternative for problems 

related to classification [115], and it has been applied in some power system problems [116, 

117]. This work proposes to apply PNN, in order to design a suitable discrete corrective 

control classifier, which shall henceforth be termed as the Voltage Stability Enhancing 

Neural Network (VSENN). The VSENN would suggest the most suitable control action 

among several classes of specific control actions, so that a possible unstable condition may be 

avoided in the system. After suitable training of the VSENN in the test power system 

considered in this work, the verification of the same is carried out with varieties of stressed 

simulated conditions. 

 

6.2. Improvement of Power System Voltage Stability under Steady State Condition 

 

The steady state control settings of many available reactive power resources could be 

optimized to achieve better operating bus voltages throughout the system. Some examples of 

these variables are as follows  

 

a) Real and reactive power available in the generators 

b) Generator P-V bus voltage or AVR settings of generators  

c) Values of tap settings of transformers 

d) Shunt static capacitive compensation settings 

e) Selective percentage of load shedding 

 

Optimal allocation of some of these control settings could achieve better reactive power 

reserve making the system more efficient to deliver load before it reaches its steady state 

loadability limit. Further, mere optimization of these variables may not guarantee a stable 

system operation even after a contingency condition, when the system is already operating 

very near to the notch point of the P-V Curve. Therefore, during the operational stage, some 

additional corrective control may be required to operate the system in a secured manner. A 

properly chosen corrective control action improves the voltage stability margin of the system 

by an amount      compared to the case when no corrective action is undertaken. This is 

shown in Figure 6.1. 
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Fig.6.1. Pre-contingency, contingency, and post contingency PV curves. 

 

Here,        is increase in the VSM due to the corrective action. The above concept has been 

the main motivating factor behind the design of a centralized PNN based controller that 

would improve the system over all stability during the operational stage.  

 

6.3. Enhancement of Voltage Security using PNN Classifier 

 

The primary objective of this work is to design a PNN based classifier, which could 

identify the most suitable corrective control action necessary to make the system secure even 

after contingencies or sudden load increase.  

The ENVCI is utilized to quantify the extent of voltage instability in the system. The 

sequence of events adopted to design the planned controller is mentioned as follows: 

 

i) At the outset the set of discrete probable control actions are identified from different 

types of available settings of reactive power resource similar to the ones mentioned in 

section 6.2. 

 

ii) In order to simulate stressed operating conditions, at selected weak buses the load is 

increased gradually in steps with the help of load parameter (λ). 
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iii) The PNN classifier is trained at these stressed operating conditions. Line outage 

contingencies are created as individual cases to disturb the system even further to 

make the system voltage unstable. The most sensitive control action that would 

stabilize the system was identified at this stage. The information mentioned above for 

different contingencies is utilized for the training of the classifier. 

 

iv) The trained PNN classifier is tested for some new disturbance for which it was not 

trained. 

 

6.4. Probabilistic Neural Network: A Brief Overview 

 

The PNN model is one among the supervised learning networks and has the following 

features distinct from those of other networks in the learning processes [117]. 

 

 It is implemented using the probabilistic model, such as Bayesian classifiers. 

 A PNN is guaranteed to converge to a Bayesian classifier provided that it is given 

enough training data. 

 No learning processes are required. 

 No need to set the initial weights of the network. 

 No relationship between learning processes and recalling processes. 

 The difference between the inference vector and the target vector are not used to 

modify the weights of the network. 

 

The PNN approach offers major advantages such as rapid training, easy to add or delete 

data from training set without lengthy retraining process. The PNN is a category of artificial 

neural network, which is a structured set of interconnected nonlinear processing elements 

called neurons. Each connection of the ANN has an associated weight. It can accurately 

obtain the desired relationship between the input and output data sets, by updating a set of 

initialized values of weights used between the neurons. The ANN can be efficiently trained 

with the help of various types of learning processes to achieve the input- output nonlinear 

mapping. The PNN is a class of radial basis function (RBF) neural network proposed by 

Specht [115], which follows supervised learning. The other specific benefit PNN models 

have over SVMs is that their size is fixed. They are parametric models, while SVMs are non-

parametric. That is, in an ANN you have a bunch of hidden layers with 
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sizes h1 through hn depending on the number of features, plus bias parameters, and those 

make up your model. By contrast, an SVM (at least a kernelized one) consists of a set of 

support vectors, selected from the training set, with a weight for each. In the worst case, the 

number of support vectors is exactly the number of training samples (though that mainly 

occurs with small training sets or in degenerate cases) and in general its model size scales 

linearly. In natural language processing, SVM  classifiers with tens of thousands of support 

vectors, each having hundreds of thousands of features. Also, online training of FF nets is 

very simple compared to online SVM fitting, and predicting can be quite a bit faster. But for 

online training of kernel SVMs, specialized algorithms needed.  

As depicted in Figure 6.2, the PNN structure consists of a radial basis layer and a 

competitive layer. Each set of input-output data are trained and classified by evaluating their 

distribution values of a probability density function (PDF) as defined in the Equation 6.1 

below. The input layer consists of S nodes to accept input feature vector (I). As mentioned in 

the same, the h
th 

element of the hidden mid layer Hdh can be evaluated by evaluating the 

Euclidian distance between the i
th

 input feature Ii
 
 and the initialized weight (Wih) connecting 

Ii to Hdh.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.2. PNN Architecture. 

 

,                                           (6.1) 

 

where    ,             . Assuming there are Ni numbers of input features in I, b is 

known as the bias which helps adjust the sensitivity of radial basis neuron, and σ is the spread 
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factor. Similarly, with the help of weights Whj existing between the h
th 

element of the hidden 

layer and j
th

 element of output layer Oj , the output layer elements can be determined as 

shown in Equation 6.2. 





JN

j

hhj

j

j HdW
N

O
1

1
                                 (6.2) 

 

Among other networks for the purpose of classification, PNN offers rapid training with 

easier data handling. Moreover since the training of algorithm is not iterative in nature, 

PNN has good potential to classify very fast when more training sets are available. It has 

the following key features making it a good choice for problems of classification. 

 

i) The implementation of PNN is based on probabilistic model of Bayesian 

classifiers. 

ii) None of the weights requires the process of initialization in the network. 

iii) The convergence rate of the Bayesian classifier in PNN is almost certain with 

sufficient numbers of training data sets. 

iv) The learning and recalling processes are independent of each other. 

v) The weight modification is not based on the difference between the inference and 

target vectors. 

 

The next section discusses the detail methodology undertaken for designing the PNN 

classifier based controller.  

 

6.5. Basic Approach for Designing the PNN Control Classifier: VSENN 

 

The design approach of the VSENN, adopted for successful classification and decision 

making through PNN are discussed with the following steps.  

 

1. The real powers at some pre-identified weak load buses are increased up to the notch 

point of the system at the outset. At each point of the PV-curve, the ENVCI values are 

evaluated so that the steady state stability limit can be checked. 

 

2. Further load increase is stopped near the loadability limiting value and the system is 

subjected to different contingencies separately. At the limiting points, contingency 
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conditions are simulated either in the form of another set of load increase or in the 

form of line outages at different locations.  

 

3. For each of the above disturbances, sensitivities of the change in the value of ENVCI 

[41] with respect to the corresponding changes in some available control variables are 

evaluated. These control variables are either increased or decreased from their 

respective nominal values one by one. For every change in the control action, the 

corresponding increase or decrease in the values of ENVCI is obtained. Through 

sensitivity ranking, the most sensitive and effective control action is then determined. 

For any particular operating condition, the line flows of selected lines and voltage 

magnitudes of several buses are utilized as the set of input data for the training of 

VSENN. Similarly, the most sensitive control action which improves (increases) the 

value of ENVCI is utilized as the output data in the training.  

 

4. It is to be noted that selected numbers of bus voltage and line flow magnitudes 

totalling Ni numbers of data constitute the input data feature vector IS for the S
th

 

operating condition. Further, the most sensitive (the highest entry in the sensitivity 

matrix ΩS for the S
th

 operating condition) control action among many available 

controls, becomes the single dimensional output vector OS.  

 

5. The VSENN is then trained with the help of large number of input and output data 

sets, using MATLAB software. 

 

6. After training of the VSENN, it is tested for its ability to take a corrective control 

action in the event of any other contingency that is not used for the purpose of training. 

Wide ranges of new contingency cases are simulated and the most sensitive control 

action was applied, to verify the efficacy of VSENN. 

 

A flow chart depicting details of training and testing is illustrated in Figure 6.3. Total of 

63 numbers of control variables are considered for taking the control decision. Briefly they 

are described below. 

 

i) Values of real power generation of all the 10 generators. 

ii) P-V bus voltage setting of all the 10 generators through their AVR. 
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iii) Either increase or decrease in tap settings of 12 transformers (12 increased taps + 12 

decreased taps = 24 ) 

iv)  Real power load shedding in 19 numbers of load buses in the system. 

 

The most sensitive control decision among the 63 (10 + 10 + 24 + 19) number of 

available discrete control actions as considered above from (i) to (iv), that is the best one and 

increases the ENVCI value at the S
th

 operating condition with a particular contingency, is 

required to be determined. This is achieved by evaluating the sensitivity of each of the control 

variables towards improving the ENVCI. The most effective one is selected from the 

sensitivity matrix ΩS, after its elements are sorted. The methodology is repeated for all the 30 

numbers of operating conditions which are generated at different steps of loading in the five 

weak buses mentioned earlier in Chapter 2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.3. Flow chart strategy of VSENN control classifier.  
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6.6. Simulation Results and Discussions 

 

Considering the same test system as before, the proposed method is simulated using 

Matlab
®
 7.0 software in a dual core processor 2.2 GHz, and 4GB RAM. 30 numbers of 

system operating conditions which are marginally different from data given in Appendix A, 

are considered as the starting point of increasing the load in steps of 2% within the range of 

100% to 140% of nominal load. The total load increase being shared by the generators 

equally. 32 numbers of single line outage (out of the total number of 46 lines) contingencies 

along with load increase scenarios at 17 different load buses are simulated. The above 

combination of line outage and load increase is repeated at all the 30 different starting point 

operating conditions mentioned above. Therefore, in total 32 × 17 × 30 = 16,320 patterns are 

generated for the purpose of training. The details of the training statistics are mentioned in 

Table 6.1. 

 

Table 6.1. PNN structure parameters and model strategy. 

 

PNN structure 
Number of input 

Number of output 

Spread 
Total no of layers 

Hidden layer 

63 

1 

0.7 
2 

None 

Training Data 
Training time 

Total number of operating scenarios 

Number of training samples 

20.0876 s. 

16320-2564 = 13756 

8000 

Testing results 
Testing time  

Total numbers of testing operating scenarios 

Total % misses 

0.8306 s 

1142 

14/1045 
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Table 6.2. Maximum loading value in load buses for ENVCI approaches zero. 

 

 

 

 

 

 

 

 

 

 

It has been observed from the Table 6.2 that among 17 number of load buses, bus 

numbers 8, 20, 27, 28 and 29 are the five weakest buses, which make the system voltage 

unstable as the nominal load is increased. For simulation, the real powers in these buses are 

increased one after the other towards their loadability limit. Very near to the point of 

instability on the P-V curve, several numbers of contingency conditions are created and 

ENVCI values are determined at each condition. 

 

A single set of the input data consists of the bus voltages of 29 numbers of load buses 

and the apparent line power flows of 34 lines out of the total 46 lines, which are not directly 

fed from any of the 10 generators. Therefore, an input set of 63 data for a particular operating 

condition is assumed large enough to represent the feature of nonlinearity in the given test 

system. The output data is a single data, representing the most sensitive control action among 

several numbers of discrete control actions for a particular operating point. The above 

selected action improves the ENVCI value after it is being taken. All the output control 

actions are sequentially numbered; therefore the output data is the control action number that 

is most sensitive. The ENVCI values obtained with and without the most appropriate control 

action proposed by VSENN classifier are enumerated in Table 6.3.  

 

After obtaining the information regarding the most desirable control action required in 

improving the voltage profile of the system, from the trained VSENN, the same need to be 

Serial 

No 

Bus 

Number 

Critical loading / 

Maximum Loading, λcrit 

Pload  (Real power) at 

max loading (MW) 
1 

2 

3 

4 

5 

6 

7 
8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

8 

20 

27 

28 

29 

4 

15 
7 

3 

24 

21 

16 

23 

25 

26 

18 

12 

4.36 

5.27 

6.44 

7.24 

8.74 

9.35 

9.87 
10.73 

11.25 

11.33 

11.87 

13.31 

13.79 

16.20 

19.55 

20.28 

Above 26 

628 

522 

500 

283 

206 

281 

320 
233 

322 

308 

274 

329 

247 

224 

139 

158 

7 
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tested for its ability to stabilize the system under different contingency conditions for which 

training was not done. For this purpose, 8 numbers of cases (i.e., Cases 1 to Case 8) are 

examined and the voltage profile improvements for each of them, after taking the proposed 

control action, are illustrated. Moreover, the absolute values of the voltages obtained before 

and after taking the control actions in all the cases, are also given in Table 6. 4.  

 

For the sake of better understanding of the performance of PNN controller in taking 

corrective control action, the voltage limits of power system used in the power flow problem 

during the process of training testing were relaxed to maximum and minimum values of 1.5 

and 0.5 respectively. Within the realms of computation, this approach gives a solution with 

larger deviations in the magnitudes of bus voltages compared to practical system conditions. 

However, as can be seen from the simulation and results that this gives a distinct 

improvement in the bus voltages after application of proper corrective control action. 
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Table 6.3. Description of control action taken by PNN classifier and the corresponding improvement in ENVCI values for the 8 cases. 

 

Cases 

P increase 

from 

nominal 

value  

Q 

increase 

from 

nominal 

value  

Control type 

Value of control 

(% change) ENVCI 

with 

control 

ENVCI 

without 

control Increase Decrease 

1 

2 

3 

4 

5 

6 

7 

8 

20% 

0 

0 

0 

15% 

15% 

2.8% 

1% 

54% 

0 

10% 

10% 

20% 

25% 

2.3% 

2% 

1
st
 gen. real power increase 

8
th
 gen. real power increase 

Real power load shedding at 25
th
 bus 

Real power gen. increase in 1
st
 gen. 

Transformer tap position between lines 12-13 

Real power load shedding 24
th
 bus 

Transformer tap position  between lines 29-38 

Real power load shedding 24
th
 bus 

12.5% 

15.0% 

- 

13% 

6.61% 

- 

- 

21% 

- 

- 

10% 

- 

- 

11% 

7.9% 

- 

0.6391 

0.2944 

0.5937 

0.852 

0.7958 

0. 8585 

0.7124 

0.8040 

0.211 

0.1865 

0.2768 

0.318 

0.0764 

0.0032 

0.1371 

0.6063 
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Table 6.4. Statistical values of system bus voltages obtained with / without control actions. 

 

Test cases 

Average voltage (p.u.) Maximum voltage 

(p.u.) 
Minimum voltage (p.u.) 

Standard deviation in 

voltage 

Without 

control 

With 

control 

Without 

control 

With 

control 

Without 

control 

With 

control 

Without 

control 

With 

 control 

Case 1 
Case2 

Case 3 

Case 4 
Case 5 

Case 6 

Case 7 
Case 8 

1.05 
0.63 

1.23 

0.9037 

0.903 

0.693 

0.6926 
1.222759 

0.98 
0.94 

1.01 

1.01946 
0.988 

0.972 

0.982 
0.979183 

1.4 
1.5 

1.5 

1.5 
1.1 

1.3 

0.98 
1.5 

1.21 
1.22 

1.35 

1.05 
1.178 

1.09 

1.0697 
1.1435 

0.87 
0.5 

1.04 

0.41 
0.5 

0.5 

0.5 
0.5 

0.82 
0.586 

0.9 

0.94 
0.932 

0.932 

0.6297 
0.8312 

0.118 
0.286 

0.107 

0.41 
0.077 

0.216 

0.136 
0.421 

0.08 
0.11 

0.086 

0.08 
0.066 

0.063 

0.0805 
0.0593 
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6.6.1. Case 1 

 

In this case real and reactive power in bus number 16 are increased by 20% and 54% 

respectively from their respective nominal values. At this point, the line 15-16 outage 

contingency is simulated. The control action suggested by the PNN classifier is to increase 

the real power generation of the 1
st
 generator by 12.5% from its nominal value of 2.5 p.u. 

The value of ENVCI before changing the control setting was 0.211, which could be improved 

to 0.6391. It may be seen from Figure 6.4 that, the voltage profile of system buses remained 

close to their respective limiting values, if the proposed control action is not taken. 

 

 

Figure 6.4. System bus voltage profile for case 1. 

 

 

Figure 6.5. System bus voltage profile for case 2. 
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6.6.2. Case 2 

 

For an line outage 12-13 at the nominal loads, the controller classifies to increase the 

real power generation in the 8
th
 generator by 15.0% above its nominal value. As a result of 

which, the value of ENVCI increases from 0.1865 to 0.2944. Figure 6.5 shows the system bus 

voltages of bus numbers 26 and 27 are close to their limiting values, and an increase of real 

power generation resulted in stabilizing the operating voltages effectively. 

 

6.6.3. Case 3 

 

A very critical line connecting buses 2 and 3 is removed, when the reactive power at the 

load bus number 4 is increased by 10% from its nominal value. The VSENN has 

recommended that the most sensitive control action would be to shed the load at bus number 

25 by 10% from its nominal value. After taking this control action, the ENVCI has increased 

from 0.2768 to 0.5937. The voltage profiles in this case are depicted in Figure 6.6, which 

shows considerable improvement in the voltages.  

 

 

Figure 6.6. System bus voltage profiles for case 3. 

 

6.6.4. Case 4 

 

Similar to Case 3, the line connecting bus numbers 2 and 3 is made out along with a 

10% increase in the reactive power at the load bus number 23. In this condition, the most 

suitable control action requires the increase in real power generation of 1
st
 generator by 13 % 

from its pre contingency value. However, after taking the action the ENVCI becomes 0.852 
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increasing from 0.318. The voltage profile shown in Figure 6.7 justifies the control action as 

a more flat voltage profile could be achieved.  

 

 

Figure 6.7. System bus voltage profiles for case 4. 

 

6.6.5. Case 5 

 

The line connecting bus numbers 13 and 14 are considered out when the real and 

reactive powers of loads connected at the 15
th
 bus are increased by 15% and 20% 

respectively. The above line is a critical line, as with its outage most of system bus voltages 

have reached their maximum or minimum limits. VSENN proposes to increase the tap 

position of the transformer stationed between buses 12 and 13 by 6.6% from its original 

position of 1.0060. With this control action, the value of ENVCI improved from 0.07643 to 

0.7958, the voltage profiles depicted in Figure 6.8 can be seen to have improved from their 

lower values obtained without the control action.  

 

Figure 6.8. System bus voltage profiles for case 5. 
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6.6.6. Case 6 

 

In this case, the same line 13-14 is simulated to be out after increasing the real and 

reactive powers at the 20
th
 load bus. VSENN suggests reducing the real power load at the 24

th
 

bus by 11%, which could improve the ENVCI considerably from 0.0032 to 0.8585. Figure 

6.9 depicts the voltage profiles obtained with the presence and absence of the corrective load 

shedding at the above mentioned bus.  

 

 

Figure 6.9. System bus voltage profiles for case 6. 

 

 

Figure 6.10. System bus voltage profiles for case 7. 
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reduce the tap setting of the transformer between bus no. 29 and 38 by 7.9% from its nominal 

value of 1.025. This action has resulted in an improvement of ENVCI to 0.7124 from 0.1371. 

Figure 6.10 clearly justifies the role of control action as the voltages of almost all the buses 

except some of the generator buses have considerably improved.  

 

6.6.8. Case 8 

 

In this case, the active and reactive powers at the bus number 25 are increased by 1% 

and 2% respectively. At this increased operating point, a line outage of 10-13 is carried out. 

The control action proposed by VSENN is to decrease the real power load of the 24
th
 bus by 

21% from its nominal pre-contingency value. By shedding this key load, the ENVCI 

improved from 0.6063 to 0.8040. From the bus voltage profiles depicted in Figure 6.11, it can 

be seen that an unstable condition could be restored back to normal condition. 

 

 

Figure 6.11. System bus voltage profiles for case 8. 

 

Many such similar cases where improvement in voltage profile are studied with different 

cases of contingencies. In this work only few cases are discussed as above. The graphical 

representation of maximum, average, and minimum voltage of each bus with and without the 

controller for all cases given in Figures 6.12, 6.13, and 6.14 respectively and the respective 

values are given in Table 6.4. Similarly, the standard deviation of bus voltages before and 

after the recommended control actions in all cases is shown in Figure 6.15. 
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Figure 6.12. The maximum voltage in the system with and without the controller. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.13. The average voltage of the system with and without the controller. 
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Figure 6.14. The minimum voltage in the system with and without controller. 

 

 

 

 

 

 

 

 

 

 

Figure 6.15. The standard deviation in system bus voltage with and without controller. 
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6.7. Conclusions 

 

This work proposes a PNN classifier termed as VSENN, which suggests the most 

suitable control action in alleviating a voltage unstable state. Simulation was studied for IEEE 

39 bus power system operating at very near to the notch point (operating limit) on its PV 

curve and simultaneously considering a line outage condition. In order to make VSENN most 

effective for its application in load dispatch/ control centres to facilitate fast centralized 

control decisions, a local bus voltage phasor based voltage collapse index, i.e., ENVCI is 

utilized as in an online manner by obtaining phasor information of bus voltages with the help 

of PMUs. The proposed classifier is trained by giving selected bus voltages and line flows as 

input data and the most sensitive control action to improve the ENVCI value as the output. In 

the end, VSENN is tested for several numbers of contingency cases and the effect of this 

control action on system bus voltage profiles is verified. Voltage instability state is avoided 

by taking the control action suggested by VSENN. Moreover, in online applications, several 

data related to bus voltages, line flows, steady state settings of controls can be estimated 

through measurements obtained with the help of telemeters and fed to the proposed VSENN 

classifier as input data, and depending upon the set values of control settings for a particular 

snapshot of interest, the most suitable incremental corrective control decision may be 

obtained with the help of the proposed classifier. 
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CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE RESEARCH 
 

 

 

 

7.1. Conclusions 

 

Increased load demand in modern power systems cannot always be met by augmenting 

the system with newer capacities in generation and transmission system. Therefore, existing 

systems are gradually getting overburdened or overloaded, which have led to voltage instability 

or insecurity in general leading to blackout conditions with improper management of operation.  

The system operator has always tried to improve upon system operation to make it more and 

more secure in its operation, even with rising demands. The objective of this work is to achieve a 

similar objective of improving system VSL and operational corrective control decisions in the 

event of contingencies. 

 

The 10 generator IEEE 39-bus test system is considered for the study. At the outset, a 

basic understanding of the system’s weakness is realized with the help of voltage stability indices 

based analysis. To choose a better voltage stability index among many reported indices, the 

ENVCI was selected as unlike many others it does not neglect the effect of the part of system 

outside the local network near the point of its evaluation. This may be necessary for the proper 

design of a centralized corrective control action later on, which chooses the most suitable 

corrective control action to secure the system in terms of bus voltages during the operational 

stage of the system. Taking the help of sensitivities of various voltage stability indices including 

ENVCI and a proposed index WASI to load change, the relative weakness ranking of the system 

buses are carried out in Chapter 2. Bus no. 8,20, 27,28,29 are the weakest five buses , chosen to 

be loaded in the subsequent chapter for analysis, so that an accurate worst case load increase 

condition can be simulated for obtaining best possible compensation.    
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Increasing load in gradual steps(0.01) at the selected five weakest buses in the previous 

chapter, the system VSL is aimed to be improved by fixed capacitive compensation at suitable 

location and amount. Utilizing a modified version of BFOA in Chapter 3, termed as MBFOA, 

the location and amount of fixed percentage capacitive compensation is optimized to improve the 

VSL of the system. The load margin is increased to 4.51 times of the nominal load with GA. The 

optimization with GA for this case gives the two optimal locations and sizes of FC which are at 

bus no. 28 with compensation of + 45.35% of Qmax (= 90 MVAr) and at bus no. 20 with 

compensation required to be + 31.57% of Qmax respectively. The load margin increased to 4.55 

times of the normal load. The final solution with MBFOA proposes a 42.78 % of rated FC at bus 

number 24 and 8.68% of rated compensation at load bus number 15. Keeping the location and 

amounts of compensation obtained with both the methods, separate PV curves are drawn when 

the load was increased in the weakest bus of the system, i.e., bus number 20.similarly with DE 

the compensation amount were 42.84%   , 20.25%     and the locations were   bus no 25 and bus 

no 29 respectively. Again with PSO the optimized value of the VAR locations are 27, and 28  

and the value of VAR are 42.88%, and 9.78% respectively.. 

 

The optimization results were compared with those obtained with GA and found to be 

better compared to both the GA and without compensation cases. The modifications in the 

MBFOA is marginally different from the earlier reported. In this the memory of optimum 

bacteria θm
OP

 used in the step of swarming, is retained even after the process of elimination and 

dispersal.  

 

Exploring some other reactive power control mechanisms available in the system Chapter 4 aims 

at including the generator bus voltages along with the two location of fixed capacitive 

compensation, into the domain of optimizing variables. A STATCOM is also placed at the 

weakest bus in the system and its power flow model is utilized during the process of power flow 

solution in the optimization. 1
st
 location of  compensation Bus no 21, 25.86%, bus no 25.of 

14.2%  
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The mentioned control variable settings are then simultaneously optimized to further 

improve upon the VSL and reduce system losses, with application of MBFOA. The operation of 

the system with the optimized settings has not only improved the load margin but also made the 

system to operate in more voltage secure manner when different types of contingencies were 

created in the system.  

 

To test the system augmentation with green energy sources based generators, DFIG 

driven WECS replaces one of the system generator of the same capacity. In the presence of the 

STATCOM, the control variables considered in the previous chapter are again optimized with 

MBFOA, considering this time the operating constraints of the power electronics converters of 

DFIG, in terms of the reactive power capabilities of DFIG. The solution of PV curves in this case 

explains the need of these constraints, as the VSL is marginally reduced compared to the case 

when conventional generators case in chapter 4. This is due to the fact of the additional 

constraints of reactive power capability. Therefore it may be concluded during the process of 

optimization if this constraint is neglected then the result may be unrealistic in nature. Moreover, 

the need of additional external reactive power resources is required with increasing penetration 

of DFIG based wind power in the grid. 

The compensation amount at Bus 21 is the optimal location  with an amount of 57.67%, 

and the second location is at bus 25 with 12.37% of the full load rating(20 MVA) of the 

STATCOM used. 

 

By only optimizing the steady state settings of different types of reactive power control 

mechanisms it may not be possible to alleviate the insecure voltage conditions during different 

contingencies in the system. In this condition partial correction in the control settings may 

alleviate the system condition for some duration before the system enters the state of extremis. 

However, in the presence of different types of generation capacities in the form of conventional 

and renewable resources, FACTs and other external compensating devices along with their 

varieties of controls, it becomes difficult to take centralized corrective control decision that best 

suits the disturbance. This work gives a background of any such centralized controller with the 

help of PNN based classification. The designed controller chooses the most suitable corrective 

control action from the pool of many available controls. The PNN is trained taking many sample 
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cases of contingency condition with the data of load flows, line flows and bus voltages as inputs 

and the most suitable control action that improves the value of ENVCI as the output. The  load 

increased in steps of 2% for a range of 100% to 140% of nominal load. The total load increase 

being shared by the generators equally. 32 numbers of single line outage (out of the total number 

of 46 lines) contingencies along with load increase scenarios at 17 different load buses are 

simulated. The above combination of line outage and load increase is repeated at all the 30 

different starting point operating conditions mentioned above. Therefore, in total 32 × 17 × 30 = 

16,320 patterns are generated for the purpose of training. 

The designed PNN has managed to improve the degraded performance of system bus 

voltage by taking the most suitable corrective control action in a range of 6%-21%, for 

contingency cases for which the PNN was not trained.The primary objective of this work is not 

to prove upon the superiority of MBFOA over many other more recent heuristic techniques 

rather to work in modified models. With the modifications in the original version of BFOA 

named as MBFOA with the steady state settings of the mentioned controls. The PNN classifier 

corrects upon the optimized settings during system operation when contingencies do take place.   

 

7.2. Recommendations for Future Research 

 

The components of the research reported in this thesis have completed some fundamental 

aspects of having optimized steady state control settings to improve VSL of the system. A larger 

set of optimizing control variables which regulate the reactive power in the system may be 

considered in the process of optimization. Some examples of these variables are transformer tap 

settings, generator real powers, locations and amounts of selective load shedding and other 

variables of DFIG and STATCOM. Moreover, it has prepared a foundation of designing a 

centralized controller using more advanced, accurate and consistent ANN structures. The 

inclusion and testing of other FACTs devices in large test systems may be considered before 

applying the controller in actual operation in a practical power system.   
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APPENDIX-A 

 

 

IEEE -39 Bus Test System  

 

)
gen load load shunt shunt genmax genmin rated max min

 Bus   voltage    angle      Pgen     Q     P       Q        G      B    bus   q   q  v   V    V

  no.   (p.u.)     (        (p.u.)  (p.u.)  (p.u.)   (p.u.)     (p.u.)    p.u.)  type (p.u)  (p.u.)(p.u.)(p.u.)(p.u.)

  01    1.0000    0.0000    0.0000   0.00    0.000    0.0000    0.00000   0.00000   3   99    -99    1.0   0     0

  02    1.0000    0.0000    0.0000   0.00    0.000    0.0000    0.00000   0.00000   3   99    -99    1.0   0     0

  03    1.0000    0.0000    0.0000   0.00    3.220    0.0240    0.00000   0.00000   3   99    -99    1.0   0     0

  04    1.0000    0.0000    0.0000   0.00    5.000    0.8400    0.00000   1.00000   3   99    -99    1.0   0     0

  05    1.0000    0.0000    0.0000   0.00    0.000    0.0000    0.00000   2.00000   3   99    -99    1.0   0     0

  06    1.0000    0.0000    0.0000   0.00    0.000    0.0000    0.00000   0.00000   3   99    -99    1.0   0     0

  07    1.0000    0.0000    0.0000   0.00    2.338    0.8400    0.00000   0.00000   3   99    -99    1.0   0     0

  08    1.0000    0.0000    0.0000   0.00    5.220    1.7600    0.00000   0.00000   3   99    -99    1.0   0     0

  09    1.0000    0.0000    0.0000   0.00    0.000    0.0000    0.00000   0.00000   3   99    -99    1.0   0     0

  10    1.0000    0.0000    0.0000   0.00    0.000    0.0000    0.00000   0.00000   3   99    -99    1.0   0     0

  11    1.0000    0.0000    0.0000   0.00    0.000    0.0000    0.00000   0.00000   3   99    -99    1.0   0     0

  12    1.0000    0.0000    0.0000   0.00    0.075    0.8800    0.00000   0.00000   3   99    -99    1.0   0     0

  13    1.0000    0.0000    0.0000   0.00    0.000    0.0000    0.00000   0.00000   3   99    -99    1.0   0     0

  14    1.0000    0.0000    0.0000   0.00    0.000    0.0000    0.00000   0.00000   3   99    -99    1.0   0     0

  15    1.0000    0.0000    0.0000   0.00    3.2000   1.5300    0.00000   0.00000   3   99    -99    1.0   0     0

  16    1.0000    0.0000    0.0000   0.00    3.2940   0.3230    0.00000   0.00000   3   99    -99    1.0   0     0

  17    1.0000    0.0000    0.0000   0.00    0.0000   0.0000    0.00000   0.00000   3   99    -99    1.0   0     0

  18    1.0000    0.0000    0.0000   0.00    1.5800   0.3000    0.00000   0.00000   3   99    -99    1.0   0     0

  19    1.0000    0.0000    0.0000   0.00    0.0000   0.0000    0.00000   0.00000   3   99    -99    1.0   0     0

  20    1.0000    0.0000    0.0000   0.00    6.2800   1.0300    0.00000   0.00000   3   99    -99    1.0   0     0

  21    1.0000    0.0000    0.0000   0.00    2.7400   1.1500    0.00000   0.00000   3   99    -99    1.0   0     0

  22    1.0000    0.0000    0.0000   0.00    0.0000   0.0000    0.00000   0.00000   3   99    -99    1.0   0     0

  23    1.0000    0.0000    0.0000   0.00    2.4750   0.8460    0.00000   0.00000   3   99    -99    1.0   0     0

  24    1.0000    0.0000    0.0000   0.00    3.0860  -0.9220    0.00000   0.00000   3   99    -99    1.0   0     0

  25    1.0000    0.0000    0.0000   1.00    2.2400   0.4720    0.00000   0.00000   3   99    -99    1.0   0     0

  26    1.0000    0.0000    0.0000   0.00    1.3900   0.1700    0.00000   0.00000   3   99    -99    1.0   0     0

  27    1.0000    0.0000    0.0000   0.00    2.8100   0.7550    0.00000   0.00000   3   99    -99    1.0   0     0

  28    1.0000    0.0000    0.0000   0.00    2.0600   0.2720    0.00000   0.00000   3   99    -99    1.0   0     0

  29    1.0000    0.0000    0.0000   0.00    2.8350   0.2690    0.00000   0.00000   3   99    -99    1.0   0     0

  30    1.0475    0.0000    2.5000   0.00    0.0000   0.0000    0.00000   0.00000   2    8     -5    1.0   0     0

  31    0.9820    0.0000    5.7293   0.00    0.0920   0.0460    0.00000   0.00000   2    8     -5    1.0   0     0

  32    0.9831    0.0000    6.5000   0.00    0.0000   0.0000    0.00000   0.00000   2    8     -5    1.0   0     0

  33    0.9972    0.0000    6.3200   0.00    0.0000   0.0000    0.00000   0.00000   2    8     -5    1.0   0     0

  34    1.0123    0.0000    5.0800   0.00    0.0000   0.0000    0.00000   0.00000   2    8     -5    1.0   0     0

  35    1.0493    0.0000    6.5000   0.00    0.0000   0.0000    0.00000   0.00000   2    8     -5    1.0   0     0

  36    1.0635    0.0000    5.6000   0.00    0.0000   0.0000    0.00000   0.00000   2    8     -5    1.0   0     0

  37    1.0278    0.0000    5.4000   0.00    0.0000   0.0000    0.00000   0.00000   2    8     -5    1.0   0     0

  38    1.0265    0.0000    8.3000   0.00    0.0000   0.0000    0.00000   0.00000   2    8     -5    1.0   0     0

  39    1.0300    

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


























 

0.0000   10.0000   0.00   11.0400   2.5000    0.00000   0.00000   1   15     -10   1.0   0     0




























 

 

 

 

 

 



163 | P a g e  
 

 

 

IEEE-39 System Line Data 

 
 from  to  Resistance  reactance capacitance tap    tap     tap   tap   tap

  bus  bus  p.u        p.u       line (p.u)  ratio  phase   max   min   size

   1   2   0.00350    0.02050     0.69870   0.0000    0      0     0     0 

   1   2   0.00350    0.04110     0.69870   0.0000    0      0     0     0

   1  39   0.00100    0.02500     0.75000   0.0000    0      0     0     0

   2   3   0.00130    0.01510     0.25720   0.0000    0      0     0     0

   2  25   0.00700    0.00860     0.14600   0.0000    0      0     0     0

   2  30   0.00000    0.01810     0.00000   1.0250    0      0     0     0

   3   4   0.00130    0.02130     0.22140   0.0000    0      0     0     0

   3  18   0.00110    0.01330     0.21380   0.0000    0      0     0     0

   4   5   0.00080    0.01280     0.13420   0.0000    0      0     0     0

   4  14   0.00080    0.01290     0.13820   0.0000    0      0     0     0

   5   8   0.00080    0.01120     0.14760   0.0000    0      0     0     0

   6   5   0.00020    0.00260     0.04340   0.0000    0      0     0     0

   6   7   0.00060    0.00920     0.11300   0.0000    0      0     0     0

   6  11   0.00070    0.00820     0.13890   0.0000    0      0     0     0

   7   8   0.00040    0.00460     0.07800   0.0000    0      0     0     0

   8   9   0.00230    0.03630     0.38040   0.0000    0      0     0     0

   9  39   0.00100    0.02500     1.20000   0.0000    0      0     0     0

  10  11   0.00040    0.00430     0.07290   0.0000    0      0     0     0

  10  13   0.00040    0.00430     0.07290   0.0000    0      0     0     0

  10  32   0.00000    0.02000     0.00000   1.0700    0      0     0     0

  12  11   0.00160    0.04350     0.00000   1.0060    0      0     0     0

  12  13   0.00160    0.04350     0.00000   1.0060    0      0     0     0

  13  14   0.00090    0.01010     0.17230   0.0000    0      0     0     0

  14  15   0.00180    0.02170     0.36600   0.0000    0      0     0     0

  15  16   0.00090    0.00940     0.17100   0.0000    0      0     0     0

  16  17   0.00070    0.00890     0.13420   0.0000    0      0     0     0

  16  19   0.00160    0.01950     0.30400   0.0000    0      0     0     0

  16  21   0.00080    0.01350     0.25480   0.0000    0      0     0     0

  16  24   0.00030    0.00590     0.06800   0.0000    0      0     0     0

  17  18   0.00070    0.00820     0.13190   0.0000    0      0     0     0

  17  27   0.00130    0.01730     0.32160   0.0000    0      0     0     0

  19  33   0.00070    0.01420     0.00000   1.0700    0      0     0     0

  19  20   0.00070    0.01380     0.00000   1.0600    0      0     0     0

  20  34   0.00090    0.01800     0.00000   1.0090    0      0     0     0

  21  22   0.00080    0.01400     0.25650   0.0000    0      0     0     0

  22  23   0.00060    0.00960     0.18460   0.0000    0      0     0     0

  22  35   0.00000    0.01430     0.00000   1.0250    0      0     0     0

  23  24   0.00220    0.03500     0.36100   0.0000    0      0     0     0

  23  36   0.00050    0.02720     0.00000   1.0000    0      0     0     0

  25  26   0.00320    0.03230     0.51300   0.0000    0      0     0     0

  25  37   0.00060    0.02320     0.00000   1.0250    0      0     0     0

  26  27   0.00140    0.01470     0.23960   0.0000    0      0     0     0

  26  28   0.00430    0.04740     0.78020   0.0000    0      0     0     0

  26  29   0.00570    0.06250     1.02900   0.0000    0      0     0     0

  28  29   0.00140    0.01510     0.24900   0.0000    0      0     0     0

  29  38   0.00080    0.01560     0.00000   1.0250    0      0     0     0

  31   6   0.00000    0.02500     0.00000   
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