887 research outputs found

    Intelligent control of a class of nonlinear systems

    Get PDF
    The objective of this study is to improve and propose new fuzzy control algorithms for a class of nonlinear systems. In order to achieve the objectives, novel stability theorems as well as modeling techniques are also investigated. Fuzzy controllers in this work are designed based on the fuzzy basis function neural networks and the type-2 Takagi-Sugeno fuzzy models. For a class of single-input single-output nonlinear systems, a new stability condition is derived to facilitate the design process of proportional-integral Mamdani fuzzy controllers. The stability conditions require a new technique to calculate the dynamic gains of nonlinear systems represented by fuzzy basis function network models. The dynamic gain of a fuzzy basis function network can be approximated by finding the maximum of norm values of the locally linearized systems or by solving a non-smooth optimal control problem. Based on the new stability theorem, a multilevel fuzzy controller with self-tuning algorithm is proposed and simulated in a tower crane control system. For a class of multi-input multi-output nonlinear systems with measurable state variables, a new method for modeling unstructured uncertainties and robust control of unknown nonlinear dynamic systems is proposed by using a novel robust Takagi-Sugeno fuzzy controller. First, a new training algorithm for an interval type-2 fuzzy basis function network is presented. Next, a novel technique is derived to convert the interval type-2 fuzzy basis function network to an interval type-2 Takagi-Sugeno fuzzy model. Based on the interval type-2 Takagi-Sugeno and type-2 fuzzy basis function network models, a robust controller is presented with an adjustable convergence rate. Simulation results on an electrohydraulic actuator show that the robust Takagi-Sugeno fuzzy controller can reduce steady-state error under different conditions while maintaining better responses than the other robust sliding mode controllers can. Next, the study presents an implementation of type-2 fuzzy basis function networks and robust Takagi-Sugeno fuzzy controllers to data-driven modeling and robust control of a laser keyhole welding process. In this work, the variation of the keyhole diameter during the welding process is approximated by a type-2 fuzzy-basis-function network, while the keyhole penetration depth is modelled by a type-1 fuzzy basis function network. During the laser welding process, a CMOS camera integrated with the welding system was used to provide a feedback signal of the keyhole diameter. An observer was implemented to estimate the penetration depth in real time based on the adaptive divided difference filter and the feedback signal from the camera. A robust Takagi-Sugeno fuzzy controller was designed based on the fuzzy basis function networks representing the welding process with uncertainties to adjust the laser power to ensure that the penetration depth of the keyhole is maintained at a desired value. Experimental results demonstrated that the fuzzy models provided an accurate estimation of both the welding geometry and its variations due to uncertainties, and the robust Takagi-Sugeno fuzzy controller successfully reduced the penetration depth variation and improved the quality of the welding process

    A review of convex approaches for control, observation and safety of linear parameter varying and Takagi-Sugeno systems

    Get PDF
    This paper provides a review about the concept of convex systems based on Takagi-Sugeno, linear parameter varying (LPV) and quasi-LPV modeling. These paradigms are capable of hiding the nonlinearities by means of an equivalent description which uses a set of linear models interpolated by appropriately defined weighing functions. Convex systems have become very popular since they allow applying extended linear techniques based on linear matrix inequalities (LMIs) to complex nonlinear systems. This survey aims at providing the reader with a significant overview of the existing LMI-based techniques for convex systems in the fields of control, observation and safety. Firstly, a detailed review of stability, feedback, tracking and model predictive control (MPC) convex controllers is considered. Secondly, the problem of state estimation is addressed through the design of proportional, proportional-integral, unknown input and descriptor observers. Finally, safety of convex systems is discussed by describing popular techniques for fault diagnosis and fault tolerant control (FTC).Peer ReviewedPostprint (published version

    Analysis, filtering, and control for Takagi-Sugeno fuzzy models in networked systems

    Get PDF
    Copyright © 2015 Sunjie Zhang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.The fuzzy logic theory has been proven to be effective in dealing with various nonlinear systems and has a great success in industry applications. Among different kinds of models for fuzzy systems, the so-called Takagi-Sugeno (T-S) fuzzy model has been quite popular due to its convenient and simple dynamic structure as well as its capability of approximating any smooth nonlinear function to any specified accuracy within any compact set. In terms of such a model, the performance analysis and the design of controllers and filters play important roles in the research of fuzzy systems. In this paper, we aim to survey some recent advances on the T-S fuzzy control and filtering problems with various network-induced phenomena. The network-induced phenomena under consideration mainly include communication delays, packet dropouts, signal quantization, and randomly occurring uncertainties (ROUs). With such network-induced phenomena, the developments on T-S fuzzy control and filtering issues are reviewed in detail. In addition, some latest results on this topic are highlighted. In the end, conclusions are drawn and some possible future research directions are pointed out.This work was supported in part by the National Natural Science Foundation of China under Grants 61134009, 61329301, 11301118 and 61174136, the Natural Science Foundation of Jiangsu Province of China under Grant BK20130017, the Fundamental Research Funds for the Central Universities of China under Grant CUSF-DH-D-2013061, the Royal Society of the U.K., and the Alexander von Humboldt Foundation of Germany

    H-infinity Variable-Pitch Control for Wind Turbines Based on Takagi-Sugeno Fuzzy Theory

    Get PDF
    When the wind speed is above the rated value, the output power of the wind turbine should be maintained at the rated value in order to prevent the power generation system from overheating. In addition, the natural wind speed will fluctuate randomly in a large range of values, making the traditional control effect not ideal. This paper presents a novel H-infinity (H∞) pitch control strategy for Wind Turbine Generators (WTGs), which can make the rotor speed and output power constant when the wind speed changes in a large range. In order to shorten response time and reduce overshoot, in the specific solution, the control method combines the H∞ theory and the Takagi-Sugeno (T-S) fuzzy theory. Firstly, the linearized models of several operating points were obtained with the T-S fuzzy theory. Then, a robust controller was designed for each linear sub-system based on the H∞ control theory. Furthermore, the controllers of the sub-systems were superimposed into a global controller for the entire system through the membership function. Finally, modeling and simulation were carried out in MATLAB/SIMULINK. The simulation results show that when the wind speed changes above the rated speed, the rotor speed can be maintained at the rated value, and the output power also can be maintained at the rated value. Compared with the optimal control, the response speed of this method is faster and the overshoot is smaller. It provides a new idea for the pitch angle control of wind turbine

    Robust Multi-Criteria Optimal Fuzzy Control of Continuous-Time Nonlinear Systems

    Get PDF
    This paper presents a novel fuzzy control design of continuous-time nonlinear systems with multiple performance criteria. The purpose behind this work is to improve the traditional fuzzy controller performance to satisfy several performance criteria simultaneously to secure quadratic optimality with inherent stability property together with dissipativity type of disturbance reduction. The Takagi– Sugeno fuzzy model is used in our control system design. By solving the linear matrix inequality at each time step, the control solution can be found to satisfy the mixed performance criteria. The effectiveness of the proposed technique is demonstrated by simulation of the control of the inverted pendulum system

    New advances in H∞ control and filtering for nonlinear systems

    Get PDF
    The main objective of this special issue is to summarise recent advances in H∞ control and filtering for nonlinear systems, including time-delay, hybrid and stochastic systems. The published papers provide new ideas and approaches, clearly indicating the advances made in problem statements, methodologies or applications with respect to the existing results. The special issue also includes papers focusing on advanced and non-traditional methods and presenting considerable novelties in theoretical background or experimental setup. Some papers present applications to newly emerging fields, such as network-based control and estimation

    Variable structure control with chattering elimination and guaranteed stability for a generalized T-S model

    Get PDF
    In this paper, a fuzzy based Variable Structure Control (VSC) with guaranteed stability is presented. The main objective is to obtain an improved performance of highly non-linear unstable systems. The main contribution of this work is that, firstly, new functions for chattering reduction and error convergence without sacrificing invariant properties are proposed, which is considered the main drawback of the VSC control. Secondly, the global stability of the controlled system is guaranteed.The well known weighting parameters approach, is used in this paper to optimize local and global approximation and modeling capability of T-S fuzzy model.A one link robot is chosen as a nonlinear unstable system to evaluate the robustness, effectiveness and remarkable performance of optimization approach and the high accuracy obtained in approximating nonlinear systems in comparison with the original T-S model. Simulation results indicate the potential and generality of the algorithm. The application of the proposed FLC-VSC shows that both alleviation of chattering and robust performance are achieved with the proposed FLC-VSC controller. The effectiveness of the proposed controller is proven in front of disturbances and noise effects

    Fuzzy Control of Flexible Multibody Spacecraft: A Linear Matrix Inequality Approach

    Get PDF
    To reduce the cost of lifting to orbit, modern spacecraft and structures used in space applications are designed from light material as flexible multibody system. Moreover The unprecedented requirements for rapid retargeting, precision pointing and tracking capability have made these multibody highly flexible spacecraft vulnerable to dynamic excitation caused by the slewing/pointing maneuver, vibration and external disturbances. As a result, this will degrade the performance of the spacecraft including the pointing accuracy. Thus the aspect of modeling and control become extremely important for the safe and effective operation. Despite the numerous research, the development of high performance, nonlinear control laws for attitude stability, rapid slewing and precision pointing remain the primary objective of scientists and engineers. The aim of the work presented in this thesis is to investigate the stability, performance, and robustness of a class of fuzzy control system called Takagi-Sugeno (T-S) applied to a flexible multi-body spacecraft, and to show the advantage and the simplicity in implementing the T-S fuzzy controller over other baseline nonlinear controllers
    corecore