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ABSTRACT

This research developed models and techniques to improve the three key modules of popular recog-

nition systems: preprocessing, feature extraction, and classification. Improvements were made in

four key areas: processing speed, algorithm complexity, storage space, and accuracy. The focus

was on the application areas of the face, traffic sign, and speaker recognition. In the preprocessing

module of facial and traffic sign recognition, improvements were made through the utilization of

grayscaling and anisotropic diffusion. In the feature extraction module, improvements were made

in two different ways; first, through the use of mixed transforms and second through a convolu-

tional neural network (CNN) that best fits specific datasets. The mixed transform system consists

of various combinations of the Discrete Wavelet Transform (DWT) and Discrete Cosine Transform

(DCT), which have a reliable track record for image feature extraction. In terms of the proposed

CNN, a neuroevolution system was used to determine the characteristics and layout of a CNN to

best extract image features for particular datasets. In the speaker recognition system, the improve-

ment to the feature extraction module comprised of a quantized spectral covariance matrix and a

two-dimensional Principal Component Analysis (2DPCA) function. In the classification module,

enhancements were made in visual recognition through the use of two neural networks: the multi-

layer sigmoid and convolutional neural network. Results show that the proposed improvements in

the three modules led to an increase in accuracy as well as reduced algorithmic complexity, with

corresponding reductions in storage space and processing time.
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CHAPTER 1: INTRODUCTION

In this work, the focus is on three recognition systems: face, traffic sign, and speaker. All three

of these systems belong to the broad field of pattern recognition. Pattern recognition is the clas-

sification of data based on features extracted from patterns. Applications of pattern recognition

include image processing, computer vision, seismic analysis, radar signal classification/analysis,

speaker recognition, and fingerprint identification. One focus of the work in this paper is on the

interdisciplinary scientific field of computer vision to enable computers to gain a high-level under-

standing of the world via digital images; in short, the focus is on automating tasks that currently

can only be accomplished by the human visual system. Face recognition is a lively area of research

in computer vision; it is a recognition technique used to identify individuals’ faces through images

stored in a data set. Face recognition systems may be used by law enforcement officers to identify

people in photos, videos, or in real-time through their mobile devices to identify people during

police stops. Speaker recognition is also studied, which is the automated process of recognizing a

person based on their voice and speech patterns. Speaker recognition is the main task in the more

general area of speech processing, which has received much focus and seen remarkable progress

in the past decades. Companies such as Amazon, Google, Microsoft, and Facebook are investing

a large amount of money nowadays in computer vision research and product development, and

banks are investing much money in speech processing for recognizing customers over the phone 1

2.

Many applications depend on the recognition of objects in images to elucidate salient aspects of

the world. Meanwhile, language is the engine of civilization, with speech being its most powerful

1In this chapter; we partially use the material published in the IEEE International Midwest Symposium on Circuits
and Systems conference papers, 2019 [2], 2012 [3], 2013 [4], 2018 [5], 2018 [6]

2Papers that are in preparation are [7], [8], [9], [10], [11]
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and natural form. The visual and auditory recognition systems considered in this paper hold the

potential to make our environment easier to understand, improve the standard of living, and overall

enhance our experience of the world.

1.1 Visual Recognition

Digital image processing can be divided into classes such as image enhancement, image restora-

tion, image analysis, and image compression [12]. Image analysis extracts of meaningful infor-

mation from digital images through digital image processing techniques [13]. Image analysis has

been called machine vision, pattern recognition, image description, and computer scene analysis.

Examples of image analysis are image processing, feature extraction, and texture analysis. The

general steps to image analysis are shown in Fig. 1.1.

Preprocessing Segmentation Feature 
Extraction

Classification 
and 

Interpretation

Figure 1.1: Image Analysis Steps

Image analysis techniques can be divided into three categories: feature description, segmentation,

and classification. [1] outlines the three categories in Table 1.1. In this dissertation, the two
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methods that will be explored for face recognition and traffic sign recognition will be the mix

transforms feature extraction methods and neural networks.

Table 1.1: Image Analysis Categories [1]

Feature Description Segmentation Classification

Spatial Features Thresholding Clustering

Transform Features Boundary Based Segmentation Statistical Classification

Edges and Boundaries Region-based Segmentation Decision Trees

Shape Features Template Matching Neural Networks

Moments Texture Segmentation Similarity Measures

Texture

1.1.1 Applications of Face Recognition

Facial recognition is a Biometric Artificial Intelligence-based technology that can recognize an

individual by analyzing patterns found in their facial surfaces and shape [14]. Facial recognition

technology has received much attention in recent years because of its potential use in a vast array

of applications in both law enforcement and civilian applications (e.g., government, mobile phone,

social media, retailers, airlines, and marketers) [15].

1.1.2 Face Recognition Advantages

There are several advantages to face recognition systems, which are considered to be biometrics-

based. These systems have several different advantages: the face cannot be forgotten compared

with passwords for entry into a building or computer access, the face cannot be easily altered, faces
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have distinguishable features, and constructing an algorithm to recognize people based on their

faces has a high chance of success. As technology advances, face image acquisition is becoming

more accessible, and storage is becoming more abundant.

1.1.3 Issues and Concerns with Face Recognition

The main issues and concerns related to face recognition systems are slow response rate and

misidentification of individuals. If the recognition system is being used in real-time, then the

time from image acquisition to the recognition needs to be fast. In terms of security, misidentify-

ing an individual can cause trouble by either giving an unauthorized person access to a secure area

or prohibiting someone from accessing an area where they should have access. A fast face recog-

nition system can resolve these two issues through speed and high recognition accuracy. Reducing

complexity will also speed up recognition. Another issue is storage space; if the system cannot

be stored in a mobile device, this limits portability and usefulness of the system. The proposed

systems are fast, accurate, low in complexity, and have small storage requirements.

1.1.4 Applications of Traffic Sign Recognition

Rules and regulations are created for highway and roads to keep the general driving public safe.

Traffic signs provide information about traffic rules, road conditions, and route directions while

assisting drivers for better and safer driving [16]. A car driven outside the traffic rules means a

decrease in the safety of the driver, the passengers, and pedestrians. For self-driving cars, it is

of utmost importance that the car is driven safely and by the rules of the road. Accurate and fast

recognition of traffic signs is the core of the design of autonomous vehicles, and data retrieved from

traffic signs, toll information, and vehicle plate numbers are useful in evaluating the surrounding

area [17]. The traffic sign recognition systems proposed in this paper are fast and accurate so that

4



the self-driving car can make a decision based on the recognized image and therefore follow the

rules of the road.

1.1.5 Issues and Concerns with Traffic Sign Recognition

There is a vast array of traffic signs which can vary significantly depending on country and re-

gion; therefore, datasets containing the various images can be relatively large. At present, several

methods have achieved high accuracy. However, this accuracy often comes at the expense of long

processing time, which is a debilitating factor in real-world applications of traffic sign recognition

and cannot be ignored [2]. When the essential features of the images are extracted and the original

dimensions of the images made smaller, the classification time is shortened, which leads to shorter

recognition processing time. The shorter recognition processing time means that the sign can be

more quickly recognized and deciphered, and therefore the car can more quickly react and conse-

quently follow the rules of the road more closely. By carefully following the rules of the road, the

vehicle is driven more safely. Several algorithms have been designed here to more accurately and

quickly recognize traffic signs.

1.1.6 Issues and Concerns with Over-Designed Networks for Image Recognition

Image recognition systems are critical components in numerous applications, often requiring real-

time implementations that are both fast and accurate. Convolutional neural networks (CNNs) are

a standard tool used to meet these conditions. However, with the capabilities and flexibility of a

CNN raises the risk of an overly complicated structure resulting in slow processing times and high

storage requirements. In image recognition, CNNs are often over-designed to fit general image

datasets, thus including more layers and nodes than are warranted by the image features found in

a particular application. Two specific applications were studied: facial recognition and traffic sign
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identification, and both were analyzed to determine the best characteristics and layout of a CNN

that will allow for an adequate fit for the particular datasets.

1.2 Speaker Recognition

Speaker recognition is one of the speech processing fields. Figure 1.2 shows a few areas of speech

processing and how speaker recognition relates to the rest of the fields [18]. Speaker recognition

systems attempt to recognize a speaker based on features extracted from individual information

in a speech signal. It is a biometrics system that is an automated method for verifying a person’s

identity based on physiological characteristics like voice. Speaker recognition software can be

used to control access to restricted services such as phone access to a bank, database services,

shopping or voice mail, and access to secure equipment. Speaker recognition can be divided into

two components: speaker identification and speaker verification. Speaker identification identifies

the speaker that has most likely spoken from a group or population based on the features of a

speech signal. Speaker verification accepts or rejects the identity of the speaker based on the

sample speech signal. Speaker recognition can be further divided into text-dependent and text-

independent systems. A text-dependent system is limited to equivalent spoken speech for both

training phases and testing phases, and a text-independent system has no limitation to what is

spoken in both training and testing phases.
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Speech processing

Analysis/
Synthesis Recognition

Speech 
Recognition Speaker recognition

Speaker 
Identification

Speaker 
Detection

Speaker 
Verification

Language 
Identification

Coding

Figure 1.2: Speech Processing

Speaker recognition systems attempt to recognize a speaker based on features extracted from a

speech signal. Features like vocal tract system characteristics, pitch, and information patterns

in a text convey speaker information [19]. Short-utterance speaker recognition and low memory

computations have been a focus of interest in many research investigations. In sentences, vowels

have a distinct perceptual advantage over consonants in determining intelligibility and are essential

in speaker recognition because they do not require much information from the user.

1.2.1 Applications of Speaker Recognition

Speaker recognition is the process of recognizing a speaking person through speaker-specific in-

formation in their speech waves. This information is used to verify identities being claimed by

people accessing systems and enables access control of various services by voice [20]. Speaker

recognition has been used to ease travel bookings [21], in banking [22], and criminal investigations

[23].
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1.2.2 Issues and Concerns with Speaker Recognition

Current speaker recognition systems have achieved rather good results; however, critical robustness

issues still need to be addressed, especially in practical situations [24].

1.3 Datasets

1.3.1 Face Datasets

Facial recognition belongs to the broader field of biological recognition technology. In the era of

digital information, with stricter identification criteria, facial recognition technology is becoming

more relevant to humans [25]. The need to better recognize faces is becoming more and more

important in fields such as information security, access control, financial payment, and police in-

vestigators. These fields can contain thousands of different images that need to be recognized,

so there is a need for recognizing faces in large databases. Existing traditional identification ap-

proaches for human face detection is very difficult because, in some cases, the human face cannot

be captured [26], [27].

Facial recognition has been studied for more than thirty years, and it is one of the most significant

areas in the field of pattern recognition and machine vision. Mainly, facial recognition technology

under well-controlled imaging condition performs well [20], [21]. However, when the environ-

ment cannot be controlled well (i.e., a variation of head poses and changes in illumination), facial

recognition accuracy results are poor.
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1.3.1.1 Olivetti Research Lab (ORL) Database

The AT&T Laboratories Cambridge database of faces [28] (formerly known as the ORL Database

of Faces) contains 40 individuals with ten poses. Each image’s pose has the dimensions of 112×92

pixels. The poses vary in position, rotation, scale, and expression as well as in every ten samples,

some have open or close eyes and are smiling or not smiling.

ORL database consists of 400 face images captured between April 1992 and April 1994. The

database was used in the framework of a facial recognition project carried out in collaboration with

the Speech, Vision, and Robotics Group of the Cambridge University Engineering Department(AT&T

Laboratories Cambridge). Each person has ten different poses. The lighting conditions were

changed against an indistinct homogeneous background with the subjects facing the lens in an

upright position. Different facial expressions include closed or open eyes, smiling or not smiling.

Some of the images have subjects that are wearing glasses. The image size is 92×112 pixels, with

256 gray levels per pixel. Sample images of the ORL dataset are shown in 1.3.

Figure 1.3: Sample Images from the ORL Dataset
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1.3.1.2 YALE

The Yale Face Database [29] (size 6.4MB) contains 165 grayscale images of 15 individuals. There

are 11 image poses per person, one for different facial expressions or configuration. For exam-

ple, center-light, with glasses, happy, left-light, without glasses, normal, right-light, sad, sleepy,

surprised, and wink. Sample images of the YALE dataset are shown in Fig. 1.4.

Figure 1.4: Sample Images from the YALE Dataset

1.3.1.3 The Facial Recognition Technology (FERET-fc)

The purpose of the Facial Recognition Technology (FERET-fc) [30][31] program is to develop new

techniques and algorithms to recognize human faces automatically. This dataset is sponsored and

developed by the DOD Counter-drug Technology Program. The Technical Agent for distribution

of the FERET-fc database is the National Institute of Standards and Technology (NIST). As part

of the FERET-fc program, this dataset of poses was gathered between December 1993 and August

1996. In this dissertation, the subset fc of the FERET-fc database is used, which consists of 200
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subjects with 11 different poses per subject. The resolution of each pose is 256 × 384 pixels.

Hence, the total number of poses in the dataset is 2200. Facial expressions were varied, and face

rotations were also considered. Some subjects also wore glasses. Sample images of the FERET-fc

dataset are shown in Fig. 1.5.

Figure 1.5: Sample Images from the FERET-fc Dataset

1.3.1.4 FEI Dataset

The FEI face database [32] is a Brazilian face dataset containing a set of face images. These images

were taken between June 2005 and March 2006 at the Artificial Intelligence Laboratory of FEI in

São Bernardo do Campo, São Paulo, Brazil. Every 200 individual has 14 images each for a total

image count of 2800. All images are colored and taken against a white homogenous background

in an upright frontal position with profile rotation up to 180 degrees. Scale varies around 10%,

and the image’s original size is 640× 480 pixels. All faces are mostly represented by students and

staff at FEI, between 19 and 40 years old, with a distinct appearance, hairstyle, and adornments.

Male and female subjects are the same and equal to 100. Figure 1 shows some examples of image
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variations from the FEI face database. Sample images for the FEI dataset are shown in Fig. 1.6.

Figure 1.6: Sample Images for FEI Dataset

1.3.2 Object Datasets

1.3.2.1 Tiny Imagenet

Tiny ImageNet is a dataset used in the Tiny Imagenet challenge for the default course project in

Stanford CS231N class. This challenge runs similar to the ImageNet challenge (ILSVRC), and the

goal of the challenge is to get as high as possible accuracy for the image classification problem.

The Tiny Imagenet dataset has 200 classes with each class consisting of 500 training images, 50

validation images, and 50 test images. The site has released the training and validation sets with

images and annotations as well as provided class labels and bounding boxes as annotations.
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1.3.3 Traffic Signs Datasets

1.3.3.1 BelgiumTS - Belgian Traffic Sign Dataset (BTS)

The paper used cropped images (∼ 60× ∼ 80 pixels) from the BelgiumTSC for classification

dataset as a source for street sign images. As Mathias [33] states, their large amount of annotations

motivates the choice of the datasets, diversity of the content and classes, the availability of a split

for benchmarking traffic sign detection, and traffic sign classification separately. All the data was

collected by driving a van with eight cameras on its roof through the streets. About every meter,

each of the cameras simultaneously takes a 1628 × 1236 image. The average speed of the van

is ∼ 35km/h. Only traffic signs captured at a distance of fewer than 50 meters are considered

[33]. The train and the test datasets consist of 62 categories in total. They were combined, and a

program was written to gather information about each of the images. Sample images of this dataset

are shown in Fig. 1.7.
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Figure 1.7: Sample Images from the BTS Dataset

1.3.3.2 GTSRB

The German Traffic Sign Benchmark is a multi-class, single-image classification challenge held

at the International Joint Conference on Neural Networks (IJCNN) 2011. There are more than 40

classes of images and more than 50, 000 images in total in the dataset. The physical traffic sign

instances are unique within the dataset, meaning that each real-world traffic sign only occurs once.

The images contain one traffic sign each; the images contain a border of 10% around the actual

traffic sign. The images are stored in PPM format (Portable Pixmap, P6). The image sizes vary

between 15× 15 to 250× 250 pixels and are not necessarily square. The traffic sign in the image

is not necessarily centered. Sample Images of the GTSRB dataset is shown in Figure 1.8.
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Figure 1.8: Sample Images from the GTSRB Dataset

1.3.3.3 TSRD

The Chinese traffic sign databases (TSRD) include traffic sign recognition database, traffic sign

detection database, and traffic panel database. The camera collects all images in the databases

from where the traffic sign stands or from BAIDU Street View. The TSRD includes 6164 traffic

sign images containing 58 sign categories. The images are divided into two sub-databases as a

training database and a testing database. The training database consists of 4170 images, while the

testing one contains 1994 images. All images are annotated using the four coordinates of the sign

and the category. Sample Images for the TSRD dataset is shown in Fig. 1.9.
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Figure 1.9: Sample Images for TSRD Dataset

1.3.4 Handwritten Digits Dataset

1.3.4.1 MNIST

The MNIST dataset [34] consists of handwritten digits. The training set has 60, 000 examples and

a test set of 10, 000 examples. It is a subset of a more extensive dataset available from NIST. The

digits are size-normalized and centered in a fixed-size image. Yann LeCun compiled the dataset

from Courant Institute, NYU, Corinna Cortes, from Google Labs, New York, and Christopher J.C.

Burges, from Microsoft Research, Redmond. It is a useful dataset for researchers who want to

learn techniques and pattern recognition methods on real-world data. Sample Images from the

MNIST dataset is shown in Fig. 1.10.
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Figure 1.10: Sample Images for MNIST Dataset

1.3.5 Speaker Recognition Datasets

1.3.5.1 Spoken Language Understanding (CLSU) Speaker Recognition Corpus Data Collection

(Version 1.1)

The Speaker Recognition corpus (formerly known as Speaker Verification), consists of telephone

speech from about 500 participants. All of the data in this corpus were collected over digital

telephone lines. The .wav files contain speech data and use the RIFF standard file format. This

file format is 16-bit linearly encoded. Each participant repeated the number of strings displayed in

Table 1.2 four times during each recording session (for a total of 24 utterances):
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Table 1.2: CLSU Speech Data Utterances

Utterance Used?

5 3 8 2 4 yes

6 1 oh 9 7 yes

4 0 7 1 3

2 8 3 7 6 yes

1 9 oh 5 4 yes

0 5 2 3 9

1.3.5.2 TIMIT

The DARPA TIMIT Acoustic-Phonetic Continuous Speech Corpus (TIMIT). Train and Test Data

and Speech Header Software - NIST Speech Disc CD1-1.1 - October 1990. Prepared at the Na-

tional Institute of Standards and Technology (NIST) with sponsorship from the Defense Advanced

Research Projects Agency - Information Science and Technology Office (DARPA-ISTO). Text cor-

pus design was a joint effort among the Stanford Research Institute (SRI), Massachusetts Institute

of Technology (MIT), and Texas Instruments (TI) TIMIT. The database contains 6300 sentences

in total, where each speaker speaks ten sentences. There are 630 speakers from eight major dialect

regions of the United States. File types includes .phn (time-aligned phonetic transcription). Table

1.3 shows an example of a sentence expressed phonetically. 100 speakers were tested, nine vowels

were used, six samples of the vowels were tested, the best two out of three were matched, single

vowel matches tested as well. The sampling frequency is 16 kHz.
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Table 1.3: Timit Dataset Speech Phonetic label

She had your dark suit in greasy wash water all year

0 7470 h# 18950 21053 aa 30960 31870 gcl 43120 43906 w

7470 9840 sh 21053 22200 r 31870 32550 g 43906 45480 ao

9840 11362 iy 22200 22740 kcl 32550 33253 r 45480 46040 dx

11362 12908 hv 22740 23360 k 33253 34660 iy 46040 47480 axr

12908 14760 ae 23360 25315 s 34660 35890 z 47480 49021 q

14760 15420 dcl 25315 27643 ux 35890 36971 iy 4902i 51348 ao

15420 16000 jh 27643 28360 tcl 36971 38391 w 51348 52184 l

16000 17503 axr 28360 29272 q 38391 40690 ao 52184 54147 y

18540 18950 d 29272 29932 ih 40690 42290 sh 56654 58840 axr

*eh notshown 29932 30960 n 42290 43120 epi 58840 61680 h#

1.3.5.3 NOIZEOUS

Noisy speech corpus (NOIZEUS) [35] developed to facilitate the comparison of speech enhance-

ment algorithms among research groups. The noisy database contains 30 IEEE sentences from

three male and three female speakers corrupted with different noise at different SNR. These sen-

tences are corrupted by eight different real-world noises such as suburban babble, car, train noise,

restaurant, exhibition hall, street, airport, and train-station noise taken from the AURORA database.

This corpus is free for researchers. The speech was removed and what was left was the noise for

testing. The algorithm was tested using all eight suburban noise as well as white noise.
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1.4 Organization of the Dissertation

1. Chapter Two: Presents a literature review of the approaches and algorithms that have been

developed for the speaker and image recognition task.

2. Chapter Three: Details and explains several approaches and techniques that were imple-

mented in the research, such as anisotropic diffusion, 2D-DWT, 2D-DCT, neuroevolution

(NE), CNN, multilayer perceptron neural networks(MLPNN), and multilayer sigmoid neu-

ral networks(MLSNN).

3. Chapter Four: An alternative face recognition system that reduces overall computational

complexity by using a few simple algorithms and transforms. The grayscaling algorithm

enhances the image, and the salient features are extracted using a mix of two transform fam-

ilies: the two-dimensional discrete wavelet transform (2D-DWT) and the two-dimensional

discrete cosine transform (2D-DCT). This combination exploits the nonorthogonality of the

coefficients in both domains to preserve the essential details and perceptual qualities of the

original image. A multilayer sigmoid neural network is used for classification since the ex-

pensive training stage can be performed offline. The trained network, which uses efficient

computations, can be embedded in an online system for rapid classification. This system

uses grayscaling to enhance the images, as well as a mix of two transform families to ex-

tract the salient features: the two-dimensional discrete wavelet transform (2D-DWT) and the

two-dimensional discrete cosine transform (2D-DCT). A multilayer sigmoid neural network

is used for classification.

4. Chapter Five: A neuroevolution algorithm is developed to reduce the complexity of a CNN

architecture by determining the minimal CNN structure and hyperparameters needed to fit

a particular dataset adequately. Two specific applications are considered: facial recognition

and traffic sign identification. A neuroevolution algorithm is employed to tune the CNN’s
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parameters and topology to enable a more efficient parameter space search.

5. Chapter Six: A face recognition system that utilizes the DWT and the DCT in sequence and

iteratively to best find the features that represent the facial image using the L1 norm classifier

for classification.

6. Chapter Seven: A traffic sign recognition system that tests seven of the most popular con-

volutional neural networks for eight different types of pictures with different tilt, focus, and

shade.

7. Chapter Eight: A traffic sign recognition system consisting of normalization, feature ex-

traction, compression, and classification. The images are normalized through gray scaling

and anisotropic diffusion. The discrete wavelet and cosine transform extract the essential

features of the images as well as decrease the size. A three-layer feedforward multilayer

perceptron completes the analysis and classification.

8. Chapter Nine: Presents an original speaker recognition system that utilizes a quantized

spectral covariance matrix on the input to a two-dimensional Principal Component Anal-

ysis (2DPCA) function. The system is robust in a noisy environment with recognition rates

as high as 92% at 0dB Signal to noise ratio.

9. Chapter Ten: Compares and contrasts window frames algorithms. The different feature ex-

traction methods compared are Real Cepstral Coefficients (RCC), Mel Cepstral Coefficients

(MFCC), Perceptual Linear Predictive Cepstral Coefficients (PLPCC, and Linear Predictive

Cepstral Coefficients (LPCC). The feature extraction methods are used in conjunction with a

Vector Quantization (VQ) method and a Euclidean distance classifier to find the best recog-

nition rate among the feature extraction features.

21



CHAPTER 2: LITERATURE REVIEW

2.1 Introduction

Over the last few decades, several hundreds of improvements to recognition systems and algo-

rithms have been proposed. Three main areas of improvement are in the preprocessing, feature

extraction, and classification modules. The main goal is to have better accuracy while having fewer

storage requirements, less computational complexity, and fast processing speed. Nevertheless, the

main modules do not have to be complicated, where the lack of complexity leads to diminished

storage requirement, complexity, and increase in speed1.

2.2 Transform Domain

Transform theory is the study of transforms; it is the theory that by using a suitable choice of

basis vector space, a problem can be simplified or diagonalized as in spectral theory [36]. That

is, transform theory relates a function in one domain to another function in a second domain.

One transform that was initially intended for image compression but has seen far-reaching uses

in signal processing is the two-dimensional discrete cosine transform (2D-DCT), which is the 2D

transform of the DCT. A DCT expresses a finite sequence of data points in terms of a sum of cosine

functions oscillating at different frequencies [37]. Much research has been done on DCT, and many

variants have been developed for current applications in the medical field, image encryption. [38]

developed new image encryption based on singular value decomposition (SVD), fractional discrete

cosine transform (FrDCT), and the chaotic system for the security of medical image. [39] proposes

1In this chapter; we partially use the material published in the IEEE International Midwest Symposium on Circuits
and Systems conference papers, 2019 [2], 2012 [3], 2013 [4], 2018 [5], 2018 [6]
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a distortion robust DCT-Net, a Discrete Cosine Transform based module integrated into a deep

network that is built on top of VGG16. [40], a discrete cosine transform compressed segmented

beat modulation method (SBMM) is proposed and its applicability in the case of ambulatory ECG

monitoring. [41] proposes an algorithm for the compression of audio signals using DCT with

temporal auditory masking (TAM). [42] proposes a ghost imaging method using weight coefficient

matching based on DCT, in which the high-quality target images can be retrieved by obtaining

the larger weight value in a one-dimensional (1D) DCT spectrum. [43] proposes an approach

of compensating the effect of light variations using fractional discrete Cosine transform (FrDCT)

to efficiently solve the problem of robust person identification using face images under varying

light conditions. All of these proposed DCT methods have a very different configuration, then the

proposed systems described in this paper.

The discrete wavelet transform (DWT) has a crucial advantage over Fourier transforms in terms

of temporal resolution: that is, it captures both frequency and location information. The two-

dimensional discrete wavelet transform (2D-DWT) is the 2D transform of the DWT. DWT is any

wavelet transform where the wavelets are discretely sampled. The current research that uses DWT

is broad and varied; some of the research is in watermarking, medical applications, fault detection.

For example, [44] proposes a digital watermarking method for every type of document image by

decomposing the document image into n levels of frequency channels by using Discrete Wavelet

Transform (DWT) and embedding the QR code in a sub-band of the final level of DWT. [45]

proposes a new method to detect breast cancer using MRI images that are preprocessed using a

2D Median filter, and the features are extracted from the images using discrete wavelet transform

(DWT). [46] proposes a High Impedance fault detection method is developed for Smart Distri-

bution Grids based on the Discrete Wavelet Transform (DWT). [47] proposes a new technique

for fault classification and detection in the transmission lines of micro-grids using a DWT and a

Backpropagation Neural Network (BPNN).
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In combination, the DWT and DCT are currently being researched for watermarking, message em-

bedding, and face recognition. In [48], DWT, DCT, bacterial foraging optimization (BFO), and

particle swarm optimization have been applied and analyzed for their performance for watermark-

ing medical images. [49] uses a DWT and DCT for the message embedding and extraction stage.

[50] proposes an algorithm for face recognition under varying illumination by extracting robust

features using DWT with DCT as the feature extraction technique.

2.3 Neural Network Approach

A neural network (currently known as an artificial neural network) is a network or circuit of ar-

tificial neurons or nodes [51]. There are several types of artificial neural networks, and each is

different based on the implemented mathematical operations and a set of parameters needed to

create the output. Feedforward Neural Network (FFNN), Radial basis function Neural Network,

Kohonen Self Organizing Neural Network, Recurrent Neural Network(RNN), Convolutional Neu-

ral Network (CNN), Modular Neural Network [52] are all neural network examples. The FFNN

and CNN were used in our research and will be discussed below.

2.3.1 Multilayer Sigmoid Neural Network

In the classification stage, which performs the final step of image classification to recognize in-

dividuals, a MLSNN can be used. These MLSNNs are accurate, faster than convolutional neural

networks, and less storage-intensive, and have become a standard robust feature extraction method

for medical classification [53]. This approach has many of the advantages of neural networks,

including the use of simple, homogeneous computations that are easy to parallelize on hardware.

It also bears strong performance due to end-to-end training that formulates the problem as a sin-
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gle optimization solution, where all components of the model share the same end objective. The

idea is to replace the most popular method of using the Euclidean distance for classification as in

[54, 55, 56]. [57] has shown that using a simple neural network like the MLSNN provides a much

better correlation between the input and the output than the popular Euclidean classification.

The MLSNN is a class of feedforward artificial neural network that is composed of layers of

neurons (nodes) where the computations occur. The MLSNN used in this research will have three

layers: an input layer, a hidden layer, and an output layer. These nodes are activated when provided

sufficient stimulus. This stimulus consists of input from the images, which is multiplied by a set of

weights and biases. The nodes amplify the inputs, which will better classify the image, and dampen

those that will not. The network is trained using forward and backward propagation known as an

epoch.

The MLSNN is a specific type of MLPNN that uses sigmoid functions for the neurons. MLPNNs

can have various numbers of layers, and these layers are densely connected. Multilayer sigmoid

neural networks have been investigated for various applications. They were first used for pattern

recognition [58] and then used to increase the quality of a human face image in [59]. More recently,

MLSNNs were used in face gender recognition [60], automatic extraction of the eye and mount

fields from a face image [61], and human face detection in still images [62]. The work proposed

here exploits the increasing quality advantage in the pattern recognition of the MLSNN. The work

is different in that it recognizes a person from the images, and does not solely categorize female

and male subjects or extract faces from a still image. The proposed system is different from the

above systems in that there is a separate feature extraction stage from that of the neural network

(MLSNN) for facial recognition.
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2.3.2 Convolutional Neural Network (CNN)

CNNs can also be used in the classification stage of the recognition system. CNN has received

significant attention and has had a high impact in terms of efficiency and accuracy in recent

years, which is partially due to their outstanding behavior in particularly complex supervised

learning tasks [63]. The popular CNNs, despite their accuracy, are typically considered com-

putationally expensive, storage-intensive, and slow compared to feature extraction models in facial

recognition[64, 65]. The most popular solution to this slow and bulky CNN is to have as simple as

possible architecture for the CNN suitable for classification.

In many cases, the layers within the CNN perform automatic preprocessing that achieves high

accuracy compared to other methods and has feature extraction and classification built into its

algorithm so the overall system can be made simple. Three different types of datasets will be

tested with a more simplified and improved CNN: handwritten digit images, traffic signs images,

and face images. These will be compared and contrasted while figuring out the best parameters

of CNN to produce accuracy comparable or even better results, without further preprocessing or

feature extraction.

The principle issue with utilizing a fully connected feedforward neural network on images is that

the number of neurons could be exceptionally high even for shallow architectures, making them

impractical for applying on images. The basic idea behind convolutional neural networks (Con-

vNets) is to devise a solution for reducing the number of parameters allowing a network to be

deeper with much fewer parameters [66]. Convolutional neural networks or their variants have

obtained state-of-the-art accuracy in computer vision applications, e.g. image classification [67],

[68], citewu2017compact, citezhang2015accelerating, facial recognition [69], [64], [70] and traffic

sign recognition [71], [72], depending on their deep architectures and a large number of parame-

ters, which leads to considerable consumptions in computation and storage resources. Nonetheless,

26



the enormous calculation and storage requirements restrict CNNs from being used on increasingly

broad applications, for instance, smart cell phones because of their constrained computations and

memory capacity. Fortunately, deep models are considerably more redundant in weights, filters,

channels, and even layers [73].

Convolutional networks are neural networks that use convolution in place of general matrix mul-

tiplication in at least one of their layers [74]. However, most CNN that analyzes images require

a multitude of nodes and layers that is complicated in terms of calculations and requires a lot of

processing power and time. In this paper, the attempt is to overcome this complicated structure by

finding the best parameters that make up a CNN. The main contribution of this paper is to present a

creative coding plan that will use the evolutionary algorithm to automatically create a CNN that has

the most efficient architecture built on the parts of the CNN configurations. Various parts include

hyperparameters, the activation functions, and the number of layers.

Evolutionary algorithms belong to the field known as “neuroevolution,” and for almost three decades,

they have had many applications in various fields. Its application for designing CNN for various

image recognition application is just starting to show interest and needs to be further investigated.

Neuroevolution is a subfield within artificial intelligence (AI) and machine learning (ML) that

seeks to develop the means of evolving neural networks through evolutionary algorithms [75].

Neuroevolution is making a resurgence. Prominent researchers in the artificial intelligence field

are experimenting with neuroevolution, a series of new successes have bolstered enthusiasm, and

new opportunities for impact in deep learning are emerging [75].

Several papers use neuroevolution to find the best convolutional neural network. [76] Performs

a neuroevolution method based on a genetic algorithm for finding the optimal deep neural net-

works architecture in terms of hyperparameters, [77] developed a neuroevolution method able of

optimizing and evolving CNNs with respect to the classification error and CNN complexity to re-
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duce power consumption further .[78] developed a learning strategy based on neuroevolution to

design and train optical neural networks.[79] presented an evolutionary metaheuristic search to

optimize deep neural networks and train a convolutional neural network (CNN), and [63] explored

the application of neuroevolution to the automatic design of CNN topology.

Backpropagation-based Deep Learning (DL) used in CNN and Neuroevolution have different qual-

ities and shortcomings. DL is good at extracting structure from large amounts of data and produc-

ing a compacted internal representation of a high-dimensional input. That is, a deep neural network

can learn the characteristic features from a wide variety of pictures from a baseball cap to a bird.

However, DL does poorly at solving problems with sparse rewards and at exploring many different

strategies for solving a problem simultaneously. Neuroevolution can overcome these limitations.

The combination of neuroevolution and DL will allow for the DL to make predictions or recognize

objects based on a large number of examples and train a small action-selection component using

neuroevolution with the pre-trained deep neural network as a back-end.

2.3.3 Neuroevolution

Neuroevolution (NE) is a form of artificial intelligence that uses evolutionary algorithms (EA) to

generate ANN, parameters, topology, and rules. Unique features of EAs are their capability of

tackling problems where the structure of a solution is extremely complex, ranging from binary

trees [32] to directed graphs [33]; and a straightforward capability of parallel evaluations, as all

offspring at a given generation can be evaluated at the same time. For this reason, EAs are applied

to complicated tasks such as evolving the layout and the weights of an ANN, with techniques such

as NEAT (Neuro-Evolution of Augmenting Topologies) [28], HyperNEAT [29], and Convolutional

Neural Fabrics [34]. These algorithms evolve different topologies by optimizing the connections

inside the networks.
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NE has been around for almost 30 years, and much work has been done with methods such as Evo-

lutionary Programming Network (EPNet), NE of Augmenting Topologies (NEAT), and Evolution-

ary Acquisition of Neural Topologies (EANT). Efficient Market Hypothesis (EPNet), as described

in [80], is a network that emphasizes the evolution of artificial neural network (ANN) behavioral

links between parents and their offspring in the NE algorithm. This method was tested on di-

abetes/heart disease/thyroid dataset. NEAT, as described in [81], which evolves neural network

topologies along with weights that employ an ordered method of crossover of different topologies,

protects structural innovation using speciation and incrementally grows from a minimal structure.

[82] describes the EANT as a topology that evolves the structure and weights of a neural network

by compactly encoding the genes of a neural network onto a consecutive genome that enables

the evaluation of the network without decoding it. To measure the performance of the algorithm,

EANT is tested to see if it can evolve the minimum necessary neural structure for a given learning

task. These methods have not been thoroughly tested on CNN and against datasets popularly used

today. With the new capabilities of faster computer processing, these methods are taking strides

on applying these methods to CNN, where the computing time is very high. NE will significantly

reduce the time to train a CNN from current methods.

There has been a renewed interest in NE to be used for CNN. Several methods that use NE to make

CNN more efficient has just been recent research however all of these methods have only been

tested on the MNIST dataset such as [83] constructs an adaptive system that adapts the activation

function within a neural network by the help of Genetic Algorithm (GA) technique. The system

is tested on the classification of CT brain images and the MNIST handwritten digits dataset. [63]

applies NE to the automatic design of CNN topologies and introduces a common framework for

this design.

NE is a well-established research area. However, its application to convolutional neural networks

is still marginal. The reason is that CNNs involve very complex topologies, with several convolu-
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tional layers consisting of various depths and filter sizes, several dense or recurrent layers with a

variable number of neurons, and diverse activation functions. Therefore, only in recent years have

improvements in computational resources and research advances enabled the development and

validation of tools to specifically optimize this type of deep neural network [63]. Because CNN

topologies are expensive, NE has shown to be a promising approach to obtain optimal topologies

for a given problem. In recent years, NE systems have been applied in convolutional neural net-

works (CNN) in the fields of handwriting recognition [63] and human activity recognition [63] as

well as in many other fields. In Baldominos’ paper, batch size, learning rule, and learning rate are

used as parameters to be optimized by the evolutionary approach.

2.4 Unsupervised Learning Algorithms

2.4.1 Vector Quantization

Vector Quantization (VQ) is the mechanism of taking a large set of feature vectors and building

a smaller set of vectors that represents the centroids of the distribution. There are two phases

involved in VQ: training (enrollment) phase, and testing (identifying the speaker from a group)

phase. In the training stage, N codebooks are created for all N speakers in a group and stored

in a database. It is important to note that these codebooks do no superimpose themselves in the

feature space. In the testing phase, a group of vectors are created for the unknown speaker and

then compared to the N codebooks in the database. The codebook closest to the unknown speaker

is then identified as the speaker. The VQ technique has been chosen because it is effective and to

have a high accuracy in the recognition rate [84].
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2.4.2 Linear Transformation

In 1991 Turk and Pentland developed the Eigenfaces method based on principal component analy-

sis (PCA) for face recognition [85]. For speech, Kuhn et al. first introduced the concept of Eigen-

voices that applies PCA to speaker model parameters, “images”, and applying it to the feature

parameters. Eigenvoices is a simple approach to extracting information contained in a collection

of speaker traits independent of any for-knowledge of features and uses this information to encode

and compare individual speakers. In math terms, the principal components of the distribution of

speakers that is the eigenvectors of the covariance matrix of the set of speakers, treating a speaker

as a vector in a very high dimensional space. The eigenvectors are ordered, each accounting for

a different amount of the variation of the speakers[19]. Eigenvoice is effective for speaker recog-

nition because it can determine the speaker and represent voices, originally in the space of large

dimensions, in a low-dimensional linear subspace [86].

2.5 Enhancing the Performance of a Facial Recognition System

First, in face and traffic sign recognition systems, improvements start in the preprocessing step of

the recognition system. There are a different number of preprocessing techniques that have been

reported in the literature, e.g., grayscaling, Bessel transforms, Anisotropic diffusion, to name a

few. In this paper, grayscaling and anisotropic diffusion was used to improve the system before

feature extraction.

Secondly, improvements in the feature extraction step enhance the performance of the recognition

system. For example, the recognition system performs better if the 2D-DWT and 2D-DCT are

employed together. Also, using a neural network in conjunction with the 2D-DWT and 2D-DCT

improves feature extraction.
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Finally, the classifier can contribute to the recognition system and overall performance and recog-

nition accuracy. CNN, MLSNN, MLPNN are examples of neural networks that have been used

in this research to produce excellent accuracy, reduce the complexity of the system, and increase

processing speed.
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CHAPTER 3: METHODOLOGY

3.1 Preprocessing

Preprocessing an image is used to improve the image data or enhance some image features. Grayscal-

ing and anisotropic diffusion are the two methods used in this paper1.

3.1.1 Grayscaling

For many image processing applications, color information does not identify important edges or

essential features. Grayscale images capture the luminance of the object and provide a substantial

amount of information for distinguishing visual features [87]. The images consist of red, green,

blue (RGB) images that can be represented by a matrix of size M×N×P , where P is the number

of channels (in this case, P = 3, due to the Red, Green, and Blue components of the image).

The grayscale image xgray[m,n], where xgray represents the image as a m× n numeric array, was

obtained by eliminating the hue and saturation information while retaining the luminance. The

luminance is calculated from the weighted sum of the RGB component values.

xgray[m,n] = 0.2989 ∗R[m,n] + 0.5870 ∗G[m,n] + 0.1140 ∗B[m,n] (3.1)

By keeping only the luminance of the image, the number of channels is reduced from three (one

for each color) down to one, thus reducing the processing time. The coefficients used to calculate

grayscale values are identical to those used to calculate luminance in the document Rec. ITU-

1In this chapter, we partially use the material published in the IEEE International Midwest Symposium on Circuits
and Systems conference papers, 2019 [2], 2012 [3], 2013 [4], 2018 [5], 2018 [6].
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R BT.601-7 after the numbers are rounded to 3 decimal places. The Rec.ITU-R BT.601-7 is a

document that standardizes parameters for studio encoding of digital television at standard 4:3 and

wide-screen 16:9 aspect ratios.

3.1.2 Image Resize

Image resize used the nearest-neighbor interpolation. The nearest neighbor method is a statistical

test that is used to determine the significance of a point’s nearest neighbor in order to calculate the

deviation from the general trend. The nearest neighbor algorithm selects the nearest point value

and does not take into account the values of other neighboring points, hence producing a constant

interpolation [88]. The images were resized to 64× 64 to give enough information for each image

and to be able to represent an image best to distinguish it from a dataset that has many categories

(poses).

3.1.3 Anisotropic Diffusion

Illumination normalization can be achieved through a simplified Perona-Malik Anisotropic Diffu-

sion [89]. The image I0(x, y) is the input image normalized iteratively until the edges are accu-

rately detected. The normalized image, I(x,y), is expressed in Equations 3.2 and 3.3.

In+1

(
x, y
)

=

∑1
i=−1

∑1
j=−1wijIn(x+ i, y + j)∑1
i=−1

∑1
j=−1wij

(3.2)
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wij = e−k|In(x,y)−In(x+i,y+j)| (3.3)

Through [90] criteria, the number of iterations and k was found to be 2 and 0.4, respectively, in

this dissertation.

The images were also normalized using anisotropic diffusion to reduce image noise without remov-

ing significant parts of the image content such as edges, lines, and other details that are important

for the interpretation of the image [91].

3.2 Image Feature Extraction

Feature extraction is crucial to the identification of the person as the input to the image model

and pattern matching process. Two favorite transforms used for extracting features are the DWT

and DCT. The DWT and DCT are both Fourier-related transform. The DWT expresses an image

in terms of a sum of wavelets (a mini-wave). The DCT expresses an image in terms of a sum

of sinusoids with different frequencies and amplitudes. Preprocessing an image is often used to

improve the image data or enhance some image features. The key idea in this dissertation is to

pass extract features using the 2D-DWT and the 2D-DCT, which will only keep the dominant

coefficients of the image while simultaneously reducing the size of the image. By reducing the

number of coefficients processed by the transforms, the computational processing of the images

will be faster.
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3.2.1 Two-Dimensional Discrete Wavelet Transform (2D-DWT)

The 2D-DWTs have found wide application in signal and image processing [92], for example,

in image compression, noise-canceling, and feature extraction. Wavelet transforms novel mathe-

matical techniques based on group theory and square-integrable representations, which allow one

to unfold a signal (image) both in space, scale, and sometimes direction [93]. The advantage of

using a DWT is that it can represent different regions of an image with different degrees of resolu-

tion. Wavelet transforms are widely used for both denoising [94] and compression of images [95].

Wavelet analysis decomposes a signal into a set of basis functions called wavelets. The wavelet’s

construction is the product of shifting (translation) and scaling (dilation) of the mother function.

If a discrete signal has known basis functions and abides by {f [n]|
∑∞

n=−∞ |f [n]|2 < ∞}, then it

can be approximated as in equation (3.4) from Chun-Lin [96],

f [n] =
1√
M

∑
k

Wφ[j0, k]φj0,k[n] +
1√
M

∞∑
j=j0

∑
k

Wψ[j, k]ψj,k[n], (3.4)

where the discrete signal f [n], scaling function φj0,k[n], and mother wavelet ψj,k[n] are discrete

functions defined in [0,M − 1] given a total of M samples to be transformed. This number is

typically selected to be M = 2K , where K indicates the number of transform levels. Because the

scaling function and the mother wavelet are orthogonal to each other, the inner product can be used

to obtain the approximate coefficients Wφ[j0, k], and the detailed coefficients Wψ[j, k] [96].

Wφ[j0, k] =
1√
M

∑
n

f [n]φj0,k[n] (3.5)

Wψ[j, k] =
1√
M

∑
n

f [n]ψj,k[n] j ≥ j0 (3.6)
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The basis functions φj0,k[n] and ψj,k[n] are defined as

φj0,k[n] =
1√
2j
φ[
n

2j
− k] (3.7)

ψj,k[n] =
1√
2j
ψ[
n

2j
− k] (3.8)

where φ[n] and ψ[n] are the scaling and wavelet functions.

The DWT is any wavelet transform for which the wavelets are discretely sampled. This transform

decomposes the signal into two components using a set of quadrature mirror decomposition filters,

with one containing the low-frequency coefficients (referred to as the approximation), and the other

containing the high-frequency coefficients (called the details). These components are calculated

using equations (3.5) and (3.6), respectively. The input to the transform is a discrete signal f [n] of

length M where M = 2K for some integer K. At the first level, the approximation coefficients,

φ1[n] are calculated as the convolution of the input signal f [n] with the lowpass filter hφ[n]. In the

same manner, the detailed coefficients ψ1[n] are calculated as the convolution of the input signal

f [n] with the highpass filter hψ[n], as shown in equations (3.9) and (3.10).

Wφ[j, k] = hφ[−n] ∗Wφ[j + 1, n]|n=2k,k≥0 (3.9)

Wψ[j, k] = hψ[−n] ∗Wψ[j + 1, n]|n=2k,k≥0 (3.10)

The 2D-DWT is a natural extension from the one-dimensional signal domain. 2D-DWT applies

the 1D-DWT on each row variable and then on each column of the image matrix. At each step,

two sub-images are created, with half the number of pixels found in the processed row or column.
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In the end, an image of size M×N is decomposed into four sub-images of size M/2×N/2. More

precisely, the 2D-DWT decomposition yields an approximation subband (LL), a horizontal detail

subband (LH), a vertical detail subband (HL), and a diagonal detail subband (HH). A schematic

diagram of a general 2D-DWT is shown in Fig. 3.1.

The approximation band, which contains essential information about the image, consists of low

pass filters, hφ(n), and downsampling by two. The detail bands are built from a combination of the

outputs from the high pass, hψ(n), and low pass filters, and consist of details about the diagonal,

horizontal, and vertical information. In the proposed feature extraction stage, the approximation

band (LL band) is kept, and the detailed bands are discarded. Figure 3.1 shows the image decom-

posed into the detailed and approximated coefficients.

f(n)

hϕ(n) ↓2

↓2

hϕ(n)

hψ(n)

↓2

↓2

hϕ(n)

hψ(n)

↓2

↓2

Approximate 
Coefficients

(LL Band)

Detailed
Coefficients
(LH, HL, HH 

Band)

hψ(n)

Figure 3.1: Block Diagram of Discrete Wavelet Filter Analysis

There are dozens of wavelet families, and their members are generally defined numerically through

the associated filters. The abundance of variants stems from the fact that, even though the fast

wavelet transform has a recursive time/space frequency resolution, there are various ways to op-

timize the time/space and frequency localization. However, not all wavelets perform well in all

applications, and for the optimal wavelet to be chosen, the properties of the wavelets must be

understood in the context of the given problem. The essential features of the wavelet are the sup-

38



port size, symmetry, number of vanishing moments, regularity, and (bi-)orthogonality [97]. The

properties of the scaling functions are determined by those of the wavelets but are themselves less

relevant.

3.2.2 Two-Dimensional Discrete Cosine Transform (2D-DCT)

A deficiency in using a traditional wavelet, such as Haar, in DWT is the complicated calculations.

The calculations can be reduced by a quarter or more by reducing the dimensions of the image

by applying the 2D-DCT. One of the main advantages of the 2D-DCT (and DCT in general) is

its redundancy removal property between neighboring pixels, called a decorrelation characteristic.

Due to the smoothness often found in surfaces, neighboring pixels are usually correlated, leading

to higher energy compaction in a few low-frequency coefficients of the 2D-DCT frequency pattern

[98]. This leads to 2D-DCT excelling in terms of compression [99] and face recognition [100],

even under varying face illumination conditions [101].

The 2D-DCT is the two-dimensional extension of the one-dimensional DCT (1D-DCT). That is,

the 1D-DCT is performed along the rows and then along the columns. The original image pixel

data is labeled h(x, y) with dimensions M ×N , and the output DCT coefficient are represented by

H(u, v). The equations for calculating the 2D-DCT are shown in (3.11), (3.12), and (3.13).

H(u, v) =
2√
MN

C(u)C(v)
M−1∑
x=0

N−1∑
y=0

h(x, y) cos(A) cos(B) (3.11)

A = [
(2x+ 1)uπ

2M
], B = [

(2y + 1)vπ

2N
] (3.12)
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C(γ) =


1√
2

γ = 0

1 γ > 0

(3.13)

3.2.2.1 Biorthogonal Wavelets

There are dozens of wavelet families, and their members are generally defined numerically through

the associated filters. The biorthogonal wavelet (BOW) will be used in this research. There are

many advantages to using the BOW for DWT. First, the BOW has a linear phase property, which

leads to the filter coefficients being symmetric. The linear phase is very critical for image process-

ing because the BOW filter will not introduce visual distortions in the image. Second, the BOW

is commonly used in image processing to detect and filter white Gaussian noise because of their

high contrast of neighboring pixel intensity values [102]. That is, wavelets consist of scaled and

translated versions of the mother wavelet, called basis wavelets. Basis wavelets form an orthogonal

basis to the mother wavelets. The BOW can be defined solely based on the scaling filter [103]. By

using only the basis of the scaling filter, BOWs are capable of compressing the signal such that

unwanted data (noise) are eliminated. Consequently, the wavelet preserves the energy of the orig-

inal image. Third, the BOW is useful at reducing unnecessary features. One primary deficiency

that exists in the utilization of a traditional wavelet (i.e., Haar wavelet) is that in the DWT, the

Haar wavelet yields a large number of features unnecessary for accurate recognition. The issue of

a large number of redundant features can also be resolved by the property of bi-orthogonality in

the BOW that is intimately related to the non-redundancy of the BOW transform [97].
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3.2.3 Neuroevolution

NE is a machine learning technique that applies evolutionary algorithms (EA) to generate artificial

neural networks (ANN), parameters, topology, and rules by taking inspiration from the evolution

of biological nervous systems in nature [1]. A representation of a NE process is shown in Fig. 3.2.

In an EA, a single candidate solution is called an individual; the set of all individuals is called the

population. Evolution proceeds through discrete steps in a cycle called generations. After each

generation, the weakest in the population is replaced by a stronger offspring through the processes

of breeding known as speciation. Breeding occurs between the top two fittest individuals. This is

determined by the fitness of each of the individuals in a population. The fitness function measures

the ability of an individual to solve the target problem. In this case, the target problem is to find

the best parameters that make up the CNN that gives the highest accuracy. The fitness influences

the probability of a solution to propagate its characteristics to the next generation.

Chromosome

Population

 Evaluation of Convolutional Neural Network
Weight training, fitness calculation

 Genetic Operations
Crossover, Mutation

 Parental Selection
Speciation, selection of fittest

Generation

Figure 3.2: Illustration of the Typical Generational Neuroevolution Process
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To breed, individuals must have genetic information associated with their fitness. This genetic

information is held in what is called a chromosome. This chromosome holds the genetic infor-

mation of the individual. In this case, this genetic information is the characteristics/parameters

of the CNN. Each of the characteristics is called a gene. There are two main breeding methods:

crossover and mutation. During a crossover, a random position in the chromosome is picked (the

crossover point), and the gene information from one individual’s chromosome is exchanged with

the second fittest individual’s gene information at the crossover point. This exchange creates a new

individual, the offspring. Mutation means that the offspring is a mutated version of both parents

where one gene is chosen at random, and a new random characteristic is devised for that gene.

The primary limitation of EAs lies in their dependence upon an evaluation function, the function

that determines the fitness of an individual. This function is called a considerable number of times

during each generation. In this case, the evaluation function is the recognition accuracy deter-

mined through CNN with the chosen characteristics/parameters. Because the fitness function is

computationally expensive to run, this makes the training of the system computationally expen-

sive. However, once the parameters for the CNN have been determined in training, the testing

phase only requires the test image to be processed by the CNN, and the best match is recognized.

The benefit of EA is that it is finding the best possible solution with the highest accuracy. It has

been shown that EAs can deliver better results than the state-of-the-art in traditional optimization

methods based on gradient descent [104].

3.2.4 Convolutional Neural Networks

Convolutional neural networks are very accurate when used for image recognition. However,

CNNs, despite their accuracy, are typically considered computationally expensive, storage-intensive,

and slow compared to feature extraction models in facial recognition[64, 65]. CNN is considered
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to be complex, and the actual design of the network can be determined by trial and error and is

very ad hoc in determining the required parameters. Using NE for adjusting the parameters, ar-

chitecture, or hyperparameters of the CNN is efficient and leads to a much more compact system

tailored to the dataset being analyzed.

The overall architecture of CNN’s consists of a feature extractor and a classifier. In the feature

extraction layers, each layer of the network receives the output from its previous layer as its input.

Its output is passed sequentially as the input to the next layer. The CNN architecture consists of

a combination of three types of layers: convolution, max-pooling, and classification. The convo-

lution layer learns the basis vectors of images and extracts useful higher-level features through a

hierarchical process. Max-pooling is a sub-sampling layer, and the classification is a fully con-

nected traditional multiple layer perceptron. See Fig. 3.3 for the typical framework of a CNN.

Convolutional
Layer 1

Pooling
Layer 1

Convolutional
Layer 2

Pooling
Layer 2

Convolutional
Layer 3

Pooling
Layer 3

Feature Extractor

Fully
Connected
Layer

Classifier

Output
Layer

0
0
0

1

Figure 3.3: Basic Convolutional Neural Network

Feature maps are obtained by convolution from the learned basis vectors of input images [105].

The equation that relates the input image I and kernel to create a feature map x (a parameterized
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representation of a surface in the space) where the kernel is a random filter.

xi,j = (I ∗K)ij =
k1−1∑
m=0

k2−1∑
n=0

Km,n · Ii+m,j+n + bi (3.14)

Ki,j =
k1−1∑
m=0

k2−1∑
n=0

RandomNumber[−0.250.25] (3.15)

bi =
k1−1∑
m=0

RandomNumber[−0.250.25] (3.16)

Each plane of a layer is usually a derivative from the mixture of one or more planes of previous

layers. The nodes of a plane are connected to a small region of each combined plane of the

previous layer. Each node of the convolution layer extracts the features from the input images by

convolution operations on the input nodes. The basic pseudocode of CNN is shown in 1.

3.2.4.1 Pooling layer

Pooling layers often follow a convolutional layer. The pooling layer takes a small subset from

the convolutional layer and produces a single output from the small subset. Pooling is done in

several ways: finding the average, the maximum, or calculating a learned linear combination of

the neurons in the block. The focus will be on the more popular max-pooling layers; that is, the

maximum of a subset of the matrix (kernel) is pooled. The max-pooling layers do no learning; it

takes merely a k × k region and outputs a single value, which is the maximum of that region. For

example, if the input layer is a N × N layer, the output will then be N
k
× N

k
layer, as each k × k

block is reduced to a single value by a max function. The pooling layer reduces the height and
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width of the input. It helps minimize computation, as well as helps make feature detectors more

invariant to its position in the input.

3.2.4.2 Fully Connected layer

After several convolutional and max-pooling layers, the number of feature maps increases to better

represent features of the input images and ensuring classification accuracy. The outputs of the

last layer of CNN are the inputs to a fully connected network, which is called the classification

layer. Fully connected layers are the high-level reasoning in the neural network that ensures the

classification. A fully connected layer combines all neurons in the previous layer, which is the

fully connected layer, the pooling layer, or the convolutional layer and connects it to every single

neuron it has.

It is important to note that features propagate from lower-level layers to derive higher-level fea-

tures. As the features propagate to the highest level, the dimensions of features are reduced. This

reduction depends on the size of the kernel for the convolutional and max-pooling operations, re-

spectively. Note that in the context of convolutional neural networks, a node is a filter which is

also known as a feature detector.

3.2.4.3 Forward and Backward Propogation

The architecture of the CNN was a multilayer neural network with four hidden layers (two convo-

lutions/pooling layers and two fully connected layers). The layers are comprised of nodes, which

are places where computation occurs, loosely patterned on a neuron in the human brain, which

is activated when it meets sufficient stimuli that combine input from the input images with a set

of weights that either amplify or dampen the input data — the nodes assigned significance to in-
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puts that will better classify the image. The network consists of a forward and backpropagation

algorithm to train the network. The input layer serves as the receiving end of the preprocessing

(grayscaling) and has nodes equal in dimension to the feature vectors. The output layer has one

node.

The number of epochs, which is a complete pass through a given dataset, is determined using

a cross-entropy loss of 0.001. The training samples are represented by p1, n1, p2, n2, ..., pQ, nQ

ε IR, where pq = [pq1, pq2, ..., pqR] are inputs to the network. The input to the CNN is a three-

dimensional matrix that represents each of the training image samples for each category. If the

size of the images is m × m and there are p categories holding q samples each, then the input

matrix will be m×m× pq.

The forward propagation uses weight initialization, calculation of the activation unit, weight ad-

justment, weight adaptation, and convergence testing. Initially, all weights are set to small random

values ranging between −0.25 and 0.25. Assume wji represents the weight between the jth layer

and ith layer, and wj0 is the initial weight. The activation units are calculated sequentially, starting

from the first layer. The activation function for each layer is calculated as follows in equation 3.5:

xpj = Spyj(
I∑
i=1

ωjixi − wj0) (3.17)

where apj is the activation of the j th hidden unit for the pattern. xi is the input to the layer, and S is

the activation function where the rectified linear unit (ReLU), sigmoid, and hyperbolic tangent are

the most popular. In our proposed four-layer system, the ReLU and the hyperbolic function were

used respectively in the first two hidden layers. The hyperbolic function and sigmoid function were

utilized for the two fully connected layers, respectively.
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Average Loss Array: Cross-entropy

Loss Array = −1

c

c∑
c=1

[yyc · ln(oLc ) + (1− yyc)ln(1− oLc )] (3.18)

Where n is the number of categories, yy is the labels, and oL is the output of the last layer.

Initially, all weights are set to small random values. Assume vji represents the weight between the

jth hidden unit and the ith input unit and wkj represent the weight between the kth output and the

jth hidden unit. The activation unit is calculated sequentially, starting from the input layer. The

activation of hidden and output units is calculated as follows:

y
(p)
ij = f

(p)
yj (I ∗K)

ij
= f

(p)
yj

(
k1−1∑
m=0

k2−1∑
n=0

vm,n•Ii+m, j+n + bj0

)
(3.19)

o
(p)
k = f

(p)
ok

(
J∑
j=1

wkjyj − wko

)
(3.20)

Where y(p)ij is the activation of the jth hidden unit and o(p)qk is the activation of the kth output unit for

the pattern I . f is a tanh function.

EP =
1

2

K∑
k=1

(t
(p)
k − o

(p)
k )

2
(3.21)

Where k is the total number of output units, I is the total number of inputs, and J is the total number

of hidden inputs.
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3.2.4.4 Activation Functions

Neural network activation functions are a critical segment of DL. Activation functions decide the

output of a DL model, its accuracy, and its computational efficiency of training a model. Activation

functions have a major effect on the neural network’s capacity to converge and the convergence

speed. In some instances, activation functions might prevent neural networks from converging at

all. The relationship between the input, the weights, the activation functions, and output is shown

in Fig. 3.4. Equation (3.22) shows the equation relating the above mentioned parameters and (3.23)

is the compact vectorized version of the neural network.

xlj = σ

(∑
k

wlj,k·xl−1k + blj

)
(3.22)

x = σ(wlxl−1 + bl) (3.23)

l represents the layer when l − 1 is the previous layer to l.
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Figure 3.4: Model of Neural Network

There are advantages and disadvantages to the sigmoid activation function. The advantage of this

function is that it has a smooth gradient, which prevents “jumps” in output values. The output

values are bound between 0 and 1, normalizing the output of each neuron. For x values above 2

or below -2 the prediction f(x), the output of the sigmoid activation function shown in Eq. (3.24),

is at the edge of the curve that is very close to 1 or 0 and therefore enables clear predictions.

The sigmoid activation function does have disadvantages such as vanishing gradient for very high

or very low values of X. This is because there is almost no change to the prediction, causing a

vanishing gradient problem. This lack of change can result in the network to fall into a local

minimum and fail to learn further, or being too slow to converge to an accurate prediction. Also,

the outputs are not zero centered, and this function is computationally expensive. The equation for
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the sigmoid activation function and the derivative is shown in Equation (3.24) and (3.25).

f(x) =
1

1 + e−x
(3.24)

f ′(x) =
∂

∂x
f(x) = f(x)(1− f(x)) (3.25)

Concerning the loss function, the cross-entropy is nearly always the better choice, if the output

fully connected layer is made up of sigmoid neurons. The reason is that when the network has first

initialized, the weights and biases are randomized. These initial choices result in the network being

decisively wrong for some training input, which means that the output neuron will have saturated

near 1 when it should be 0, or conversely saturated near 0 when it should be 1. If the quadratic

cost function is used, then there will be a decrease in learning. The learning will not stop entirely

because the weights will continue to learn from other training inputs, but it is at those neurons; it

is undesirable.

The Hyperbolic tangent activation function is similar to the sigmoid function but zero centered,

making it easier to model inputs that have strongly negative, neutral, and strongly positive values.

This function has the same disadvantages as the sigmoid function. The function equation and its

derivative are shown in (3.26) and (3.27).

f(x) = tanh(x) =
ex − e−x

ex + e−x
(3.26)

f ′(x) =
∂

∂x
f(x) = 1− f(x)f(x) (3.27)
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The ReLU activation function is computationally efficient, which allows the network to converge

very quickly. Although the function looks linear, it is non-linear and therefore has a derivative

function that allows for backpropagation. There is a disadvantage of the dying ReLU problem

when the inputs approach zero or the inputs are negative; the gradient of the function becomes

zero. In this case, the network cannot perform backpropagation and cannot learn. To prevent the

dying ReLU problem, the leaky ReLU has a small positive slope in the negative area, so it does

enable backpropagation, even for negative input values. The disadvantage is that the results not

consistent; that is, leaky ReLU does not provide consistent predictions for negative input values.

The function equation and its derivative are shown in (3.28) and (3.29).

f(x) = 1(x < 0)(αx) + 1(x >= 0)(x) (3.28)

f(x) = (α + (1− α)(x > 0)); (3.29)

where alpha is a small constant representing the leak with a value of 0.01 in our algorithm. Fig.

3.5 and 3.6 compare the activation functions and their derivatives.
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Figure 3.5: Comparison of Activation Functions

Figure 3.6: Comparison of Derivative of Activation Functions

The loss function, the sum of squares of the absolute errors between the actual output and the

desired output, was determined at the output. The backward propagation used differentiation to

optimize the weights, which recursively propagated back from the output layer through the hidden

layers to the input layer. The minimization of the error E requires the partial derivative of this

52



error with respect to each weight in the network to be computed. The change in the weights is

proportional to the corresponding derivative, where η is the learning rate, which was set to 0.01 in

our system. The last term is a function of the previous weight change. At each step, n, the weights

are updated. The equation is shown in 3.6.

∆wji[n+ 1] = −η ∂E
∂ωji

+ α∆wji[n] (3.30)

Note that wji and xkj are weight adjustments. Through the process of gradient descent, the process

repeats until the desired output is reached. The output of this network is a vector with a weight for

each of the categories and testing samples. Neuron bias is added to the layers of the CNN to offset

the origin of the activation functions. This bias makes room for rapid convergence in the training

process. The bias was set to a random value between −0.25 and 0.25. In the same manner, for

the other weights, the bias weights were trained. The weights were updated in the hidden layers

shown in equation 3.7.

wji[n+ 1] = wji[n] + ∆wji[n+ 1] (3.31)

A CNN leverages the fact that an image is composed of smaller details, or features, and creates a

mechanism for analyzing each feature in isolation, which informs a decision about the image as a

whole [106]. The key parameters that will be analyzed when designing the proposed CNN are:

1. Number of Samples: This parameter depends on the number of objects or poses in a certain

category. Normally face datasets have 11 to 15 poses for individuals, traffic sign datasets

will have 50 to 150 different images of a certain traffic sign, more general datasets can have

up to 1000 different images that represent a certain category.
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Algorithm 1: Pseudocode of Typical CNN System
1: Open dataset:

• Open training and testing images

• Open training and testing labels

2: Initialize parameters such as:

• image height and weight

• number and structure of layers

• type of loss function

• learning rate

3: Create CNN:

• Create convolutional layers, pool layers, and fully connected layers

• Initialize the number of epochs (an epoch is when an entire dataset is
passed through the neural network forward and backward once)

• batch size (total number of training examples present in a single batch).

4: Train the CNN:

• Iterate through the number of epochs apply the layers of the network
(convolution, pooling layers).

• Involves the gradient descent and adjusts the weights.

5: Test images by using the above configured CNN

2. Batch Size: The batch size is a hyperparameter that is part of the gradient descent algorithm

that controls the number of training samples to analyze before the CNNs internal parameters

are updated.

3. Convolutional Layers/Pooling Layers: The number of layers represents how many groups

of convolutional and pooling layers are required to build the simplest and most effective

CNN.
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Figure 3.7: Model of Convolutional Neural Network Showing Parameters

4. Kernel Size: CNN is a stack of layers that are defined by the action of several filters on the

input. These filters are called kernels. The kernel size is the width × height of the filter

mask. There is three kernel size that will be considered for each of the convolutional layers

(k1, k2, and k3).

5. Number of Nodes: The kernel is swept across the image as it filters a section of the image.

There are slightly fewer nodes than there are input nodes due to zero-padding. The stride

which moves the kernel across the image is one pixel at a time in our research. Three nodes

will be considered for each layer (n1, n2, and n3).

6. Cost: The cost is the point in the iteration (epoch) where the iteration stops to give you the

best accuracy.

7. Number of Fully Connected Layers: The fully connected layers take the result of the

convolution/pooling process and make a classification decision. One or two layers will be

the focus of this research. The fully connected input layer takes the output of the convo-

55



lution/pooling layers and turns the matrix into a single vector (flattens the matrix) that is

inputted to the next fully connected layer. The fully connected output layer gives the final

probabilities for each label. That classifies the image into its appropriate category.

8. Number of Nodes in the Fully connected layers: The nodes in fully connected networks

are commonly referred to as neurons. In a neural network, each neuron computes an output

value by applying a specific function to the input values arriving from the previous layer.

Two possible number of nodes will be considered n this research for each possible fully-

connected layer.

9. Activation Functions: The function that is applied to the input values determined by a

vector of weights and a bias. In a neural network, learning progresses by making iterative

adjustments to these biases and weights. Three activation functions will be considered in

this research: the rectified linear unit (ReLU), the hyperbolic tangent (tanh), and the sigmoid

(sigm) function.

10. Learning Rate: The learning rate controls how quickly or slowly, a CNN model learns a

problem. CNN uses backpropagation with gradient descent to determine the best weights

(for the nodes/neurons), and one of the key hyperparameters to set in order to train a neural

network is the learning rate for gradient descent. The learning rate scales the magnitude of

our weight updates in order to minimize the network’s loss function.

11. Image Dimensions: The image dimension is the height and length of the image before it

enters the CNN.

56



3.3 Image Classification

3.3.1 Multilayer Perceptron Neural Network (MLPNN)

MLPNN is a relatively simple neural network that achieves state-of-the-art accuracy on a variety

of computer vision tasks, including classification and recognition. The proposed system used

MLPNN after preprocessing the image. The system accepts an input image of 16× 16 and outputs

one for the appropriate category and zeros for the rest.

The standard MLPNN framework consists of 3 layers: input, hidden, and output. The layers

are comprised of nodes consisting of weights that either amplify or dampen the input data. The

output of the layers will determine the classification of the image. The network consists of a

forward and backpropagation algorithm to train the network. Backpropagation used the gradient

descent optimization algorithm to adjust the weight of nodes by calculating the gradient of the loss

function. The input layer served as the receiving end of the DWT/DCT combinational features and

had nodes equal in dimension to the feature vectors. The output layer had nodes corresponding to

the number of categories in the dataset.

The training samples to the MLPNN are represented by {p1, n1}, {p2, n2}, . . . , {pQ, nQ}, where

pq = [pq1, pq2, . . . , pqR]T ∈ < are the input to the network. The input to the MLPNN is a two-

dimensional matrix that represents each of the training image samples for each category. If the

size of the images are m × m and there are p categories holding q samples each, then the input

matrix will be m ?m× p ? q.

The forward propagation uses weight initialization, calculation of the activation unit, weight ad-

justment, weight adaptation, and convergence testing. Initially, all weights are set to small random

values ranging between −0.25 and 0.25. Assume wji represents the weight between the jth layer
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and ith layer where wj0 is the initial weight. The activation units are calculated sequentially, start-

ing from the first layer. The activation function for each layer is calculated as follows in equation

3.32:

aj = Syj
( I∑
i=1

wjixi − wjo
)

(3.32)

where aj is the activation of the jth hidden unit for the pattern. xi is the input to the layer; I is the

number of nodes in the layer, and S is the activation function. In the proposed three-layer system,

the sigmoid function was used as the activation function in the hidden and output layer.

At the output, the loss function is determined, which is the sum of squares of the absolute errors

between the actual output and the desired output. The backward propagation uses differentiation

to optimize the weights, which recursively propagated back from the output layer through the

hidden layers to the input layer. To minimize the error E, the partial derivative of this error with

respect to each weight in the network is computed. The change in the weights is proportional to

the corresponding derivative, where η is the learning rate (which was set to 1.10 in the proposed

system). The last term in the function is the previous weight change. At each step, n, the weights

are updated. The equation is shown in 3.33.

∆wji[n+ 1] = −η ∂E
∂wji

+ ∆wji[n] (3.33)

Note that ∆wji are weight adjustments. Through the process of gradient descent, the process

repeats until the desired output is reached. The output of this network is a vector with a weight
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for each of the categories and testing samples. Neuron bias is added to the layers of the MLPNN

to offset the origin of the activation functions. Bias allows for rapid convergence in the training

process. The bias was set to a random value between −0.25 and 0.25. In the same manner, for the

other weights, the bias weights were trained. The weights were updated in the hidden layers, as

shown in equation 3.34.

wji[n+ 1] = wji[n] + ∆wji[n+ 1] (3.34)

3.3.2 Multilayer Sigmoid Neural Network (MLSNN) Classifier

The classification stage, which performs the final step of image classification to recognize indi-

viduals, consists of an MLSNN. These MLSNNs are accurate, faster than convolutional neural

networks, and less storage-intensive, and have become a standard robust feature extraction method

for medical classification [53]. This approach has many of the benefits of neural networks, in-

cluding the use of simple, homogeneous computations that are easy to parallelize on hardware. It

also bears strong performance due to end-to-end training that formulates the problem as a single

optimization solution, where all components of the model share the same end objective. The belief

is that it will replace the most popular method of using the Euclidean distance for classification as

in [54, 55, 56]. [57] has shown that using a simple neural network like the MLSNN provides a

much better correlation between the input and the output than the popular Euclidean classification.

The MLSNN is a class of feedforward artificial neural network that is composed of layers of

neurons (nodes) where the computations occur. The MLSNN used in this paper will have three

layers: an input layer, a hidden layer, and an output layer. These nodes are activated when provided

sufficient stimulus. This stimulus consists of input from the images, which is multiplied by a set of
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weights and biases. The nodes amplify the inputs, which will better classify the image, and dampen

those that will not. The network is trained using forward and backward propagation known as an

epoch. In general, MLSNN is a specific type of MLPNN that uses sigmoid functions for the

neurons. MLPNNs can have various numbers of layers, and these layers are densely connected.

Multilayer sigmoid neural networks have been investigated for various applications. They were

first used for pattern recognition [58] and then used to increase the quality of a human face image

in [59]. More recently, MLSNNs were used in face gender recognition [60], automatic extraction

of the eye and mount fields from a face image [61], and human face detection in still images [62].

The work proposed here exploits the increasing quality advantage in the pattern recognition of

the MLSNN. The work is different in that it recognizes a person from the images, and does not

solely categorize female and male subjects or extract faces from a still image. To the best of our

knowledge, we are one of the first to use feature extraction and MLSNN in combination with facial

recognition.

3.3.3 Pretrained Convolutional Neural Networks

There are several pre-trained networks available on MATLAB R2018a that was used for testing

convolutional neural networks. Installation of all support packages and toolboxes for each of the

network was completed to support each network. The AlexNet, for example, was trained on a

subset of the ImageNet database and is trained in more than a million images and can classify

images into 1000 categories. In the algorithm, the pre-trained network loads all layers in the

network except for the last three (referred to as transfer learning). Afterward, the network is

trained using a new set of data that includes newly calculated weights for the last three layers.
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3.3.3.1 AlexNet

This design was one of the primary deep learning systems to push ImageNet Classification accu-

racy by a considerable step in contrast with traditional methods. The neural network consists of

60 million parameters and 650, 000 neurons. It is composed of five convolutional layers (some of

which are trailed by max-pooling layers) and followed by three fully connected layers for a total

of 8 learned layers.

A distinguishing factor of AlexNet, proposed by Krizhevsky [67], is that it uses ReLu(Rectified

Linear Unit) to model a neuron’s output f as a function of its input x as well as to help solve the

vanishing gradient problem. When considering training time with gradient descent, ReLu is much

more efficient. ReLu is given by f(x) = max(0,x).

On the test data of the ImageNet contest, the AlexNet system achieved a top-1 error rate of 37.5%

and a top-5 error rate of 17.0%.

3.3.3.2 VGGNet

This architecture is from the Visual Geometry Group at the University of Oxford. It improves the

performance of AlexNet by replacing large kernel-sized filters with consecutive 3x3 kernel-sized

filters. Multiple stacked smaller size kernel generates better recognition rates than larger sized

kernels. The multiple non-linear layers increase the depth of the network and, in return, learns

more from complex features at a faster speed.

Three fully connected layers follow the VGG convolutional layers, as in the AlexNet network. The

width of the first convolutional layers starts with a width of 64, and as the layers progress, the

width increases by a factor of 2 after every pooling layer. On the test data of the ImageNet contest,
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the VGGNet system achieved the top-5 accuracy rate of 92.3%.

VGG-16 and VGG-19 are two variants of the VGGNet. VGG-16 has a total of 16 layers consisting

of convolution layers (3×3), max-pooling layers (2×2), and fully connected layers. The VGG-19

has a total of 19 layers comprised of convolution, max pooling, and fully connected layers.

3.3.3.3 GoogleNet

While VGG accomplishes an incredible precision on the ImageNet dataset, its utilization on even

the most modest-sized GPUs is an issue as a result of enormous computational requirements, both

as far as memory and time. It is wasteful because of the substantial width of the convolutional

layers.

For example, the composition of the 3rd convolutional stage of the VGGNet with 16-layers is 3×

conv3-256 layers. The first layer has 128 input planes and 256 output planes. The other two layers

have 256 input planes and 256 output planes. The calculation for the number of parameters for

the two last layers is 256× 3× 3× 256 = 590, 080. The vast amount of parameters would need a

considerable amount of time to process.

A convolutional operation at one location with an output plane connected to every input plane is

called a dense connection architecture. GoogLeNet works on alleviating the fact that activations in

a deep learning network have a value of zero and, therefore, unnecessary or superfluous because of

the relationship between them. In this way, the most proficient design of a deep network will have

a sparse association between the activations, which suggests that every one of the 512 input planes

will not have an association with all the 512 input planes. There are methods to prune out such

associations, which would bring about a sparse weight/association. However, kernels for sparse

matrix multiplication are not advanced for GPU bundles which render them to be considerably
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slower than their dense complements.

Therefore GoogLeNet, proposed by Simonyan [68], implemented a module called the inception

module that approximates a sparse CNN with standard dense construction. Since just a few neurons

are successful, the width/number of the convolutional filters of a specific kernel size is kept small.

Additionally, it utilizes convolutions of various sizes to catch subtle details at a variety of scales

that is 5× 5, 3× 3, and 1× 1.

Another notable point about the GoogleNet module is that it has a bottleneck layer, which is the

1× 1 convolution layer. This layer helps in an enormous decrease in the calculation requirement.

Another change that GoogleNet made was to replace the completely connected layers toward the

end with a straightforward global average pooling, which averages the channel values over the

2D feature map, after the last convolutional layer. This average pooling decreases the cumulative

number of parameters, where fully connected layers contain approximately 90% of parameters.

Utilization of a large system width and depth enables GoogleNet to expel the fully connected

layers without influencing the accuracy.

GoogleNet accomplished a top-5 accuracy rate of 93.3% on ImageNet. Although VggNet achieves

a phenomenal accuracy on the ImageNet dataset, its deployment on even the most modest-sized

Graphics Processing Units (GPUs) is a problem because of substantial computational require-

ments, both regarding memory and time. It becomes inefficient due to the large width of convolu-

tional layers, although it has been proven to be significantly quicker than VGG [107].

3.3.3.4 Inception-v3

GoogleNet proposed a deep convolutional neural network architecture which they codenamed In-

ception. For all intended purposes, this is Inception-v1. This version includes some sparsity in
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the network as well as improved convergence in the classification error of intermediate layers.

Szegedy in [108] built on the original version of Inception that is inception v1and made some im-

provements. Some of the upgrades were decreasing the size of kernels that were larger than 3x3,

which led to more efficiency. Other enhancements included a factorization of convolutions and im-

proved normalization. The final revision led to Inception-v3 that applied all of the improvements

and surpassed its predecessor, GoogleNet, on the ImageNet database.

3.3.3.5 ResNet

There are two problems with the CNNs discussed earlier in this paper. The first is called vanishing

gradient. Vanishing gradient occurs on CNN because it uses gradient-based learning methods and

backpropagation. During each iteration of training of the network, the neural network’s weights

receive an update proportional to the partial derivative of the error function with respect to the

current weight. The problem occurs when the gradient becomes vanishingly small and effectively

prevents the weights from changing its value and virtually stops the training of the neural network.

The second issue is called the degradation problem. Degradation problems occur in training deeper

networks and calculating the optimization of enormous parameter space, which leads to noncha-

lantly adding layers that prompt higher training error. Residual networks such as ResNet permit

training of these deeper networks by building the system through modules called residual models.

ResNet, developed by He [109], has a 152 layer network (which was ten times deeper than previous

CNN), which highlights unique skip connections and substantial utilization of batch normalization.

Like GoogleNet, ResNet uses average pooling before the classification layer. It achieves better

accuracy than VGGNet and GoogLeNet while being computationally more efficient than VGGNet

[107].
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3.4 Window Based Feature Extraction Algorithms

Feature extraction is crucial to the identification of the speaker as the input to the speaker model

and pattern matching process. Two popular steps, framing, and windowing, are precursors to the

feature extraction methods. Framing is the process where the speech signal is made stationary

by dividing it into overlapping fixed duration segments called frames. Windowing is the process

where each frame is multiplied by a window function that smoothes the effect of using a finite

segment. In any speaker recognition system, it is essential to extract features from each frame that

can capture the speaker-specific characteristics [110].

3.4.1 Real Cepstral Coefficients (RCC)

RCCs are computed by transforming the signal from the time domain to the frequency domain

through a Fast Fourier Transform (FFT) for each frame. The log of the FFT of the signal and the

application of the inverse Fourier transform (IFFT) returns the real cepstrum of the signal, and can

be written as follows:

Real Cepstrum = IFFT (log(FFT (s(n)))) (3.35)

where s(n) is the original windowed signal [111].

3.4.2 Mel Frequency Cepstral Coefficients (MFCC)

The human perception of the frequency content of sounds does not follow a linear scale. The

Mel scale was derived and is roughly linear from 0 to 1 kHz and logarithmic above 1 kHz. In
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MFCC, the signal follows the same process as the RCC algorithm. However, after the FT, the

power spectrum (each frame), is first passed through a non-uniformly spaced (in frequency) bank

of filters. Afterward, the log of the signal is computed. These non-linear frequency filters are

called Mel frequencies and correspond to the logarithmic frequency distribution of the human

ears’ hearing. The logarithmic distribution in relations to actual frequency is shown below:

Mel(f) = 1000/ln(1 + 10/7) ∗ 1n(1 + f/700) (3.36)

in this equation, f is in Hz.

3.4.3 Delta-Mel Frequency Cepstral Coefficients

The human ear is sensitive to both the dynamic and static characteristics of a signal, and the MFCC

mainly reflects the static characteristics. The ∆MFCC (the first order of the MFCC), is appended

to the MFCC to reflect the dynamic information of each frame. As a consequence, the combination

is more robust [110]. To further improve the recognition rate, the second and third-order can be

extracted to reflect more characteristics of the signal.

∆MFCC(m,n) =
1√∑k
−k i

2

k∑
i=−k

i×MFCC(m,n+ i) (3.37)

3.4.4 Linear Prediction Coefficients (LPC)

LPC models the vocal tract by using an all-pole model, and the LPC features represent the main

vocal tract resonance property in the acoustic spectrum. Linear Prediction coding estimates the
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signal, s(n), by a linear combination of the past p samples. For example,

s(n) =

p∑
k=1

aks(n− k) + e(n) (3.38)

where e(n) is the error term and the apk values are referred as the linear prediction coefficients

[112].

3.4.5 Linear Prediction Cepstral Coefficients (LPCC)

LPCC is computed through recursion from the LPC Parameters to the LPC cepstrum according to

an all-pole model and exposes the differences of the biological structure of the human vocal tract

[112]. The equation for the recursion is as follows:

cn =


c1 = a1 n < 1

an + sumn−1
k=1

k
n
ckan−k 1 < n ≤ p

sumn−1
k=1

k
n
ckan−k n > p

(3.39)

Islam [112] defines a1, . . . , ap as a p-order LPC feature vector, cn, n = 1, . . . , p as the coefficients,

and p as the first p values of the cepstrum.

3.4.6 Perceptual Linear Predictive Cepstral Coefficients (PLPCC)

Perceptual Linear Predictive Cepstral Coefficients (PLPCC) are based on the magnitude spectrum

of the speech analysis window. PLPCC is dissimilar to MFCC and LPC, which are cepstral meth-

ods, in that it is a temporal method and models the auditory speech spectrum through a low order
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all-pole model. Revathi [113] details the steps followed to calculate the coefficients of the PLPCC.

First, compute the power spectrum of a windowed speech. Second, group the results to 23 critical

bands using bark scaling for a sampling frequency of 8 kHz. Third, perform loudness equalization

and cube root compression to simulate the power law of hearing. Fourth, perform inverse Fast

Fourier Transform (IFFT). Fifth, perform LP analysis by the Levinson-Durbin algorithm [114].

Lastly, convert LP coefficients into cepstral coefficients.

The relationship between frequency in Bark and frequency in Hz is specified as in

f(bark) = 6 ∗ arcsinh(f(Hz)/600) (3.40)

3.4.7 RelAtive SpecTrAl (Rasta) - PLPCC

Rasta filtering takes the rate of change of nonlinguistic components in a speech that generally

lies outside of the typical rate of change of the vocal-tract shape. This rate of change suppresses

the spectral components that change either quicker or slower than the typical rate of change of

speech. The RASTA approach can be combined with the PLPCC method to get the low-pass

transfer function H(z) [115]. RASTA filtering reduces the accuracy of the system in the absence

of noise. However, it increases its accuracy significantly in the presence of severe noise [116].
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CHAPTER 4: FACIAL RECOGNITION SYSTEM USING MIXED

TRANSFORM AND MULTILAYER SIGMOID NEURAL NETWORK

CLASSIFIER

4.1 Introduction

Facial recognition is a Biometric Artificial Intelligence-based technology that can recognize an

individual by analyzing patterns found in their facial surfaces and shape [14]. This technology has

received much attention in recent years because of its potential use in a vast array of applications

in both law enforcement and civilian applications (e.g., government, mobile phone, social media,

retailers, airlines, and marketers) [15].

Many existing face recognition methods utilize feature extraction in combination with Euclidean

distance classification. This method often suffers from low recognition rates under poor lighting

(for example, as found in the YALE dataset), excessive storage requirements, and slow recogni-

tion rate. Neural networks have recently become a potent tool for image recognition with high

accuracy. The use of neural networks in facial recognition, however, has not been thoroughly ex-

amined. The overall strategy here is to improve on the feature extraction weaknesses, as well as

use the efficiency of neural networks to create a system that is effective, quick, and accurate. The

proposed method uses a combination of preprocessing, a Facial Mixed Transform (FMT) feature

extraction, and a simple, and a high-speed classification through a MultiLayer Perceptron Neural

Network (MLPNN). What makes our system novel is the use of a feature extraction stage before

the MLPNN, as well as the use of an effectual MLPNN over the well-known Euclidean distance.

More specifically, the MLPNN we use for classification is the MultiLayer Sigmoid Neural Network

(MLSNN). The feature extraction stage uses a mixture of the two-Dimensional Discrete Wavelet
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Transform (2D-DWT) and the two-Dimensional Discrete Cosine Transform (2D-DCT), which can

extract the most relevant features of the facial images while minimizing detractors and reducing

the dimensions of these features. Despite having only three non-convolutional layers, the MLSNN

yields surprisingly good results, even when running directly on the preprocessed images without

the feature extraction stage.

Many methods for feature extraction have been advanced in recent studies. [117] adaptively com-

bines 2D-DWT coefficients and 2D-DCT coefficients recursively for image feature extraction and

Euclidean distance classification. This method superimposes dominant coefficients from the two

domains. The best results averaged over at least 462 trials for six training poses, obtained in

[117], were 98.75%, 97.3%, 81.3% for the YALE, the ORL and the color FERET datasets, respec-

tively. Gabor filters are applied in [118, 119] to extract the required features, followed by Principal

Component Analysis (PCA), to minimize dimensions. [120] uses Linear Discriminant Analysis

(LDA) and ADAboost to find the best features of an image. The Hidden Conditional Random

Fields (HCRF) model is also used for recognizing complex distributions via a mixture of Gaussian

density functions [121]. [122] presented a summary of feature extraction approaches proposed by

various authors and made conclusions on current trends in feature extraction techniques. The paper

concluded that DCT and DWT techniques give good accuracy for facial recognition, but are not

robust to image illumination changes. Gabor Filters, on the other hand, are robust to illumination

changes, but produce redundant features and have problems dealing with high dimensions. PCA

and Local Binary Patterns (LBP) reduce dimensions but do not guarantee accuracy.

In this work, the feature extraction stage applies two transforms, the 2D-DWT, and 2D-DCT, suc-

cessively to determine the coefficients to represent the facial image optimally. The advantage of

using both transforms is that the ideal coefficients can be effectively extracted in both domains due

to the nonorthogonality of the coefficients in these domains. It has been observed that nonorthogo-

nal basis functions in DWT lead to a complete and robust representational space that leads to better
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performance over orthogonal basis functions[123]. That is, orthogonality is not a requirement for

pattern recognition. The coefficient’s importance is based on its position in the wavelength in the

DWT domain and its energy level in the DCT domain. The resultant matrix leads to a minimization

of noise and exclusion of image parts nonessential to the identification. The feature vector, which

contains the final coefficients chosen from each domain, is then loaded into the MLSNN.

The popular Convolutional Neural Networks (CNNs), despite their accuracy, are typically consid-

ered computationally expensive, storage-intensive, and slow compared to feature extraction models

in facial recognition[64][65]. However, by exchanging the CNN for an MLSNN, we can retain the

classifying power of neural networks, while significantly reducing the required resources. The

feature extraction stage can compensate for any losses due to the architectural simplification of

the neural network. We find that the proposed system, which combines the feature extraction and

MLSNN stages, outperforms both CNNs and other feature-extraction-based methods.

We make the following contributions in this paper:

1. In terms of recognition accuracy, the biorthogonal basis wavelet used by the 2D-DWT in the

feature extraction model extracts the most relevant features of the facial image. It is ideal for

this system because it filters noise efficiently and avoids introducing visual distortions.

2. In terms of decreasing the dimensions, the 2D-DCT is used in conjunction with the 2D-DWT

in the feature extraction model. While many works have used the 2D-DWT and 2D-DCT for

image recognition, the combination of these systems is novel in this work. Other algorithms,

such as [117], have used mixed transforms adaptively, rather than successively as used in this

paper. We also use the MLSNN instead of the simple Euclidean Distance Classifier (EDC).

3. In terms of processing time, the simple structure of the neural network classifier (MLSNN)

allows for rapid training on the input datasets. Likewise, during the testing, the system will
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identify the person associated with the facial image both accurately and quickly. This clas-

sifier contrasts with the slower and more complicated CNNs used in [65]. We note that the

proposed system can be run efficiently without using Graphics Processing Unit (GPU) hard-

ware, thus enabling potential use in embedded applications, for example. In the results, we

showcase where the proposed system classifies quicker on a CPU than CNN-based systems

running on GPU hardware.

4. In terms of recognition under illumination changes, for example, as found in the YALE

dataset, the use of grayscaling in the system improves robustness.

5. In terms of the size of the dataset, several kinds of images from multiple datasets have

been combined to better train the MLPNN for improved performance. To the best of our

knowledge, no one else has combined these specific datasets.

Overall, the proposed model improves recognition and speed while reducing memory space re-

quirements even when tested on a relatively large and diverse dataset.

The ORL, YALE, FERET, FEI databases were utilized to test the facial recognition system as well

as a combination of all four datasets. In the results, we compare the recognition accuracy/process-

ing speed of the proposed system (built using successive 2D-DWT and 2D-DCT with the MLSNN)

against several facial recognition systems, a feature extraction system, and popular CNN systems.

In the results, the proposed method overall maintained the recognition accuracy and substantially

increased the speed of recognition, thus indicating that an appropriately chosen compact represen-

tation of the image makes for an ideal input to the MLSNN.
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4.2 Proposed System

In this work, we create a model for recognizing individuals in a large dataset. The proposed system

consists of a preprocessing stage, a feature extraction stage, and a classifier, as outlined in Fig. 4.1.

In the diagram, we show an example of an actual image that was processed through the proposed

system. For the preprocessing stage, all queried images were converted into grayscale before the

feature extraction stage.

Grayscale 
Image

Resize to 
64x64

Features 
Extracted/Resized

 Using DWT 
32 x 32

Features Extracted/
Compressed 
Using DCT

20 x 20

Binary 
Classification

Preprocessing

 

... ... ...

Input Hidden Output
Layer  Layer     Layer

MLSNN Classifier

 

Feature Extraction

Original
Image

Figure 4.1: Block Diagram of Proposed System

4.2.1 Feature Extraction

The proposed feature extraction system is shown in Fig. 4.2. There are L possible nonorthogonal

transformations depending on how many transforms are used in the system. For this reason, the

algorithm performs at most L iterations, terminating early if the energy residual Φ, falls below

1%. For l = 1, 2, . . . , L, the transforms at the lth stage are Tl, T2, . . . , TL. The transforms perform

three tasks: transformation into another domain (i.e., frequency domain), extraction of features

of an image through a weight matrix labeled C1, C2, ..., CL, and inverse transformation into the

spatial domain to create the transformed coefficients, F1, F2, ..., FL. The transformed coefficients
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are converted to a vector and kept to be concatenated at the end of the proposed system algorithm.

Start Feature 
Extraction

Input 
Image, 
I = R1

T1 T2

Extracted 
Features, F1

R2 = 1 – (R1 ᵒ C1)

Extracted 
Features, F2

Is 
Φ > 1%?

Yes

…

TL

Extracted 
Features, F𝑙𝑙

Is 
Φ > 1%?

Yes

No

Is Φ > 1%? (for stages 3 … 𝑙𝑙 − 1)

No

G= 𝐹𝐹1||𝐹𝐹2|| … ||𝐹𝐹𝐿𝐿

Start the process 
over from (*)

To stage 3

Stages 3…L-1

Output 
G

(*)

Is 
Φ > 1%?

No

Yes

R𝑙𝑙+1 = 1-(R𝑙𝑙 ᵒ C𝑙𝑙)

No

R𝑙𝑙 = 1-(R𝑙𝑙-1 ᵒ C𝑙𝑙-1)

Figure 4.2: Block Diagram of Proposed Feature Extraction System

The residual is the result from R2 = 1− (Rl ◦Cl), where (◦) is the Hadamard product. The energy

residual (cost function) Φ is the difference between the input energy and the sum of the energies

retained in each domain [117]. Specifically, it is defined as shown in Equation (4.1).

Φ = PI − (PFL
+ · · ·+ PF2 − PF1) (4.1)

The cost function, Φ, needs to be minimized. Through experimentation, the value of Φ that best

represented the image and therefore gave the best recognition accuracy was determined to be 1%.

Consider the case where F = 2, using the two transforms 2D-DWT and 2D-DCT (which are

nonorthogonal to each other). First, the image I (R1) is transformed through the chosen transform
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T1 (in this case, the 2D-DWT), then its feature matrix is extracted through the approximate coeffi-

cients by using the BOW as the basis function. The extraction is achieved through a weight matrix

C1, which is a matrix of ones and zeros defining the location of the coefficients in the image to keep.

The result is F1. If Φ is greater than 1% then the residual R2 is calculated by R2 = 1− (R1 ◦ C1)

and this R2 goes through the second transformation. The residual coefficients, R2, are resized to

32× 32. The BOW used in this research is the Bior2.2 wavelet. The extracted coefficients, F2, are

resized to 32× 32. Next, the second transform T2, (in this case 2D-DCT), transforms the residual

coefficients R2 into the DCT domain, the feature matrix is reduced by taking only the coefficients

that represent 99.99999% of the energy; in general, it was found that 32 coefficients captured this

energy. The matrix C2 is created to delineate the position of the coefficients to be kept, and the

feature matrix is converted back to the spatial domain through the inverse 2D-DCT, and the result-

ing coefficients, F2, are resized to a dimension of 20 × 20. For L > 3, we repeat the process, and

for each l we terminate the process if Φ < 1%. After the algorithm terminates, each of the feature

matrix Fl is concatenated to produce the final feature matrix G. The final feature matrix G, for each

pose is converted into a one-dimensional vector to be loaded into the MLSNN.

4.2.2 Classification

In the classification stage, an MLSNN is invoked consisting of three layers: an input layer, a hidden

layer, and an output layer. The input layer receives the image, the hidden layer approximates a

continuous function, and the output layer makes a prediction about the input.

In the MLSNN, the activation function of a node defines the output of that node given an input or

set of inputs. The activation functions are initialized using the values calculated from the feature

extraction stage, xi and are the input to the MLSNN, ai are the calculated activation units, starting

from the input layer as shown in equation (4.2). In equation (4.3) and (4.4), υji is the weight
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between the j th layer and the previous ith layer and ωkj is the weight between the kth layer and the

previous j th layer. The activation function for the hidden and output layers are calculated using

equations (4.2) - (4.4) (see [124]):

ai = xi, (4.2)

yj = Syj(
I∑
i=1

υjiai + bj), (4.3)

zk = Szk(
J∑
j=1

ωkjyj + bk), (4.4)

where Syj and Szk are sigmoid activation functions, I is the total number of input nodes in the

MLSNN, and J is the total number of individuals in the dataset. The algorithm updates the weights

and biases so that the output from the network approximates z(x) for all training inputs x. The

network’s weights and biases are updated by applying gradient descent using backpropagation. A

cost function compares against a corresponding target value of yd, which is the actual identity of

the face image. The cross-entropy cost function C is

C = − 1

N

∑
x

[yd ln(z) + (1− yd) ln(1− z)], (4.5)

where N is the total number of training images, the summation is over all training images, z is the

vector of outputs from the network given input image x, and yd is the actual classification, or label,

of the facial image. Note that the output z depends on x, υ, ω and b.

It is also important to note that the cross-entropy loss function was used instead of the more popular

quadratic loss function to avoid the problem of learning slowdown [125]. The use of cross-entropy

was appropriate in this case since loss measures the performance of a classification model whose

output is a probability value between 0 and 1.

76



The backward propagation uses differentiation to optimize the weights, starting at the output layer

and recursively to propagate through the hidden input layers. Minimizing the error E requires the

calculation of the partial derivative of E with respect to each weight in the network, as shown in

equation (4.6).

E =
∂C

∂ωj
=

1

N

∑
x

xj(S(z)− y) (4.6)

The error E was set to 0.01 because the recognition rate converged at this point for our system.

The change in weight is proportional to the corresponding derivative, where η is the learning rate,

which was set to 12.5 in our system). At each step n, the weights are updated. The equations are

shown in (4.7) and (4.8).

∆υji[n+ 1] = ∆υji[n]− η
∑
x

∂C

∂υji
(4.7)

∆ωkj[n+ 1] = ∆ωkj[n]− η
∑
x

∂C

∂ωkj
(4.8)

Note that υji and ωkj are weight adjustments. Throughout the process of backpropagation, the

process repeats until the desired output is reached. The output of this network is a vector with

a weight for each of the categories and testing samples. Neuron bias is added to the layers of

the MLSNN to offset the origin of the activation functions. This neuron bias makes room for

rapid convergence in the training process. The bias weights are trained in the same manner as the

weights. The sigmoid neuron will be used in this research because of its versatility, and its function

is continuously differentiable, which makes it relatively easy for backpropagation calculations.
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The input layer serves as the receiving end of the extracted features from the FMT, and the number

of nodes is set equal to the dimension of the feature vectors. The output layer produces one

output value for each pose that belongs to an individual to be recognized. For this experiment,

the number of epochs was dependent on the learning rate, which was set to 0.01. The training

samples are represented by p1, n1, p2, n2, ..., pQ, nQ ε IR, where [p1, p2, p3, ..., pQ]T are the inputs

to the network. pq represents the intensity value of the rth feature value in the face image. The

input to the MLSNN is the set of feature traits obtained from the FMT for each of the training

image samples. If the size of the features is m×m, then the input vector will be of size m ∗m.

The first step of the forward propagation consists of the initialization of the activation functions,

weights, and bias. The remaining steps are the calculation of the activation unit, weight adjustment,

weight adaptation, and convergence testing. Initially, all weights and biases, υji, and bi, are set to

small random values ranging between −0.25 and 0.25.

The proposed system consists of a training path and a testing path, as shown in Fig. 4.3. In all the

datasets tested, the poses were divided with 80% used for training and 20% used for testing. For ten

poses in a category, eight poses would be used for training, and two poses would be used for testing.

The MLSNN is trained on a set of input facial images and their respective identities. The MLSNN

learns to model the correlation between images and their identity. Training involves adjusting the

weights and biases of the model in order to minimize errors. There is a continuous forward pass,

and backpropagation pass called an epoch, where the equations in the backpropagation adjust the

weights and biases relative to the error. We end training when the cross-entropy loss function

reaches convergence; in our case, the value was 0.01.
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Figure 4.3: Proposed System with MLSNN

In the testing path, the identities of the input images are determined by passing the image through

the same three stages described above and then classifying them via the weights and biases of

the MLSNN. The testing stage starts by preprocessing the test pose with the same grayscale and

resizing operations applied in the training stage. The resulting image is passed through the FMT

to obtain its feature vector, which is then passed through the trained MLSNN to determine the

identity of the facial image. The overall recognition rate is calculated by dividing the number of

correctly identified poses by the total number of test poses.

4.3 Experimental Results

We first evaluate the proposed system separately on four databases: the ORL [126], YALE[29],

FERET-c [127, 128], FEI [32]. Next, we test against a “combined” dataset built from all four

databases to evaluate the system using a larger, more varied set of individuals and faces. The

proposed system is compared against six face recognition (FR) systems and six CNNs. Fig. 4.4

shows the composition of Systems 1 through 6, as well as the proposed system.

The FR systems are constructed as follows: System 1 uses no FMT and only MLSNN. Systems 2

and 3 perform feature extraction with FMT, followed by the MLSNN: System 2 uses only 2D-DWT
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for the extraction, and System 3 only uses 2D-DCT. Systems 4 and 5 perform feature extraction

with FMT, followed by EDC. System 4 uses only 2D-DWT for the extraction, and System 5 only

uses 2D-DCT. System 6 uses both 2D-DWT and 2D-DCT with the EDC. The proposed system

uses both 2D-DWT and 2D-DCT with the MLSNN. Six CNNs are used for comparison as well,

that is the AlexNet [67], VGG 16 [68], VGG 19 [68], GoogleNet [129], ResNet 50[109], ResNet

101[109].

Preprocessed 
Image

2D-DWT

2D-DCT

MLSNN

Euclidean 
Distance

2D-DCT

Euclidean 
Distance

Euclidean 
Distance

MLSNN

MLSNN Proposed 
System

System 2

System 4

System 3

System 6

System 5

2D-DWT

System 1MLSNN

Figure 4.4: Training Stage of Systems 1 through 6.

The facial images used in this work were assembled from several different datasets. Specifically,

150 images were used from YALE, 400 images from ORL, 2000 images from FERET-c, and 2000

images from the FEI dataset. The YALE database contains 15 categories of individuals, with ten

poses per individual. The original ORL and FERET-c dataset include 40 and 200 categories of

individuals, respectively, with 11 poses per individual. We randomly chose ten of these poses
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for both the training and testing datasets. The FEI dataset has 14 poses with 200 categories of

individuals. The darkened images and the sideways images were removed to give ten poses per

category. The “combined” dataset has a total of 4550 images of individual faces. There were a

sizeable number of images such that the images could be divided into 280 categories containing

ten poses each. The dataset was split with 80% of the facial images used for training and 20% used

for testing.

The row sizes of the original face images vary from 112 pixels to 640 pixels, and the columns

vary from 92 to 480 pixels. Since each of the original datasets uses a different image size, we

automatically resized all images to a uniform size of 64× 64 pixels. This size was found sufficient

for capturing distinguishing features of the faces to enable identification. The images are resized

using nearest-neighbor interpolation. After resizing the images to 64 × 64, the wavelet transform

can extract the significant features of the image, and at the same time, minimize the feature vector

space of the image to a quarter of its size (32× 32), and the discrete transform can further reduce

the dimensions to 20× 20.

The simulations were tested on an Intel Core i7-8700K 3.7GHz six-core personal computer with

an NVIDIA GTX 1080 Ti 11GB graphics card. The experiment used MATLAB 2018b for the

simulations. The CNNs are pre-trained image classification networks available in the MATLAB

Deep Learning Toolbox. We make use of transfer learning for the CNNs. Specifically, the pre-

trained CNNs have already learned to extract significant and useful features from everyday images

and can be used as a starting point to model our specific datasets. The majority of these networks

are pre-trained on a subset of the ImageNet database [130], which is used in the ImageNet Large-

Scale Visual Recognition Challenge (ILSVRC) [131]. These networks have been trained on more

than a million images and can identify 1000 object categories, such as pool tables, coffee mugs,

and various animals.

81



Results for all datasets are summarized in Tables 4.1 through Table 4.4. The final dimension

size of the feature matrix to be classified is shown in Table 4.1 for each dataset. Recall that the

“combined” dataset represents all four datasets combined. Table 4.2 compares the recognition

accuracy of different methods on the five datasets tested. Table 4.3 compares the processing time

per image in seconds for training and testing for all datasets and systems. Table 4.4 shows the

testing processing time per image in seconds for all datasets.
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Table 4.1: Image Dimension Comparison for the ORL, YALE, FERET-c, FEI and Combined

Dataset and Proposed System for Classification

Database Actual CNN Proposed

ORL 112× 92 227× 227 20× 20

YALE 243× 320 227× 227 20× 20

FERET-fc 384× 256 227× 227 20× 20

FEI 640× 480 227× 227 20× 20

Combined Varies 227× 227 20× 20
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Table 4.2: Recognition Accuracy (%) For All Datasets

YALE ORL FERET-c FEI Combination

System 1 96.7 91.3 93.0 97.8 93.9

System 2 96.7 97.5 91.5 95.3 92.4

System 3 96.7 97.5 94.8 99.3 94.7

System 4 80.0 96.3 81.3 90.5 86.8

System 5 80.0 97.5 81.3 90.3 86.6

System 6 80.0 96.3 82.5 91.3 87.5

Alobaidi et.al [117] 86.7 92.5 77.3 87.7 97.3

AlexNet [67] 95.5 90.9 96.3 97.4 96.3

VGG 16 [68] 91.1 85.2 95.1 95.1 96.8

VGG 19 [68] 88.9 86.1 94.9 94.9 95.9

GoogleNet [129] 77.8 90.2 94.7 94.7 95.1

ResNet 50 [109] 80.0 80.3 94.7 94.7 96.7

ResNet 101 [109] 86.7 84.4 95.0 95.0 95.5

Proposed System 100.0 98.8 95.3 99.3 96.7
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Table 4.3: Training + Testing Processing Time (s) Per Image for All Datasets

YALE ORL FERET-c FEI Combination

System 1 25.83 610.31 3454.75 4501.25 7284.18

System 2 19.17 28.75 154.81 236.38 541.84

System 3 75.83 154.06 324.06 317.00 577.23

System 4 3.33 2.50 5.44 5.38 10.58

System 5 128.33 124.06 125.75 123.69 128.05

System 6 63.33 56.25 57.13 57.25 59.84

Alobaidi et.al [117] 1210.00 923.44 1299.88 6554.44 634.53

AlexNet [67] 84.17 66.56 204.50 1193.13 843.49

VGG 16 [68] 187.50 264.06 929.56 1695.75 1616.73

VGG 19 [68] 212.50 298.13 954.19 2603.94 2250.99

GoogleNet [129] 173.33 140.31 332.06 1355.69 887.47

ResNet 50 [109] 522.50 647.81 1527.31 2107.50 2344.59

ResNet 101 [109] 665.83 841.88 2111.00 3437.50 3556.43

Proposed System 833.33 308.75 59.56 62.06 26.57
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Table 4.4: Testing Processing Time (s) per Image for ALL Datasets

YALE ORL FERET-c FEI Combination

System 1 0.03 0.01 0.01 0.01 0.01

System 2 2.37 3.26 2.85 2.90 2.77

System 3 3.05 18.61 18.53 18.19 20.15

System 4 2.39 2.34 5.74 5.93 11.85

System 5 15.19 16.48 30.90 30.86 41.03

System 6 7.62 7.81 11.29 7.85 10.46

Alobaidi et.al [117] 3.64 7.04 36.29 35.41 322.26

AlexNet [67] 9.99 3.74 2.52 3.97 2.97

VGG 16 [68] 17.78 16.33 13.82 15.38 13.73

VGG 19 [68] 18.27 17.23 14.59 16.22 14.80

GoogleNet [129] 6.61 3.80 3.24 4.72 3.75

ResNet 50 [109] 10.72 8.19 7.33 8.97 8.79

ResNet 101 [109] 19.27 13.41 10.55 12.33 10.74

Proposed System 2.81 4.82 4.05 4.00 4.03

4.3.1 Remarks on the Results

In Table 1, the information shows that the proposed system will use an image with a much smaller

size before it is processed and classified in the MLSNN. This smaller image will lead to fewer

calculations and less processing time through the MLSNN. The time will be critical during the

testing time for real-time applications and less critical during the training time, which is often done

off-line. Table 3 shows the training and testing time for all datasets. It is important to note that the
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proposed system sometimes has a higher processing time compared to other systems, especially

for smaller datasets. This higher processing time is only a concern when the training time is of

importance, which is generally not the case for most cases. The training stage’s purpose is to train

the weights of the MLSNN to be used in the testing during the actual use of the system. Table

4 shows that for the testing time, overall, the proposed system is faster than all systems except

systems 1 and 2, where the accuracy is lower, as shown in Table 2.

In Fig. 4.5, we vary the feature matrix dimensions to search for the best 2D-DCT compression

size. It was determined that the matrix dimensions that best represented the image were 20 × 20.

This dimension gave a less erratic loss function during training than the 16 × 16 dimension and

allowed convergence to a high recognition accuracy at a faster rate.

The outcome of the experiment for system recognition demonstrates that the proposed system not

only maintains the recognition accuracy compared to other popular methods but, in some cases,

exceeds it. For the larger datasets such as the FEI and the “combined” dataset, the recognition rate

is at par or surpasses those of the other systems. Overall, the accuracy of the proposed system is

95.3% or higher.

The outcome of the experiment for system processing time for testing + training reveals that the

proposed system is faster than all of the CNN and is only slightly slower than the alternate systems

tested. For the testing processing time, the proposed system runs competitively to the compared

systems. It is important to note that the CNN algorithms run mostly on the GPU, and the proposed

system runs on a CPU. Despite the parallel computing power of the GPU, which processed the

CNN algorithms, the proposed system that operated on CPU alone indicated competitive process-

ing time. Overall, on a system that consists solely of a CPU, the proposed system runs effectively.

Because the proposed system retains fewer coefficients per pose, the computational complexity

of the proposed technique, especially in the testing stage, is much lower compared to the other
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systems, especially the CNNs. Among the five datasets used, the proposed technique reduces the

processing time by 30− 97% compared with the systems under comparison.
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Figure 4.6: Recognition Accuracy and Cross-Entropy Loss of Combined Dataset for the Proposed

System

In Fig. 4.6 all the systems that used the MLSNN as the classifier is compared. This figure shows

the recognition accuracy and cross-entropy loss for the combined dataset. This diagram shows that

the proposed system converges the fastest, i.e., the cross-entropy loss reaches the threshold of 0.01

at a slightly higher accuracy compared to the other systems.
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4.4 Conclusion

A facial recognition system was proposed utilizing grayscaling and resizing, along with a mix of

two popular transforms: the 2D-DWT and 2D-DCT. The FMT enhanced and compressed the image

into a set of features, which better represented the image. These feature vectors were loaded into an

MLSNN for the final classification stage, where results showed a very accurate classification. The

smaller image meant that fewer parameters were required in the classifier, and ultimately decreased

the processing time of the recognition. This method was trained and tested with a broad set of

individuals. Overall, the proposed system performed very well in the larger dataset as compared

to existing systems.
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CHAPTER 5: DESIGNING CONVOLUTIONAL NEURAL NETWORKS

FOR VARIOUS IMAGE RECOGNITION USING NEUROEVOLUTION

5.1 Introduction

Convolutional neural networks (CNNs) have received significant attention in recent years, in large

part due to their outstanding behavior in complex supervised learning tasks [63]. These neural net-

works have had an especially large impact on computer vision applications such as facial recogni-

tion [64]. However, despite their accuracy, popular CNNs are typically computationally expensive,

storage-intensive, and slow as compared to feature extraction models [65]. One of the most ap-

pealing ways to resolve these issues is to simplify the CNN architecture as much as possible while

still maintaining high accuracy. This is the approach that we will follow. In general, recognition

systems consist of three main stages: preprocessing, feature extraction, and classification. As with

most CNN-based approaches, the CNN encompasses both the feature extraction and classification

steps. We now describe the components making up our approach.

5.1.1 Convolutional Neural Networks (CNN)

CNNs were inspired by biological processes in that the connectivity pattern between neurons re-

sembles the organization of a human visual cortex [132, 133]. CNNs are customized versions of

multilayer perceptrons (MLP), which are fully connected networks where each neuron in one layer

is connected to all neurons in the next layer. Most CNNs that analyze images require a multitude of

nodes and layers, making them complicated in terms of calculations and requiring significant pro-

cessing power and time. The typical goal when building convolutional neural networks (ConvNets)

is to design a deeper network that requires fewer parameters [66].
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Existing CNNs and other neural network variants have obtained state-of-the-art accuracy in image

classification [67], [68], [73], [134], facial recognition [69], [64], [70] and traffic sign recognition

[71], [72] Nonetheless, the depth of these architectures and the large number of parameters, require

an enormous number calculations and computations, and large amounts of storage resources. These

requirements restrict the usage of CNNs. Fortunately, deep models are considerably redundant in

weights, filters, channels, and even layers [73]. By easing these demands, CNNs could be applied

to increasingly broad applications: for instance, they could be used in smart cell phones, which

have constrained computational power and memory capacity.

5.1.2 Feature Extraction

Feature extraction is a vital step in facial expression recognition [135]. Specifically, feature extrac-

tion is a process of dimensionality reduction by which an initial set of raw data is reduced to more

manageable groups for processing [136]. Traditional applications of feature extraction include

[137, 138] in face recognition, and [139, 140, 141] in traffic sign detection and recognition.

Many methods for feature extraction have been advanced in recent studies. Alobaidi et al. in

[117] adaptively combine two-dimensional discrete wavelet transform (2D-DWT) coefficients and

two-dimensional discrete cosine transform (2D-DCT) coefficients recursively for image feature

extraction and Euclidean distance classification. This method superimposes dominant coefficients

from the two domains. The best results averaged over at least 462 trials for six training poses,

obtained in [117], were 98.75%, 97.3%, 81.3% for the YALE, the ORL and the color FERET

datasets, respectively.

In this paper, we focus on the creation of a compact CNN for feature extraction of images in faces

and traffic signs datasets. Examples, where convolutional neural networks extract features from

images in a dataset, include [142, 143, 144]. In this case, the convolutional filters represent the
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characteristics (features) of the dataset images, and we typically seek to reduce the parameters

of the CNN (and therefore reduce the required processing resources) without losing essential or

relevant information. The best features to represent images in a dataset vary depending on the

application. In facial recognition images, the best characteristics tend to be small facial details:

eye separation, nose positioning, background color, and other minute attributes that compose a

face. In traffic signs, on the other hand, the characteristics are more coarse: sign shape as exhibited

by a stop sign (octagon) or a school bus sign (pentagon), the symbol or writing appearing on the

sign (e.g., a diagram of school children crossing or the word “STOP”), and sign color.

A wide variety of approaches have been proposed for applying CNNs to the feature extraction

step of facial recognition. [145] proposes a model that increases the number of images for a

small number of employee images set of a small-scale company by applying different filters. This

paper focuses on using CNNs to produce new artificially generate images to increase the size of

a small dataset, which is different from our application. [146] proposes a cascaded noise-robust

deep convolutional neural network (CNR-CNN) method, consisting of two sub-networks, i.e., a

denoising sub-network and a face recognition sub-network, for face recognition under noise. This

paper focuses on a robust CNN that works in a noisy environment, which is very different from our

primary goal. [147] looks at the effect of CNN parameters, namely kernel size and the number of

filters on the classification accuracy of a CNN using the FER-2013 dataset. This method uses CNN

and investigates the best parameters of CNN, but they are limited to kernel size and the number of

filters, and there is only one dataset tested.

Methods to find the features for traffic sign recognition are varied as well. For example, Kong et al.

in [148] proposes a light-weight traffic sign recognition (TSR) algorithm based on cascaded CNN.

The paper’s focus is to cascade a CNN and not to find the best parameters of a CNN. Chen et al.

in [71] investigate the feasibility of using CNN for the task of traffic sign detection from camera

images. The paper focuses on two specific issues: the low interclass variation of traffic signs and
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the small size of the traffic signs in images. This paper looks at the feasibility of using a CNN and

not the best architecture for a CNN to recognize an image.

5.1.3 Neuroevolution (NE)

NE is a subfield within artificial intelligence (AI) and machine learning (ML) that evolves a neural

network through the use of evolutionary algorithms [75]. Although NE languished after its intro-

duction almost three decades ago, it is making a comeback. Prominent artificial intelligence labs

and researchers are experimenting with it, a string of new successes have bolstered enthusiasm,

and new opportunities for impact in deep learning (DL) are emerging [75]. Its application for de-

signing CNN for various image recognition application is just starting to show promise and will be

further investigated in this paper.

A genetic algorithm is a search heuristic that is inspired by Charles Darwin’s theory of natural

evolution. This algorithm reflects the process of natural selection where the fittest individuals are

selected for reproduction in order to produce offspring of the next generation [149]. For complex

problems, they usually perform better than traditional optimization methods, due to their capability

of escaping local optima in the search space [104].

When building a CNN that best represents a dataset, a machine learning algorithm would need to

exhaustively explore the parameter space in all the layers composing a convolutional network. This

proves infeasible on even small neural networks. Backpropagation (gradient descent) is typically

used to alleviate this problem. In contrast, several alternative solutions have been proposed in the

NE community. Jalali et al. in [76] perform a neuroevolution method based on genetic algorithm

for finding the optimal deep neural networks architecture in terms of hyperparameters, Badan et

al. in [77] developed a NE method capable of evolving and optimizing CNNs with respect to the

classification error and CNN complexity to reduce power consumption further. Zhang et al. [78]
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developed a learning strategy based on NE to design and train optical neural networks. Aly et al.

in [79] presented an evolutionary metaheuristic search to optimize deep neural networks and train

a CNN, and Baldominos et al. [63] explored the application of NE to the automatic design of CNN

topologies.

These NE methods use CNNs in the facial/traffic sign recognition, but they have a very different

focus from our work. The simple CNN that we will build in this research are found using NE for

eight datasets (as opposed to one dataset) and are tested across two different applications (facial

and traffic sign recognition). Also, we will not be using the NE as the feature extractor but as the

method to find the best CNN to extract the features of the images in the datasets.

Backpropagation-based DL used in CNN and NE have different qualities and shortcomings. DL

is good at extracting structure from large amounts of data and producing a compact internal repre-

sentation of a high-dimensional input. That is, a deep neural network can learn the characteristic

features from a wide variety of pictures, from a baseball cap to a bird. However, DL performs

poorly when solving problems with sparse rewards and simultaneously exploring many different

strategies for solving a problem. NE can overcome these limitations. The combination of NE and

DL will allow for the DL to make predictions or recognize objects based on a large number of

examples and train a small action-selection component using NE with the pre-trained deep neural

network as a back-end.

A system is built in two parts; there is a training module and a testing module. The training module

is offline, and it is reasonable for extended processing time to determine the best parameters of a

system. The testing accomplished in real-time, and it is where the image is passed through the

already built system (CNN), and the image is recognized.

The structure of a CNN-based neural framework is complex and includes an enormous number

of parameters that determine the effectiveness of the system to recognize and classify an image.
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In this research, we endeavor to simplify this task, establish a technique that is prepared to gen-

erate a simplified total structure of a convolutional neural system explicitly produced to tackle

three particular datasets: image dataset, facial dataset, and traffic sign dataset. This new structure

will advance numerous parts of the architecture, which includes the number of layers, activation

functions, batch size, and learning rate.

5.2 Proposed System

5.2.1 Preprocesing

Although a CNN system has preprocessing built-in, to keep the images consistent and all the same

size, grayscaling and image resizing was done on the images. The importance of preprocessing is

that it leads to better classification performances [150] and is paramount to increasing the speed of

training such as centering and scaling techniques [151].

5.2.2 Convolutional Neural Network (CNN)

Convolutional neural networks achieve state-of-the-art accuracy on a variety of computer vision

tasks, including classification, object localization, detection, recognition, and scene labeling [152].

The advantage of convolutional neural networks partially originates from their complexity (many

parameters), which results in very high accuracy. An example of a large dataset is the notewor-

thy ImageNet dataset [153], which consists of 1000 categories with approximately 1000 image

samples per category. However, creating a large labeled dataset is very time consuming and very

costly. Also, the time it takes to process the image samples for training, as well as the storage

space required, can become a problem in a society where time and space are of importance. To

overcome this problem, creating an algorithm that can build the most efficient and accurate CNN
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with the least complexity in terms of parameters and architecture can lead to faster processing time,

decrease storage requirement, and keep the accuracy high for recognition of the image.

5.2.2.1 Aspect of Optimization

In our proposed system, we have considered the following parameters to be manipulated by the

genetic algorithm with the following possibilities:

1. General hyperparameters

• Number of samples per category (S):

S =


10 Datasets: YALE, ORL, FEI, and FERET-fc

50 Datasets: BTS, GTSRB, TSRD, and MNIST
(5.1)

• Image Dimension (Idim):

Idim = (floor(Rn ∗ 2)) ∗ 32 + 32 (5.2)

where Rn is a random real number in the range [0,1). This leads to two possible image

dimensions of 32× 32 and 64× 64.

• Batch size (B):

B = 5 (5.3)

The batch size was kept constant at 5 because it fit well with the sample size used of 10

for facial images and 50 for traffic sign images.
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• Learning rate (η):

η =
(
10−(floor(Rn∗4)∗1+2)

)
∗ (floor(Rn ∗ 2) ∗ 4 + 1) (5.4)

where Rn is a random number in the range [0,1). This leads to the following values of

0.00001, 0.00005, 0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05.

2. Convolutional layers

• Number of convolutional layers (nc):

layers = floor(Rn ∗ 3) + 1 (5.5)

This leads to one, two or three layers.

• Kernel size in each convolutional layer (kci):

kc1 = (floor(Rn ∗ χ1)) ∗ 2 + 1 (5.6)

χ1 = ceil

(
floor

(
Idim−1

2

)
2

)
(5.7)

Where χ1 is calculated for a kernel size dimension from 1 × 1 to half the size of the

Idim, that is Idim
2
× Idim

2
. The dimensions for the kernel size for the second layer and

third layer are as follows:

kc2 = (floor(Rn ∗ χ2)) ∗ 2 + 1

kc3 = (floor(Rn ∗ χ3)) ∗ 2 + 1

(5.8)
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Where the new image dimension is calculated as

Idim2 =
(Idim − kc1 + 1)

2

Idim3 =
(Idim2 − kc2 + 1)

2

(5.9)

and χ2 is calculated as follows

χ2 = ceil

(
floor

(
Idim2−1

2

)
2

)

χ3 = ceil

(
floor

(
Idim3−1

2

)
2

) (5.10)

• Number of nodes for each convolutional layer (dci):

dc1 = (floor(Rn ∗ 6)) ∗ 10 + 10 nc = 1

dc1 = (floor(Rn ∗ 6)) ∗ 4 + 8 nc = 2

dc2 = (floor(Rn ∗ 6)) ∗ 4 + 8 nc = 2

dc1 = (floor(Rn ∗ 6)) ∗ 1 + 4 nc = 3

dc2 = (floor(Rn ∗ 6)) ∗ 1 + 4 nc = 3

dc3 = (floor(Rn ∗ 6)) ∗ 1 + 4 nc = 3

(5.11)

For one layer, the number of possible nodes is 10, 20, 30, 40, 50 and 60. For two layers

the possible number of nodes for each layers is 8, 12, 16, 20, 24 and 28. For three

layers the possible number of nodes for each layer is 4, 5, 6, 7, 8, and 9.
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• Activation function in each convolutional layer (aci):

ε = (floor(Rn ∗ 3)) ∗ 1 + 1; (5.12)

The activation layer can be one of 3 possibilities:

aci =


ReLU ε = 1

tanh ε = 2

sigm ε = 3

(5.13)

3. Fully Connected layers

• Number of fully connected layers (nf ):

nf = floor(Rn ∗ 2) + 1; (5.14)

• Number of nodes of each fully connected layers (dni):

dni = (floor(Rn ∗ 3)) ∗ 32 + 32 (5.15)

• Activation function in each fully connected layers (an):

ε = (floor(rand(1) ∗ 3)) ∗ 1 + 1 (5.16)
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where

an =


ReLU ε = 1

tanh ε = 2

sigm ε = 3

(5.17)

These parameters are shown graphically in Fig. 3.7. It is important to note that the samples for the

face recognition dataset were set to 10 because these datasets had at most ten poses per individual.

Also, in the design, there is a pooling layer after each of the convolutional layers. Therefore the

number of pooling layers will match that of the number of convolutional layers. The kernel size

for pooling was taken as 2 × 2, and therefore the height and width will be halved, and the overall

size of the matrix will be quartered. The subsample method used was the average of the four cells

of the matrix, and there was no overlap in the four-cell being averaged across the entire matrix.

5.2.3 Neuroevolution (NE)

In a NE system, the EA starts with an initial population; the population goes through the process

of natural selection, which is the selection of two fittest individuals from the population. The

two fittest individuals produce offspring, which inherit the characteristics of the parents, and if

it is more fit than either parent, it will be added to the next generation. If parents have a better

fitness score, then their offspring, the offspring will not be added to the population. Parents will

then create another offspring that has a better fitness calculation. This process keeps on iterating,

and in the end, a generation with the fittest individuals will be found. The EA process follows the

algorithm shown in Algorithm 2.
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Algorithm 2: Outline of Genetic Algorithm
1: Create a random initial population.
2: Create a sequence of new populations - At each step, the algorithm uses the individuals in the

current generation to create the next population. To create
a new population, the algorithm performs the following steps:

a Calculate Raw Fitness Score: Score each member of the current population
by computing its fitness value (the recognition accuracy).

b Select two individuals from the population-based on their fitness. They
become the parents.

c Produce offspring from the parents: Children are produced by crossover
(swapping the genes of each parent at a crossover point) and 0.015% parents
will both mutate (one of the genes will be randomly chosen and its value will
be changed to another random possibility).

d The current population is replaced with the offspring with the children to
form the next generation.

3: The algorithm stops when one of the stopping criteria is met.

In summary, there are five phases in an evolutionary algorithm.

1. Initial population

2. Fitness function

3. Selection

4. Crossover

5. Mutation
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5.2.3.1 Initial Population

The generational process begins with a set of individuals consisting of chromosomes called a

population. The chromosomes consist of a set of parameters (CNN parameters) knows as genes.

An individual is portrayed by a set of parameters known as genes. The genes will be the compo-

sition of the CNN, such as the number of layers and kernel size as detailed in the CNN section.

Each individual hold in their genes a solution to the problem to be solved. In this case, the archi-

tecture, hyperparameters, activation functions needed to give the highest accuracy for the image to

be recognized. In this research, the initial population was set to 50 individuals. The genes in the

textitchromosome were randomly determined as per the equation detailed in the CNN section.

5.2.3.2 Fitness Function

The fitness function determines the fitness score of an individual. In this research, the fitness

score is recognition accuracy. The recognition accuracy was determined by the CNN built from

the composition of genes in the textitindividual’s chromosome. An individual competes with other

individuals in the population based on the fitness score. The likelihood that an individual will be

chosen to be a parent and produce an offspring depends upon the fitness score.

5.2.3.3 Selection

The selection phase chooses the fittest individuals and lets them pass their genes to the next gener-

ation. Two sets of individuals (textitparents) are chosen based on their fitness scores. The individ-

uals reproduce through crossover and 0.015% of the time through mutation.
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5.2.3.4 Crossover

Crossover is a significant phase in the genetic algorithm because this is the section in the algorithm

where the best set of genes is determined to find a solution to the problem. That is, find the best set

of genes to give the highest recognition accuracy. The parents are mated by exchanging genes at a

crossover point. The crossover point is chosen at random from within the genes. The offspring is

created by exchanging the genes of parents among themselves until the crossover point is reached.

The new offspring, with its new genes, calculates its fitness score. The offspring are added to the

population by replacing the lowest fitness score individual in the population.

5.2.3.5 Mutation

A mutation occurs to maintain diversity within the population and prevent premature convergence.

New offsprings are also formed through a mutation of 0.015% of the time. A random gene in both

parents is selected and randomly mutated. The fitness score of both offsprings is calculated, and

the offspring replaces the lowest fitness score individual in the population. The mutation occurs

0.015%, and the offspring is a mutated version of both parents where one gene is chosen at random,

and a new random characteristic is devised for that gene.

5.2.3.6 Termination

The algorithm terminates when the population converges, that is, the offsprings are not significantly

different from the previous generation. At termination, the goal of finding the solution to the

problem has been determined by the genetic algorithm.
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Figure 5.1: Details of Chromosome in the GA for all Datasets

5.2.3.7 Comments

The population has a fixed size of 50%, and as new generations are formed, individuals with the

lowest fitness scores are removed from the population to provide space for new offsprings. The

algorithm repeats to produce individuals in each new generation, which are better than the previous

generation.

The definition of the chromosome in the genetic algorithm for all datasets is shown in Fig. 5.1.

5.3 Experimental Results

We first evaluate the proposed system separately on three sets of datasets. The facial recogni-

tion datasets: ORL [154], YALE [29], FERET-fc [127, 128], FEI [32]. The traffic sign datasets:

Belgium-TSC [33], GTSRB [155] , TSRD [156] and then the handwritten digit dataset: MINIST

[34].

The facial images used in this work were assembled from several different datasets. Specifically,

150 images were used from YALE, 400 images from ORL, 2000 images from FERET-fc, and 2000

images from the FEI dataset. The YALE database contains 15 categories of individuals, with ten

poses per individual. The original ORL and FERET-fc dataset include 40 and 200 categories of
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individuals, respectively, with 11 poses per individual. We randomly chose ten of these poses

for both the training and testing datasets. The FEI dataset has 14 poses with 200 categories of

individuals. The darkened images and the sideways images were removed to give ten poses per

category. The dataset was split with 80% of the facial images used for training and 20% used for

testing for the calculation of accuracy.

The Belgium-TSC dataset consists of images of traffic signs found in Belgium. The original dataset

consisted of 62 categories with a variety of numbers of images per category. Some of the categories

had less than 50 images, so image duplication was used to have at least 50 images per sample.

Therefore, no more than 50 random samples were selected for this dataset. Please note that some

categories had in upwards of 290 images. The GTSRB dataset has more than 40 categories and

more than 50, 000 images in total. Only 40 categories were used in the experiment because some

of the categories had few samples. The TSRD dataset has 6164 traffic sign images containing 58

sign categories. The images are divided into two sub-databases as a training database and a testing

database. The training database consists of 4170 images, while the testing one contains 1994

images. The images were combined for the training and testing, and since some categories had

few images, the number of categories tested was decreased to 55. The MNIST Dataset consists

of handwritten decimal digits from 0 to 9. The MNIST dataset consists of 10 categories with

approximately 6000 images per category. Some of the categories had less than 6000 images, and

due to time constraints so no more than 750 random sample was selected for this dataset. Note that

the range of images is from 5421 to 6742 images per category.

The row sizes of the original face images vary from 112 pixels to 640 pixels, and the columns

vary from 92 to 480 pixels. Since each of the original datasets uses a different image size, we

automatically resized all images to a uniform size of either 32×32 or 64×64 pixels. This size was

found sufficient for capturing distinguishing features of the images to enable identification. The

images are resized using nearest-neighbor interpolation.
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The simulations were tested on an Intel Core i7-8700K 3.7GHz six-core personal computer with

an NVIDIA GTX 1080 Ti 11GB graphics card. The experiment used MATLAB 2018b for the

simulations. The convolutional networks are pre-trained image classification networks available in

the MATLAB Deep Learning Toolbox. We make use of transfer learning for the CNNs. Specif-

ically, the pre-trained CNNs have already learned to extract significant and useful features from

everyday images and can be used as a starting point to model our specific datasets. The majority

of these networks are pre-trained on a subset of the ImageNet database [130], which is used in the

ImageNet Large-Scale Visual Recognition Challenge (ILSVRC) [131]. These networks have been

trained on more than a million images and can identify 1000 object categories, such as pool tables,

coffee mugs, and various animals.
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Figure 5.2: Recognition Accuracy for ALL Datasets
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Table 5.1: Image Dimension Comparison for the ORL, YALE, FERET-fc, FEI and Combined

Dataset and Proposed System for Classification

Database Avg. Actual CNN Proposed

ORL 112× 92 227× 227 32× 32

YALE 243× 320 227× 227 32× 32

FERET-fc 384× 256 227× 227 32× 32

FEI 640× 480 227× 227 64× 64

BTS 126× 114 227× 227 32× 32

GTSRB 384× 52 52× 227 32× 32

TSRD 132× 141 227× 227 32× 32

MNIST 28× 28 227× 227 32× 32
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Table 5.2: Best Parameters for All Datasets

YALE ORL FERET-fc FEI BTS GTSRB TSRD MNIST

Image Dimension 32 32 64 64 64 32 32 64

# of Samples 10 10 10 10 50 50 50 50

Batch Size 5 5 5 5 5 5 5 5

# Conv. Layers 1 1 1 1 1 1 1 1

Kernel Size Layer 1 15 5 11 5 23 11 7 27

Kernel Size Layer 2 - - - - - - - -

Kernel Size Layer 3 - - - - - - - -

# of Nodes Layer 1 50 40 50 30 30 40 60 50

# of Nodes Layer 2 - - - - - - - -

# of Nodes Layer 3 - - - - - - - -

AF for Conv. Layer 1 tanh tanh ReLU sigm sigm ReLU tanh ReLU

AF for Conv. Layer 2 - - - - - - - -

AF for Conv. Layer 3 - - - - - - - -

# of FC Layers 2 1 1 1 1 2 1 2

# of Nodes FC Layer 1 96 - - - - 64 - 64

AF for FC Layer 1 rect - - - - tanh - sigm

AF for FC Layer 2 sigm sigm sigm sigm sigm sigm sigm sigm

Learning Rate 0.005 0.01 0.005 0.05 0.01 0.005 0.01 0.01
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Table 5.3: Recognition Accuracy (%) For All Datasets

YALE ORL FERET-fc FEI BTS GTSRB TSRD MNIST

Alobaidi et.al [117] 86.7 92.5 77.3 87.7 92.3 80.0 89.9 .0

AlexNet [67] 95.5 90.9 96.3 97.4 96 64.5 95.3 58.0

VGGNet 16 [68] 91.1 85.2 95.1 95.1 95.5 83.2 95.3 68.0

VGGNet 19 [68] 88.9 86.1 94.9 94.9 97 81.6 98.5 63.0

GoogleNet [129] 77.8 90.2 94.7 94.7 94.1 76.3 94.5 72.0

ResNet 50 [109] 80.0 80.3 94.7 94.7 93.3 67.8 95.3 41.0

ResNet 101 [109] 86.7 84.4 95.0 95.0 96.7 75.5 98.2 23.0

Proposed System 90.0 98.8 80.8 94.8 94.7 84.9 91.2 95.4

Table 5.4: Complexity Parameters for Popular CNNs

AlexNet VGGNet GoogleNet ResNet

Image Dimension 227 224 224 224

# Conv. Layers 5 16 21 151

Kernel Sizes 3,5,11 3 1,3,5,7 1,3,7

# of Nodes 96-384 64-512 64-384 64-2048

# of FC Layers 3 3 1 1

# of Nodes FC Layers 4096/4096/1000 4096/4096/1000 1000 1000

# of Parameters 61M [67] 138M [68] 6.8M [129] 25.6M [109]

Results for all datasets are summarized in Tables 5.1 through Table 5.4. The final dimension size of
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the feature matrix to be classified, as shown in Table 1 for each dataset. Table 2 tabulates the results

of the NE on the most simplistic CNN with the best accuracy for all datasets. Table 3 compares the

recognition accuracy from the parameters chosen by the proposed system with [117] methods of

mixed transform feature extraction and six popular CNN. Table 5.4 compares the complexity for

popular CNNs.

5.3.1 Remarks on the Results

In Table 5.1, the actual two dimensional (grayscaled) average size of the images in the dataset,

the resized two dimensional (grayscaled) image size used in CNN for all networks (except for

AlexnNet which is (227 × 227), and the proposed grayscale size of the image for the proposed

system, is compared. The comparison shows that the traditional CNN requires much bigger sized

image dimensions than the proposed system. It is a size decrease of 98%. This is important when

it comes to decreasing computational complexity, computational speed, and storage requirements

during computational training.

In table 5.2, the best parameters needed to compose the CNN found by the NE is shown. AF stands

for activation function, and FC stands for fully-connected. It can be seen from the table that the

number of convolutional layers that give the best recognition accuracy is one for all datasets. The

kernel size varies dramatically between all datasets, as well as the number of nodes required for

the first layer. The activation function also varies across the three possibilities of tanh, sigm, and

ReLU. Three datasets prefer two FC layers, and the activation function has no favorites. The last

FC layer is always the sigmoid function because it is conducive to the better cross-entropy loss

function. The learning rate varies from 0.005 to 0.01 and 0.05, which is much fewer possibilities

than the choices available. The learning rate of 0.01 is the most popular out of the dataset tested.

In table 5.3, it is important to know the number of input and output layers as this determines
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the number of weights and biases that make up the parameters of the neural network. The more

parameters in the network, the more parameters need to be trained, which results in longer training

time. Training time is significant for deep learning as it a limiting factor unless there is access to

powerful computing resources such as a computing cluster [157].

The number of parameters for the CNN is based on the ImageNet Large Scale Visual Recognition

Challenge (ILSVRC) with 1000 categories. The network with the least amount of parameters

is Googlenet, with only 6.8 million parameters. When compared to the number of parameters

required for the proposed system, only the FEI dataset comes close to that number, and it still 1.4

million less than the GoogleNet algorithm.

In Table 5.4, the proposed system is compared to popular CNNs and current research from [117].

CNN using the parameters computed by the NE, always had competing results to that of the popular

CNNs. This result shows that a simple CNN structure can be competitive with other more complex

CNN structures. Compared to [117], the proposed system always had better results, which shows

that a well designed CNN can do the work of feature extraction and classification without any extra

manipulation.

5.4 Conclusion

In this paper, a neuroevolution technique was proposed for optimizing CNN architecture, hyper-

parameters, and activation functions. This algorithm tunes the structure and weights of CNNs to

reduce computational burden and memory requirements of the network during feature extraction,

while still maintaining high accuracy. The effectiveness of the algorithm was demonstrated in two

specific applications: facial images and traffic signs. The proposed neuroevolution algorithm was

used to generate multiple CNNs, all of which contained a smaller total number of parameters as
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compared to well-known CNNs such as AlexNet, VGGNet, ResNet, and GoogleNet. At the same

time, the generated CNNs maintained high recognition accuracies, which were competitive with

the well-known CNNs. The high accuracy of the proposed system indicates that there is often

significant redundancy in existing CNNs for these particular applications, and also efficient feature

extraction is possible with simpler topologies.
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CHAPTER 6: ADAPTIVE FEATURE EXTRACTION ALGORITHM

USING MIXED TRANSFORMS FOR FACIAL RECOGNITION

6.1 Introduction

Biometric face recognition technology has received significant attention in the past several years

due to its potential in different applications [56]. Face recognition is the process of identifying a

person from images or videos that extract unique facial features using various algorithms. Several

face recognition approaches have been proposed [158, 159]. The feature extraction process is

a very critical step in expressing facial images that could greatly affect the rate of recognition

[160]1.

Extracting a person’s feature traits is the key to face recognition. Briefly described, here are two

feature extractors prevalent in the literature. Discrete Wavelet Transform (DWT) is an implementa-

tion of the wavelet transform that decomposes an image into a mutually orthogonal set of wavelets

[161]. Discrete Cosine Transform (DCT) is similar to the discrete Fourier transform in that it trans-

forms an image from the spatial domain to the frequency domain. However, it represents an image

as a sum of sinusoids of varying magnitudes and frequencies.

In [162], the preprocessing included Grayscale conversion, resizing, Laplacian of Gaussian Blur,

Gamma Intensity Correction, Salt and Pepper noise detection, and Median and Weiner filters.

The system applied two feature extraction algorithms (DWT and DCT) to extract features from

the images. The truncation in the DCT domain utilized a new approach called Slope Triangular

(STDCT). The Binary Particle Swarm Optimization algorithm is employed to remove outliers from

1In this chapter, we partially use the material published in IEEE International Midwest Symposium on Circuits and
Systems, 2018 [5].
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the features. In [162], the maximum reported results, for an average of 25 experiments, were 72%

for the color FERET-fc, 91.9% for the ORL, and 98.7% for the JAFFE database.

This paper presents a face identification system based on an adaptive algorithm that cascades the

DWT and DCT extraction methods to extract the best features of an image. The Least Absolute

Errors (LAE), also known as the L1 normalization, will perform a comparative evaluation of the

feature extraction methods using images from three popular databases employed in facial recogni-

tion.

6.2 Proposed system

The proposed system is shown in Fig. 6.1 includes the training and testing phases of each image

in the database.

All of the databases used in this paper have a certain amount of people with at least 10 poses per

person. Each of the training/testing poses will go through two pathways. One of the pathways will

be through the DWT, and the other pathway will be through the DCT.
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Figure 6.1: Block Diagram of Proposed Facial Identification System

For the DWT pathway, each of the poses is transformed using the DWT and the DCT; this DCT

is part of the mixed facial identification system. This mixed system uses the DCT as a filter that

follows the DWT and is recursively iterated until a threshold is reached. The threshold will be

determined by comparing the energy change of the output of both the DCT and DWT to the energy

of the original pose.

In the proposed system, each pose, A, is transformed first through the DWT, and then half of the
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coefficients, C0, with the highest values are kept.

C0 = Max(dwt(A)) (6.1)

Each of these coefficients is then multiplied by a weight matrix W . The initial weight matrix

W0 = [α0] which consists of α0 = 0.8 which is multiplied using the Hadamard Product, and then

this product is transformed back into the spatial domain, D. The first iteration is shown in (6.2).

D0(α) = idwt(C0 ◦W0(α)) (6.2)

The DCT then transforms the original matrix A, and half of the coefficients, E0, with the highest

values are kept.

E0 = Max(dct(A)) (6.3)

Each of these coefficients is then multiplied by a weight matrix of J . The initial weight matrix

J0 = [β], which consists of an initial value of β = 0.6, which is multiplied using the Hadamard

Product. This product is transformed back into the spatial domain, T0, becoming the residual of

the image. This residual is then transformed by the weighted product of the DWT and the DCT.

The first iteration is shown in (6.4).

T0(β) = idct(E0 ◦ J0(β)) (6.4)
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Next new α and new β are calculated based on the energy residual, Φ(α, β) for each domain:

Wavelet domain and Cosine domain. The energy residual is calculated as in (6.5) and following

[163].

Φ(α, β) = [A]2 − [Dn(α)]2 − [Tn(β)]2 (6.5)

Where n is the iteration index. For each iteration, the new α is calculated as the change in the

residual energy over the original energy as shown in (6.6).

αn =
∇αnΦn(α, β)

[A]2
(6.6)

Similarly, the β is calculated as shown in (6.7).

βn =
∇βnΦn(α, β)

[A]2
(6.7)

The new weights are calculated as Wn = [αn] and Jn = [βn].

The matrix T0 is then transformed back into the DWT in the same manner as before to create D1

eventually and then through the DCT as well to be transformed back into the spatial domain and

become T1. As the image transforms into D2 and T2 continually until the value of residual over the

original energy becomes less than 0.5%, which is the threshold.
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When the iteration stops the weight matrices W0,W1,W2, . . . are added to create a final weight

matrix M (6.8).

M =
P∑
i=0

Wi (6.8)

Where i counts the number of times the image was iterated through both the DWT and the DCT.

P is the number of times the image was iterated. Note that the weights J is only used for filtering

and is not used as part of the feature matrix.

The original discrete wavelet is multiplied by the final weight matrix, M , and this becomes the

feature matrix of the DWT for the first pathway.

In the second pathway, the original pose, A, is transformed by the DCT and becomes the second

feature matrix of the DCT.

This means that each training pose will consist of two pathway feature matrices.

6.3 Experimental Results

The experiment used three databases, the ORL [28], YALE [29], and FERET-fc [30, 31] sources

for facial images.

The YALE database contains 150 face images of dimensions 243 × 320 for 15 individuals. There

are 10 images per subject, one for each facial expression or configuration: center-light, glasses/no

glasses, happy, normal, left-light, right-light, sad, sleepy, surprised, and wink [164]. The ORL

database contains 40 individuals with 10 poses. Each pose has the dimensions of 112 × 92. The
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poses vary in position, rotation, scale, and expression as well as in each 10 samples; some have

open/close eyes and are smiling/not smiling. The FERET-fc database contains many facial images

in a variety of different conditions (e.g., facial expression, illumination, angle) [165]. In this paper,

we regarded subset-Fc, which comprises of 200 people with 11 images per person with dimensions

of 384× 256.

The experiment used MATLAB 2017b as the development environment and evaluated a face iden-

tification system that consisted of two feature extraction methods running in parallel and a clas-

sification system. There are four combinations of feature extraction methods compared in this

experiment, which is labeled system1, system2, literature reference [162], and the proposed sys-

tem.

This paper looked at two different variations of using DWT and DCT, as well as the proposed

method. The proposed cropped dimensions for all the databases are 32 × 32. The first variation

is called System1 labeled in Tables 6.1 through 6.3. This system tested a truncated DWT with a

truncated DCT in parallel. System2 consists of a truncated DWT with a predetermined number of

maximum coefficients in the DCT, again in parallel. For all databases and systems, the dimensions

of the final feature matrices are 24 × 24 for the truncated DWT, 6 × 6 for the truncated DCT,

and 36 maximum coefficients for the DCT. The final feature matrix dimensions for the proposed

system are 5 × 5 for the adaptive DWT and 6 × 6 for truncated DCT. Once both feature matrices

are created for each pose, then the DWT feature matrix of the test image is compared to the DWT

of the training images, and the DCT feature matrix of the training matrix is tested against the DWT

of the testing image. The L1 normalization is used to find the distance between each pair. Next,

the distance is normalized, and the smallest distance is determined to match the image. In Tables

6.1 through 6.3, the average recognition rate is the average of all combinations of training poses

is that it is 4, 5 or 6. An example is that if there are ten poses and four training images, then all

combinations are
(
10
4

)
, which equals 210 combinations to be tested and averaged. In the Tables,
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the maximum recognition rate is the best recognition rate for all combinations.

Results of the experiments for recognition rate of the different feature extraction algorithms are

summarized in Tables 6.1 through 6.3.

6.3.1 System Performance Evaluation using the ORL Database

For the ORL database, the proposed system outperformed System1, System2, and the literature

[162] for six training poses for all combinations and was very near the same recognition rate for

training poses 4 and 5. For the average, the proposed system outperformed System1, System2, and

the literature [162] for all training poses.

Table 6.1: Maximum and Average Recognition Rates for ORL Database For All Combinations of

Training Poses

Maximum Average

Systems/Training Poses 4 5 6 4 5 6

System1 95.8 97 97.5 90.9 93.2 94.3

System2 95.8 97 97.5 90.9 93.2 94.3

[162] 89.6 97 98.1 89.6 92.0 93.6

Proposed 97.9 99 99.4 93.5 95.4 96.2
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Table 6.2: Maximum and Average Recognition Rates for YALE Database For All Combinations

of Training Poses

Maximum Average

Systems/Training Poses 4 5 6 4 5 6

System1 97.8 98.7 98.3 83.4 84.3 84.9

System2 97.8 98.7 98.3 83.4 84.3 84.9

[162] 88.6 94.4 96.0 76.7 78.5 79.8

Proposed 93.3 97.3 100.0 81.7 83.0 84.1

Table 6.3: Maximum and Average Recognition Rates for FERET-fc Database For All Combina-

tions of Training Poses

Maximum Average

Systems/Training Poses 4 5 6 4 5 6

System1 74.1 79.1 84.6 60.2 64.9 68.5

System2 74.1 79.1 84.6 60.2 64.9 68.5

[162] 59.3 65.0 70.7 45.0 50.4 54.3

Proposed 83.6 86.9 90.0 72.0 74.8 76.8

6.3.2 System Performance Evaluation using the YALE Dataset

For the YALE dataset, the proposed system was only slightly lower than the System1 and System2

in both the maximum and average recognition rates. Only once was the proposed system better,

and this was when the maximum recognition rate at six training poses had a recognition rate of
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100%. The proposed system, however, outperformed the literature review [162] for all training

poses for both the maximum and average recognition rate.

6.3.3 System Performance Evaluation using the FERET-fc Dataset

The FERET-fc data is much bigger than the two previous datasets, and for both the average and

the maximum recognition rate, the proposed system was better than both system1, system2, and

the literature review [9].

6.3.4 Remarks on the Performance of the Proposed System

Three design parameters need to be optimized: the recognition rate, the storage size, and the com-

putational complexity. The proposed system improved the recognition rate compared to System1,

System2, and the literature review, as explained in the previous section. The proposed system did

exceptionally well in the bigger dataset, Ferret-Fc, where the improvement over other systems was

at least 11% for the average and over 6% for the maximum recognition rate. The proposed sys-

tem decreased the storage size on average by 94% from the original cropped image for all of the

datasets. Processing time was reduced significantly because the size decreased on average by 94%.

6.4 Conclusions

The experiments used a face identification system using DWT and DCT in three different ways

by extracting the features of an image. The system employed a new way of classification by

normalizing the L1-Norm distances to determine a person’s identity. The DWT coefficients were

either truncated, the maximum coefficients were selected, or an iterative method was used to weigh
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the feature coefficients to get the most dominant features. The experiments concluded that the

proposed system outperformed literature and two independent systems in the Feret-fc and the ORL

database for both the average and the maximum recognition rate. In the YALE database, the

proposed system was close to the average (and maximum values) and achieved better results only

at the maximum recognition rate (six training images). Overall, the proposed system performed

very well in the bigger database compared to the systems tested. Future work will consider larger

databases and recognition response time.
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CHAPTER 7: AN OVERVIEW OF RECENT CONVOLUTIONAL

NEURAL NETWORK ALGORITHMS FOR IMAGE RECOGNITION

7.1 Introduction

The safety argument is perhaps the most widely cited in favor of the rapid development and

widespread adoption of automated vehicles (AVs)[17]. For autonomous vehicle safety, scene anal-

ysis is a fundamental piece. For example, data retrieved from traffic signs, toll information, and

vehicle plate numbers are useful in evaluating the surrounding area. Vision-based methods are

the basis for a given scene examination and are a vital area of research today. In the context of

machine vision, image recognition is the capacity of an algorithm to recognize objects, places, or

persons. Object detection is a procedure for identifying a particular object, such as a traffic sign, in

a digital image or video. Object recognition algorithms depend on learning or pattern recognition

algorithms using feature-based techniques1.

In the field of image recognition and target detection, convolutional neural networks perform well

[166]. They are state of the art. Convolutional neural networks (CNN) can learn hierarchical fea-

tures, including high-level features, and are a key mechanism for feature extraction [167]. Extract-

ing an image’s salient features is the key to successful object recognition, and convolutional neural

networks provide a powerful data-driven approach to achieve that goal. The following is a de-

scription of the most popular convolutional neural networks. AlexNet is a vast, deep convolutional

neural network that won the ImageNet Large Scale Visual Recognition Competition (ILSVRC)

in 2010 with a top-5 error of 15.3%, more than 10.8 percentage points better than the second-

best. VGGNet is a very deep convolutional network for large-scale recognition. It is known for

1In this chapter, we partially use the material published in IEEE International Midwest Symposium on Circuits and
Systems, 2018 [6].
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its simplicity and 3× 3 convolutional layers[68]. The most popular branches are the VGG-16 and

VGG-19, named for the number of weighted convolution layers. GoogleNet has a drastic change

in approach compared to VGGNet and AlexNet. It uses a combination of inception modules,

which includes pooling, convolutions with different scales, and concatenation operations. It also

uses feature convolutions of 1x1 dimensions that can be considered to be feature selectors[108].

Inception-v3 is the third iteration of the GoogleNet (Inception-v1), which uses the factorization of

convolutions and improved normalization. ResNet is a deep residual learning network that learns

from residuals as well as learning features. Instead of using several layers stacked one after an-

other, ResNet has an identity shortcut connection that skips one or more layers[109]. ResNet has

two popular branches: ResNet-50 (50 layers residual) and ResNet-101 (101 layers residual).

When determining the best image recognition accuracy, considering several aspects of the image

is imperative. Depending on the angle the image is taken, images can be focused, unfocused, be

bright, or shady due to light and can be tilted. Each of the convolutional neural networks mentioned

above was tested using eight different types of pictures with different tilt, focus, and shade.

This paper presents an Object Recognition (OR) system based on the Convolutional Neural Net-

works mentioned above and performs a comparative evaluation of three different environments

using traffic signs as the dataset.

7.2 Proposed System

The experiment used cropped images (∼60 x ∼80 pixels) from the BelgiumTSC for classification

dataset as a source for street sign images. As Mathias [9] states, the choice of the datasets is

motivated by a large number of annotations, diversity of the content and classes, the availability

of a split for benchmarking traffic sign detection, and traffic sign classification separately. All the
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data was collected by driving a van with eight cameras on its roof through the streets. About every

meter, each of the cameras simultaneously takes a 1628 × 1236 image. The average speed of the

van is 35 km/h. Only traffic signs captured at a distance of less than 50 meters are considered [33].

The training and the testing dataset consists of a total of 62 categories, that were combined. A

program was written to gather information about each of the images. The info was tilt, focus, and

shading. The image tilt (the angle between 0 and pi) was determined by passing it through the

Hilbert Transform. Filtering each image using the absolute central moment algorithm written by

[168] determines the focus of each image. The image’s shade was formulated by the sum of all

the pixel colors for the red, green, and blue layers. Sorting of each image in each category by the

tilt, focus, and shade created eight possible combinations. The combination was labeled 000, 001,

010, 011, 100, 101, 110, and 111. Where 000 represented images with less than average focus,

above-average tilt, and less than average shade. Categories consist of fifteen images fitting the

criteria. If there were not enough images to fit in one category, then that category was removed

from the dataset.

The experiment used MATLAB R2018a as the development environment and evaluated a convolu-

tional neural network image recognition system that consisted of a feature extraction method and

a classification system. The feature extraction model included using several functions found in the

Computer Vision Toolbox. The functions used were imageDatastore, which creates a structure

that holds all the files located in folders and subfolders. The dataset was separated into a train-

ing and testing set of images by the function splitEachLabel. The function removeLayers and

fitcecoc were also used as well as several others in the Computer Vision Toolbox. The feature ex-

traction methods compared in this experiment were the AlexNet, VGG-16, VGG-19, GoogleNet,

Inception-v3 ResNet-50, and ResNet-101.

The least absolute deviation (L1-norm) measurement system was used to measure the distance

126



between the test images and the trained models. Training utilized ten images, and testing used five

images for each category of 15 images. Tests against the eight combinations of the dataset for each

of the seven convolutional neural networks mentioned above measured the average recognition rate

and recognition time.

7.3 Experimental Results

The number of categories for every eight possible combinations as explained earlier are as follows

Dataset111 (25 folders), Dataset110 (15 folders), Dataset101 (18 folders), Dataset100 (25 fold-

ers),Dataset011 (7 folders),Dataset010 (1 folders), Dataset001 (22 folders),Dataset000 (28 fold-

ers). Table 1 through Table 3 has a summarization of the results of the experiments for recognition

rate of the different feature extraction methods.

Three different systems tested each of the datasets and convolutional neural networks. The first

system named “System 1” was tested on a network with a mini-batch size of 10, a maximum

epoch of 6 (which is one forward pass and one backward pass of all the training examples), the

initial learning rate of 0.0001 and validation frequency of 3. The parameters for “System 2” was

a network with a mini-batch size of 32, a maximum epoch of 4 (which is one forward pass and

one backward pass of all the training examples), the initial learning rate of 0.0001 and validation

frequency of 3.

Table 1 shows the feature extraction methods across the eight combinations of categories on “Sys-

tem 2”. The elapsed time for each of the feature extractors (for each dataset) was determined. The

time is then divided by the number of categories in the dataset. It is important to note that each of

the networks has already been pre-trained, so the time it takes to recognize the test image is on the

last three layers of training. Two algorithms tied for slowest algorithms; the AlexNet on dataset
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111 and ResNet-101 on dataset 000. It is evident from the table that dataset 010 and 011 took

the shortest amount of time because there were only one and seven categories, respectively. The

next fastest algorithm across all CNN was the third smallest category at 15 for dataset 110. The

pattern follows in the same manner as it took less time to do smaller categories across all CNN.

When comparing the eight combinations of datasets for the three criteria: tilt, focus, and shade,

a pattern arises. Images that were above average for all three rules or below average for all three

rules showed the worst recognition time than all other combinations. It is important to note that

the third slowest was the criteria where the image is above average focused but below average in

shading and tilt.
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Table 7.1: Recognition Time per Folder in seconds for System 2

CNN/

DataSet
000 001 010 011 100 101 110 111

AlexNet 66.1 59.8 33.0 41.1 62.9 54.2 54.7 67.5

VGG

-16
65.6 59.1 32.0 40.4 62.5 53.4 50.5 65.3

VGG

-19
66.6 60.0 32.0 40.4 63.0 52.8 50.1 62.7

Google-

Net
66.0 59.0 33.0 40.1 62.4 53.2 50.5 62.9

Inception

-v3
66.2 59.0 34.0 41.1 62.2 52.4 49.5 62.1

ResNet

-50
65.2 58.8 33.0 39.9 62.2 52.8 49.9 62.6

ResNet

-101
67.5 60.1 33.0 40.6 63.5 53.8 51.1 64.1
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Table 7.2: Recognition Accuracy for System 1

CNN/

DataSet
000 001 010 011 100 101 110 111

AlexNet 93.8 92.0 100 100 92.0 94.4 100 99.0

VGG

-16
95.5 97.7 100 96.4 95.0 94.4 96.7 99.0

VGG

-19
94.6 93.2 100 100 92.0 93.1 96.7 100

Google-

Net
92.0 89.8 100 100 86.0 88.9 90.0 97.0

Inception

-v3
91.1 94.3 100 100 91.0 93.0 95.0 99.0

ResNet

-50
93.8 92.0 100 96.4 88.0 90.3 95.0 100

ResNet

-101
95.5 89.8 100 100 94.0 88.9 98.3 100
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Table 7.3: Recognition Accuracy for System 2

CNN/

DataSet
000 001 010 011 100 101 110 111

AlexNet 35.7 22.7 100 96.4 50.0 34.7 53.3 75.0

VGG

-16
29.5 14.8 100 92.9 49.0 29.2 63.3 77.0

VGG

-19
38.4 25.0 100 92.9 50.0 37.5 66.7 80.0

Google-

Net
41.7 19.3 100 92.9 45.0 34.7 50.0 80.0

Inception

-v3
44.6 10.2 100 92.9 47.0 26.4 50.0 81.0

ResNet

-50
41.1 21.6 100 100 57.0 33.3 60.0 79.0

ResNet

-101
37.5 29.5 100 100 39.0 27.8 51.7 82.0

Table 2 shows the results for recognition rate of “System 1”. Overall, the average was 95.3, across

all datasets it was above 91% and above 92% across all CNN. VGG-16 has the highest average

recognition rate of 97.0% across all datasets, and the dataset labeled dataset 111 has the highest

recognition rate across all CNN. Please note that dataset 010 is not used as a comparison because

it has only one category. It is important to note that even though Dataset011 only has seven cate-

gories, it has the worst recognition rate of dataset 111 which has 25 categories.

Table 3 shows the results for the recognition rate of “System 2”. Overall, the average was 58.7,
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across all datasets was above 20% and 56% across all CNN. Excluding dataset 010 and dataset 011,

the recognition rate for each dataset dropped by approximately 20% compared to that of “System

1” and each of the CNN recognition rate dropped by approximately 30%. The best recognition rate

for CNN was ResNet-50 at 61.5%.

7.4 Conclusions

The experiment used CNN and the least absolute deviation to recognize an image through extract-

ing the features using convolutional neural networks: AlexNet, VGG-16, VGG-19, GoogleNet,

Inception-v3, ResNet-50, and ResNet-101. The experiments concluded that in a system with an

epoch of 4, ResNet-50 had the best accuracy at 61.5%. For an epoch of 6, the best recognition rate

was VGG-16 at 97.0% across all datasets. The dataset that had the highest recognition rate overall

was the one with above-average focus, tilt, and shade for both tests. Regarding time, training only

occurred in the last three layers; therefore was no significant difference between each of the CNN.

Regarding datasets, dataset111 had the best recognition time.
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CHAPTER 8: TRAFFIC SIGN RECOGNITION BASED ON

MULTILAYER PERCEPTRON USING DWT AND DCT

8.1 Introduction

Traffic signs provide information about traffic rules, road conditions, and route directions while

assisting drivers for better and safer driving [16]. Accurate and fast recognition of traffic signs is

the core of the design of autonomous vehicles.

Traffic signs can be vast and heterogeneous depending on the country, and the datasets containing

the various images can be relatively large. At present, several methods have achieved high accu-

racy without the consideration of time, which is a crucial factor in the real-world applications of

traffic sign recognition and can not be ignored [169]. When the essential features of the images

are extracted and the original dimensions of the images made smaller, the classification time is

shortened, which leads to shorter recognition processing time. This paper highlights a reduction

in processing time while maintaining a high level of recognition rate. The focus is on enhancing

the critical features of the original image while decreasing its overall size. The principal method-

ologies include image normalization, feature extraction, and image size reduction. Three different

traffic sign datasets were used to compare the system’s effectiveness: Belgium Traffic Signs (BTS),

Traffic Sign Recognition Dataset (TSRD), and the German Traffic Sign Recognition Benchmark

(GTSRB).

Feature extraction and classifier design are two main processing blocks in all pattern recognition

and computer vision systems [170]. That is, extracting common feature traits is the key to im-

age recognition. Two feature extractors prevalent in the literature are Discrete Wavelet Transform

(DWT), and Discrete Cosine Transform (DCT). DWT is an implementation of the wavelet trans-
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form that decomposes an image into a mutually orthogonal set of wavelets [161]. DCT represents

an image as a sum of sinusoids of varying magnitudes and frequencies and is often used for energy

compaction. It is the feature extraction and compression of DCT that will be useful in the pro-

posed system. Before the feature extraction and image resizing, illumination normalization was

performed on the image through anisotropic smoothing. Smoothing reduces image noise without

removing significant parts of the image content such as edges, lines, and other details that are

important for the interpretation of the image [91].

Neural networks are the leading classifiers in image recognition showing excellent results [171],

[172]. Multilayer perceptron (MLPNN) is one of the most straightforward classes of feedforward

artificial neural network and is quite useful in recognizing images in large datasets. MLPNN

consists of nodes with various weights. The smaller sized input images from the feature extractors

mentioned above will both decrease the amount of computation and the number of nodes required

in the MLPNN, leading to quicker processing time and faster classification.

In short, the proposed system applied normalization, two algorithms (DWT and DCT), that ex-

tracted features from the images as well as compressed the image and a classifier, MLPNN.

The paper is organized as follows: in Section II, there is a detailed explanation of the preprocess-

ing techniques and the classifier. In Section III, the proposed system is described. Section IV

comprises of the experimental setup and results, and Section V presents the conclusion.

8.2 Proposed System

The proposed system inputted the images which were reduced in size by the preprocessing system

(grayscaling and anisotropic smoothing). Since feature extraction is vital to the recognition and

pattern matching process, it was the next step to the system. Two favored transforms for extracting
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features are DWT and DCT. DWT and DCT are useful in image compression and have shown

promise in image recognition. The transforms are both Fourier related transforms where DWT

expresses an image regarding a sum of wavelets, whereas DCT expresses an image in terms of a

sum of sinusoids with different frequencies and amplitudes.

The two-dimensional DCT input, A, is transformed into the DCT transform, B, which is computed

as:

B = D ∗ A ∗DT (8.1)

The coefficients of B are sorted in terms of their energy, where 90% of the maximums are kept

while the rest are set to 0. The spatial representation of the new matrix, C, is recovered through

the real orthonormal matrix D using equation (8.2).

C = DT ∗B ∗D (8.2)

The new matrix, C, was inputted into the DWT. The advantages of wavelet transform are that it

can capture both frequency and location information for each pixel in the image. The simplest

Daubechies wavelets are the Haar wavelets, and they are the most commonly utilized. The Haar

transform is used both as an image compression tool and a feature extractor. For feature extraction,

the formation of the two-dimensional Haar transform is accomplished by placing the image, C,

from the DCT, transform between the Haar matrix, H , and its transpose (HT ) as shown in (8.3)
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E = H ∗ C ∗HT (8.3)

90% of the features of E are kept, and the rest were set to 0. The spatial representation of the new

matrix is recovered through the real orthonormal Haar matrix H .

CNNs achieve state-of-the-art accuracy on a variety of computer vision tasks, including classifi-

cation, object localization, detection, recognition, and scene labeling. The proposed system used

CNN only after processing the image and taking the extracted features of A and B (as previously

described).

The standard CNN framework consists of several convolutional and sub-sampling layers, followed

by a fully connected, traditional, multilayer perceptron. CNN algorithms can learn the basis vectors

of images and extract useful higher-level features through a hierarchical process. Accordingly,

feature maps are obtained by convolution from the learned basis vectors of input images [105].

The proposed system is shown in Figure 8.1. The dataset is comprised of images that are sorted

into categories such as stop signs, speed signs, and pedestrian signs. The system inputs 32 × 32

pixel images from each category and divides them so that 80% is used for training, and 20% is

used for testing. The images are grayscaled, filtered using anisotropic diffusion, features are ex-

tracted and compressed by DWT/DCT. The compressed images are inputted into the MLPNN,

and adjustments are made to the weights and biases of the nodes through stochastic gradient de-

scent backpropagation. The testing images are preprocessed and classified using the predetermined

weights and biases of the MLPNN.
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Figure 8.1: Proposed Traffic Sign Recognition System

8.3 Experimental Results

Three different datasets were used to train the system: BTS, TSRD, and GTSRB. BTS is a large

dataset with 10000+ traffic sign annotations with thousands of physically distinct traffic signs. The

TSRD dataset is a Chinese traffic sign database that includes 6164 traffic sign images containing 58

sign categories. The GTSRB is a large dataset with more than 40 classes and over 50, 000 images

in total.

For each of the datasets, the images were trained and tested through the MLPNN classifier. The

accuracy rate and the processing time was measured for each of the systems and datasets. Systems

2 through 6 are compared to System 1 to show the improvement in speed (due to the decrease in

the size of the input array). Accuracy rates, the ratio of processing time and image size are shown

in Table 8.1 for the BTS [33], TSRD [173], and GTSRB [155] datasets.

The experiment used MATLAB 2018b as the development environment and evaluated a traffic sign
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Table 8.1: Recognition Rate and Comparative Processing Time for BTS, TSRD and GTSRB
Datasets

Accuracy Relative Processing Time
Reduction Image Size

System/Dataset BTS TSRD GTSRB BTS TSRD GTSRB All Datasets
System 1 95.7% 94.6% 94.8% 0.00 0.00 0.00 32 x 32
System 2 95.5% 94.3% 94.8% 0.76 0.74 0.76 16 x 16
System 3 94.7% 94.5% 95.0% 0.73 0.72 0.69 16 x 16
System 4 96.0% 94.8% 95.7% 0.71 0.74 0.78 16 x 16
System 5 95.7% 94.9% 95.3 0.76 0.73 0.74 16 x 16
System 6 94.2% 93.8% 94.2 0.85 0.83 0.82 12 x 12

recognition system that consisted of a different combination of the preprocessing step. There are 6

combinations of feature extraction methods compared in this experiment, which is labeled Systems

1 through 6.

This paper looked at six different variations of preprocessing using normalization and DWT/DCT

and compared it to System 1 (which has no preprocessing or feature extraction) for base compar-

ison. Each system is labeled in Table 6.1. The first variation is called System 1 and only utilizes

image grayscaling with MLPNN as the classifier. The output image had a size of 32×32. System 2

used normalization and DCT for resizing. The image was converted to the frequency domain using

DCT, and coefficients that comprised of 99.99% of the energy were kept and then converted back

to the spatial domain. The image was then downsized to 16 × 16 pixels. System 3 calculated the

features LL band of the DWT and consequently decreased the size to 16×16 pixels. Systems 4 and

5 are the same as systems 2 and 3 with anisotropic diffusion before the DCT or DWT step. Sys-

tem 6 used anisotropic diffusion, with cascaded DWT then DCT. The difference is that for DCT,

only 99.9% of the energy of the image was kept, and the final size of the image was downsized to

12× 12.

Results for all systems are summarized in Table 6.1. Due to the random nature of the starting
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weights, the recognition rate was averaged over five iterations. For systems 2 through 5, there was

a relative processing time reduction by 75% and a reduction of 86% for System 6 compared to

System 1. Reduction in processing time is due to a decrease of image size from 32× 32 to 16× 16

or 12 × 12 (which is 25% or 14 % the size of the original images). The equation used for relative

processing time reduction is shown in equation 8.4.

1− Processing Time System (2 to 6)
Processing Time System 1

(8.4)

8.3.1 System Performance Evaluation using the BTS, TSRD and GTSRB Dataset

For all the datasets, the time decreased by 75% compared to the System 1 benchmark (which

maintained around 96% accuracy). For the BTS and GTSRB dataset, shown in Table 6.1, System

4 slightly outperformed the other five systems. For the TSRD database, System 5 slightly outper-

formed the other five systems. In System 6, the accuracy was not considerably lower but had a

much higher reduction in processing time.

8.3.2 Remarks on the Performance of the Proposed Systems

The outcome of this experiment unmistakably demonstrated that using a preprocessing algorithm

that decreases the image size before an MLPNN, maintains accuracy while decreasing processing

time by 25%. Preprocessing with normalization and DWT/DCT feature extraction establishes

reasonable grounds for traffic sign recognition. Furthermore, decreasing the searching space while

preserving the features of the image increases the speed of the classifier. The disparate systems

are trained and tested with three different types of traffic sign datasets, which depicted a wide
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variety of traffic signs found on the road. It is clear that with practical and robust image processing

techniques, an MLPNN offers one of the best classification approaches.

8.4 Conclusions

In this paper, a traffic sign recognition system was proposed based on preprocessing methods,

which enhanced and compressed the image entered into the MLPNN classifier. This preprocess-

ing leads to a better representation of the image with a smaller size. The smaller image meant

that fewer nodes were required in the MLPNN and ultimately decreased the processing time of

the recognition. The preprocessing step included gray scaling, normalization through anisotropic

smoothing, feature extraction, and image resizing/compression using DWT and DCT transforms.

An MLPNN was used for classifying. The results of the study indicated that the proposed system

that used preprocessing maintained accuracy while decreasing processing time. The decrease in

processing time was achieved by using processing techniques that maintained the features of the

digital image while being a quarter of the size. This paper compared all systems to the bench-

mark, System 1, and the system used only a three-layer MLPNN (which is comparatively small).

Systems 2 through 6 had outstanding strengths in terms of maintaining accuracy while decreasing

processing time. This method was trained and tested with a variety of traffic sign images from

different parts of the world, from China, Germany, and Belgium, thus making it more robust for

practical implementation.
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CHAPTER 9: ROBUST SPEAKER RECOGNITION SYSTEM

EMPLOYING COVARIANCE MATRIX AND EIGENVOICE

9.1 Introduction

Speaker recognition systems attempt to recognize a speaker based on features extracted from a

speech signal. Features like vocal tract system characteristics, pitch, and information patterns in

a text convey speaker information [19]. Short utterance speaker recognition and limiting memory

computations have been a focus of interest in many research investigations. In sentences, vow-

els have a distinct perceptual advantage over consonants in determining intelligibility. They are

important in speaker recognition because they do not require much information from the user1.

In 1991 Turk and Pentland developed the Eigenfaces method based on principal component analy-

sis (PCA) for face recognition [85]. For speech, Kuhn et al. first introduced the concept of Eigen-

voices that applies PCA to speaker model parameters, “images,” and applying it to the feature

parameters. Eigenvoices is a simple approach to extracting information contained in a collection

of speaker traits independent of any for-knowledge of features and uses this information to encode

and compare individual speakers. In math terms, the principal components of the distribution of

speakers that is the eigenvectors of the covariance matrix of the set of speakers, treating a speaker

as a vector in a very high dimensional space. The eigenvectors are ordered, each accounting for a

different amount of the variation of the speakers [19]. The speaker model used in this paper will

be an “image” consisting of a quantized spectral covariance matrix (unrelated to the covariance

matrix used in PCA of the Eigenvoice). Eigenvoice is effective for speaker recognition because

it can determine the speaker and represent voices, initially in the space of large dimension, in a

1In this chapter, we partially use the material published in IEEE International Midwest Symposium on Circuits and
Systems, 2013 [4].
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low-dimensional linear subspace [86].

The system presented in this paper is text-independent and is divided into four stages, quantized

spectral covariance matrix, Eigenvoice, creation of a registered user database of speaker features,

and identification using the Mahalanobis distance as shown in Fig. 1. The combination of the

spectral covariance matrix and Eigenvoice is the feature extraction portion of the system. However,

speech is not inherently 2D, and when simply converted to 2D, the PCA section of the eigenvoice

method does not produce good results because of its sensitivity to scaling. In this paper, we propose

the conversion of a framed speech signal consisting of only six vowels into a 2D quantized spectral

matrix where the features of the speech are extracted using the Eigenvoice mentioned above. The

extracted features from the test speech signal are then compared to the registered user database

using the Mahalanobis distance, and the closest speaker is identified.

9.2 Proposed System

The steps followed to find the Mel Spectral coefficients are: First, compute the Fourier transform

of each window frame of a signal. Second, map the powers of the spectrum each frame onto the

Mel scale, using overlapping triangular windows. Third, calculate the logs of the powers at each

of the Mel frequencies. Fourth, compute the discrete cosine transform (DCT) of the list of Mel log

powers. Lastly, the MFCCs are the amplitudes of the resulting spectrum. The block diagram of the

MFCC method is shown in Fig. 9.1.
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Figure 9.1: Block Diagram of MFCC Feature Extraction Model

The data used in this research is divided into 5 data sets of 24 speakers taken from the TIMIT

database. The first data set contains 24 speakers, two males, and one female from 8 dialect regions.

The other 4 data sets consist of 24 speakers, of a random number of males and females, of any

dialect. Since the first dataset has been set up to be a complete training set by the TIMIT database,

it was thought to be a good comparison to a random set of speakers. Further, each data set contains

six samples of each of the 24 speakers, and each sample comprises of 6 concatenated vowels.

Three samples of the data set will characterize one speaker in the training phase. The testing

data set is generated from the remaining three samples of the concatenated vowels. First, the

training set is processed by the quantized spectral covariance matrix algorithm to create a 2D

matrix that contains the frequencies with the highest energy from the speech signal. The eigenvoice
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coefficients are computed from the combination of all the training speaker data sets. Then the

registered user database is created by taking each of the quantized matrices and projecting them on

the top 20 eigenvectors to create the basis features of each speaker. The testing phase repeats this

process with test data, and the features are extracted by projecting the quantized frequency matrix

onto the top 20 eigenvectors. The comparison of the distance between the three samples of the

testing features with the user database identifies the speaker. The best out of three correlations is

then considered a match and, therefore, the identity of the speaker. See Fig. 9.2 for a flowchart of

this process.

9.2.1 Spectral Quantization

Six vowels were chosen to represent each speaker. The vowels are found in the phrase, “She had

your dark suit in greasy wash water all year.” The vowels are represented in the database as “iy,”

“ae,” “aa,” “ux,” “ih,” and “ao.” These vowels were chosen because they have many samples in

the database and have distinct formants compared to each other. These vowels are sampled at 16

kHz and have an average length of 108ms. The training and testing data set consists of these six

concatenated vowels at an average length of 668 ms and of length L.

The steps of the spectral quantization are as follows:

1. Frame and Window the speech signal. The signal xq(n) is framed using N = 512 point (32

ms) with 50% overlap creating a 2D matrix. Each segment is windowed using the Hamming

window so that the segment can be assumed to be stationary in a short time. The Hamming

window also reduces the largest side lobe by more than 40 dB down, and therefore it is often

a good choice for “1% accurate systems” such as an 8-bit audio signal processing system

[174]. Using an overlap of 50% is shown in [175] to have the best accuracy for speaker
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recognition, and 512 points give equal accuracy as any smaller point value and decrease the

size of the any smaller point value and decrease the size of the matrix. The size of the matrix

is M × N where M = (Linc)/inc where inc is the 50% overlap (256 points) and N is the

512 points. One training dataset will have 72 framed matrices (24 speakers times 3 samples).

2. Compute the 2D Fast Fourier transform (2DFFT)X(m,n) of the windowed signal. The Fast

Fourier Transform (FFT) is a DFT algorithm which reduces the number of computations.

The 2D FFT is the DFT of the rows and columns of the matrix and gives a 2D spectral

representation of the speech signal. The 2D FFT used in this paper is Xq(m,n) where X is

the data set, m = 1, . . . ,M ; n = 1, . . . , N and q = 0, . . . , K (number of speakers).

Next the magnitude spectrum (9.1) is calculated from the 512 point FFT, with the duplicate

portion of the spectrum eliminated due to symmetry; the signal is then divided by the square

root of M ? N and the absolute value of the matrix is then calculated. The final signal is of

size m× p where m = 1, . . . ,M and p is 1, . . . , N/2.

Xq(m, p) = |Xq(m,n/2)/sqrt(M ?N)| (9.1)

3. Covariance matrix to get Rq(p, p). In this case, the matrix Xq is multiplied by its transpose

to create a dispersion matrix about the 0 centroid. This matrix is a measure of the spread

of the data around the 0 value. The square root of this matrix was taken to find a standard

representation of the signal. Note that Rq(p, p) is a symmetric matrix (9.2) where Rij = Rji

so the Rij was made to equal 0.

Rq(p, p) =
√
Xq(m, p)T ? Xq(m, p) (9.2)

For each of the five datasets mentioned above, the algorithm was tested in 3 different ways.

For the first test, the lower diagonal is removed, and the signal is quantized, as described in
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section 4 below. In the second test, the lower diagonal is filled with the kurtosis matrix, where

the kurtosis matrix is created by multiplying the covariance matrix (9.2) with its transpose

and square rooting the matrix. The matrix was then reshaped to be of size 2 ? N × N/8. It

was observed that the resulting matrix had a repetitive pattern of relative frequencies, so the

third test consisted of a truncated matrix of the second test with a matrix of size N/2×N/8.

Because the high frequencies did not play a role in the identification of the speaker, they

were removed for all tests; see eqRefeq:Rq2.

Rq(p, r) = Rq(p, p/2) (9.3)

The p of the matrix above will be of different size for different tests. In test 1 the p =

1, . . . , N/4 and r = 1, . . . , N/2. In test 2 the p = 1, . . . , N and r = 1, . . . , N/8. In test 3

the p = 1, . . . , N/4 and r = 1, . . . , N/8.

4. Saturate all values of S(n) above a threshold (1− 2%) and normalize to 1. It is important to

note that PCA is very sensitive to the scaling of the data, so eliminating variations improves

performance. The scaled resolution, as seen in (9.4), allows feature identification without

losing accuracy and allowing only identifiable features to be kept.

threshold = max(Rq(p, p)) ∗ threshold

if(Rq(p, p) > threshold)

Rq(p, p) = threshold

(9.4)

The threshold is determined through an iterative empirical process where one sample of the

three training samples is tested against the other two. The threshold with the best recognition

rate will be used for the testing phase of the algorithm.
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5. Quantize Rq(n) to 2 bits by using 4 values 00, 01, 10, 11. The saturated frequency spectrum

can be represented as a two-dimensional image with four grayscale colors without degra-

dation to the speaker recognition success rate. A numerical conversion was found to give

the same results as a conversion from a 2D matrix to a jpeg image. The conversion scales

the image to a certain number of grayscale colors. Experiments revealed that the resolution

could be scaled down to only four colors (white, light gray, dark gray, and black) before the

ability to identify unique features is degraded and thus negatively impact the speaker recog-

nition success rate. The matrix was normalized, scaled by 3 and then integer quantized to

give values of 0, 1, 2, or 3. Eq.(9.5) shows how the scaled matrix is quantized these values.

Note that R is a matrix of the same size, as mentioned above.

Rq(p, r) =



0 if Rq(p, r) < 0.25

1 if 0.25 ≤ Rq(p, r) < 0.5

2 if 0.5 ≤ Rq(p, r) < 0.75

3 if 0.75 ≤ Rq(p, r) < 1

(9.5)

6. Assemble the training matrix (Eigenvoice coefficients). For each speaker, the matrixRq(p, r)

in Eq. (9.6) was created and converted to a vector of size p ∗ r× 1. Each of the vectors were

assembled together to create the matrix A(Q,R) where Q is p ∗ r and R is the number of
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speakers (K)× 3 samples.



Rq(p, r)→ Rq(p ∗ r, 1) for each training R

A(Q, 1) = R1(p ∗ r, 1)

A(Q, 2) = R2(p ∗ r, 1)

...

A(Q,K ∗ 3) = RK∗3(p ∗ r, 1)

A(Q,R) = [ A(Q, 1) A(Q, 2) . . . A(Q,K ∗ 3) ]

(9.6)

Figure 9.2: Speaker Recognition System
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9.2.2 Eigenvoice

PCA finds the vectors that best account for the distribution of speech signals within the entire

speech space. In 2DPCA, the input data are represented as matrices rather than vectors. Similar

to PCA, it inherits the capability to reduce the dimension of the input data and is therefore widely

used in data analysis. Finding the eigenvectors in this way is known as finding the Eigenvoice

coefficients of the training set. The calculation method is as follows:

1. PCA Covariance matrix (S) and eigenvectors: The covariance matrix S, of A(n) is calcu-

lated. Note that this is a different covariance matrix than the one in Eq. eqRefeq:Rq2. This

covariance matrix AAT would be large and of size p ∗ r × p ∗ r so the linear combinations

of the eigenvectors of ATA is used instead to reduce the matrix to K ×K. This reduction is

achieved by multiplying A by the eigenvectors of ATA, which gives the eigenvector to AAT

through linear algebra, and the matrix size is reduced.

2. Eigenvoice Coefficients: These eigenvectors are in the direction of the largest variance of the

training vectors called eigenvoice coefficients. These eigenvoice coefficients can be viewed

as features, and when each speaker’s voice is projected onto the eigenvoice coefficients, the

result describes the importance of each of the features of the voice.

9.2.3 Registered User Database of Speaker Features

To create the database, each of the speakers’ principal components (features) is stored in a matrix

to be compared to the test speaker’s principal features.
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9.2.4 Classification

In speaker recognition, the most popular classification method is the Euclidean distance. However,

in this paper, the classification method used to compare the training data set with the testing dataset

was the Mahanolobis distance. This distance measure was introduced by P. C. Mahalanobis in 1936

[176] and is based on correlations between data sets where different patterns can be identified and

analyzed. It measures the similarity of a training data set to a testing data set and is different

from the Euclidean distance in that it takes into account the correlations of the data set and is

scale-invariant.

There are three samples for each speaker for training and three different samples for testing. The

algorithm used to determine a match between the training set and the testing set was that of best

two out of three. Where each sample was compared to the training dataset and if two out of the

three samples matched a speaker it was determined that this was the original speaker.

9.3 Experimental Results

In this experiment, the proposed speaker recognition system is evaluated with five datasets of 24

speakers (six vowels and six samples for each speaker). In this new approach, each of the datasets

was tested using different variance matrix as described previously: the variance matrix only, using

the added kurtosis matrix, and using a truncated kurtosis matrix. The results are shown in Fig. 9.3

and Fig. 9.4. Overall, the first dataset had the best recognition rate and is a good comparison test.

For most datasets, the addition of kurtosis gave better results than variance alone. Truncating the

combination of variance/kurtosis matrix did not significantly affect the results, but it did decrease

the size of the matrix and therefore decrease memory storage space and increase computational

speed. At various SNR, in this noisy environment, the high recognition rate was achieved where
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the SNR did not degrade performance significantly from 25dB to 0dB.

Figure 9.3: Average Recognition Rate of the Five Datasets Using Various Matrices

Figure 9.4: Recognition Rate of the Five Datasets under Train Noise for Various SNR
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9.4 Conclusions

A novel speaker recognition system using a quantized spectral covariance matrix with Eigenvoice

was proposed in this paper and shown to have a very high recognition rate in the presence of noise

at varying levels in five datasets of 24 speakers. The novel contribution was to use the covariance

matrix and data limitations as a 2D matrix for recognizing a speaker. The Fourier transform, and

Eigenvoice is used for feature extraction while the Mahalanobis distance is used for recognizing

the speaker. Future work includes using a larger dataset that would determine the viability of this

method compared to Mel Frequency Cepstrum Coefficients (MFCC) and various databases like

YOHO.
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CHAPTER 10: AN OVERVIEW OF RECENT WINDOW BASED

FEATURE EXTRACTION ALGORITHMS FOR SPEAKER

RECOGNITION

10.1 Introduction

Speaker recognition can be divided into two components: speaker identification and speaker veri-

fication. Speaker identification identifies the speaker that has most likely spoken from a group or

population based on the features of a speech signal. Speaker verification accepts or rejects the iden-

tity of the speaker based on the sample speech signal. Speaker recognition can be further divided

into text-dependent and text-independent systems. A text-dependent system requires the speaker to

repeat a specific phrase that has been used in training the system, while a text-independent system

is based on the shape and size of the vocal tract, dynamics of the articulators, rate of vibration of

the vocal folds, accent imposed by the speaker, and speaking rate [177]1

Extracting a speaker’s feature traits is the key to speaker recognition. There are several feature

extractors popular in literature, which are briefly described here. Linear Predictive Coefficients

(LPC) models the vocal tract by using an all-pole model, Linear Predictive Cepstral Coefficients

(LPCC) captures the main vocal tract resonance property in the acoustic spectrum, Mel Cepstral

Coefficients (MFCC) obtains a set of filters which is similar to the role of the cochlea. Delta

MFCC (∆MFCC) captures the transitional characteristics of the speech signal. Perceptual Linear

Predictive Cepstrum Coefficients (PLPCC) is based on a short-term spectrum of speech. Real

Cepstral Coefficients (RCC) characterizes the shape of the vocal tract at the current frame. This

1In this chapter, we partially use the material published in IEEE International Midwest Symposium on Circuits and
Systems, 2018 [3].
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paper presents a speaker identification system based on the Vector Quantization (VQ) and performs

a comparative evaluation of the feature, as mentioned earlier, extraction methods using a text-

dependent system in a noise-free environment.

10.2 Proposed System

The experiment used the Center for Spoken Language Understanding (CLSU) Speaker Recogni-

tion Corpus data collection (version 1.1) as a source for the speaker’s speech signal. As Cole [178]

states, this database is a collection of telephone speech recordings from over 500 participants

collected over two years. The protocol includes fixed vocabulary phrases, digit strings, personal

utterances, and fluent speech [178]. All the data was collected over the telephone line and were

sampled at 8 kHz 8 bit, 16 bit linearly encoded, and stored as µlaw files. 64 speakers were cho-

sen from the database where they were recorded saying the following three phrases “Charlie did

you think to measure the tree?”, “Pasadena, California” and “mango.” The phrase was repeated

twice by each speaker in the same session, and one occurrence was used for training, and the other

occurrence was used for testing. The setup of the experiment is shown in Fig 10.1.
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Figure 10.1: Experimental Setup of Speaker Identification System

The experiment used MATLAB 11.0 as the development environment and evaluated a speaker

identification system that consisted of a feature extraction method, a model system, and a clas-

sification system. Feature extraction methods compared in this experiment were the MFCC,

MFCC+∆MFCC, RCC, LPC, LPCC, PLPCC, and Rasta-PLPCC.

Vector Quantization was the model system, and the Euclidean measurement system was used to

measure the distance between the test utterance and the trained models. The frame length and the

overlap used for windowing were 16 ms and 50% shown in Fig. 10.2. The window type was the

Hamming window for all methods except for the LPC, where the Hanning window was used. A

total of 12 centroids were used, and the number of coefficients used for MFCC was also 12. Each

method was tested five times for each of the 64 test speakers, and the average recognition rate and

recognition time was measured.
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Figure 10.2: Frame Length and Overlap

10.3 Experimental Results

Results of the experiments for recognition rate of the different feature extraction methods are sum-

marized in Table 10.1 and Fig 10.3. By itself, MFCC outperforms all other methods when consid-

ering both recognition rate and recognition time. This performance supports the findings of Kumar

[177], where MFCC features showed a better identification rate compared to LPC. The addition of

the ∆MFCC to MFCC showed little improvement to the recognition rate supporting the findings of

Hossan [179], which found an improvement of only 1% over MFCC. LPCC and PLPCC methods

were the second-best methods with a recognition rate of 91% and 90%, respectively. LPCC came

in second to MFCC, and ∆MFCC is supporting the work of Biswas [180] where LPCC was the

feature of the second choice. RCC and LPC methods were the worst methods with a recognition

rate of 84% and 81%, respectively. This performance is supported by Islam [112], where RCC and

LPCC were shown to have a poor recognition rate.
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Table 10.1: Recognition Rate of Feature Extraction Methods

Phrase/Methods ∆MFCC MFCC LPCC PLPC RCC LPC Rasta-PLPC

Charlie . . . ? 98% 98% 99% 92% 89% 88% 27%

Pasadena . . . 98% 98% 92% 98% 88% 88% 20%

Mango 87% 878% 81% 81% 75% 68% 23%

Figure 10.3: Recognition Rate of Feature Extraction Methods

The RASTA-PLPCC method was found to be very ineffective in identifying the speaker. It could

be argued that Schurer [181] supports this, where it was shown that RASTA-PLPCC worked best

with either Hidden Markov Model (HMM) or MultiLayer Perceptron (MLPNN) models and not

with VQ models. When comparing the trend of the recognition rate of the three different phrases

used, the first two phrases (Charlie. . . and Pasadena . . . ) had very similar recognition rates, but

the phrase “Mango” had a noticeably lower recognition rate. This result shows that to identify
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a speaker effectively, the length of the speech signal needs to be longer than the length of the

word “Mango.” In terms of recognition times, shown in Fig. 10.4, MFCC was faster than all other

methods, and RCC was the slowest by 2.5 times that of MFCC.

Figure 10.4: Feature Extraction Methods

10.4 Conclusions

The experiment used VQ and Euclidean distance to recognize a speaker’s identity through extract-

ing the features of the speech signal by the following methods: RCC, MFCC, MFCC + ∆MFCC,

LPC, LPCC, PLPCC, and RASTA PLPCC. The experiments concluded that, in a noise-free en-

vironment MFCC, (at an average of 94%), is the best feature extraction method when used in

conjunction with the VQ model. The addition of the delta MFCC showed no significant improve-

ment to the recognition rate. When comparing the three different phrases, the longer two phrases

had a very similar recognition rate, but the shorter-phrase at 0.5 seconds had a noticeable lower
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recognition rate. This result clearly shows that for an effective speaker identification, the speech

sample length needs to be longer than a single two-syllable word length. When comparing recog-

nition time, MFCC was faster than all other methods. Overall, MFCC in a noise-free environment

was the best method in terms of recognition rate and recognition rate time. More in-depth results

will be presented later with more severe conditions like a noisy environment, a text-independent

system, and a fusion of feature extraction methods.
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CHAPTER 11: CONCLUSION AND FUTURE WORK

When designing any recognition system, four factors need to kbe considered: recognition accuracy,

computational complexity, computational speed, and storage requirements. Most of the recognition

systems found in the literature focus only on attaining higher recognition rates; we focused on all

four factors. Those systems assume that the higher computational complexity and larger storage

size are issues that can be resolved using other readily available signal processing techniques.

Here, we addressed all four aspects.

Pattern recognition systems are composed of three main stages: preprocessing, feature extraction,

and classification. Depending on the recognition systems (face, traffic sign, and voice), the pro-

posed system contained improvements to one or all of these three stages. For facial recognition,

grayscaling and anisotropic smoothing were considered to improve the preprocessing step. In the

feature extraction, 2D-DCT and 2D-DWT were tested adaptively or recursively to improve the sys-

tem. In the classification section, the MLSNN, MLPNN, and CNN were tested as both a feature

extractor and a classifier to get the best system in terms of accuracy, storage space, and speed. In

speaker recognition, we focused on feature extraction by testing a covariance matrix mixed with

the vector quantization. We also experimentally determined the optimal sample size in the context

of several specific datasets. In addition, we studied the popular convolutional neural networks as

well as the popular window-based feature extractors. In each of these applications, we demon-

strated that the system could maintain high accuracy while keeping the processing speed high,

storage requirements low, and processing complexity low.

The ORL, YALE, FERET-fc, FEI, MNIST datasets were used to evaluate the performance of the

proposed systems in chapter 4. For the system described in chapter 5, the datasets used to eval-

uate the performance of those systems were ORL, YALE, and FERET-fc. In chapter 6, the BTS
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dataset was used to evaluate the performance of systems. In chapter 7, the datasets BTS, GTSRB,

and TSRD were used to evaluate the performance of the system. In chapter 8, the TIMIT and

NOIZEOUS datasets were used to evaluate the performance of the system. Finally, in chapter 9,

the CLSU corpus data collection was used to test the performance of the system.

The MATLAB environment was the principal software environment used to evaluate the perfor-

mance of the proposed techniques. The experimental results confirmed the improved performance

of the proposed systems. Specifically, we demonstrated improvements in terms of better recog-

nition accuracy, reduced storage requirements, increased processing speed, and reduced computa-

tional burden as compared to some recently reported approaches.

11.1 Future Work

Several suggestions for future work are listed in this section.

• Based on the results we obtained for Face Recognition, nonorthogonal mixed transforms

using various popular transforms in addition to DWT and DCT will be used.

• To realize a more realistic scenario, the proposed techniques will be tested on larger datasets.

• Although some datasets had different lighting and partial occlusion, we would like to test the

techniques found here with various datasets with different lighting, partial occlusion, and in

a noisy environment.

• The proposed recognition techniques here have been tested on the face, traffic sign, and

handwritten digits, but we would like to expand this technique to medical images such as

Electroencephalogram (EEG) signals.
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Figure A.1: Reprint permission request for the Recent Convolutional Neural Networks Article
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Figure A.2: Reprint permission request for the Traffic Sign Recognition System Article

Figure A.3: Reprint permission request for the Adaptive Feature Extraction Algorithm Article
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Figure A.4: Reprint permission request for the Overview of Recent Window Based Systems Article

Figure A.5: Reprint permission request for the Robust Speaker Recognition Article
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APPENDIX B: SAMPLE SIZE DETERMINATION SOFTWARE CODE
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F e a t u r e E x t r a c t i o n Mat lab code

% A l e x N e t F e a t u r e E x t r a c t i o n on Belg ium Database

c a t = 6 2 ;

imgDim = 3 2 ;

p e r c e n t T r a i n = 0 . 7 ;

samples = 5 ;

s t r F o l d e r = ’ BelgiumTSC Mixed c o m p l e t e 1 0 ’ ;

imds = i m a g e D a t a s t o r e ( s t r F o l d e r , ’ I n c l u d e S u b f o l d e r s ’ , t r u e , . . .

’ Labe lSource ’ , ’ f o l d e r n a m e s ’ ) ;

t i c

imds 30 = s p l i t E a c h L a b e l ( imds , samples , ’ randomized ’ ) ;

[ imdsTra in , i m d s T e s t ] = s p l i t E a c h L a b e l ( imds 30 , p e r c e n t T r a i n , . . .

’ randomized ’ ) ;

n e t = a l e x n e t ;

l a y e r s T r a n s f e r = n e t . La ye r s ( 1 : end −3);

numClasses = numel ( c a t e g o r i e s ( i m d s T r a i n . L a b e l s ) ) ;

newLayers = [
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l a y e r s T r a n s f e r

f u l l y C o n n e c t e d L a y e r ( numClasses , ’ W e i g h t L e a r n R a t e F a c t o r ’ , 2 0 ,

’ B i a s L e a r n R a t e F a c t o r ’ , 2 0 )

s o f t m a x L a y e r

c l a s s i f i c a t i o n L a y e r ] ;

p i x e l R a n g e = [−30 3 0 ] ;

imageAugmenter = imageDataAugmenter ( . . .

’ RandXRef lec t ion ’ , t r u e , . . .

’ RandXTrans l a t i on ’ , p ixe lRange , . . .

’ RandYTrans l a t i on ’ , p i x e l R a n g e ) ;

i n p u t S i z e = n e t . L a ye r s ( 1 ) . I n p u t S i z e ;

a u g i m d s T r a i n = a u g m e n t e d I m a g e D a t a s t o r e ( i n p u t S i z e ( 1 : 2 ) , . . .

imdsTra in , ’ DataAugmenta t ion ’ , imageAugmenter ) ;

aug imdsTes t = a u g m e n t e d I m a g e D a t a s t o r e ( i n p u t S i z e ( 1 : 2 ) , . . .

i m d s Te s t ) ;

o p t i o n s = t r a i n i n g O p t i o n s ( ’ sgdm ’ , . . .

’ Min iBa tchS ize ’ , 1 0 , . . .

’ MaxEpochs ’ , 6 , . . .

’ I n i t i a l L e a r n R a t e ’ , 1 e−4, . . .

’ V a l i d a t i o n D a t a ’ , aug imdsTes t , . . .

’ V a l i d a t i o n F r e q u e n c y ’ , 3 , . . .

’ V a l i d a t i o n P a t i e n c e ’ , I n f , . . .
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’ Verbose ’ , f a l s e , . . .

’ P l o t s ’ , ’ none ’ ) ;%, ’ E x e c u t i o n E n v i r o n m e n t ’ , ’ p a r a l l e l ’ ) ;

n e t T r a n s f e r = t r a i n N e t w o r k ( aug imdsTra in , newLayers , o p t i o n s ) ;

[ YPred , p r o b s ] = c l a s s i f y ( n e t T r a n s f e r , aug imdsTes t ) ;

a c c u r a c y = mean ( YPred == i m d s T e s t . L a b e l s ) ;

d i s p ( [ ’ a c c u r a c y − ’ num2 s t r ( a c c u r a c y ∗ 1 0 0 ) ] ) ;

e l a p s e d = t o c

s t r = [ ’ McDowellAccuracyB ’ ’− ’ num2 s t r ( s ample s ) ] ;

%%

numTrainImages = s i z e ( i m d s T r a i n . F i l e s , 1 ) ;

t r a i n L a b e l s = z e r o s ( c a t , numTrainImages ) ;

t r a i n I m a g e s = z e r o s ( imgDim , imgDim , numTrainImages ) ;

c l e a r newImg ;

f o r i = 1 : numTrainImages %Go t h r o u g h a l l c a t e g o r i e s

c l e a r newImg newImgN img 2 ;

[ img , f i l e i n f o ] = read image ( imdsTra in , i ) ;

img2 = rgb 2 gray ( img ) ;

newImg = d ou b l e ( img 2 ( : , : , 1 ) ) / 2 5 5 . 0 ;

t r a i n I m a g e s ( : , : , i ) = i m r e s i z e ( newImg , [ imgDim , imgDim ] ) ;

row = f l o o r ( ( i −1 ) / ( p e r c e n t T r a i n ∗ sample s ) ) + 1 ;

t r a i n L a b e l s ( row , i ) = 1 ;

end
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numTestImages = s i z e ( i m d s T es t . F i l e s , 1 ) ;

t e s t L a b e l s = z e r o s ( c a t , numTestImages ) ;

t e s t I m a g e s = z e r o s ( imgDim , imgDim , numTestImages ) ;

c l e a r newImg ;

f o r i = 1 : numTestImages %Go t h r o u g h a l l c a t e g o r i e s

c l e a r newImg newImgN img 2 ;

[ img , f i l e i n f o ] = read image ( imdsTes t , i ) ;

img2 = rgb 2 gray ( img ) ;

newImg = d ou b l e ( img 2 ( : , : , 1 ) ) / 2 5 5 . 0 ;

t e s t I m a g e s ( : , : , i ) = i m r e s i z e ( newImg , [ imgDim , imgDim ] ) ;

row = f l o o r ( ( i −1)/((1− p e r c e n t T r a i n )∗ samples ) ) + 1 ;

t e s t L a b e l s ( row , i ) = 1 ;

end

%%

mcova r i ance = cov ( t r a i n I m a g e s ( : ) ) ;

mstdDev = s t d ( t r a i n I m a g e s ( : ) ) ;

mva r i ance = v a r ( t r a i n I m a g e s ( : ) ) ;

m k u r t o s i s = k u r t o s i s ( t r a i n I m a g e s ( : ) ) ;

mskewness = skewness ( t r a i n I m a g e s ( : ) ) ;

msum = sum ( t r a i n I m a g e s ( : ) ) ;

mmean = mean ( t r a i n I m a g e s ( : ) ) ;

s ave ( s t r , ’ a ccu racy ’ , ’ e l a p s e d ’ , ’ samples ’ , ’ mcovar iance ’ , . . .
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’ mstdDev ’ , ’ mvar iance ’ , ’ m k u r t o s i s ’ , ’ mskewness ’ , ’msum ’ , . . .

’mmean ’ ) ;

Sample S i z e D e t e r m i n a t i o n Sample Code

%C a l c u l a t i n g t h e sample s i z e based on d a t a b a s e

p e r c e n t T r a i n = 0 . 9 ;

e r r o r t o l e r a n c e = 0 . 0 5 ;

h i d d e n l a y e r s i z e 1 = 3 ;

h i d d e n l a y e r s i z e 2 = 3 ;

numSamples = 1 0 ;

c a t e g o r i e s = 6 2 ;

imgDim = 3 2 ;

i n p u t l a y e r s i z e = 1 3 ;

%s e t non−random seed

rng ( ’ d e f a u l t ’ ) ;

rng ( 1 ) ;

%% i n p u t da ta

f i l e n a m e = ’ B e l g i u m S t a t . csv ’ ;

dData = x l s r e a d ( f i l e n a m e ) ;

%Normal i z e Data

mindData = min ( dData ) ;
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normA = dData − mindData ;

maxdData = max ( normA ) ;

Data = normA . / maxdData ;

% c r e a t e t r a i n i n g and t e s t i n g m a t r i c e s

[ e n t r i e s , a t t r i b u t e s ] = s i z e ( Data ) ;

numTrain = round ( e n t r i e s ∗ p e r c e n t T r a i n ) ;

o u t p u t l a y e r s i z e = a t t r i b u t e s − i n p u t l a y e r s i z e ;

t r a i n i n g d a t a = Data ( 1 : numTrain , : ) ;

t r a i n i n g d a t a i n p u t s = t r a i n i n g d a t a ( : , 1 : i n p u t l a y e r s i z e ) ;

t r a i n i n g d a t a o u t p u t s = t r a i n i n g d a t a ( : , i n p u t l a y e r s i z e +1: end ) ;

t e s t i n g d a t a = Data ( numTrain +1: end , : ) ;

t e s t i n g d a t a i n p u t s = t e s t i n g d a t a ( : , 1 : i n p u t l a y e r s i z e ) ;

t e s t i n g d a t a o u t p u t s = t e s t i n g d a t a ( : , i n p u t l a y e r s i z e +1: end ) ;

%% I n i t i a l i z e random s y n a p s e w e i g h t s w i t h a mean o f 0

syn 0 = 2∗ r and ( i n p u t l a y e r s i z e , h i d d e n l a y e r s i z e 1 ) − 1 ;

syn 1 = 2∗ r and ( h i d d e n l a y e r s i z e 1 , h i d d e n l a y e r s i z e 2 ) − 1 ;

syn 2 = 2∗ r and ( h i d d e n l a y e r s i z e 2 , o u t p u t l a y e r s i z e ) − 1 ;

%% Feedforward t r a i n i n g da ta

l a y e r 0= t r a i n i n g d a t a i n p u t s ;

l a y e r 1 = ( 1 ) . / ( 1 + exp (−1 .∗ ( l a y e r 0∗ syn 0 ) ) ) ;

l a y e r 2 = ( 1 ) . / ( 1 + exp (−1 .∗ ( l a y e r 1∗ syn 1 ) ) ) ;

l a y e r 3 = ( 1 ) . / ( 1 + exp (−1 .∗ ( l a y e r 2∗ syn 2 ) ) ) ;
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%check f o r a c c u r a c y

e r r = immse ( l a y e r 3 , t r a i n i n g d a t a o u t p u t s ) ;

a c c u r a c y = (1 − e r r )∗1 0 0 ;

f p r i n t f ( ” U n t r a i n e d : Mean Squared E r r o r wi th T r a i n i n g Data : . . .

%f Accuracy : %f h i dd en l a y e r s i z e : %f \n ” , err , accuracy , . . .

h i d d e n l a y e r s i z e 1 )

%% Feedforward t e s t i n g da ta

l a y e r 0= t e s t i n g d a t a i n p u t s ;

l a y e r 1 = ( 1 ) . / ( 1 + exp (−1 .∗ ( l a y e r 0∗ syn 0 ) ) ) ;

l a y e r 2 = ( 1 ) . / ( 1 + exp (−1 .∗ ( l a y e r 1∗ syn 1 ) ) ) ;

l a y e r 3 = ( 1 ) . / ( 1 + exp (−1 .∗ ( l a y e r 2∗ syn 2 ) ) ) ;

%Check f o r a c c u r a c y

e r r = immse ( l a y e r 3 , t e s t i n g d a t a o u t p u t s ) ;

a c c u r a c y = (1 − e r r )∗1 0 0 ;

f p r i n t f ( ” U n t r a i n e d : Mean Squared E r r o r wi th T e s t i n g Data : . . .

%f Accuracy : %f h i dd en l a y e r s i z e : %f \n ” , err , accuracy , . . .

h i d d e n l a y e r s i z e 1 )

%% B e s t a lpha f o r da ta = 0 .001

f o r a l p h a = 0 .001

f p r i n t f ( ” T r a i n i n g wi th a l p h a : %f \n ” , a lpha )
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f o r i t e r = 1:1000000

%Feedforward

l a y e r 0 = t r a i n i n g d a t a i n p u t s ;

l a y e r 1 = ( 1 ) . / ( 1 + exp (−1 .∗ ( l a y e r 0∗ syn 0 ) ) ) ;

l a y e r 2 = ( 1 ) . / ( 1 + exp (−1 .∗ ( l a y e r 1∗ syn 1 ) ) ) ;

l a y e r 3 = ( 1 ) . / ( 1 + exp (−1 .∗ ( l a y e r 2∗ syn 2 ) ) ) ;

%Back−p r o p a g a t i o n

l 3 e r r o r = l a y e r 3 − t r a i n i n g d a t a o u t p u t s ;

l 3 d e l t a = l 3 e r r o r . ∗ ( exp ( l a y e r 3 ) . / ( exp ( l a y e r 3 ) + 1 ) . ˆ 2 ) ;

l 2 e r r o r = l 3 d e l t a ∗ syn 2 . ’ ;

l 2 d e l t a = l 2 e r r o r . ∗ ( exp ( l a y e r 2 ) . / ( exp ( l a y e r 2 ) + 1 ) . ˆ 2 ) ;

l 1 e r r o r = l 2 d e l t a ∗ syn 1 . ’ ;

l 1 d e l t a = l 1 e r r o r . ∗ ( exp ( l a y e r 1 ) . / ( exp ( l a y e r 1 ) + 1 ) . ˆ 2 ) ;

%A d j u s t v a l u e s

e r r o r v a l = mean ( abs ( l 3 e r r o r ) ) ;

syn 2 = syn 2 − a l p h a . ∗ ( l a y e r 2 . ’∗ l 3 d e l t a ) ;

syn 1 = syn 1 − a l p h a . ∗ ( l a y e r 1 . ’∗ l 2 d e l t a ) ;

syn 0 = syn 0 − a l p h a . ∗ ( l a y e r 0 . ’∗ l 1 d e l t a ) ;

i f e r r o r v a l < e r r o r t o l e r a n c e

f p r i n t f ( ” S t o p p i n g a t : %f e r r o r \n ” , e r r o r v a l )

b r e a k
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end

%p r i n t o u t debug da ta

i f i t e r ==1 | | mod ( i t e r , 2 5 0 0 0 ) == 0

a c c u r a c y = (1− e r r o r v a l )∗1 0 0 ;

f p r i n t f ( ”\ t i t e r =%. 0 f , Error : %f , Accuracy : . . .

%f \n ” , i t e r , e r r o r v a l , a c c u r a c y )

end

end

i f e r r o r v a l > e r r o r t o l e r a n c e

f p r i n t f ( ”A v a l u e below t h e t o l e r a n c e n o t found , . . .

p l e a s e change a l p h a \n\n ” )

e l s e

a c c u r a c y = (1− e r r o r v a l )∗1 0 0 ;

f p r i n t f ( ”A v a l u e below t h e t o l e r a n c e found : . . .

%f Accuracy %f \n\n ” , e r r o r v a l , a c c u r a c y )

end

end

%Feedforward t r a i n i n g da ta

l a y e r 0= t r a i n i n g d a t a i n p u t s ;

l a y e r 1 = ( 1 ) . / ( 1 + exp (−1 .∗ ( l a y e r 0∗ syn 0 ) ) ) ;

l a y e r 2 = ( 1 ) . / ( 1 + exp (−1 .∗ ( l a y e r 1∗ syn 1 ) ) ) ;

l a y e r 3 = ( 1 ) . / ( 1 + exp (−1 .∗ ( l a y e r 2∗ syn 2 ) ) ) ;
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s a m p l e R e s u l t s I n p u t = round ( l a y e r 3 .∗ . . .

maxdData ( i n p u t l a y e r s i z e +1) + mindData ( i n p u t l a y e r s i z e + 1 ) ) ;

%check f o r a c c u r a c y

e r r = immse ( l a y e r 3 , t r a i n i n g d a t a o u t p u t s ) ;

a c c u r a c y = (1− e r r )∗1 0 0 ;

f p r i n t f ( ” T r a i n e d : Mean Squared E r r o r wi th T r a i n i n g Data : . . .

%f Accuracy : %f \n ” , err , a c c u r a c y ) ;

%f e e d f o r w a r d t e s t i n g da ta

l a y e r 0= t e s t i n g d a t a i n p u t s ;

l a y e r 1 = ( 1 ) . / ( 1 + exp (−1 .∗ ( l a y e r 0∗ syn 0 ) ) ) ;

l a y e r 2 = ( 1 ) . / ( 1 + exp (−1 .∗ ( l a y e r 1∗ syn 1 ) ) ) ;

l a y e r 3 = ( 1 ) . / ( 1 + exp (−1 .∗ ( l a y e r 2∗ syn 2 ) ) ) ;

%check f o r a c c u r a c y

e r r = immse ( l a y e r 3 , t e s t i n g d a t a o u t p u t s ) ;

a c c u r a c y = (1− e r r )∗1 0 0 ;

f p r i n t f ( ” T r a i n e d : Mean Squared E r r o r wi th T e s t i n g Data : . . .

%f Accuracy : %f \n ” , err , a c c u r a c y ) ;

%R e s u l t s − Samples

s a m p l e R e s u l t s O u t p u t = round ( l a y e r 3 .∗ . . .

maxdData ( i n p u t l a y e r s i z e +1) + mindData ( i n p u t l a y e r s i z e + 1 ) ) ;
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[151] Yann A LeCun, Léon Bottou, Genevieve B Orr, and Klaus-Robert Müller. Efficient back-

prop. In Neural networks: Tricks of the trade, pages 9–48. Springer, 2012.

[152] Pierre Sermanet, David Eigen, Xiang Zhang, Michaël Mathieu, Rob Fergus, and Yann Le-
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