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ABSTRACT 

Ngo, Phuong D. Ph.D., Purdue University, August 2016. Intelligent Control of a Class of 
Nonlinear Systems. Major Professor: Dr. Yung C. Shin. 

 
 
The objective of this study is to improve and propose new fuzzy control algorithms 

for a class of nonlinear systems. In order to achieve the objectives, novel stability theorems 

as well as modeling techniques are also investigated. Fuzzy controllers in this work are 

designed based on the fuzzy basis function neural networks and the type-2 Takagi-Sugeno 

fuzzy models. 

For a class of single-input single-output nonlinear systems, a new stability 

condition is derived to facilitate the design process of proportional-integral Mamdani fuzzy 

controllers. The stability conditions require a new technique to calculate the dynamic gains 

of nonlinear systems represented by fuzzy basis function network models. The dynamic 

gain of a fuzzy basis function network can be approximated by finding the maximum of 

norm values of the locally linearized systems or by solving a non-smooth optimal control 

problem. Based on the new stability theorem, a multilevel fuzzy controller with self-tuning 

algorithm is proposed and simulated in a tower crane control system.  

For a class of multi-input multi-output nonlinear systems with measurable state 

variables, a new method for modeling unstructured uncertainties and robust control of 

unknown nonlinear dynamic systems is proposed by using a novel robust Takagi-Sugeno 



xii 
 

fuzzy controller. First, a new training algorithm for an interval type-2 fuzzy basis function 

network is presented. Next, a novel technique is derived to convert the interval type-2 fuzzy 

basis function network to an interval type-2 Takagi-Sugeno fuzzy model. Based on the 

interval type-2 Takagi-Sugeno and type-2 fuzzy basis function network models, a robust 

controller is presented with an adjustable convergence rate. Simulation results on an 

electrohydraulic actuator show that the robust Takagi-Sugeno fuzzy controller can reduce 

steady-state error under different conditions while maintaining better responses than the 

other robust sliding mode controllers can. 

Next, the study presents an implementation of type-2 fuzzy basis function networks 

and robust Takagi-Sugeno fuzzy controllers to data-driven modeling and robust control of 

a laser keyhole welding process. In this work, the variation of the keyhole diameter during 

the welding process is approximated by a type-2 fuzzy-basis-function network, while the 

keyhole penetration depth is modelled by a type-1 fuzzy basis function network.  During 

the laser welding process, a CMOS camera integrated with the welding system was used 

to provide a feedback signal of the keyhole diameter. An observer was implemented to 

estimate the penetration depth in real time based on the adaptive divided difference filter 

and the feedback signal from the camera. A robust Takagi-Sugeno fuzzy controller was 

designed based on the fuzzy basis function networks representing the welding process with 

uncertainties to adjust the laser power to ensure that the penetration depth of the keyhole 

is maintained at a desired value. Experimental results demonstrated that the fuzzy models 

provided an accurate estimation of both the welding geometry and its variations due to 

uncertainties, and the robust Takagi-Sugeno fuzzy controller successfully reduced the 

penetration depth variation and improved the quality of the welding process.
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CHAPTER 1. INTRODUCTION 

1.1 Motivation 

Fuzzy controllers have been developed with the advantages of being able to deal 

with uncertainties and nonlinearities in complex nonlinear systems. Two major types of 

fuzzy controllers are Mamdani fuzzy controller and Takagi-Sugeno (T-S) fuzzy controller. 

This study aims at providing novel fuzzy control algorithms for a class of nonlinear systems 

and expanding the applications of fuzzy controllers for nonlinear systems. 

The design process of a fuzzy Mamdani controller incorporates the expert 

knowledge and human operator experiences [1], which is suitable for ill-defined systems 

where an exact mathematical model is not easy to obtain. Such a controller is also attractive 

because of its insensitivity to noise and parameter changes. Mamdani fuzzy controllers use 

the difference between the output signal and the reference signal to control the plant, hence 

they have advantages in cases when the state variables of the nonlinear systems are not 

available during implementation. However, Mamdani fuzzy controllers generally suffer 

from the lack of a systematic analysis of performance; among them is the stability analysis. 

In order to improve the performance of a Mamdani fuzzy controller, a new stability 

condition that does not need an accurate model is required to provide a systematic method 

for selecting the parameters of the controller. In other words, a stable range of the 
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controller’s parameters such as input or output gains can be established. Based on that, 

novel Mamdani fuzzy control mechanisms can be developed. 

In the case that full states of the nonlinear system are available for measurement, 

T-S fuzzy controllers can be used to improve the performance of the fuzzy control systems. 

Most of the T-S fuzzy control methods in the current body of literature are designed based 

on the T-S fuzzy model, which represents a nonlinear system by its local linear models. 

Linear control design process can be applied for each rule of the Takagi-Sugeno fuzzy 

model. The design process is normally done by solving linear matrix inequalities to 

guarantee system stability in the sense of Lyapunov. Hence, the stabilization and 

performance of the T-S controller depends on the accuracy of the system model. Many 

real-world systems, however, are highly nonlinear and complex in behavior. Like other 

nonlinear controllers, a T-S fuzzy controller can produce good responses when an accurate 

mathematical model is available; however, when the uncertainties and model inaccuracies 

exist, the same controller may not be able to stabilize the actual system. For that reason, 

robust T-S fuzzy control algorithms have been developed based on T-S fuzzy models with 

norm-bounded uncertainties. However, the stability conditions based on the norm-bounded 

T-S fuzzy models are very conservative since norm-bounded coefficient matrices cannot 

tightly capture uncertainties, especially unstructured uncertainties. 

Hence, new methods to model and control unknown nonlinear systems are 

necessary to guarantee the stability, which is the most important performance factor to 

ensure safety in the operation of a plant. A data-driven model can be used to represent the 

unknown plant dynamics when a mathematical model is unavailable. Furthermore, a data-

driven model that can capture unstructured uncertainties also helps in designing robust 
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fuzzy controllers for many systems in which high performance and reliability are required. 

Fuzzy basis function networks are suitable candidates to be used for modeling nonlinear 

systems since it has been proven that any nonlinear function can be approximated by an 

FBFN model [2]. However, a new training mechanism is required so that the FBFN not 

only can predict the output of the nonlinear system accurately but also can capture 

unstructured uncertainties. In addition, a controller design strategy is needed to use such 

FBFN models to build a robust T-S fuzzy controller. 

 

1.2 Literature Review 

1.2.1 Stability Analysis of Fuzzy Control Systems 

Many studies have been conducted to create a framework for identifying the 

stability condition of a fuzzy controller. These studies can be categorized into the following 

methods: energetic method [3], fuzzy transfer function [4], classical system method [5]–

[7], Lyapunov theorem [8], passivity theorem [9] and small gain theorem [10], [11]. The 

applications of the small gain theorem [10], [11] and the passivity theory [9] in fuzzy 

control systems show greater advantages compared to other stability methods. These 

stability theories do not require an exact mathematical representation of the plant and, 

therefore, they can be applied to nonlinear systems with unknown mathematical models. 

Since a Mamdani fuzzy controller is designed based on expert knowledge and 

experiences of human operator, the stability analysis of the control systems is very limited. 

Calcev et al. [12] provided a framework to analyze the stability of a fuzzy control system 

by using the passivity theory.  Xu and Shin [9] used the passivity theory to prove the 

stability of sectorial multilevel fuzzy control systems. However, stability analysis of fuzzy 
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control systems using passivity theory requires the plant in the control system to be passive 

to guarantee system stability. 

With the small gain theorem, Chen and Ying [13] demonstrated how the parameters 

of a proportional-integral (PI) fuzzy controller could be chosen to ensure the input-output 

stability of a nonlinear system. However, the stability criteria developed are only limited 

to a certain type of fuzzy controllers with two input and three output membership functions. 

Since Chen and Ying [13] divided the stability problem according to the locations of the 

error and the time rate of change of the error with respect to zero, the complexity of the 

problem would exponentially increase if the number of input and output membership 

functions increases. 

The most popular method for deriving the stability conditions for T-S fuzzy 

controllers is using the Lyapunov function. Xiu and Ren [14] proposed a stability analysis 

for T-S fuzzy control systems in a form of linear matrix inequalities (LMIs). Chang et al. 

used the passivity theory to derive a stability condition on a discrete affine T-S fuzzy 

system [15] and continuous-time affine T-S fuzzy models with relaxed stability conditions 

[16]. Many studies in the literature also investigated the stability of T-S fuzzy control 

systems with structured uncertainties [17]–[20]. Unstructured uncertainties, however, 

represent a much more general class of nonlinear systems and can incorporate both the 

model inaccuracies and measurement noise. Gao et al. [21] presented an approach to 

analyzing the stability of controlling general nonlinear systems based on Takagi-Sugeno 

(T-S) fuzzy dynamic models. The method uses LMI approach to design the TS fuzzy 

controller to stabilize systems with norm-bounded unstructured uncertainties. However, 

the LMI conditions for norm-bounded uncertainties are generally conservative. 
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1.2.2 Fuzzy Controller with Self-Tuning Mechanism 

With the introduction of fuzzy logic, fuzzy controllers have been developed and 

implemented in many applications [22]–[25], where there are many possible controller 

structures with different numbers of input, output fuzzy sets and membership functions. 

The fuzzy inference mechanism such as Mamdani or Sugeno can be chosen by a control 

designer based on the performance requirement of the control system. Therefore, selecting 

a correct fuzzy structure requires in-depth knowledge or heuristic information of the plant 

dynamics to be controlled. Various studies have been conducted to improve the 

performance of fuzzy controllers. Haj-Ali and Ying [26] and Arya [27] analyzed the 

structures of PI fuzzy controllers and found the effects of nonlinear and asymmetrical input 

sets on the performance of the controllers. Chen and Ying [13] and Haj-Ali and Ying [26] 

demonstrated that fuzzy PI and PID controllers could be treated as nonlinear PI and PID 

controllers. Mudi and Pal [28] presented a method to tune the output-scaling factors of 

fuzzy controllers by using the error and the time rate of change of the error signals. 

However, this method is based only on an intuitive analysis of the desired performance to 

keep the system stable; no mathematical stability analysis was provided in their work. 

In many applications when the heuristic information is not sufficient, the parameter 

values of a fuzzy controller can be computed off-line by using data-driven methods such 

as training with input and output data [29]–[31]. However, under the presence of 

disturbance or time-varying parameters, online adaptation of control parameters based on 

the data gathered during the controlling process would be more effective. Adaptive 

controller schemes have been developed to make various systems function properly under 

such conditions [9], [32]–[38]. These schemes can be divided into two types [33]: direct 



6 
 

[9], [34], [35] and indirect fuzzy control [36]–[38]. In indirect fuzzy control, the plant 

model is estimated online by some identification algorithm, and then the fuzzy controller’s 

parameters are updated accordingly from the model. In direct fuzzy controllers, the 

controller’s parameters are tuned directly using the measurement data.  

Among the parameters to be tuned in fuzzy controllers, fuzzy rule base and input-

output gains (or scaling factors) are most popularly used. Wong et al. [39] introduced a 

switching-type fuzzy controller with switching scaling factors in each operating region. In 

[40], a PID-type fuzzy controller was proposed with self-tuning scaling factors. Ying [41] 

introduced a method for obtaining the parameters of a PI fuzzy controller by tuning a linear 

PI controller. However, the global stability of the control system could not be guaranteed, 

since Ying’s method only showed local stability around the equilibrium points, nor could 

it determine the size of the region of local stability. Li and Tong [42] proposed a hybrid 

control system that consists of a state observer, an adaptive fuzzy mechanism, an H ∞

control and a sliding mode control. Boubakir et al. [43] used a different approach to tune 

the parameters of a proportional-integral-derivative (PID) controller for multi-input multi-

output (MIMO) dynamic systems by minimizing the error between an ideal controller and 

the PID controller. However, the controllers developed by both Li and Tong [42] and 

Boubakir et al. [43] can only be applied to a certain class of nonlinear dynamic systems 

where the input is represented by a linear term in the system’s mathematical model. 

However, Pellegrinetti and Bentsman [44] offer an example of nonlinear systems that 

cannot be represented in this form. Furthermore, stability conditions for the controllers 

presented in these studies must be calculated based on the upper bounds of the model 
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functions. These values are difficult to obtain in many cases where the system models are 

unknown. 

In Woo et al. [40], a PID fuzzy controller was proposed with self-tuning algorithms 

for both input and output scaling factors, but lacked a systematic stability analysis. The 

multilevel fuzzy controller (MLFC) system was proposed by Xu and Shin [9], wherein the 

controller has an adaptive mechanism designed to tune the output membership functions 

based on the system outputs. Although the MLFC has been successfully utilized in different 

applications [45], [46], the controller still has some limits when dealing with time-variant 

systems such as sectorial restrictions on membership functions. 

 

1.2.3 Modeling of Nonlinear Systems by Using FBFNs 

Since an analytical mathematical model for many nonlinear systems cannot be easily 

obtained, fuzzy basis function networks (FBFN) that have a similar structure to radial basis 

function neural networks (RBFN) can be used to capture the plant’s dynamics. The FBFN 

was adopted in different applications [47]–[49] since it can be used to accurately represent 

the relationship between the inputs and the outputs of a nonlinear dynamic system. With a 

set of input and output data, it has been proven that any nonlinear system can be 

approximated by an FBFN model [2]. With these advantages, an FBFN-based fuzzy 

controller should provide an effective way of controlling any nonlinear system. However, 

Mamdani fuzzy control by using FBFN is still very limited because there has not been a 

systematic approach to the design of control systems with guaranteed stability.  

To capture the uncertainties in systems, type-2 fuzzy systems [50] have been 

introduced, wherein the type-2 fuzzy set is utilized. However, due to the complexity of the 
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rule uncertainties and computational requirements to calculate the output, modeling 

nonlinear systems by using type-2 fuzzy systems is a computationally intensive process. 

This leads to the concept of an interval type-2 fuzzy-logic system, in which the secondary 

membership functions of either the antecedents or the consequents are simplified to an 

interval set. Similar to type-1 fuzzy systems, the combination of type-2 fuzzy systems and 

neural networks brings different intelligent modeling and optimization techniques to obtain 

rule bases and membership functions without the need for an expert knowledge. Méndez 

and de los Angeles Hernandez [51] presented a technique to obtain an interval type-2 fuzzy 

neural network by the orthogonal least square and back propagation methods.  Rubio-Solis 

and Panoutsos [52] proposed a modeling framework for an interval type-2 radial basis 

function neural network via a granular computing and adaptive back propagation 

approaches. However, the uncertainties represented in type-2 fuzzy neural systems are 

normally not in a form that can be easily used to design a robust controller. Furthermore, 

there is a lack of a theoretical stability analysis for control systems based on type-2 fuzzy 

neural networks. 

 

1.2.4 Robust Fuzzy Control of Nonlinear System with Unstructured Uncertainties 

For unknown dynamic systems, many robust adaptive control techniques have been 

proposed based on the parameters of a universal approximator [53], [54]. Goyal et al. [55] 

introduced a robust sliding mode control based on Chebyshev neural networks.  Chadli and 

Guerra [56] proposed a robust static output feedback for a discrete Takagi-Sugeno (T-S) 

fuzzy system. The stability conditions in their studies are represented in terms of a set of 

linear matrix inequalities (LMI). An observer-based output feedback nonlinear robust 
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control of nonlinear systems with parametric uncertainties was introduced by Yao et al. 

[57] to provide a sufficient condition for robust stabilization of the systems when all state 

variables are not available for measurement. By using a Lyapunov-Krasovskii function 

(LKF), Hu et al. [58] introduced a stability condition to stabilize discrete stochastic systems 

with mixed time delays, randomly-occurring uncertainties, and randomly-occurring 

nonlinearities. However, since these methods represented uncertainties as functions of 

system parameters, they are not applicable to cases where the causes of uncertainties are 

not known (unstructured uncertainties).  

One method to represent unstructured uncertainties is to model a nonlinear system 

by a set of linear systems with norm-bounded uncertain matrices. Wang et al. [59] proposed 

a set of LMIs that need to be solved at each time step to obtain a control solution that 

satisfies some performance criteria. However, since finding the LMI solution requires 

special computing tools, real-time computation is a challenge in this case, especially when 

the sampling time is relatively small. Furthermore, the solution of the LMIs might not be 

found because representing a highly nonlinear system by a linear system will lead to large 

values of uncertainty norms due to linearization error. Another approach that deals with 

nonlinear systems with unstructured uncertainties is a combination of backstepping and 

small gain theorem [60]–[62]. However, these methods can only be applied to a certain 

class of nonlinear dynamic systems where the input is represented by a linear term in the 

system’s mathematical model. Gao et al. [21] presents an approach to controlling general 

nonlinear systems with norm-bounded unstructured uncertainties. However, obtaining the 

bounded norms of uncertain nonlinear systems was not addressed in their study. 

 



10 
 

1.3 Research Objectives 

The objective of this research study is to develop effective and robust fuzzy 

controllers for nonlinear systems. The following tasks were carried out in this research: 

• Develop a stability theorem for the multilevel Mamdani fuzzy control systems 

based on the FBFN representation of nonlinear systems. 

• Propose a multilevel Mamdani fuzzy controller with a self-organizing output 

scaling-factor for a class of nonlinear systems with unknown state variables. 

• Derive a novel training algorithm for type-2 FBFNs to capture unstructured 

uncertainties in nonlinear systems. 

• Design a method to control nonlinear systems with measurable state variables by 

using a robust Takagi-Sugeno fuzzy controller. 

 

1.4 Outline of Dissertation 

The first chapter presents the motivation, literature review and objectives of the 

work. For a class of nonlinear system with unknown state variables, chapter 2 presents a 

stability analysis of the fuzzy control system and methods to estimate the dynamic gain of 

a nonlinear system. The chapter also discusses the design process for a new MLFC with a 

self-tuning output scaling-factor. Chapter 3 describes a new method to train an interval 

type-2 fuzzy basis function network (FBFN). A new technique is also proposed to convert 

an interval type-2 FBFN to an interval type-2 T-S fuzzy model. Based on the interval type-

2 T-S model and the interval type-2 FBFN, a robust controller that is not only robust but 

also produces good transient performance when implemented on nonlinear systems with 

unstructured uncertainties is presented. Chapter 4 presents a new laser keyhole-welding 
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model and an observer to estimate the penetration depth. Based on the welding model 

proposed, an implementation of the robust Takagi-Sugeno fuzzy controller (RTSFC) is 

described, which can increase the accuracy and quality of the laser welding process in the 

presence of uncertainties. Experiments conducted on titanium samples to evaluate the 

accuracy and effectiveness of the model and the RTSFC are presented.  
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CHAPTER 2. STABILITY CONDITION FOR A CLASS OF MAMDANI FUZZY 
CONTROL SYSTEM AND THE MULTILEVEL FUZZY CONTROLLER WITH 

SELF TUNING OUTPUT SCALING-FACTOR 

This chapter aims to improve the performances and applications of Mamdani fuzzy 

controllers. Proportional-integral (PI) Mamdani fuzzy controllers are useful in cases when 

the state variables of the nonlinear systems are not available during implementation since 

only the reference and system outputs are required. Expert knowledge can also be applied 

during the design process of a Mamdani fuzzy controller.  

First a new stability condition for a class of nonlinear systems controlled by 

proportional-integral Mamdani fuzzy controllers is proposed in this chapter. The stability 

analysis of a Mamdani fuzzy control system can now be determined based on the scaling-

factor of the fuzzy controller. This chapter also presents methods to estimate the dynamic 

gain of a class of nonlinear systems and proposes a new Mamdani fuzzy controller with 

self-tuning output scaling-factor.  

 

2.1 Problem Formulation 

Consider a class of single input – single output (SISO) nonlinear systems. Assume 

that the output of the system only depends on the current input value, the past values of the 

input, and the histories of the output itself. This type of nonlinear system can be represented 

in an input and output form as follows: 
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 ( )( ) ( 1), ( 2),..., ( ), ( 1), ( 2),..., ( )y k u k u k u k m y k y k y k n= − − − − − −N   (2.1) 

where u(k) is the input and y(k) denotes the output of the nonlinear system at time instance 

k, the indices m and n are the system orders of the input and the output, respectively. The 

notation N  represents an unknown nonlinear function, which is assumed to be locally 

Lipschitz. 

It has been proven by Wang and Mendel [2] that an FBFN can uniformly 

approximate any real and continuous nonlinear function on a compact set to a prescribed 

accuracy with a finite number of basis functions. Hence, a fuzzy basis function can be 

constructed from the input and output data to represent this system through a set of l fuzzy 

rules, where the ith rule R i  is described as follows: 

1 2

21R : If ( 1)  AND ( 2)  AND AND ( ) AND

( 1) AND ( 2) AND ( )

then ( )

i i i i

m

i i

n

i

i

u k A u k A u k m A

y k B y k B y k n B

y k b

− = − = − =

− = − = − =

=

…

⋯  (2.2) 

where u(k) is the input and y(k) denotes the output of the nonlinear system at time instant 

k. The notations m and n represent the system orders of the input and the output. 1 m
A A…  

and 1 n
B B…  are fuzzy membership sets. b represents a singleton function of the output. 

 

2.2 Dynamic Gain Estimation of Nonlinear Dynamic Systems 

The stability analysis of nonlinear fuzzy control systems based on the small gain 

theorem requires the dynamic-gain estimation of the plant model. Two methods are 

proposed in this section to calculate the gain of a class of nonlinear systems represented by 

FBFN models. In the first method, the dynamic gain can be approximated by finding the 
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maximum norm of locally-linearized systems. The second method provides an analytical 

computation technique of the dynamic gain based on a non-smooth optimal control 

problem. 

2.2.1 Local Linear Model of a Class of Nonlinear Systems Represented by FBFN 

Models 

Consider a class of nonlinear dynamic systems as described in Eq. (2.1) that can be 

represented by the FBFN model as in Eq. (2.2). Further assume that the considered 

nonlinear system has a finite dynamic gain. By using singleton fuzzification, product 

inference and centroid defuzzification methods, the FBFN model that represent the 

dynamic system can be written in the following state space equations: 

 
T

( ( 1), ( 1))

(

)

()

(

)

k k

k

k

ky

− −

=

= f x

c x

ux
  (2.3) 

where [ ]
T T( ) ( ), ( 1 ( 1), , ( )) 1) ], ( [y kk k y k n u k u k m= −− −=+ −ux … … ,  (2.4) 

 T

( ( 1), ( 1))

( 1)
( ( 1), ( 1)) , [1,0, 0]

( 1)

f k k

y k
k k

y k n

− − 
 − − − = =
 
 

− + 

x u

f x u c …
⋮

 (2.5) 

The nonlinear mapping : ,m nf y⊂ ℜ ⊂ ℜ → ⊂ ℜu x  in Eq. (2.5) is described through the 

fuzzification process as follows: 

          ( )
1

1

1 1

1 1

[ [

[ [

( )] ( )]

( 1), ( 1)

( )] ( )]

i i
tu

i i

t y
u y

t y
u

tu
y

l
i

A

m n

u yB
t t

m n

u yB
t t

i

l

A
i

b k t k t

f k k

k t k

u y

u y t

µ µ

µ µ

= ==

= = =

      
 − ⋅ −           − − =
      
 − ⋅ −         

⋅

 

∑ ∏

∏ ∏∑

∏
x u  , (2.6) 
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where ( ][ )
t
i

u
A uu k tµ −  and ( )][

ty

iB yy k tµ −  are Gaussian input and output membership 

functions: 

 

22
( )( )1 1

( )] exp , ([ [ )] exp
2 2

u

i i

y

t t

u

yu

y

ii
tt

i iA B

t t

yu

u y

k t mk t m yu
u yk t k tµ µ

σ σ

    − − − −   
− = − − = −      

           

 

 (2.7) 

i

tm  and i

tσ  are parameters that represent the center and width of each Gaussian MF; 

1...
u

t m=  and 1...
y

t n=  are the numbers of delay terms of the system input and output, 

respectively; and l is the number of the FBFN’s rules.  

When the states of the system are around a certain operating condition described 

by 0x  and 0u : 

[ ] [ ]
T T

0 0 0 0

0

0

0

0

0

( 1) ( 1), , ( , ( 1)) )

( ( 1

(

), ( 1))

1), , (

( )

k y k y k n k u k

k

m

k

u k

k −

− = − − − = − −

= −

x u

f x ux

… …
 (2.8) 

the local linear model of the nonlinear system represented by Eq. (2.3) can be obtained as 

follows: 

( ) ( )[ ]

( )[ ]

0 0 0 0 0

0 0 0

T

( 1), ( 1) ( 1), ( 1) ( 1)

( 1),

( ) ( 1)

( 1)

( )

(

(

1) ( 1

)

)

k k k k k

k

k

k

y

k

k

k

k k

= −− − + − − −−

+ − −− −

=

−

x u x u x

x u

x f A x

B u u

c x

  (2.9) 

where ( ) ( )

1 2 1 2

T
0 0 0 0

0 1 0 0 1 0
, , , , (0) [0,0,...,0]

0 0 1 0 0 1

mna a a b b b   
   
   = = =
   
   
   

xA Bu x u x

… …

… …

⋮ ⋮

… …

 (2.10) 
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The matrices A and B includes the linearizing coefficients 
yt

a  and 
ut

b  ( 1...
y

t n=  

and 1...
u

t m= ), which can be calculated by the following formulas [63]: 
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By changing the variables, Eq. (2.9) becomes 

 
( ) ( )0 0 0 0

T

, ,( ) ( 1) ( 1)

( ) ( )

k k k

y k k

= − + −

=

x ux A x B ux

c x

uɶ ɶ ɶ

ɶ ɶ

  (2.13) 

where 0( ) ( ) ( )k k k= −x x xɶ , 0( ) ( ) ( )k k k= −u u uɶ , T
0( ) ( ) ( )y k ky k= − c xɶ . 

For a nonlinear dynamic system as described in Eq. (2.1), it has been proven by 

Nikolaou and Manousiouthakis [64] that its dynamic gain can be calculated from the 

maximum value of the gains of its local linear systems. 
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 (2.14) 

where L  is the linear model of the nonlinear system at the operating condition x0 and u0, 

the notations 1u  and 2u  are any two input values that belong to the extended space m

pe
L . 

The notations m

p
L  and m

pe
L  are defined as the finite p-norm (Banach) space and the extended 

Banach space, given by: 
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∞ → ∈ ≥

u u
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  (2.15) 

Based on the obtained models, the methods to estimate the L2 gain and L∞  gain of 

FBFN systems are provided in the next subsections. 
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2.2.2 L2 Gain Estimation of Nonlinear Systems Represented by FBFN Models 

In addition to the Nikolaou and Manousiouthakis’ theorem described above, it has 

been proven by Schaft [65] that if the local linear model of a nonlinear system has its L2 

gains less than a constant γ  then the local L2 gain of the nonlinear system will also be less 

than γ . Since the L2 gain of a linear system is also its H∞ norm, the L2 gain of the FBFN 

can be approximated by finding the maximum of the H∞ norm values of all locally 

linearized systems: 

 
0 0

0 0

,
,

2|| || sup || ||
n m
pe peL L

H ∞
∈ ∈

=
x

x u
u

N L   (2.16) 

The local linear systems 
0 0,x uL  are provided in the form of state space equations as 

given in Eq. (2.13). Fast computing techniques such as Bruinsma and Steinbuch [66] can 

be used to calculate the values of their H∞ norm. 

 

2.2.3 L∞ Gain Estimation of Nonlinear Systems Represented by FBFN Models 

This subsection provides an analytical computation of the  gain for discrete 

nonlinear systems and FBFN models. This work is an expansion of Nikolaou and 

Manousiouthakis’ [67] techniques, which have only been applied to continuous nonlinear 

systems. In Theorem 1, the gain of an FBFN is proven to be the solution of a non-

smooth optimal control problem, which can be solved numerically by using the non-smooth 

Newton’s method [68]. 
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Theorem 1 (Dynamic infinity gain of FBFN systems): 

The dynamic infinity gain of a nonlinear system represented by an FBFN model, 

which is described by Eq. (2.3), over a convex set { :|| ( ) }||W kL δ∞∈ ≤u u≜  can be found 

by solving the following non-smooth optimal control problem: 

 
0 0,(0 ) 0

1

,
|| || sup inf ( , 1)

n m
e e

k

L L

T

i
k l

k l
∞ ∞

∞
∈ ∈∈ ∞ =

− 
= − − 

 
+∑

x u
Bc ΦN   (2.17) 

under the dynamic constraints: 

 
( 1, ) ( , )

: (0, ) [0, ) ( , ),n n

k l k l

k k
×

+ =

∞ × ∞ → =

Φ AΦ

Φ Φ Iℝ
 (2.18) 

where A and B are the coefficient matrices given in Eq. (2.10). || ||
i

⋅  represents any induced 

norm.  

Proof:  For a system represented by Eq. (2.13), the unique solution can be found as 

follows [69]: 

 

1

0

( ) ( ,0) (0) ( , 1) ( )

( )

( )

( )

k

l

T

k k k l l l

ky k

−

=

= + +

=

∑x Φ x Φ B u

c x

ɶ ɶ ɶ

ɶ ɶ

, (2.19) 

where the state transition matrix ( , )k lΦ  relates the state at time k to the state at an earlier 

time l: 

 ( )( () , )k lk l=Φx xɶɶ  (2.20) 

and has the following properties: 

 

( , )

( ) ( ,0) (0)

( 1, ) ( ) ( , )

k k

k k

k l k k l

=

=

+ =

Φ I

x Φ x

Φ A Φ

ɶ ɶ   (2.21) 
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From Eq.  (2.3) and Eq. (2.19), the output of the system can be calculated from its 

solution:  

 
1

0

( ) ( , 1) ( ) ( )
k

T

l

y k k l l l
−

=

= +∑c Φ B uɶ ɶ   (2.22) 

Eq. (2.22) can be rewritten as follows:  

 
1

0

( )( ) ( )
k

l

l

y k lk
−

=

=∑G uɶ ɶ   (2.23) 

where ( ) ( , 1) ( )T

l k k l l= +G c Φ B . It has been proven by Desoer and Vidyasagar [70] that if 

a linear system has the responses as provided in Eq. (2.23) then its gain is given as 

follows: 

 
(0, )

1

0

sup ( )
l

k

i
k l

k
∞

∈ ∞ =

−

= ∑ GL   (2.24) 

where ( )l i
kG  is any induced norm of ( )

l
kG . 

By using Eq. (2.14) and Eq. (2.24), the infinity gain of the nonlinear system 

represented by an FBFN model becomes the solution of the following non-smooth optimal 

control problem: 

 

0 0

0 0

0 0

0 0

,
,

(0, ) 0

(0,

1

,)

,

1

0

( , 1) (

|| || sup || ||

sup sup

sup inf

)

( , 1) ( )

m
e e

m
e e

m
e e

n

n

n

L L

k
T

k l

T

k

i
L L

k

iL
l

L

k l l

k l l

∞ ∞

∞ ∞

∞ ∞

∞ ∞
∈ ∈

∈ ∞∈ ∈ =

∈∈

−

∈∞ =

−

=

 
+=  

 

 
= − − 

 
+

∑

∑

x
x u

x u

x u

u

c Φ B

c Φ B

N L

  (2.25) 
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where n

eL∞   and m

eL∞  are the extended-infinity-norm space as defined in Eq. (2.15) with 

p = ∞ . The notations n and m indicate the dimensions of the state variables and input 

vector, respectively. 

■ 

2.3 Stability Condition for a Class of PI Fuzzy Control System 

Consider a class of nonlinear system that can be represented in an input and output 

form as shown in Eq. (2.1) and a proportional-integral fuzzy controller in a feedback closed 

loop system as shown in Figure 2-1. The summation symbol represents the integration 

operation. The controller uses two input signals: error (e) and change in error (r), which 

are defined by the following formulas: 

 ( ) ( ) ( )refe k y k y k= −  (2.26) 

 
( ) ( 1)

( )
e k e k

r k
T

− −
=  (2.27) 

where ( )refy k  is the referenced signal, T is the sampling time and k is the sampling instant. 

 

Figure 2-1: The closed loop fuzzy control system 

The scaling-factors 
e

K and 
r

K of the input signals are adopted to normalize the values of e 

and r into the range [ ]1,1− : 
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( ) ( )

( ) ( )

e

r

e k K e k

r k K r k

=

=
 (2.28) 

The actual control effort ( )u k  can be computed from the integration of the output 

of the fuzzy controller ( )u k∆  and the output scaling-factor
out

K , this makes the controller 

become a PI type fuzzy controller: 

 
(( ) ( )

(( ) )

1)

out

u ku k u k T

u k K u k

= − +

=

∆
 (2.29) 

For each input, 2 1n +  membership functions are assigned such that the 

membership functions are distributed evenly with n membership functions on the left half 

plane, n membership functions on the right half plane and one membership function at the 

center. The membership functions of the error and change in error are denoted by 
i

E  and 

jR  respectively with , , 1, , 1,i j n n n n= − − + −…  (Figure 2-2). Since the input range is 

scaled into [ ]1,1− , the distance L between two adjacent membership functions is equal to 

1/ n . The output of the controller ( )u k∆  is computed by using the Mamdani inference 

method with the fuzzy rules represented in linguistic form as following: 

,Rule ( , ):  is E AND is R  THEN  is i ji ji j IF e r u U∆  

where ,i jU  is the membership function of the output. Assume that m number of output 

membership functions are used, the distribution of the output membership functions can be 

found in Figure 2-3. 
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Figure 2-2: Input membership functions. 

 

Figure 2-3: Output membership functions. 

With the distribution of the input membership functions as shown in Figure 2-2, a 

maximum of two membership functions for each input will have non-zero values at each 

instant. Assume that 
pE , 1pE + , 

qR  and 1qR +  ( , , 1, , 1,p q n n n n= − − + −… ) are the four non-
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zero input membership functions of the error and change in error signal, then four fuzzy 

rules are activated accordingly: 

( )

( )

( )

( )

,

1 1,

, 1

1

1

1, 11

Rule , :  is E AND is R  THEN  is 

Rule 1, :  is E AND is R  THEN  is 

Rule , 1 :  is E AND is R  THEN  is 

Rule 1, 1 :  is E AND is R  THEN  is 

p q

p p q

p p

p q

q

q

p

q

q p q

p q IF e r u U

p q IF e r u U

p q IF e r u U

p q IF e r u U

+

+

+ +

+

+ + +

+

+

∆+

+

∆

∆

∆

 

Depending on the location of error and change in error with respect to the centers of the 

non-zero membership functions, the stability problem can be by investigated dividing it 

into eight different cases as shown in Figure 2-4 and Table 2-1. 

 

 

Figure 2-4: Locations of the error and the time rate of change of the error in relation to 
the activated membership functions. 
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Table 2-1: Conditions of error and rate of change in error. 

Case Conditions of the error and the time rate of change of the error 

1 

( 1) AND
1 1
2 2

1 1

 ( 1)

A D
2 2

N

L p L q

L p

e L p

q

L

r L

r q

e

< + <
   

+ < + <   
   

 

+

−
 

+ < +  
  

− 


 

2 

( 1) AND
1 1
2 2

1 1

 ( 1)

A D
2 2

N

L p L q

L p

e L p

q

L

r L

r p

e

< + <
   

+ < + <   
   

 

+

−
 

+ > +  
  

− 


 

3 

1
AND ( 1

1
2

1

)
2

AND
1

2 2

e L p r LLp L q

e r

q

L p L q

 
< + < 

 

   
+

 
< +

− +

< + 
 

<   
   

−

 

4 

1
AND ( 1

1
2

1

)
2

AND
1

2 2

e L p r LLp L q

e r

q

L p L q

 
< + < 

 

   
+

 
< +

− +

< + 
 

>   
   

−

 

5 

1
( 1) AND 

2
1
2

1 1
D

2 2
AN

L p Le L p r L q

e r

q

L p L q

 
< + < + 

 

− <

 
+ < < 

 

   
+ + −   

   

 

6 

1
( 1) AND 

2
1
2

1 1
D

2 2
AN

L p Le L p r L q

e r

q

L p L q

 
< + < + 



 
+ < < 

 

   
+ > + −  






  

−

 

7 

1 1
AND 

2 2

AND

e L p rLp Lq

L

L q

p Lqe r

   
< + < +   

   

− < −

< <
 

8 

1 1
AND 

2 2

AND

e L p rLp Lq

L

L q

p Lqe r

   
< + < +   

   

− > −

< <
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By utilizing the small gain theorem, an approach similar to that proposed by [13] is 

used in the current work to obtain the stability condition for a class of fuzzy control 

systems. However, to investigate the stability of the fuzzy control system,  Chen and Ying 

[13] analyzed the structure of the fuzzy controller based on the locations of the error and 

the change of the error with respect to zero. Hence, the upper bounds of the fuzzy controller 

have different values whenever the error or the time rate of change of the error moves from 

one membership function to the other. The stability analysis cannot be easily extended 

since the complexity of the problem will grow significantly when the numbers of input and 

output membership functions are increased. Therefore, only fuzzy controllers with two 

input and three output membership functions were analyzed by Chen and Ying [13]. In this 

work, the stability theorem is developed based on the locations of the error and the time 

rate of change of the error with respect to the activated membership functions, as shown in 

Figure 2-4 and Table 2-1. Since the upper bounds of the fuzzy controller have been found 

to have similar values in each location, the results can be generalized for fuzzy controllers 

with large numbers of input and output membership functions. 

By calculating the control effort based on the error and change in error signals for 

all the cases (APPENDIX A to APPENDIX H), the change in control output ( )u k∆  can be 

formulated into the following form: 

 ( ) e rre
G K e G K

u
r

k
D

C
∆ =

+ +
  (2.30) 

where the parameters 
e

G , 
r

G , C and D are given in Table 2-2 and  Table 2-3. 
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Table 2-2: Values of Ge, Gr, and D. 

Case Ge Gr D 

1 , 1 1, 1p q p q
U U+ + +− +  , 1,p q p q

U U +− −  2 3 2 rqL L K r+ −  

2 , , 1p q p q
U U +− −  1, 1, 1p q p q

U U+ + +− +  2 3 2 eLp L K e+ −  

3 , 1 1, 1p q p q
U U+ + +− +  , 1,p q p q

U U +− −  2 3 2 rqL L K r+ −  

4 1, 1, 1p q p q
U U+ + ++  , , 1p q p q

U U +− +  2 2eK e L Lp+ −  

5 , 1,p q p q
U U +− +  , 1 1, 1p q p q

U U+ + ++  2 2rK r qL L− +  

6 , , 1p q p q
U U +− −  1, 1, 1p q p q

U U+ + +− +  2 3 2 eLp L K e+ −  

7 1, 1, 1p q p q
U U+ + ++  , , 1p q p q

U U +− +  2 2eK e L Lp+ −  

8 , 1,p q p q
U U +− +  , 1 1, 1p q p q

U U+ + ++  2 2
r

K r qL L− +  

 

Table 2-3: Value of C. 

Case C 

1 ( ) ( ) ( ), 1, , 1 1, 1 , 1, , 1p q p q p q p q p q p q p qqL U U pL U U L U U U+ + + + + ++ + − + + +  

2 ( ) ( ) ( )1, 1, 1 , , 1 , 1, , 1p q p q p q p q p q p q p qqL U U pL U U L U U U+ + + + + +− + + + + +  

3 ( ) ( ) ( ), 1, , 1 1, 1 , 1, , 1p q p q p q p q p q p q p qqL U U pL U U L U U U+ + + + + ++ + − + + +  

4 ( ) ( ), , 1 1, 1, 1 ,p q p q p q p q p qqL U U pL U U LU+ + + +− + − − +  

5 ( ) ( ), 1 1, 1 , 1, ,p q p q p q p q p qqL U U pL U U LU+ + + +− − + − +  

6 ( ) ( ) ( )1, 1, 1 , , 1 , 1, , 1p q p q p q p q p q p q p qqL U U pL U U L U U U+ + + + + +− + − + + +  

7 ( ) ( ), , 1 1, 1, 1 ,p q p q p q p q p qqL U U pL U U LU+ + + +− + − +  

8 ( ) ( ), 1 1, 1 , 1, ,p q p q p q p q p qqL U U pL U U LU+ + + +− − + − +  
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From here, the stability condition for nonlinear PI fuzzy control systems can be 

stated as follows: 

Theorem 2: Consider a class of nonlinear systems that is described in the form 

given by Eq. (2.1) and the PI fuzzy control algorithm given in Eq. (2.29). The conditions 

for the fuzzy control system to be input-and-output stable are as follows: 

1. The nonlinear process has a finite p-gain: || ||p ∞<N   

2. The maximum output scaling factor of the PI fuzzy controller satisfies the 

following condition:  

 
( )max 2 || ||out

e r p

L
K K

K T K+
≤ =

N
  (2.31) 

Proof: First, an equivalent closed-loop system to the original fuzzy control system 

shown in Figure 2-1 is constructed. The equivalent system includes two nonlinear 

processes connected in a feedback loop (Figure 2-5): 1S and 2S , which are defined as 

follows: 

 1 1

2 2 2

( ) ( 1)
( ( )) ( )

( ( )) ( ( )) ( ( ))

r r r
e e

out

r
G K G K

G K e k e k C
T T

S e k T u k T

S e k K k

D

u k e

 
+ − − + 

 = ∆ =

= =N N

 (2.32) 

where Ge, Gr, C and D are given in Table 2-2 and Table 2-3, ( ( ))u kN  is the nonlinear 

operator that represents the plant. The inputs of the equivalent closed-loop system are 1u  

and 2u :  

 1 2

( 1)
( ) ( ), ( )

ef

ut

r

o

u k
u k y k u k

K

−
= =  (2.33) 
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From the schematic diagram in Figure 2-5, the values of 1( )e k  and 2 ( )e k  can be 

found as follows: 

 1 1 2 2( ) ( ) ( ( )) ( ) ( ( )) ( )
d

e k u k S e k y k u k e k= − = − =N   (2.34) 

 2 1 1 2( ))
( 1) ( )

( ) ( ( ( ))) (
out out

k u k
u k u k

e k S e u k T u k
K K

−
= = =+ ∆ + =  (2.35) 

 

Figure 2-5: An equivalent closed-loop control system. 

APPENDIX A to APPENDIX H show that the gain of the operator 1S  can be 

calculated by: 

 
( )

1 1

2
 e r

p

K T K

L
γ

+
= =S , (2.36) 

which is a finite number. By applying the small gain theorem to the feedback system in 

Figure 2-5, the requirements for the fuzzy closed-loop system to be input-output stable are 

as follows: 

 2 1 2 and 1out p
Kγ γ γ∞= < <N   (2.37) 

Because
out

K < ∞ , by substituting 1γ  and 2γ  found above into Eq. (2.37), the 

stability requirements become: 



30 
 

 
( )

 and
2

1 e r

outp p

K T K
K

L

+
< <∞N N   (2.38) 

Therefore, the maximum output scaling factor of the fuzzy controller is as follows:  

 
( )max 2 || ||

e r p

L
K

K T K
=

+ N
  (2.39) 

■ 

Theorem 2 provides a systematic stability condition for controlling nonlinear 

systems by using PI fuzzy controllers. The proposed stability condition is a simple design 

practice since it only requires the output scaling-factor of a PI fuzzy controller to be 

bounded. 

2.4 Fuzzy Controller with Self-Tuning Output Scaling-Factor  

Consider a class of single-input single-output nonlinear dynamic systems that can 

be represented in an input and output form as described in Eq. (2.1). Further assume that 

the nonlinear system has a finite p-gain. Based on the stability theorem developed in section 

2.3, a novel multilevel fuzzy controller (MLFC) with self-tuning output scaling-factor is 

proposed in this section. The first layer of the proposed controller acts as a conventional 

fuzzy controller while the second and third layers are used to tune the output scaling factor 

of the first layer.  

Figure 2-6 describes the implementation of the proposed fuzzy controller in the 

closed loop control system. The control effort ( )u k  that drives the plant can be computed 

as follows: 

 
(( ) ( )

(( ) )

1)

out

u ku k u k T

u k K u k

= − +

=

∆
  (2.40) 
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where ( )u k∆  is the output of the first layer and 
out

K  is the output scaling factor, which can 

be adjusted by the second and third layers. 

First Layer 
FLC

e(k)

u(k)

∆u(k)
Kout

r(k)
∑

Second Layer 
Output Scaling-
Factor Tuning 

Mechanism

Third Layer 
Output Scaling-
Factor Tuning 

Mechanism

+

+

+

-
e(k-1)

1/T

Ke1

Kr1

Ke3

Kr3

Ke2

Kr2

Nonlinear 
Plant

+

-

yref

Fuzzy Controller with Self Tuning 
Output Scaling-Factor

y(k)

Performance 
Guidance 

Model

+

-

+

-
ε (k-1)

1/T

ε(k)yp

 

Figure 2-6: Multilevel fuzzy control system with self-tuning output scaling factor. 

As shown in Figure 2-6, the first layer fuzzy mechanism uses two input signals, 

which are the error ( )e k  and the time rate of change of error ( )r k : 

 
( ) ( 1)

( ) ( ) ( ), ( )
ref

e k e k
e k y k y k r k

T

− −
= − =  (2.41) 

where ( )
ref

y k  is the reference signal, T is the sampling time, and k is the sampling instant. 

The input gains 1e
K  and 1r

K of the first layer are adopted to normalize the values of ( )e k  

and ( ) :r k  

 1 1( ) ( ), ( ) ( )
e r

e k K e k r k K r k= =   (2.42) 

Each input of the first layer has 2 1n +  membership-functions. The membership 

functions of the error and change in error are denoted by 
i

E  and 
jR  respectively with 
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, , 1, , 1,i j n n n n= − − + −…  (Figure 2-2). The membership functions of the output are 

denoted by ,i jU . 

The fuzzy rules to calculate the controller output ( )u k∆  are presented in linguistic 

form as follows: 

 ,Rule ( , ):  is E AND is R  THEN  is 
i j i j

i j IF e r u U∆   (2.43) 

where ,i j
U  is the output membership function corresponding to the input membership 

functions Ei and Rj. The rule base of the first layer (Table 2-4) is similar to the conventional 

PI fuzzy controller and can be regarded as a human expert who makes the decision for 

control effort based on the input signals. In Table 2-4 [9], the entries near the center 

position, where the output signal is near the set point, always have smaller values. A small 

control effort provides a fast convergence rate and reduces the overshoot when the signal 

is near the set points. As the signal moves away from the set point, the control effort 

increases in order to reduce the transient time. It should also be noted that the rule-base 

table is symmetric about the set point. 

The second layer (Figure 2-6) uses the error and the time rate of change of the error 

signals to adjust the output scaling factor of the first layer to reduce the rise time and 

suppress the oscillation of the system output. In this layer, the change in the output scaling-

factor ( )K kα∆  is computed by using the following fuzzy rules: 

 22Rule ( , ) : If  is  and  is t ( )hen isie r ji j K e E K kK r R Dα α⋅ ∆⋅  (2.44) 

where 2e
K  and 2r

K  are the input gains of the second layer, the notation Dα  is the linguistic 

value of ( )K kα∆ . The rule base for the second layer (Table 2-5) was developed based on 
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the fuzzy rule base designed by Mudi and Pal [28]. However, while Mudi and Pal’s 

objective was to determine the value of the scaling factor based on the error and the time 

rate of change of the error signal, the rule base in this paper is designed for the calculation 

of the necessary change in the output scaling factor. As shown in Table 2-5, if there is a 

large error in the output signal while the output is moving away from the reference signal, 

the scaling factor is increased ( 0.5Dα → ) so that the rise and settling times can be reduced. 

When the system output is moving into the reference signal or the error and the time rate 

of change of the error are very small, the scaling factor is reduced ( 0.5)Dα → −  to suppress 

the amount of overshoot. This rule base is not unique and modifications may be made in 

accordance with desired system responses. 

 

Table 2-4: Rule base of the first and third layer of the proposed MLFC. 

 Time rate of change of the error 

Error 

 -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 

-1.0 1.00 1.00 1.00 1.00 1.00 1.00 0.80 0.60 0.30 0.10 0.00 

-0.8 1.00 1.00 1.00 1.00 1.00 0.80 0.60 0.30 0.10 0.00 -0.10 

-0.6 1.00 1.00 1.00 1.00 0.80 0.60 0.30 0.10 0.00 -0.10 -0.30 

-0.4 1.00 1.00 1.00 0.80 0.60 0.30 0.10 0.00 -0.10 -0.30 -0.60 

-0.2 1.00 1.00 0.80 0.60 0.30 0.11 0.00 -0.10 -0.30 -0.60 -0.80 

0.0 1.00 0.80 0.60 0.30 0.10 0.00 -0.10 -0.30 -0.60 -0.80 -1.00 

0.2 0.80 0.60 0.30 0.10 0.00 -0.10 -0.31 -0.60 -0.80 -1.00 -1.00 

0.4 0.60 0.30 0.10 0.00 -0.10 -0.30 -0.60 -0.80 -1.00 -1.00 -1.00 

0.6 0.30 0.10 0.00 -0.10 -0.30 -0.60 -0.80 -1.00 -1.00 -1.00 -1.00 

0.8 0.10 0.00 -0.10 -0.30 -0.60 -0.80 -1.00 -1.00 -1.00 -1.00 -1.00 

1.0 0.00 -0.10 -0.30 -0.60 -0.80 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 
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Table 2-5: Fuzzy rule base of the second layer of the proposed MLFC. 

 Time rate of change of the error 

Error 

 -1 -0.7 -0.3 0 0.3 0.7 1 

-1 0.5 0.5 0.5 0.3 0.1 -0.1 -0.3 

-0.8 0.5 0.5 0.3 0.1 -0.1 -0.3 -0.5 

-0.6 0.5 0.3 0.1 -0.1 -0.3 -0.5 -0.5 

-0.4 0.3 0.1 -0.1 -0.3 -0.5 -0.5 -0.5 

-0.2 0.1 -0.1 -0.3 -0.4 -0.5 -0.5 -0.5 

0 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 

0.2 -0.5 -0.5 -0.5 -0.4 -0.3 -0.1 0.1 

0.4 -0.5 -0.5 -0.5 -0.3 -0.1 0.1 0.3 

0.6 -0.5 -0.5 -0.3 -0.1 0.1 0.3 0.5 

0.8 -0.5 -0.5 -0.1 0.1 0.3 0.5 0.5 

1 -0.3 -0.1 0.1 0.3 0.5 0.5 0.5 

 

In order to achieve the desired system performances such as rise time, settling time, 

and percent overshoot, the designer can specify a performance guidance model for the 

tuning process. The objective of the third layer is to make the output of the closed-loop 

system approach that of the performance guidance model. This layer uses the performance 

error ε  and the time rate of change of the performance error ɺε  between the output of the 

control system and the reference model to tune the output scaling factor: 

 
( ) ( 1)

( ) ( ) ( ), ( )
p

k k
k y k y k k

T

− −
= − =ɺ

ε ε

ε ε  (2.45) 

where ( )py k  is the output of the performance guidance model. The performance error and 

the time rate of change of performance error signals have membership functions similar to 

those of the output error and the time rate of change of the error (Figure 2-2). 
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Since the output error ( )e k  and the time rate of change of the error signal ( )r k  

always exist whenever there is a change in command signals, the performance errors ( )kε  

and ( )kɺε  are used for the third layer instead of the output error signals. This way, the tuning 

of the third layer can be minimized when the system output has approached the 

performance guidance model output. The rule base of the first layer (Table 2-4) is applied 

in the third layer since they have similar functional objectives. Similar to the first layer, the 

Mamdani fuzzy inference mechanism is also applied in the third layer to compute the 

output scaling factor updating value ( )K kβ∆  by the following fuzzy rules: 

        33Rule ( , ) : If  is  and  is t ( )hen isie r ji j K e E K kK r R Dβ β⋅ ∆⋅   (2.46) 

where 3e
K  and 3r

K  are the input gains of the second layer, the notation Dβ  is the 

linguistic value of ( )K kβ∆ . 

With the addition of the second and third layers, the output scaling-factor of the 

first layer can be calculated by using the following formula: 

                   ( )max( ) min ( 1 ( ) () ),
out out

KK k K k Kk K kα βα β= − + ∆ + ∆   (2.47) 

where α  and β  are the adaptation rates of the second layer and the third layer, 

respectively. Based on Theorem 2, the minimum function in Eq. (2.47) ensures that the 

output scaling factor
out

K  does not exceed the maximum value maxK  at which the control 

system remains stable: 

 
( )max 2

pe r

L
K

K T K
=

+ N
  (2.48) 

where 
p

N  is the p-gain of the nonlinear plant. 
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2.5 Simulation Results on a Three-Dimensional Tower Crane System 

Performance comparisons between the MLFC with self-tuning algorithm and the 

robust adaptive fuzzy controller (RAFC) proposed by Wu et al. [72] are presented in this 

section. MATLAB/SIMULINK simulations were conducted on a three-dimensional tower 

crane system [72]. 

The control variables of the tower crane system are the tower motor voltage Mθ  

(V) and the trolley motor voltage 
F

M (V): 

 1 2,
F

u M u Mθ= =  (2.49) 

The distance between the trolley and the tower is denoted as p
x , the slew angle of the tower 

is 
r

θ . The variables p
x  and 

r
θ  are also the outputs of the system: 

 1 2,p rxy y θ= =   (2.50) 

The notations α  and β  are the deflection angles of the payload in the Y-Z, and the X-Z 

plane. By using 11 p
x x= , 12 p

x x= ɺ , 21x β= , 22x β= ɺ , 31 r
x θ= , 32 rx θ= ɺ , 41x α= , 42x α= ɺ  

as the state variables, the equations of motion of the tower crane system are [72]: 

12 1 21 1 11 1 1

2
41 2 11 41

22 1 21 21 21 22 2
11 11

2 11 41
32 31 32

11

2 11 41 21 41
42 2

1

2 2

3 3

1

( ) ( )

( ) ( )
1 1

( ) ( )
1

( )

1

mx t

mx t mr r

r r

mr r

r

mr r

r

x K u m gx h t x t d

K m g K m gx xg
x u x x h t x t d

L L L M x M x

K u m gx x
x h t x t d

M x

K u m gx x x gx
x

M x

x

L

u

τ

τ

τ

= − + − +

= − − − − + − +
+ +

+
= + − +

+

+
= − −

+

ɺ

ɺ

ɺ

ɺ 2 11 41 11
41 4

1
42

1
4

( )
( ) ( )

1
mr r

r

K u m gx x x
h t x t d

M x
τ

+
+ − +

+

  (2.51) 
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where 1 0.2 ,sτ = 2 0.1 ,sτ =  3 0.15sτ = , 4 0.1sτ =  are time-delay constants, /
t

m m M= , 

0/
r

m m J= ,  0/
r

M M J= , ( ), 1...4
q

h t q =  are time-varying functions: 

 1 3 2 40.01sin( ), 0.01cos( )h h t h h t= = = =  (2.52) 

The disturbances d1, d2, d3, and d4 are functions of time: 

 1 3 2 40.1sin( )exp( 0.2 ), 0.1cos( )exp( 0.2 )d d t t d d t t= = − = = −   (2.53) 

Other system parameters can be found in Table 2-6. 

Simple feedback gains can be used to stabilize the plant: 

 1 1 11 11 12 12u k x k x= − −γ ,    2 31 32 42 31 3 1 1 42 4 4 2 2u k x k x xk k x= − − − −γ  (2.54) 

where 11 12 31 32 1k k k k= = = = , 41 42 10k k= = − , 1γ  and 2γ  are new system inputs. By 

substituting u1 and u2 in Eq. (2.54) to Eq. (2.51), the equations of the system then become: 

12 1 11 11 12 12 21 1 11 1 1

41 31 32 42 42
22 1 1

2 31 32 41 41

2 2

2 3

1 11 12 12 21 21 2
11

2
11 41

21 22
11

31
3

32 3
2

1

( ) ( ) ( )

( )
( )

1

( ) ( )
1

(

mx t

mx t mr

r

r

r

mr

x K k x k x m gx h t x t d

K m g K k x k x k k xg
x k x k x x x

L L L M x

m gx x
h t x t d

M x

K k x k x
x

x x

= − − − + − +

− − − −
= − − − − −

+

− + − +
+

− −
=

ɺ

ɺ

ɺ

γ τ

γ
γ

τ

γ

[ ]

2 42 42 11 41
31 32

11

31 32 42 42 11 41 21 41
42 2

11

31 32 42

41 41
3 3

2 31 32 41 41

2 31 32 42 11 41 11
41 4

41 41
4 42

11

)
( ) ( )

1

[ ( ) ]

1

( )
( ) ( )

1

r

r

mr r

r

mr r

r

k k x m gx x
h t x t d

M x

K k x k x k k x m gx x x gx
x

M x L

K k x k x k k x m gx x

x

x

x x
h t x t d

M x

− − +
+ − +

+

− − − − +
= −

+

− − − − +
− + − +

+

ɺ

τ

γ

γ
τ

 

 (2.55) 

Two FBFNs were then used to model the outputs 1 11 1 1( )y x= = γN  and 2 31 22 ( ).y x= = γN  
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Table 2-6: Parameters of the tower crane system [72]. 

Parameter Notation Value 

Payload length L 0.1 m 

Mass of trolley M 0.465 kg 

Mass of payload m 0.125 kg 

Motor equivalent moment of inertia 0J  0.877 kg.m2 

Acceleration gain for trolley servo mx
K  0.9 m/s2 

Acceleration gain for tower servo mr
K  3.33 rad/s2V 

 

By using least square methods and genetic algorithms [73], the training of the 

FBFNs was conducted on MATLAB. Figure 2-7 shows the non-dimensional error indices 

(NDEI) during the training process. Two FBFN models with 61 and 26 hidden nodes were 

obtained to approximate the first and the second process, respectively: 

16 11 1 1 11 1 1 11 1 6

1 1

Rule i ( ): If ( 1) , , ( 6) , ( 1) ,..., ( 6) ,

then ( )

i i i i

i

y k A k A y k B y k B

y k b

γ γ γ− − = − = − = − =

=

…
 

2 2 2 232 21 22 3

2 2

1 2 2Rule i ( ): If ( 1) , , ( 3) , ( 1) , , ( 3) ,

then ( )

i i i i

i

y k A k A y k B y k B

y k b

γ γ γ− − = − = − = − =

=

… …
 

From the obtained FBFNs, linearized models of the systems at different operating 

conditions were calculated by Eq. (2.10). Their H∞ norms can then be found by using the 

non-smooth Newton’s method [68] and are given in Figure 2-8 for all the training data sets. 

The L2-gains of the FBFNs were estimated by taking the maximum values of the linearized 

models’ H∞ norms: 

 1 2 2 2|| || 0.1, || || 0.04= =N N   (2.56) 



39 
 

where 1 2|| ||N  and 22|| ||N  denote the L2-gains of the first process ( 1 1yγ − ), and the second 

process 2 2( )yγ − , respectively. 

 

Figure 2-7: NDEI during FBFN training of the tower crane system. 

The reference signals for the trolley translational position and the jib angular 

position are 0.06 m and 0.6 rad, respectively. Two MLFCs with self-tuning output scaling-

factors were used to control the two subsystems. The scaling factors for three layers of each 

fuzzy controller were selected as follows: 

First process ( 1 1yγ − ): 

 
1 1 2 2 3 3

1(initial)

6, 0.1, 10, 15, 30,

0.

30,

2013, ,

e r e r e r

out

K K K K K K

K α β

= = = = = =

== =
  (2.57) 

Second process ( 2 2yγ − ): 

 
1 1 2 2 3 3

1(initial) 0.001,

1, 0.1, 0.1, 5, 0.05, 30,

1, 0.01

e r e r e r

out

K K K K K K

K α β

= = = = = =

= ==
  (2.58) 

Discrete linear models with the following transfer functions were chosen as the 

performance guidance models: 
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 1 1 2 2

0.005 0.005
( ) ( ), ( ) ( )

0.995 0.995
Y z z Y z z

z z −
Γ= Γ =

−
  (2.59) 

here 1( )zΓ  and 2 ( )zΓ  are the input functions in frequency domain, 1( )Y z  and 2 ( )Y z  are 

the output functions in frequency domain. 

By using the stability criteria given in Eq. (2.39), the maximum output scaling-

factor of the MLFCs can be calculated as follows: 

 
( )max1

1 2

0.2
6.25

2 || || 2(6 0.01 0.1) 0.1
e r

L
K

K T K
= = =

+ ⋅ + ⋅N
  (2.60) 

 
( ) 2

max 2
2

0.2
22.7

2 || || 2(1 0.01 0.1) 0.04
e r

L
K

K T K
= = =

+ ⋅ + ⋅N
  (2.61) 

 

Figure 2-8: H∞ norm of the tower crane’s local systems. 

Figure 2-9 shows the responses of the tower crane system controlled by the MLFC 

with self-tuning output scaling-factor versus the RAFC. It shows that both outputs of the 

tower crane controlled by the MLFC with self-tuning output scaling-factor achieve steady-

state values in approximately five seconds, which is much faster compared with those 

controlled by the RAFC. There is also significantly less oscillation with the MLFC with 
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self-tuning output scaling-factor due to the adaptation of the output scaling factors as 

shown in Figure 2-10, even though the control efforts of the MLFC with self-tuning output 

scaling-factor are smoother than the control efforts of the RAFC. The self-tuning capability 

also makes the overshoots of both outputs of the MLFC control system less than ten 

percent. 

 

Figure 2-9: System response comparison between the MLFC with self-tuning output 
scaling-factor (solid) and RAFC (dash) ( 1 20.06 m, 0.6 radref refy y= = ). 
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Figure 2-10: Output scaling factor of the MLFC with self-tuning output scaling-factor 
during control of the tower crane system.
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CHAPTER 3. MODELING OF UNSTRUCTURED UNCERTAINTIES AND ROBUST 
CONTROL OF NONLINEAR DYNAMIC SYSTEMS BASED ON TYPE-2 

FUZZY BASIS FUNCTION NETWORKS 

As described, Chapter 2 provides a framework for designing Mamdani fuzzy 

controllers based on the dynamic gains of nonlinear systems. Proportional-integral (PI) 

Mamdani fuzzy controllers are useful in cases when the state variables of the nonlinear 

systems are not available during implementation. However, the method can only be applied 

to a class of single-input single-output nonlinear systems that have finite dynamic gains. 

For multi-input multi-output nonlinear systems with measurable state variables, Takagi-

Sugeno fuzzy controllers can be used to improve the performance of the fuzzy control 

systems since a linear control design process can be applied to each rule of the Takagi-

Sugeno fuzzy model.  

However, the performance of Takagi-Sugeno (T-S) fuzzy controllers depends on 

the accuracy of the Takagi-Sugeno model that is used to approximate the nonlinear system. 

If there exist uncertainties in the system or the T-S model cannot approximate the nonlinear 

system well, the stability analysis of the control system is no longer valid. Chapter 3 tackles 

this problem by proposing a new method to train an interval type-2 fuzzy basis function 

networks (FBFN) that can capture unstructured uncertainties and model inaccuracy in a 

class of nonlinear systems. The training algorithm not only further improves the 

performance of the fuzzy neural network system but also provides a framework to design 
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a robust T-S fuzzy controller. FBFNs have been used as models for many nonlinear systems 

in the literature [74]–[76] since a FBFN was proven to be a universal approximator [2]. 

The antecedent of the interval type-2 FBFN in this study is obtained by using the adaptive 

least square with genetic algorithm while the interval values of the consequent are obtained 

by the active set method. A new technique is also proposed to convert the interval type-2 

FBFN to an interval type-2 T-S fuzzy model. Based on the interval type-2 T-S model and 

the interval type-2 FBFN, a robust controller that is not only robust but also produces good 

transient performance when implemented on nonlinear systems with unstructured 

uncertainties is presented. 

 

3.1 Training Interval Type-2 FBFN Models by Using Genetic Algorithm and Active 

Set Method 

Consider a class of nonlinear dynamical system with m inputs and n state variables 

(m and n are positive integers), which can be represented by the following state space 

equation: 

 0( 1) ( ( ), ( )), (0)k k k+ = =x f x u x x   (3.1) 

where T
1( ), , ( )( ) ][ nkk x x k=x …  is the vector of measurable state variables, 

T
1( ), , ( )( ) ][ mkk uu k=u …  is the input vector, k is the time instance, f is the vector of 

unknown functions that are assumed to be locally Lipschitz nonlinear: 

 T
1 ( ), , ][ ( )nf fk k=f …   (3.2) 

The locally Lipschitz property of f ensures that the solution of the state space equations 

exists and is unique [77]. 
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It has been proven by Wang and Mendel [2] that a linear combination of fuzzy basis 

functions are capable of uniformly approximating any real continuous function on a 

compact set to arbitrary accuracy. In this paper, to approximate a future state of the state 

variable ( )1, ,
p

x p n= …  of the nonlinear system, an interval type-2 FBFN model can be 

constructed from the input and measurable state variable data through a set of J fuzzy rules, 

in which rule jR  has the following form:  

 1 1 1 1Rule ( ) is AND  ( ) is  AND ( ):  is AND  ( ) is 

THEN , 1

IF 

( 1) , ,

j j j j j

n

j

p

n m mR k X k X k U kx x u u U

x k Y j J+ = =

… …

…ɶɶ
 

(3.3) 

where  1( ) ( )
m

u k u k…  are the inputs at time instance k. 

1( ) ( )
n

x xk k…  are the measured state variables. 

( 1)px k +ɶ  is the future interval value of the state variable 
px . 

1
j j

nX X…  and 1
j j

mU U…  are type-1 fuzzy sets of rule jR  characterized by 

Gaussian membership functions ( )
p
j pX

xµ  and ( )
q
j qU

uµ ( )1, , ; 1, ,p n q m= =… …  with the 

centers j

Xp
c , j

Uq
c  and standard deviations j

Xp
σ ,  j

Uq
σ : 

 ( )
2

1
) ) exp

2
, ( , (j j

p p

p Xpj

p

j

p X jpX

Xp

p

x c
X x x xµ µ

σ

 − 
 ==  
−

  
 

  (3.4) 

 ( )
2

1
) ) exp

2
, ( , (j

q
j

q

j

q q

q Uqj

qU U

U

q

q

j

u c
U u u uµ µ

σ

 − 
 ==  
−

  
 

  (3.5) 
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jYɶ  is a type-2 interval fuzzy set. jYɶ  is determined by j

lw  and j

rw , which are the 

two end points of its centroid interval set: ( )) ) 1 wh, ( ( en x,j j

j j

lY r

j

Y
x xY wx wµ µ  = ∈ = ɶ ɶ

ɶ . 

By assuming that singleton fuzzification, product inference and centroid 

defuzzification methods are used in the inferencing process, for a crisp input vector: 

 T
1 1 1( ) ( , , , , ,, , )m n n mz x xz u u+= =z … … … , (3.6) 

the output of the type-2 FBFN described in (3.3) is an interval number and can be 

calculated by [73], [78]: 
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( )

( )

( )

1 1
1 1

1 1
1 1

1 1

( (

[ , ]

) )

( 1) ,
( () )
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J J
m n m n

ri i
j j

J J
m

j j j j

l i i i i

p l r
j j

i i

n m n

i i
j j

J

i i

j j

l j j

J

r

j j

w z w z

y y

z z

w p w p

x k
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µ µ

+ +

= =
= =

+ +

= =
= =

= =

 
 
 = =


+






 

 


=






∑ ∑∏ ∏

∑ ∑∏ ∏

∑ ∑z z

ɶ

  (3.7) 

where 

( )
1

1
1

(
( )

)(

)
n j

i i

j
j

i i

i

J
n

i
j

z
p

z

µ

µ

=

=
=

=
∏

∑ ∏
z  is the pseudo fuzzy basis function of rule jR ,

i
z  is the ith 

element of the crisp input vector z, J is the number of fuzzy rules. 

Assume that N input-output training pairs {{ } }{ ( ), } (w( ith 1, , )1)pt ipt i x kk i N=+z …  

are available, the task of training a type-2 FBFN is to determine the pseudo fuzzy basis 

functions ( )jp z  with 1, ,j J= …  and the output interval fuzzy set characterized by j

lw  

and j

rw  in order to minimize  the errors ( )
l

e i , ( )
r

e i , ( )
l

y iδ  and ( )
r

y iδ  defined by the 

following equations: 

{ } { }{ }
1 1

( ( )) ( ) ( ) ( ( )) ( )( () )1 j j

j pt i l l l j pt i

J J

pt i r rr

j j

p k w e i i p k w e i ix k y y
= =

= + + = −+ −∑ ∑z zδ δ   (3.8) 
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where ( )
l

e i  and ( )
r

e i  are the training errors, and ( )
l

y iδ  and ( )
r

y iδ  are the errors due to 

system uncertainties. ( )
l

e i , ( )
r

e i , ( )
l

y iδ  and ( )
r

y iδ  must be kept positive during the 

training process to obtain the lower and upper bounds of the output interval fuzzy set. By 

defining the problem as in Eq. (3.8), the type-2 FBFN accounts for both the uncertainties 

existing within the nonlinear system as well as the training errors. 

The above equations can be rearranged into matrix forms as follows: 

 
lpt r rl= + = −Pw ε Pw εx   (3.9) 

where {
T

1} {2}[ , , ]
pt pt pt

x x=x … , T
1[ , , ]l l lJw w=w … , T

1[ , , ]rr r Jw w=w … , 

T[ (1) ,(1) (1), ( ) ]l l l l le ey yNδ δ= + +ε … , T[ (1) ,(1) (1), ( ) ]r rr r re ey yNδ δ= + +ε …  and 

 
( ) ( )

( ) ( )

1

1

(1) (1)

( ) ( )

t J t

t J t

p p

p N p N

 
 

=  
  

z z

P

z z

…

⋮ ⋱ ⋮

…

  (3.10) 

The pseudo fuzzy basis functions ( )jp z  with 1, ,j J= …  can be found in a similar 

way as in the type-1 FBFN [73]. By using the genetic algorithm, the method starts with a 

preset pseudo fuzzy basis function and sequentially selects basis functions that will 

decrease the error the most. In other words, each added pseudo fuzzy basis function will 

maximize the following error reduction measure: 

 2[ ] || ||terr
+= PP y   (3.11) 

where +P  is the pseudo inverse of the pseudo fuzzy basis function matrix P .  The pseudo-

fuzzy basis function ( )jp z  is characterized by a nonlinear parameter set { , }j j jλ = c σ , 

where 1 , )( ,j j

j m n
c c +=c …  and 1 , )( ,j j

j m n
σ σ +=σ …  are the vectors of the means and standard 

deviations of input membership functions. In order to obtain the optimal values of these 
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parameters, the parameters are encoded into binary strings and the evolution of the 

population is conducted through reproduction, cross over and mutation. The fitness of each 

individual in the population is chosen to be a linear function of the error: 

 ) [ ]( a eg rr bλ = +   (3.12) 

where a and b are scalar parameters. The use of genetic algorithms for fuzzy basis function 

networks has been proven to be effective for obtaining the pseudo fuzzy basis functions 

[49]. The training can be done offline based on the input and output data of the nonlinear 

system. The parameters of the model will be used to design the controller. Hence real-time 

computation with generic algorithms is not required during the implementation of the 

controller. 

Once the response vector matrix P is determined, finding 
l

w  and 
r

w  becomes two 

constrained linear least-squares problems:  

 
2

2

min ,

min ,
l

r
r

l

r

t l t

t t

 −



− ≥

≤
w

w

Pw y Pw y

Pw y Pw y
  (3.13) 

In this work, only the first case is considered since the second case can be 

transformed to the first case by replacing the condition 
r t

≥Pw y  with an equivalent 

condition 
tr

− −≤Pw y .  

With T=H P P  and T
t= −c P y , the following can be obtained: 

 

( ) ( )
T

2

T T T T

T T T

1 1
2 2

1 1
2 2
1 1
2 2

l t l t l t

l l t l t t

l l l t t

− = − −

= − +

= + +

Pw y Pw y Pw y

w P Pw y Pw y y

w Hw c w y y

  (3.14) 
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Since T
t ty y  is constant, the first constrained linear least square problem given in Eq. (3.13) 

becomes a constrained quadratic programing problem: 

T T

2

1
min , min  

2
subject to 

l l

l t l t l l l l t

 
− ⇔ + 

 
≤ ≤

w w
Pw y Pw y c w w Pww yH   (3.15) 

The solution of (3.15) can be solved by using the active-set method. The active set method 

is described in [79]–[81] and is available as a commercial package by using the MATLAB 

optimization toolbox. The steps to obtain 
l

w  by using the active set method is described 

as follows: 

Step 1: Construct the active constraint matrix 
k

S  whose rows are taken from the 

constraints given in matrix P that are active at the solution point (equality constraint is 

satisfied). k is the iteration number. 

Step 2: Assume that 
k

Q  and 
k

R  are the QR decomposition matrices of 
k

S  (
k

Q  is 

an orthogonal matrix and 
k

R  is an upper triangular matrix). From the last N – l columns 

of 
k

Q , where N is the number of training data and l is the number of active constraints, 

form matrix 
k

Z : 

 T T[:, 1: ] where k k k k kl N= + =Z Q Q S R   (3.16) 

Step 3: Calculate the search direction 
k

d  as a linear combination of the columns of 

k
Z : 

k k
=d Z r  for some vector r.  

Step 4: Update the value of vector 
l

w  by the search direction 
k

d : 

 { 1} { }l k l k kα+ = +w w d   (3.17) 
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where 
( ){ }

{1,..., }
m

)
in

(
i l k t

i N
i k

y i
α

=

−
=

−p

p

w

d
 and 

i
p  is the ith row vector of matrix P . 

Step 5: Calculate the Lagrange multiplier vector 
k
λ , which satisfies: 

 T
k k =S λ c   (3.18) 

Step 6: If all the elements of 
k
λ  are positive, { 1}l k +w  is the optimal solution. 

Otherwise, go to step 1. 

 

3.2 Obtaining the Interval Type-2 T-S Fuzzy Model from the Interval Type-2 A1-C2 

FBFN Model 

Since type-2 T-S fuzzy models have been used extensively to design robust 

controllers, this section introduces a method to convert an interval type-2 FBFN to an 

interval type-2 A1-C2 T-S fuzzy model. In the interval type-2 A1-C2 T-S fuzzy model, the 

antecedents are type-1 fuzzy set (A1) while the consequents are type 2 interval numbers 

(C2). This method will expand the applications of the type-2 FBFN in many areas since 

existing robust controllers can be easily implemented on nonlinear systems with 

unstructured uncertainties.  

Consider a class of nonlinear systems with p state variables as described in Eq. (3.1). 

Each state variable of the nonlinear system can be approximated by an interval type-2 

FBFN model as described in the previous section. The structure of rule j

p
R  of the type-2 

FBFN that calculates the state variable , ( 1 )px p n= …  has the following form: 

,1 ,1 1 , ,1( ) is and  ( ) is  and ( ) is and  ( ) is 

THEN ( 1

: I

) ,

 

1, ,

Fj j j j j

n p n m q mp p q

j

p p

R k X k X k U k

x k

x x u u U

G j J=+ =

… …

…ɶɶ

  (3.19) 
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where  and j j
X U are type-1 fuzzy sets with Gaussian membership functions. j

pGɶ  is an 

interval type-2 fuzzy set with its centroid j

p
wɶ  as an interval set: [ , ]

p pl

j j j

pr
w w w=ɶ . ( 1)px k +ɶ  

is the predicted interval value of the state variable 
px .  

Consider T
1 2( ), ( ),( [ ( ]) )nk x k x k x k=x …  as the vector of the measured state 

variables and T
1 2( ), ( ),( [ ( ]) )mk u k u k u k=u …  as the input vector. From Eq. (3.7), ( 1)px k +ɶ  

can be computed by an uncertain nonlinear mapping 

: ( ) , ( ) ( 1)m n

p pf k k kx⊂ ℜ ⊂ ℜ → ⊂ ℜ+u xɶ ɶ . The mapping includes j

p
wɶ  in the function as 

the uncertain parameter: 

( ) ( )

( ) ( )

( ) ( )

( )

, ,

, ,

, ,

,

1 1 1

1 1 1

1 1 1

1 1

( ) ( )
( 1) ( ( ), ( ))

( ) ( )

( ( ), ( )), ( ( ), ( ))

( ) ( )

( )

j
p i q i

j
p i q i

j
p i q i

j
p

j

j

j

i

n mJ

iXj i i

n mJ

Xj i i

n mJ

X Uj i i

nJ

X

j

p iU

p p

i iU

pl pr

j

pl i i

j i i

w x k u k
x k f k k

x k u k

f k k f k k

w x k u k

x k

µ µ

µ µ

µ µ

µ µ

= = =

= = =

= = =

= =

+ = =

 =  

=

∑ ∏ ∏

∑ ∏ ∏

∑ ∏ ∏

∑ ∏

x u

x u x u

ɶ
ɶɶ

( )

( ) ( )

( ) ( )

,

, ,

, ,

1

1 1 1

1 1 1

,
( )

( ) ( )

( ) ( )

q i

j
p i q i

j
p i

j

j

q i
j

m

i

n mJ

Xj i

iB

j

p i

n

r i iU

i i

mJ

Xj Ui i

u k

w x k u k

x k u k

µ µ

µ µ

=

= = =

= = =











∏

∑ ∏ ∏

∑ ∏ ∏

  (3.20) 

When the states of the system are around a certain operating condition: 

 
T(1) ( ) T (1) ( ), , ][ , , ,n m

i i i i i i
χ χ υ υ≈ ≈  = =  x uχ υ ……  (3.21) 

the local linear models of the nonlinear system represented by Eq. (3.19) can be used to 

construct fuzzy rules in the interval type-2 T-S fuzzy model. By choosing enough operating 

points, the interval type-2 T-S fuzzy model will become a good approximation of the 
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nonlinear dynamic system. At each operating point, the interval type-2 T-S fuzzy rule can 

be obtained as follows: 

( )[ ] ( )[ ]

1 1 1 1( ) is and  ( ) is  and ( ) is and  : IF 

THEN ( 1)

( ) is

( ) ( )

 

, ,

i i i i

n m

i i i i i i i i i

i

n mx x uR k X k X k U k Uu

k k k+ = − ++ −x χ χ υ x χ B χ υA u υ

… …

ɶ ɶɶ
  (3.22) 

where 1, ,
n

X X… and 1 m
U U…  are type-1 fuzzy sets with triangular membership 

functions that describe the operating condition. Each element in the coefficient matrices 

( ),i i iA χ υɶ  and ( ),
i i i

B χ υɶ  in Eq. (3.22) is an interval number.  ( ),i i iA χ υɶ  and ( ),
i i i

B χ υɶ  

are computed as follows: 

( ) ( )

1 1 1 1

1

,1

1

, 1

( , ) ( , ) ( ,

,

) ( , )

( , ) ( , ) ( , ) ( )

,

,

i i

i i

n m

n n n n

n m

i i i i i i

f f f f

x x u u

f f f f

x x u u= =
= =

 ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂

∂ ∂

  
   
   
   = =
   
 ∂ ∂  
   
   ∂ ∂ ∂ ∂x χ x χ

u υ u υ

x u x u x u x u

χ υ χ υ

x u x

A B

u x u x u

… …

ɶ ɶ

ɶ ɶ ɶ ɶ

ɶ ɶ

⋮ ⋱ ⋮ ⋮ ⋮

…
ɶ

⋱

ɶ
…

 

 (3.23) 

The partial derivative of the nonlinear mapping 
pf , ( 1 )p n= …  with respect to the 

state variable 
qx , ( 1 )p n= …  can be calculated by the following formula: 

 T
,

( , )
( , )p

p

q p

q
x

f∂
=

∂
⋅

x u
a x u w

ɶ
ɶ   (3.24) 

where 
T(1) (2) ( ), , J

p pp p
w w w =  w …ɶ ɶ ɶ ɶ  and 

T(1) (2)
, ,

)
,

(
,

J

p p q p q p qq
a a a =  a … . The jth element of 

vector ,p qa  can be calculated as: 
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, ,

, ,

,

,

,

,

, , , ,

1 1

,

1 1 1

11

2

( )

21 1 1

) )

( , )
) )

) )

( (

( (

( ( ( () )

j
p r q r

j
p r q r

j j
p r q r p r q r

j
p q

j

j
p q

j

j
p q

j j

j
p q

q n mX

Xr rr rU

X

p q n mJ

r rXj r r

qn m n mJ X

r r r rX Xjr r i j

j

U

U U

X

x c
x u

a
x u

x c
x u x u

= =

= = =

== = = =

 −
 −
 
 =

 −
   −    

 
−

∏ ∏

∑ ∏ ∏

∑∏ ∏ ∏ ∏

x u

µ µ
σ

µ µ

µ µ µ µ
σ

, ,1 1

2

1
) )( (j

p r r
j

q

n mJ

r rX Uj r r
x u

= = =

 
 
 
 

 
  ∑ ∏ ∏µ µ

  (3.25) 

Within rule j of the FBFN model (for the output 
px ), 

,
j
p qX

c  and 
,

j
p qX

σ  are, respectively, the 

mean and standard deviation of the Gaussian membership function of 
qx .  

Similarly, the partial derivative of the nonlinear mapping 
pf  with respect to the 

state variable 
qu  can be computed by: 

 T
,

( , )
( , )p

p

q p

q
u

f∂
=

∂
⋅

x u
b x u w

ɶ
ɶ   (3.26) 

where 
T(1) (2) ( ), , M

p pp p
w w w =  w …ɶ ɶ ɶ ɶ  and 

T(1) (2)
, ,

( )
, ,p

M

p q p q qq p
b b b =  b … . The jth element of 

vector ,p qb  can be calculated as: 

, ,

, ,

,

,

,

,

, , , ,

1 1

,

1 1 1

11

2

( )

21 1 1

) )

( , )
) )

) )

( (

( (

( ( ( () )

j
p r q r

j
p r q r

j j
p r q r p r q r

j
p q

j

j
p q

j

j
p q

j j

j
p q

q n mU

Xr rr rU

U

q p n mJ

r rXj r r

qn m n mJ U

r r r rX Xjr r r r

j

U

U U

U

u c
x u

b
x u

u c
x u x u

= =

= = =

== = = =

 −
 −
 
 =

 −
   −    

 
−

∏ ∏

∑ ∏ ∏

∑∏ ∏ ∏ ∏

x u

µ µ
σ

µ µ

µ µ µ µ
σ

, ,1 1

2

1
) )( (j

p r r
j

q

n mJ

r rX Uj r r
x u

= = =

 
 
 
 

 
  ∑ ∏ ∏µ µ

  (3.27) 
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Assume that mini
A , maxi

A , mini
B  and maxi

B  are matrices that contain the lower and 

upper values of each element of matrices i
Aɶ  and 

iBɶ , respectively. Finding mini
A , maxi

A , 

mini
B  and maxi

B  becomes the problem of obtaining the maximum and minimum values of 

T
, ,

( , )
i i

q pp = =
⋅

x χ u υ
a x u wɶ  and T

, ,
( , )

i i
q pp = =

⋅
x χ u υ

b x u wɶ , respectively. Since the elements of 

matrices ,p qa  and ,p qb  are crisp numbers while the elements of vector 
pwɶ  are interval 

numbers, the solution can be obtained easily by using existing linear programming methods 

such as the simplex method [82] or interior-point methods [83], [84].  

In addition to mini
A , maxi

A , mini
B  and maxi

B , finding the coefficient matrices of the 

type-2 T-S fuzzy model that produce the upper and lower bounds of the output is important 

for the controller design purpose. With ( ( ), ( ))plf k kx u  and ( ( ), ( ))prf k kx u  defined in Eq. 

(3.20), the matrices 
il

A , 
il

B  are introduced as the linearized coefficient matrices of 

( ( ), ( ))plf k kx u  through the linearization process as given in Eq. (3.23). Similarly, 
ir

A , 
ir

B  

are introduced as the linearized coefficient matrices of ( ( ), ( ))prf k kx u . Then, when 

( )
i

k ≈x χ , ( )
i

k ≈u υ  the following approximations can be obtained: 

 ( )[ ] ( )[ ], , ( ,( ) ( ) ( ) ( ))
i i i i il i i i pil l

fk k k k− + − ≈+χ χ υ x χ B χ υ u υ x uA   (3.28) 

and ( )[ ] ( )[ ]0, ,( ) ( ) ( ) )( , )(
i ir i i ir i i i pr

k kfk k− + − ≈+χ χ υ x B χ υ x uA x u υ   (3.29) 

In other words, 
il

A  and 
il

B  are the coefficient matrices of the local linear model 

that approximate the lower bound of the nonlinear system output, 
ir

A  and 
ir

B  are the 

coefficient matrices that are used to approximate the upper bound of the output. It is noted 
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that the values of 
il

A , 
il

B , 
ir

A  and 
ir

B are different from the values of mini
A , maxi

A , mini
B  

and maxi
B . 

With 
plw  and 

prw  as the lower and upper bounds of 
pwɶ , respectively, the element 

{ , }il p q
A  (on the pth row and qth column) of matrix 

il
A  can be calculated by using Eq. (3.24) 

as follows: 

 } , ,{
T

, ( , )
i i

il p qq plpA
= =

⋅=
x χ u υ

a x u w   (3.30) 

Similarly: 

 } , ,{
T

, ( , )
i i

ir p qq prpA
= =

⋅=
x χ u υ

a x u w   (3.31) 

 } , ,{
T

, ( , )
i i

il p qq plpB
= =

⋅=
x χ u υ

b x u w   (3.32) 

 } , ,{
T

, ( , )
i i

ir p qq prpB
= =

⋅=
x χ u υ

b x u w   (3.33) 

By defining the following matrices: 

           max min

2
i i

i

+
=

A A
A , min max

2
i i

i

+
=

B B
B , i i i

∆ = −A A Aɶ ɶ , 
i i i∆ = −B B Bɶ ɶ ,  (3.34) 

in order to derive the upper bound of the Lyapunov equation proposed in the next section, 

the matrices 
im

∆A  and 
im

∆B  are introduced such that 

( ) ( ) ( ) ( )
,

max
i i

T T

im im im im
∆ ∈∆ ∆ ∈∆

∆  + + = + +
 

∆ ∆ ∆ ∆ ∆ ∆ ∆
A A B B

A x A x Ax AxB u B u Bu Bu
ɶ ɶ

  (3.35) 

Further introductions of p

imδa , p

ilδa , p

irδa , p

iδaɶ , p

imδb , p

ilδb , p

irδb , p

iδbɶ , p

ila . p

ira , 

p

ilb , p

irb , p

ia , p

ib  as the pth rows of matrices 
im

∆A , 
il

∆A , 
ir

∆A , i
∆Aɶ , 

im
∆B ,  

il
∆B , 

ir
∆B , 

i∆Bɶ , 
il

A , 
ir

A , 
il

B , 
ir

B , 
i

A  and 
i

B , respectively, and { }i pχ  as the pth row of the operating 

condition vector 
i
χ  are needed to construct the matrices 

im
∆A  and 

im
∆B .  
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If the operating condition { }i pχ  is positive, from the definitions of 
ir

A  and 
ir

B , the 

following can be obtained when ( )px k  is near { }i pχ : 

( ) ( ) ( ) ( )
T

,

T
max

p p
i i

p p p p

ir ir ir ir
∈ ∈

+ 


+ = +


+
δ δ δa a bδb

ax b ax bδ δ u δ a x b a xδ u δ δ u δ δb u
ɶɶ

  (3.36) 

Similarly, if the operating condition { }i pχ  is negative, the following can be obtained when 

( )px k  is near { }i pχ : 

( ) ( ) ( ) ( )
T

,

T
max

p p
i i

p p p p

il il il il
∈ ∈

+  =


+ + +
a δa bδ δ δb

ax b ax bδ δ u δ a x b a xδ u δ δ u δ δb u
ɶɶ

  (3.37) 

Hence, the rows of 
im

∆A  and 
im

∆B  can be computed by: 

 
{ }

{ }

if 0 : ,

if 0 : , 

p p p p p p

i p im il i im il i

p p p p p p

i p im r iim ii i r

< = − = −

= −≥ − =

a a a b b b

a a a

χ δ δ

χ bδ bδ b

   (3.38) 

 

3.3 Robust T-S Fuzzy Controller with Integral Term 

In this section, by using the parameters of the interval type-2 T-S model and the 

interval type-2 FBFN, a robust controller that is based on a relaxed stability condition is 

presented. Consider a class of nonlinear systems with p state variables as described in Eq. 

(3.1). Assume that the nonlinear system can be approximated by an interval type-2 T-S 

model with M rules. The structure of rule iR  of the model is described as follows: 

1 1 11( ) is and  ( ) is  and ( ) is and  ( ) i: IF 

THEN ( 1) (

s 

) ( )

i

n n m m

i i i i

i i

R k Xx x u u

k

X U

k

k k U k

k+ = +x x BA uɶɶɶ

… …
 (3.39) 

where ( 1)k +xɶ  is the predicted interval value of the state variable vector x. 1 , ,i i

nX X…  and 

1 , ,i i

nU U…  are type-1 fuzzy sets with triangular membership functions. Each element in the 
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coefficient matrices iAɶ  and 
iBɶ  is an interval number. By using the T-S fuzzy inference 

mechanism, the predicted interval output of the fuzzy model can be derived as follows: 

 

{ }

{ }

1

1

( 1) ( ( ), ( )) ( )

( ( ), ( )) ( ) ( ) ( )

( ) (

)

( )

)

(
M

i

M

i i

i

i

i i

i i

i

k

k

k k k k

k k k

k k

=

=

+ = ⋅ +

⋅ + + += ∆ ∆

=

∑

∑

x x u A x B

x u A A x B B

u

y Cx

u

ɶ ɶɶ

ɶ ɶ

ɶ ɶ

µ

µ   (3.40) 

where 
i

A , 
i

B , i∆Aɶ , 
i∆Bɶ  are defined in Eq. (3.34). 

i
µ  is the normalized weighting 

function: 

 1 1

1 1 1

( (
( ( ), ( ))

( (

) )

) )

i
t

i i
t

i
t

t

n m

tX Ut t

i n mM

t tX Ui t

t

t

x u
k k

x u

µ µ
µ

µ µ

= =

= = =

=
∏ ∏

∑ ∏ ∏
x u   (3.41) 

)(
t
i

X t
xµ  and )(

t
i

U t
uµ  are the membership functions of 

t
x  and 

t
u , respectively. 

1( ),( [ )) ( ]T n

nk xk kx= ∈x … ℝ  is the state variable matrix, ( ) m
k ∈u ℝ  is the control input 

vector and ( )kyɶ  is the output of the system. 

A dynamic state feedback robust T-S fuzzy controller (RTSFC) (Figure 3-1) with 

N rules is proposed. The structure of rule jR of the controller is described as follows: 

 

1 1( ) is and  ( ) is 

THEN ( ) ( ) ( ),

( ) ( ), ( )

: IF 

( 1) ( ) ( )

j

n n

j

j

j

j
R k X k X

k k k

k k k k k

x x

k

= +

− += = −

u K ζx k

e e r Cxζ ζ

…

  (3.42) 

where ζ  is the integral of the error vector e. 
jK  is the proportional feedback gain and 

jk  

is the integral gain of rule j. r(k) is the reference signal. By using the TS inference 
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mechanism, the output of the controller ( )ku  described by Eq. (3.42) at time instance k 

can be calculated as: 

 ( ) ( )( ) ( ) ( ){ }
1

j

N

j

j j
k v k k k

=

⋅ +=∑u x K x ζk   (3.43) 

where 1( ),( [ )) ( ]T n

nk xk kx= ∈x … ℝ  is the state variable matrix, 
jv  is the normalized firing 

strength of the jth rule: 

 ( )( ) 1

1 1

)

)

(

(

j
t

j
t

n

tXt

j nN

Xj tt

x

x
v k

=

= =

=
∏

∑ ∏
x

ν

ν
  (3.44) 

and )(
t
i

X t
xν  is the membership function of 

t
x . 

By substituting Eq. (3.43) into Eq. (3.40), the closed-loop system dynamic 

equations can be obtained: 

( )( ) ( ){ }

( )

1

0 0 0 0 0 0 0

1

( 1) ( ( ), ( )) ( ) ( )

( ) ( )

(

( )

(

) ( 1) )( )1 (

)

1

M

i

N

i j i i i j i j i

j

k k k k k

k k

k

k

k

k k

v k

k

= =

+ = ⋅ + + + +

+ + +

∆ ∆

= ∆ ∆

− +

+

= − − −

∑∑x x u A A B K x B k B

A A B K x B k B

r

x ζ u

ζ u

ζ ζ Cx

ɶ ɶɶ

ɶ ɶ

µ

 

  (3.45) 

where 
1

0

M

i i

i

µ
=

=∑ AA , 0
1

M

i i

i

µ
=

∆ = ∆∑ AA , 
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Figure 3-1: Schematic diagram of the closed loop control system. 

By defining the following vectors and matrices: T( ) [ ) ( ]( )k k k= ζz x , 00 ][=K K k , 

0 0 
=  − 

A
A

C I
, 0 0 

=  
−

∆


∆A
A

C I

ɶ
ɶ , [ ]

T

0 0=B B  and 
T

0 0∆ ∆ =B Bɶ ɶ , the closed loop 

system as in Eq. (3.45) can be rewritten as: 

 ( )( 1) ( ) ( )k k+ = + +∆ + ∆z A A B B K zɶ ɶɶ   (3.46) 

where ( 1)k +zɶ is the predicted interval value of the state variable vector z. 

The following lemma is an expansion of the lemma provided in [59], in which the 

positive constant α is replaced by a positive definite matrix Z. 

Lemma 1: Given matrices E, F and a positive definite matrix Z, the following 

inequality can be obtained: 

 
T T

T T 1

0

0

0

0 −

 
 


 
≤  
 

E Z

Z F

E

F

E F

F E
  (3.47) 

Proof:  

The lemma can be proven by using the following property of the matrix norm: 

 ( )( )
T1/ 2 1/ 2 1/ 2 1/ 2 0− −− − ≥GZ HZ GZ HZ   (3.48) 
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where 
T

0

 
=  
 

E
G ,  T

0 
=  
 

H
F

. The above inequality is equivalent to 

 T T T 1 T−+ ≤ +GZGGH HG HZ H   (3.49) 

�           
T T

T T T 1 T
T T

0 0
0 0 0 0

0 0
−      

       + +             
      

≤
E E

F E Z E Z F
F F

  (3.50) 

which is equivalent to inequality (3.47). Hence, the lemma is proven.            ■ 

Based on Lemma 1 and the coefficient matrices of the type 2 T-S fuzzy model, the 

feedback gains of the RTSFC can be found from the solution of the LMI given in Theorem 

1. 

Theorem 3: Consider a class of nonlinear control systems as described in Eq. (3.1), 

assume that the nonlinear system can be approximated by a type-2 T-S fuzzy model as 

described in Eq. (3.39), which is obtained from a type-2 FBFN system as described in Eq. 

(3.19).  If there exists a matrix Y, a positive symmetric matrix Q, positive definite diagonal 

matrices 
ijZ , a positive constantα , and the following LMI is satisfied:  

 

T T T T T T

1

1

with

(1 )

0 0,

0

 1, , 1, ,
im j im i j

im im j ij

i i j ij
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 − − ∆ ∆
 
∆ ∆ − ≤ 
 
 

+ +

+ = =

+ − +

Q A Y B QA Y B

A Q B Y Z

A Q

Q

B Y Q Z

… …

α

 (3.51) 

then the system with a robust T-S fuzzy controller as described in Eq. (3.42) with 

1
j j j j

− = = K K k Y Q  is quadratic stable with a convergent rate α . 

Proof: Define a Lyapunov function ( ) T( ) ( ) ( )V k k k=z z Pz  where P is a positive 

definite matrix. The system is stable with a convergent rate α  when 

 ( )( 0)V Vα∆ ≤+ zz   (3.52) 
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which is equivalent to 

( ) ( )

T T T

T T T T

( 1) ( 1) ( ) ( ) ( )

( ) ( ) ( ) ( ) (
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1) (( ))
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∆ ∆ ⇔ + + + + ∆ − −+ + ∆

Pz

z A A K B B

z Pz z Pz

A A B B

z

K P zPɶ ɶɶ ɶ

α

α
  (3.53) 

The above inequality can be written in the matrix form as: 
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1
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0

α
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  (3.54) 
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  (3.55) 

By applying Lemma 1, the following can be obtained: 
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  (3.56) 

where 
11

N

j

M

i j ij

i

vµ
= =

=∑∑ ZZ ,  
ijZ  is a positive definite diagonal matrix. 

From (3.56), inequality (3.55) is satisfied if 

            
( ) ( )T T TT T T

1 1
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− − + ∆ ∆ ∆ ∆
≤
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A BK P Z

P Zɶ ɶɶ ɶ
  (3.58) 

Since 
ijZ  is a positive definite diagonal matrix, the following inequality can be 

obtained: 

       ( ) ( ) ( ) ( )T T T T TT

i j i ij i i j im j im ij im im j∆ ∆ ∆ ∆ ≤+ ∆+ + ∆+∆ ∆ZA K B A B K A K B A KZ Bɶ ɶɶ ɶ   (3.59) 
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where 
im

∆A  and 
im

∆B  can be calculated by Eq. (3.38). Hence, inequality (3.58) is 

satisfied if 

( ) ( )T T T T T

1 1
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∆ ∆=∑B B . By replacing matrix P by Q such that 1−=Q P , (3.60) is equivalent 

to:  
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The above inequality can be rewritten as:  
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where j j=Y K Q , 
j j j

 =  K K k . Since 0i jvµ ≥ , the above inequality is satisfied if 

each term under the summation is negative semi-definite. Hence, the theorem is proven.  ■ 

Theorem 3 provides a method to obtain a robust T-S fuzzy controller that not only 

guarantees system stability but also can achieve good transient performance. The designer 

can use the convergent rate to adjust how fast the system converges to steady-state values. 
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Since the LMI set does not depend on the uncertainty norm but on the linear coefficient 

matrices of the local linear systems that maximize the Lyapunov function, the stability 

conditions provided in this paper are much more relaxed than other robust controller’s 

conditions. The result is a robust T-S controller that can achieve performance as good as a 

T-S controller that is designed for a system without uncertainty. 

 

3.4 Simulation Results on an Electrohydraulic Actuator 

In this section, performance comparisons on an electrohydraulic actuator (EHA) 

between the RTSFC, the robust sliding mode controller [18] and the H∞ sliding mode 

controller [85] are presented. The electrohydraulic actuator is driven by a bidirectional 

fixed displacement gear pump. A special symmetrical actuator is connected with the load 

and the motion of the load is controlled by varying the speed of the electric motor. In [86], 

a nonlinear model of the hydraulic part of the EHA system was developed as follows: 
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  (3.64) 

where 1 2 3,  and x x x  are the position (m), velocity (m/s) and acceleration of the load (m/s2), 

respectively; ( )u k  represents the rotation speed of the bidirectional hydraulic pump (rpm), 
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which is also the control signal of the system. Other parameters can be found in Table 

Table 3-1. 

The uncertainties of the EHA are introduced by time-varying friction effects, which 

are included in the variations of the coefficients of the nonlinear actuator friction 

1 2 3,  and a a a  [18]: 

 

[ ]

[ ]

[ ]

1 1 1 1 1 1 1

2 2 22 2

3 3
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3 3
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− +

∈

− +

∆ ⋅ ∆ ⋅

∈ ∆ ⋅ ∆ ⋅

∈ ∆ ⋅ ∆ ⋅

  (3.65) 

with 4
1 2. 101oa = × , 2 1450

o
a = − ,  3 46

o
a = .  

Table 3-1: Parameters of the EHA [18], [85], [86]. 

Symbol Name Value 

M Mass of the load 20 kg 

pA  Pressure area in the symmetric 
actuator 

4 2105.05  m−×   

pD   Pump displacement 7 3101.6925  m /rad−×   

e
β   Bulk modulus of the hydraulic oil 8102.1  Pa×   

T
C   Lumped leakage coefficient 13 35  m /10 Pas−× ⋅   

0V   Mean volume of the hydraulic 
actuator 

5 3106.85  m−×   

1 2 3, ,ω ω ω   Lumped system noises and 
disturbances 

3100.01  m−×  

 

A type-2 FBFN model is used to approximate the state variable 3x  of the nonlinear 

system. The structure of rule j of the FBFN has the following form: 
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1 1 2 2 3 3

3

( ) is and ( ) is  and ( ) is  and ( ) is 

THEN ( 1)

: IF j j jj j

j

x x x uR k X k X k X k U

x k G+ = ɶɶ

  (3.66) 

where 3( 1)x k +ɶ is the predicted interval value of the state variable vector 3x .  j
Gɶ  is an 

interval type-2 fuzzy set with its centroid j
wɶ  as an interval set: [ , ]p l

j j j

rw w w=ɶ . 

In order to evaluate the performance of the type-2 FBFN for capturing the 

uncertainties of the data, the type-2 FBFN is trained with training data generated from the 

nonlinear system, then comparisons between the outputs of the type-2 FBFN and the 

nonlinear system are conducted. During data generation process, the uncertain parameters 

in the nonlinear model are assigned with random values within bounded ranges. In this 

work, the type-2 FBFN model was obtained two times from the same nonlinear model with 

different amounts of uncertainties represented by the nonlinear friction coefficients 1a , 2a  

and 3a . It has been shown that 10% variations of the parameters 1a , 2a  and 3a  can 

reasonably capture the real friction in the actual system [18]. For each training data, the 

parameters 1a , 2a  and 3a  were chosen as random numbers within the lower and upper 

bounds as shown in Eq. (3.65). The values of 1a∆ , 2a∆ , 3a∆  can be found in Table 3-2. 

Table 3-2: Uncertainty cases for the EHA system. 

Case 1a∆   2a∆  3a∆  

1  0.1 0.1 0.1 

2 0 0.1 0 
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Figure 3-2 shows the non-dimensional error indices (NDEI) during training in two 

cases. The NDEIs show that the errors observed during the training processes approach 

steady-state values as the number of hidden nodes is increased. Figure 3-3 shows nominal 

system responses of the nominal nonlinear system when the input is constant. Figure 3-4 

and Figure 3-5 show the response comparison between the type-2 FBFN and the uncertain 

nonlinear model under two uncertain conditions and input values. It can be seen from the 

results that the type-2 FBFN models are able to capture all the uncertainties of the nonlinear 

system very “tightly”. The deviations from nominal responses of the type-2 FBFN are also 

very small, which proves that the type-2 FBFN can accurately approximate the nonlinear 

system. 

 

Figure 3-2: NDEI for both cases. 
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Figure 3-3: Nominal system responses (u = 30 rpm). 

From the type-2 FBFN, a type-2 T-S fuzzy model was obtained by using the 

procedure as described in Section 3.2. The type-2 T-S fuzzy model has four rules, in which 

each rule has the following form:  

 
2 2 3 3( ) is and ( ) is : IF 

THEN  ( 1) ( ) ( )

i ii

i i

R k X k Xx x

k k k+ = +x x BA uɶɶ ɶ
 (3.67) 

where ( 1)k +xɶ  is the predicted interval value of the state variable vector x. The centers of 

the fuzzy sets 2
i

X  and 3
i

X  are chosen as follows: 

 
2 4

2 2 2 2

3 2 4
3 3

3

3
1

3

1 0.015 m/s, 0.015 m/s

0.015 m/s, 0.015 m/s

X X X X

X X X X

c c c c

c c c c

= = − = =

= = − = =
 (3.68) 

The minimum and maximum values of matrices iAɶ  and 
iBɶ  are given in APPENDIX A. 
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Figure 3-4: Deviations from nominal responses with u = 10 rpm, shaded areas indicate 
the interval output deviation of the type-2 FBFN model, circle markers represent 
sampling data measured from the responses of the uncertain nonlinear system. 

By solving the LMI given in Theorem 1, a robust T-S fuzzy controller (RTSFC) 

which has four rules can be found. Each rule of the controller has the following form: 

 

2 02 3 03( ) is and ( ) is 

TH

Rule : I

EN ( ) ( ) ( ),

( 1) ( ), ( ) ( ) ( )
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j

i i
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ζ ζ

u K x k
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  (3.69) 
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where the feedback gains of each rule are given in APPENDIX J. 

 

Figure 3-5: Deviations from nominal responses with u = 30 rpm, shaded areas indicate 
the interval output deviation of the type-2 FBFN model, circle markers represent 
sampling data measured from the responses of the uncertain nonlinear system. 

To investigate the performance of the RTSFC when implementing on the hydraulic 

actuator, simulations were conducted in the MATLAB/SIMULINK environment. The 

computation time to calculate the output of the RTSFC when using a DELL Optilex 960 

PC is 0.01 ms.  Hence, the RTSFC is very suitable to be implemented in many real-time 
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applications with small sampling time. The simulation results of the RTSFC were 

compared with the system responses of the robust sliding mode controller (RSLMC) [18] 

and the robust H∞ sliding mode controller (RH∞SLMC) [85] under the same conditions.  

Figure 3-6 shows the system response comparisons between the robust sliding 

mode controller (RSLMC) and the RTSFC with two different convergent rates used. A 

constant reference signal was used and the simulations were conducted in the 

MATLAB/SIMULINK environment. The results show that the RTSFC is able to obtain 

much faster responses than the RSLMC while keeping the output with less oscillation in 

both cases of convergent rates. The higher the convergent rate, the faster the responses that 

the RTSFC can achieve. In the first case ( 0.05α = ), the settling time is less than 0.05 s 

while in the second case ( 0.03α = ), the settling time is about 0.08 s. The control efforts 

of the RTSFC are shown in Figure 3-7. 

 

Figure 3-6: System response comparisons with a constant reference signal (r = 0.02m) 
between the RTSFC and the RSLMC. 
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Figure 3-7: Control inputs from the RTSFC under different convergence rates. 

Figure 3-8 shows the system response comparisons between the RTSFC and the 

robust H∞ sliding mode controller (RH∞SLMC) [85] with a sinusoidal reference signal 

under lump system noises and disturbances. The mean absolute errors between the 

controllers’ responses and the reference signals are shown in Table 3-3. From the results, 

it can be seen that the RTSFC with a convergent rate 0.2α =  can reduce the steady-state 

error by almost 50 percent compared to the RH∞SLMC. 

Table 3-3: Comparison of mean absolute errors between the RTSFC and the RH∞SLMC 

under sinusoidal reference signal. 

Controller Mean Absolute Error (m) 

RTSFC α = 0.2 7.7352e-05 

RTSFC α = 0.1 1.3222e-04 

RH∞SLMC 1.6707e-04 
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Figure 3-8: System response comparisons between the RTSFC and the RH∞SLMC with 
a sinusoidal reference signal (solid: RTSFC with 0.2α = , dash: RTSFC with 0.1α =  

dash-dot: RH∞SLMC). 

Figure 3-9 shows the system response comparisons between the RTSFC and the 

robust H∞ sliding mode controller (RH∞SLMC) [85] with a spike reference signal under 

lump system noises and disturbances. From the results, it can be seen that the RTSFC can 

follow the reference signal better than RH∞SLMC under very small transient time. The 

control efforts of the RTSFC can also be found in Figure 3-9. 
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Figure 3-9: System response comparisons between the RTSFC and the RH∞SLMC with 
a spike reference signal (solid: RTSFC with α = 0.2, dash-dot: RTSFC with α = 0.1, dash: 

RH∞SLMC, dot: reference signal). 
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CHAPTER 4. MODELING AND ROBUST CONTROL OF LASER WELDING 
PROCESS ON HIGH STRENGTH TITANIUM ALLOY USING FUZZY BASIS 

FUNCTION NETWORKS AND ROBUST TAKAGI SUGENO FUZZY 
CONTROLLER 

This chapter first proposes a new laser keyhole-welding model and an observer to 

estimate the penetration depth of the keyhole during the welding process. Based on the 

welding model, a robust Takagi-Sugeno fuzzy controller (RTSFC) was chosen to change 

the laser power during implementation since the welding process is a nonlinear process 

with large amounts of uncertainties. Experiments conducted on titanium samples to 

evaluate the accuracy and effectiveness of the model and the RTSFC are presented at the 

end of the chapter. 

 

4.1 Introduction 

Laser keyhole welding is an important and well-known process for joining metals 

in many industrial applications. Throughout the process, the laser beam creates a weld with 

a higher aspect ratio than traditional arc welding processes [87], which is critical to deep 

penetration welding [88]. In keyhole welding, the penetration depth is the most important 

feature that needs to be monitored and controlled to ensure that the keyhole is stable and 

weld quality is good. However, the mathematical relationship between the penetration 

depth and the welding parameters is very complex [89]–[92] due to the nonlinear nature of 

the process and process variation that occurs due to the effects of many factors such as 
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varying assisted gas pressure, uneven surface of the workpiece or fluctuation of the surface 

absorption of the laser beam. Thus, estimation of keyhole geometry has become the 

primary objective of many studies. Tan et al. [91] investigated the keyhole and molten pool 

and proposed a three-dimensional model of the keyhole dynamics, together with the vapor 

plume and molten pool for the laser welding process when assisted gases are used. Courtois 

et al. [92] provided a complete model of keyhole and weld pool dynamics, which includes 

three phases of the matter: the vaporized metal, the liquid phase, and the solid base. The 

model also shows keyhole oscillation and porosity formed during the laser welding process. 

In real-time applications, the numerical models used for describing the keyhole dynamics 

described above cannot be used due to intensive computational requirements. In order to 

alleviate that problem, data-driven models such as fuzzy systems and neural networks 

based on experimental data have been built. Since the outputs of these models can be 

calculated in a short amount of time, they are suitable for control applications. Huang and 

Kovacevic [93] used a multilayer feedforward neural network and a multiple regression 

method to obtain a relationship between weld penetration and the acoustic signal measured 

during the welding process. Singh et al. [94] modeled the weld bed geometry of laser 

welding by using a counter propagation neural network and feed-forward back-propagation 

neural network. By using radial basis function neural networks, Luo and Shin [95] 

proposed static and dynamic models to estimate the keyhole geometry and predict porosity 

in the laser keyhole welding.  

However, the dynamics of the keyhole depend on many factors such as assisted gas 

pressure or uneven surface conditions. Assisted gases can alter the flow pattern of the 

molten pool and change the laser energy distribution [96]–[98]. Changes in the focal 
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diameter due to uneven surfaces can affect the distributions of the energy intensity, which 

will influence the keyhole geometry [99]. Neural network based models can only predict 

the keyhole dynamics accurately in a certain set of conditions used to train the network. 

Changing the welding parameters requires retraining of the model, making it difficult and 

impractical to use the existing models for applications in industrial settings with 

uncertainties. To alleviate this limitation and to improve the applicability of data-driven 

laser welding models, this study uses a type-2 fuzzy basis function network (type-2 FBFN). 

This fuzzy neural network system can approximate the keyhole geometry while effectively 

capturing the unstructured uncertainties, which may come from many factors such as 

varying assisted gas pressure, uneven surface of the workpiece or fluctuation of the laser 

beam diameter.  

The experiments in this study are conducted with titanium alloys. Titanium alloys 

are widely used in many areas where high performance and reliability are required [100] 

in the medical, aerospace and nuclear industries.  Hence, a robust and efficient method to 

improve the quality of welding processes is essential to meet the highly demanding 

requirements of products in these industries. In order to achieve this objective, many 

studies have investigated the influence of laser welding parameters on the quality of 

titanium samples [100]–[103]. However, since laser welding is a complex process with 

many uncertainties, real-time control of the welding quality would be desirable to ensure 

the consistent quality of the weld in the presence of uncertainties. 

The control of the weld joint-penetration in real time for other materials and 

welding processes has been reported previously. Liu and Zhang [104] used a predictive 

controller to obtain a desired weld penetration based on a linear model of the Gas Tungsten 
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Arc Welding (GTAW) process. Sibillano et al. [105] stabilized the penetration depth of the 

CO2 laser lap welding process on stainless steel plates by using a proportional-integral 

controller. However, most of the methods presented in the literature did not provide any 

stability analysis due to the lack of a mathematical model for the process. Hence, their 

applications in industry, where a high degree of reliability is required, are still limited. 

 

4.2 Experimental Setup 

The laser welding experimental setup (Figure 4-1) used in this study consists of a 

Mazak VQC-15/40 vertical machining center, a fiber laser (IPG photonics YLS-1000) with 

a focal diameter of 200 μm, a weld pool monitoring system and a real time computer for 

controller implementation. The weld pool monitoring system (Figure 4-2) includes a 

complementary metal–oxide–semiconductor (CMOS) camera with optical filters, a 200 

mW focus-adaptable green laser with the wavelength close to 530 nm used as the 

illuminant for the image processing system, and a computer equipped with the National 

Instruments (NI) Labview software and the NI vision system toolkit. The CMOS camera 

(DFK 42BUC03 USB 2.0) is a color industrial camera with a frame rate of 30 frames/s and 

the image resolution of 1280 x 720 pixels. The estimation of keyhole diameter is conducted 

based on live images by using the algorithm developed by Luo and Shin [95]. The analog 

control signal is generated by using the NI real-time computer (PXI 8115) through a data 

acquisition card (6070E). The fiber laser system accepts an analog signal with voltage 

between 0 to 12 V.  The calibration curve between the voltage and the laser output power 

is shown in  Figure 4-3. High-strength grade 5 titanium (Ti-6Al-4V) is used in this study 
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as the substrate material. The shielding gas is Argon, which is blown into the weld pool 

both coaxially and horizontally as shown in Figure 4-2. 

 

Figure 4-1: Laser Welding Control Experiment Setup. 
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Figure 4-2: Photo of the Laser Head and The Coaxial Monitoring System on the Mazak 
Vertical Machining Center. 

 

 

Figure 4-3: Relationship Between the Voltage Applied and the Laser Power [106]. 
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4.3 Estimation of Keyhole Dynamics 

In this section, an FBFN-based observer is constructed to estimate the keyhole 

penetration depth. The observer includes a static keyhole dimeter model, a dynamic 

keyhole penetration depth model and an adaptive divided difference filter (ADDF). 

4.3.1 Keyhole Dynamic Model 

The dynamic system (Figure 4-4) of the keyhole welding process can be built by 

using a type-2 FBFN model. The type-2 FBFN model is chosen since it can capture 

unstructured uncertainties within the welding process such as fluctuation of the shielding 

gas pressure, bending of the workpiece due to heat and uneven surface reflectivity. The 

output of the model is the future value of the keyhole diameter, while the inputs are the 

current and previous (measured) values of the keyhole diameter, the current laser power 

and the welding speed. The structure of the type-2 FBFN model includes a set of M fuzzy 

rules, in which the jth rule has the following form:  

1 1 1 1 1 2

1 1

2 2( ) is  and ( ) is  and ( 1) is  and ( ) is: IF 

(

 

then 1) j

j j j j j
x x

x

R u k A u k A k k

k

B B

X

−

+ = ɶɶ
  (4.1) 

where 1x , 1u  and 2u  represent the keyhole diameter, the laser power and the welding speed, 

respectively. 1
j

A , 2
j

A , 1
j

B  and 2
j

B  are type-1 fuzzy sets of rule jR , characterized by 

Gaussian membership functions ( )
p
j iA

uµ  and ( )
q
j jB

xµ ( )1,2; 1,2p q= =  with the centers 

j

Ap
c , j

Bq
c  and standard deviations j

Ap
σ ,  j

Bq
σ : 

 ( )
2

1
) ) exp

2
, ( , (j j

p p

p Apj

p pA A
A

j

p j

p

p

u c
A u u u

 −
=   

 
 = −
 
  

µ µ
σ

  (4.2) 
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 ( )
2

1
) ) exp

2
, ( , (j

q
j

q

j

q q

q Bqj

qB B
B

q

q

j

x c
B x x xµ µ

σ

 − 
 ==  
−

  
 

  (4.3) 

1
j

Xɶ  is a type-2 interval fuzzy set, which is defined by two end points j

lw  and j

rw .  

 

Figure 4-4: FBFN model for the dynamics of keyhole diameter. 

The parameters of the model ( j

Ap
c  , j

Bq
c , j

Ap
σ , j

Bq
σ , j

lw , j

rw ) were obtained by 

using the adaptive least square and active set method as proposed by Ngo and Shin [73]. 

The values of the centers and widths of the input membership functions are shown in Table 

4-1 and Table 4-2, respectively. Two endpoints of the output membership functions can be 

found in Table 4-3. With the singleton fuzzier, product inference and centroid defuzzifier 

used in the inferencing process, the estimated interval keyhole diameter 1( 1)x k +ɶ  can be 

computed by the interval-type nonlinear mapping 

1 11 2 1: ( ), ( 1( ), ( 1), ( ) )f u k u x k x kk kx +− ⊂ ℜ → ⊂ ℜɶ ɶ , which is formulated as follows 

[107]: 
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The nominal estimated keyhole diameter 1( 1)x k +  is defined as the center of the 

keyhole diameter interval 1( 1)x k +ɶ  and can be calculated as: 
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Table 4-1: Centers of the input membership functions of the keyhole diameter model. 

Rule jR  1
j

Ac  2
j

Ac  1
j

Bc  2
j

Bc  

1 1075.09 0.84 1.30 1.61 

2 290.62 1.06 0.36 0.94 

3 954.07 3.66 1.08 1.73 

4 755.97 3.26 0.81 1.49 

5 815.46 4.13 1.78 1.35 
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Table 4-2: Widths of the input membership functions of the keyhole diameter model. 

Rule jR  1
j

Aσ  2
j

Aσ  1
j

Bσ  2
j

Bσ  

1 509.6825 4.620077 3.191627 1.022197 

2 3173.063 6.062091 0.941378 0.95564 

3 785.979 4.370629 6.416455 1.337549 

4 3382.97 10.99296 0.13319 0.16013 

5 66.43663 1.578863 0.16013 3.377035 

 

Table 4-3: Endpoints of the output membership functions of the keyhole diameter model. 

Rule jR  j

lw  j

rw  

1 2.301817 2.882255 

2 -0.6872 -0.25375 

3 0.82227 1.128243 

4 3.347483 8.643222 

5 -159.703 -159.703 

 

4.3.2 Keyhole Penetration Model 

The penetration depth can be estimated from the values of laser power, welding 

speed and current keyhole diameter using the structure of the FBFN model shown in Figure 

4-5. The model is constructed by l rules, in which the ith rule has the following form: 

 2 21 1 1 1

2 2

( ) is  and ( ) is  and ( 1) i: I s 

 

F 

THEN ( 1)

i i i i

i

R u k x

x k

u k

X

A k A B

+ =

+
  (4.6) 
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where 1x , 2x , 1u  and 2u  represent the keyhole diameter, the penetration depth, the laser 

power and the welding speed, respectively. 1
i

A , 2
i

A , 1
i

B  and 2
i

X  are type-1 fuzzy sets of 

rule iR  characterized by the Gaussian membership function ( )µ i : 

 
2

1
) exp

2
(

x c
xµ

σ

− 
= − 

 


  


   (4.7) 

where c is the center and σ  is the standard deviation. 

 

Figure 4-5: Static FBFN model for the keyhole penetration depth. 

By using singleton fuzzification, product inference and centroid defuzzification 

methods, the nonlinear mapping 1 2 1 2: ( ), ( ) , ( 1) ( 1)g u k u k x k x k⊂ ℜ + ⊂ ℜ → + ⊂ ℜ  of the 

FBFN is formulated as follows: 

( )
[ ] [ ] [ ]( )

[ ] [ ] [ ]( )
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=
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=
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⋅ +

∑

∑

µ µ µ

µ µ µ

  (4.8) 

The parameters of the model (c, σ  and b) (Table 4-4) were obtained by using the adaptive 

least square and genetic training algorithm as proposed by Lee and Shin [73]. 
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Table 4-4: Parameters of the keyhole static FBFN model. 

Rule iR  1
i

Ac  2
i

Ac  1
i

Bc  1
i

Aσ  2
i

Aσ  2
i

Aσ  b 

1 9.6332 3.4077 1.4129 253.87 2.8516 0.54574 2.9875 

2 8.4658 2.0949 1.9656 290.36 1.9638 4.3209 -0.098572 

 

4.3.3 Adaptive Divided Difference Filter Based Observer 

Since the penetration depth of the welding process cannot be measured in real time 

during the welding process, an observer is designed based on the adaptive divided 

difference filter [108] to estimate penetration depth and filter out noises. The welding 

system that includes a keyhole diameter and a penetration depth model described in Eq. 

(4.1) and Eq. (4.6), respectively, can be written in the following form: 

 
( )2 1 2 1

( 1) ( ( ), ( )) ( )

( ( 1) ( ),1) )( , ( 1) ()y k

k k k k

k k ux g u x vk kk+ = + = +

+ = +

+

x f x u w
  (4.9) 

where T
1 1( 1) ( )]( ) [ kk x x k−=x  is the state variable vector which includes the current and 

past values of the keyhole diameter, [ ]
T

1 2( ) ( )( ) kk u u k=u  is the input vector which 

includes the welding power and welding speed. [ ]
T

( ) 0 ( )k w k=w , where ( )w k is the 

Gaussian random noises with covariance ( )Q k . In Eq. (4.9), ( )v k  is also the Gaussian 

random noise with covariance. The nonlinear mapping vector ( ( ), ( ))k kf x u is defined as: 

 ( )
T

1 1 2 1 1( ( ), ( )) ( ), ( 1),( ( ( )) ),kk k x k x xf u k u k k= −  f x u   (4.10) 

where f  is the nominal nonlinear mapping of the dynamic FBFNs representing the keyhole 

diameter, and g is the nonlinear mapping of the static FBFN representing the penetration 

depth. f and g are defined by Eq. (4.5) and Eq. (4.8), respectively.  



86 
 

Let Tˆ ˆˆ ( ) ( ) ( )k k k= x xP S S  denote the a posteriori state covariance estimate. Also 

define temporary matrices (1)
ˆ ( )kxxS  and (2)

ˆ ( )kxxS  whose pth columns are calculated as: 

 ( ) ( ){ }(1)
ˆ ( ) , ,

1
( ) , ( )ˆ ˆˆ ˆ( ( )) ) ,(

2p p pkk k k
T

T k T+= −−xx x xS su f x ux sf   (4.11) 
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p p p
k k k k

T
k T k

T
T k

−
+ −= − −xx x xs f ux s x s xf u f u   (4.12) 

where ˆ ( )kx  is the previous a posteriori estimate, ,ˆ
pxs  is the pth column of  ˆ ( )kxS , and T is 

the sampling time. The a priori state estimate is computed as: 

 ( ) ( ) ( )
2

,2
1

,2
ˆ ˆˆ ˆ ˆ( 1) ( ) ( )

1
, ( ) , ( ) , ( )

2
( )
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T
k T
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 −
= + + 


+ −


+ ∑ x xx x x s ux sf u f u f  

 (4.13) 

where n is the number of state variables.  

From that, the a posteriori estimate of the state variables and the future penetration 

depth of the welding process can be determined by the following equation: 

 [ ]( 1) ( 1) ( 1( 1) ( 1) )ˆ k k kk k − + ++ = + − +x x L xx   (4.14) 

 [ ]( )( )22 1( 1) ( ), ( ), ( ) ( ) ( ) ( ) , ( )x k g u k u k k k k k k+ = ⋅ − −c f x uxLx   (4.15) 

where ( )kx  is the measured state variable vector, [ ]1 0=c . The filter gain L(k) can be 

computed in real time by using the algorithm provided by Subrahmanya and Shin [108] as 

follows: 

 ( )
1T T( 1) (( 1) ( 1) ( 1) ( 1)1) u u u uk k k kk k

−

+ + × + ++ + +=
x x x x

S S S RL S   (4.16) 

 where 
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 ( )ˆ( 1) ( 1) Trace ( )u u

k
k HT k kλ α β  + = +    

x x
SS P II   (4.17) 

In Eq. (4.17), HT is the Householder transformation, α  and β  are the parameters that can 

be calculated offline, and ( )kλ  is the age weighting factor. ( 1)k +xS  and ˆ ( )u
kP  can be 

computed as [108]: 

 (1) (2)
ˆ ˆ ,( )( 1) ( )

k
k kT kH  + =  x xx xx w

S SS S   (4.18) 

 ( )( 1) ( 1( ) Trac (e) )u u u
k kkk λ α β+ = + + +P P IP I   (4.19) 

4.3.4 Converting type-2 FBFN welding model to type-2 T-S welding model 

The following part describes the process of converting the type-2 FBFN to the 

interval type-2 T-S fuzzy model [107], which was used to design the robust T-S fuzzy 

controller in the next section. During the controlled welding process, the power is used as 

the only control variable while the welding speed is set at a constant value of 2 m/min. 

Consider T
1 1( 1), )( ( ]) [x k xk k−=x  as the vector of measured state variables. When ( )kx  

and 1( )u k  are around a certain operating condition: 

 (1) (2) T
1 2( ) [ , , ( ) , ( ) 2 n] m/mii i i ik u k u k=≈ ≈ =x χ χ χ υ  (4.20) 

fuzzy rules of the interval type-2 T-S fuzzy model of the welding system can be constructed 

from the local linear models as follows: 
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 (4.21) 
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where [ ]0
i i

=υ υ . 1 2 1,  and i i i
X X U  are type-1 fuzzy sets with triangular membership 

functions that describe the operating condition. Each element of vector ( ),i i iA χɶ υ  and 

( ),
i i i

B χ υɶ  is an interval number. Based on the FBFN-based welding models, by using the 

converting algorithm provided in [107], the type-2 T-S fuzzy model of the dynamic process 

was obtained with five rules. The parameters of the model for each rule can be found in 

APPENDIX K. 

By defining the following matrices: 

max min

2
i i

i

+
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A A
A , min max

2
i i
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+
=

B B
B , i i i

∆ = −A A Aɶ ɶ , 
i i i∆ = −B B Bɶ ɶ  , (4.22) 

the predicted output of the T-S fuzzy model can be derived by using the T-S interference 

mechanism as follows: 

 

{ }

{ }

1

1

2

( 1) ( ( ), ( )) ( )

( ( ), ( )) ( ) ( ) ( )

(

( )

(

) (( )

)

)

M

i

M

i i i i

i

i i i

i

i

k k k k

k k k

k

k

k

k

y k x

µ

µ

=

=

= ∆ ∆

+ = ⋅ +

⋅ + + +

==

∑

∑

x x u A x B

x u A A x

u

u

C

B

x

B

ɶ

ɶ

ɶ

ɶ

ɶ

ɶ

ɶ

ɶ

  (4.23) 

where 
i

µ  is the normalized weighting function: 
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, (4.24) 

( )
1

( 1)iX
x k −µ , ( )

2
( )iX

x kµ  and 
1

1( )( )i
U

u kµ  are the membership functions of ( 1)x k − , ( )x k  

and ( )u k , respectively. 
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4.4 Robust T-S Fuzzy Control of Laser Keyhole Welding Process 

In this section, the robust T-S fuzzy controller (RTSFC) is implemented to maintain 

constant penetration depth of the keyhole laser welding process since the process is 

nonlinear with large amounts of uncertainties. Figure 4-6 shows the schematic diagram of 

the control system. In the figure, r is the reference signal, e is the error, 1x  is the measured 

keyhole diameter, 2x̂  is the estimated penetration depth, 1u  is the laser power and 2u  is the 

welding speed. The structure of rule jR of the fuzzy controller is described as follows: 

 
1 1

2

( ) is THEN ( ) ( ) (: IF 

(

),

( ) (1) ), ( ) ( ) ( )

j

j j

j
R k X u k k k k

k e k e k r k x

x

k T k

= +

= =− + −

K x ζ

ζ ζ
  (4.25) 

where T
1 1( 1) ( )]( ) [ kk x x k−=x , ( )kζ  is the integral signal of the error at time k, r(k) is 

the reference penetration depth, 
jK  and 

jk  are the proportional and integral gain, 

respectively. By using the T-S inference mechanism, the control effort ( )1u k  can be 

calculated as: 

 ( ) ( )( ) ( ) ( ){ }1
1

j j

N

j

j

u k v k k k k
=

⋅ +=∑ x K x ζ   (4.26) 

where 
jv  is the normalized firing strength of the jth rule: 

 ( )( )
( )

( )
1

1 1

( )

( )

j

j

X
j N

Xj

x k

x
v k

k
=

=
∑

x
ν

ν
, (4.27) 

and 1( )( )j
X

x kν  is the membership functions of 1( )x k . By substituting Eq. (3.43) into Eq. 

(3.40),  the closed loop equations can be obtained: 
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 (4.28) 

 

Figure 4-6: Laser keyhole welding control system schematic diagram. 

The parameters of the RTSFC can be obtained by solving the linear matrix 

inequalities (LMIs) given in Theorem 3. In addition to the LMI given in Theorem 3, the 

following conditions were added to limit the control effort by an upper bound value 

1 || ( || )tu µ≤  [109]: 

 
T

2 0j

j
µ

 
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≥


Q Y

Y I
  (4.29) 

 

where Q and Yj  are defined in Theorem 3.  By solving the combination of the LMIs given 

in Theorem 3 and the above LMIs with 0.1α =  and 2 1000µ = , the positive definite matrix 

Q was found as follows: 
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7.3347 10 0.0013 3.3041 10

−

− −

 ×
 

=  
 × × 

Q   (4.30) 

Then, the feedback gains of the RTSFC (Table 4-5) can be calculated from Q and Yj: 

 1
j j j j

k
− = = K K Y Q   (4.31) 

Table 4-5: Feedback gains of the RTSFC. 

Rule jR  jY  
jK  

jk  

1 [ ]4.7892 1.9878 0.4620− −   [ ]-9.765 -67.394  1682.890  

2 [ ]3.3997 1.7753 0.4760− −  [ ]7.415 -64.694−  1709.644  

3 [ ]2.5165 0.7105 0.5050−  [ ]2.681 -48.183  1710.383  

4 [ ]1.3710 0.8107 0.5480  [ ]0.394 -23.810  1750.568  

5 [ ]0.5000 1.2974 0.5545  [ ]1.191 -15.455−  1741.026  

 

 

4.5 Experimental Results 

4.5.1 Obtaining Keyhole Laser Welding Models 

A set of experimental parameters (Table 4-6) were chosen to obtain the best FBFN 

representation of the nonlinear system. The results of the experiments were used for 

training both the static and dynamic FBFN models. 
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Table 4-6: Experiment parameters for training the welding model FBFNs. 

Exp. no Power (W) Speed (m/min) Exp. no Power (W) Speed (m/min) 

1 1000 2.66 15 900 0.5 

2 1000 3.153 16 1000 4 

3 1000 3.73 17 900 2 

4 900 2.23 18 900 4 

5 900 2.678 19 800 0.5 

6 900 3.21 20 800 2 

7 800 1.739 21 1000 5 

8 800 2.146 22 1000 3.75 

9 800 2.649 23 1000 2.5 

10 1000 2.86 24 900 5 

11 1000 2.7545 25 900 3.5 

12 800 1.433 26 900 2 

13 800 1.586 27 800 5 

14 1000 0.5 28 800 3.125 

 

For the static welding model (to estimate the keyhole penetration depth), an FBFN 

was obtained with four hidden nodes by using the genetic algorithm and adaptive least 

square technique [73]. Based on the dynamic data, a dynamic type-2 FBFN model was also 

constructed with eight hidden nodes. To evaluate the accuracy of the welding models under 

two different conditions, experimental and estimation data were collected from the 

experiments and from the welding models. Measured and predicted (from type-2 FBFN 

model) keyhole diameters versus time are shown in Figure 4-7 and Figure 4-8. Measured 

and predicted (from type-1 FBFN model) penetration depths versus time are shown in 

Figure 4-9 and Figure 4-10.  It can be seen that the FBFNs provide not only an accurate 
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estimation of the state variables but also the uncertainty information for the controller 

design purpose. 

 

 

Figure 4-7: Keyhole diameter with 800 W power and 1.433 m/min welding speed. 

 

 

Figure 4-8: Keyhole diameter with 1000 W power and 2.86 m/min welding speed. 
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Figure 4-9: Penetration depth with 800 W power and 1.433 m/min welding speed. 

 

Figure 4-10: Penetration depth 1000 W power and 2.86 m/min welding speed. 

4.5.2 Controller Implementation 

In order to evaluate the performance of the RTSFC, experiments were conducted 

on the laser welding process to control the penetration depth of the keyhole. The control 

input is the welding speed while the estimated output is the penetration depth. Each case 

includes both controlled (closed-loop) and un-controlled (open-loop) experiments. The 

experiment parameters with laser powers used for the open-loop system and the open-loop 

powers are shown in Table 4-7. The open-loop laser powers were calculated from the 

welding model represented by the FBFNs.  Cases 1 and 2 were conducted with the same 
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condition to check the repeatability of the experiments. Although the focus of the paper is 

on lap welding, case 4 was added to evaluate the effects of zero gap on the welding 

processes. 

Table 4-7: Experiment parameters for controlling laser keyhole welding processes. 

Case Penetration depth (mm) Join type Open-loop power (W) 

1 1.2 Lap welding 850 

2 1.2 Lap welding 850 

3 1.0 Lap welding 776 

4 1.2 One plate 850 

 

In lap welding, since the strength of the weld spot depends greatly on how deep the 

welding pool is on the second plate, the penetration depth was measured without including 

the gap distance. To verify the accuracy of the controller, four cross-sectional surfaces of 

each welding sample were cut, polished and etched by a solution of hydrofluoric acid and 

nitric acid.  Figure 4-11 and Figure 4-12 show examples of the microscopic images of the 

cross-sectional surfaces under the open-loop and the closed-loop system, respectively. The 

remaining microscopic images can be found in APPENDIX L. In each figure, the keyhole 

shapes formed by both lap welding and one-plate welding are presented. For the open-loop 

system, due to the presence of the gap, it can be seen from Figure 4-11 that the penetration 

depth under the lap-welding process is much smaller compared with that under the one-

plate welding. In the closed-loop system (Figure 4-12), the penetration depths of both 

processes are much more similar. Figure 4-13 and Figure 4-14 show the penetration depth 

responses of the open-loop and closed-loop systems. It can be seen that the keyhole 
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penetration depth varied significantly with respect to time when implemented without a 

controller. Figure 4-15 to Figure 4-18 show the comparisons of the system responses 

between the welding processes conducted with and without the RTSFC for all four cases. 

The RTSFC reduced the transient time and the steady-state error significantly in the lap-

welding processes. The performances of the closed-loop and open-loop systems in one-

plate welding are less different than those in lap-welding since there is less uncertainty 

(zero gap) in the system. The mean absolute errors (MAE) (Table 4-8) between the 

estimated penetration depth and the reference signal were calculated by the following 

formula: 

 
1

2

1
( )

N

k

MAE x k r
N =

= −∑   (4.32) 

where N is the number of measurements collected, 2 ( )x k  is the penetration depth at time 

instant k, and r is the reference signal. The microscopic results from the samples indicate 

that the welding observer was able to estimate the welding penetration depth accurately. 

The specimens of the controlled welding process show closer penetration depth to the target 

value and are more consistent than the uncontrolled specimens. The inconsistencies of the 

uncontrolled welding processes can be explained by the variation of the welding gap and 

the bending of the workpiece due to high temperature during the process. 
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(a) Lap welding    (b) One-plate welding 

Figure 4-11: Microscopic images of the cross-sectional samples produced by the open-
loop system with desired penetration depth of 1.2 mm. 

 

  

(a) Lap welding    (b) One-plate welding 

Figure 4-12: Microscopic images of the cross-sectional sample produced by the closed-
loop system with desired penetration depth of 1.2 mm. 
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Figure 4-13: Penetration depth responses of the open-loop laser welding system. 

 

Figure 4-14: Penetration depth responses of the closed-loop laser welding system. 

Table 4-8: Mean absolute error of the estimated penetration depth. 

Case Closed-loop error (mm) Open-loop error (mm) 

1 0.056 0.090 

2 0.061 0.136 

3 0.073 0.120 

4 0.070 0.091 
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Figure 4-15: Closed-loop and open-loop system responses in case 1. (a) Estimated and 
measured penetration depth. (b) Measured keyhole diameter. (c) Power signal. 
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Figure 4-16: Closed-loop and open-loop system responses in case 2. (a) Estimated and 
measured penetration depth. (b) Measured keyhole diameter. (c) Power signal. 
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Figure 4-17: Closed-loop and open-loop system responses in case 3. (a) Estimated and 
measured penetration depth. (b) Measured keyhole diameter. (c) Power signal. 
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Figure 4-18: Closed-loop and open-loop system responses in case 4. (a) Estimated and 
measured penetration depth. (b) Measured keyhole diameter. (c) Power signal. 
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CHAPTER 5. CONCLUSION 

In this work, new theories were developed to provide a framework for modeling 

and control of a class of unknown nonlinear systems based on input and output data. Both 

single-input and single-output systems were considered. Novel stability analyses were 

provided to guarantee the stability while maintaining good performance of the control 

systems under unstructured uncertainties. Simulations and experiments were also 

conducted to demonstrate the effectiveness of the models and controllers for actual 

nonlinear uncertain systems. 

First, a new stability analysis was derived for a class of nonlinear proportional-

integral fuzzy control systems by using the small gain theorem. A new technique to 

estimate the dynamic gains of the systems was presented and a multilevel fuzzy controller 

was proposed with a mechanism to tune the output scaling-factor. From the proposed 

stability analysis, the only design parameter that is needed for a stable fuzzy control system 

is the maximum output scaling-factor of the fuzzy controller. Simulations conducted on a 

tower crane system demonstrated the superior performance of the proposed multilevel 

fuzzy controller over the robust adaptive fuzzy controller. With the self-tuning ability of 

the controller’s output scaling-factor, the control systems remained within the stable 

condition. The simulation results showed that the responses of the proposed multilevel 
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fuzzy controller produced a better output transient performance in terms of oscillation and 

settling time.

Next, a new method of training an interval type-2 fuzzy basis function network is 

presented. The antecedents of the fuzzy basis function network are obtained by using the 

adaptive least square with the genetic algorithm method, while the interval values of the 

consequents are obtained by the active set method. Moreover, a new technique was 

proposed to convert the interval type-2 fuzzy basis function network to an interval type-2 

T-S fuzzy model. Based on the proposed methods, a robust controller for a class of multi-

input and multi-output nonlinear systems is designed based on a set of linear matrix 

inequalities that represent a relaxed stability condition of the closed-loop system. The 

convergence rate allows the controller to be more flexible. Simulation results on an 

electrohydraulic actuator demonstrate the robustness and better performance of the 

proposed controller in comparison with the other robust sliding mode controllers. 

The type-2 fuzzy basis function network and RTSFC were implemented for 

modeling and control of the keyhole laser welding process. The welding process was 

represented by a static type-1 fuzzy basis function network model and a dynamic type-2 

fuzzy basis function network model. During the process, the penetration depth was 

estimated in real time by using an adaptive-divided-difference-filter-based observer. Based 

on the welding process models, a robust Takagi-Sugeno fuzzy controller was implemented 

to control the penetration depth. Experimental results demonstrated the effectiveness of the 

models and the robustness of the robust Takagi-Sugeno fuzzy controller. The penetration 

depth error in the closed-loop system was reduced significantly compared to the open-loop 

system. The penetration depth of the system implemented with the robust Takagi-Sugeno 
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fuzzy controller is also more stable and less varied. Hence, the accuracy and quality of the 

weld was improved by using the robust Takagi-Sugeno fuzzy controller. 

Modeling unstable nonlinear systems is not an easy task due to limited training data 

available and the difficult convergence of system parameters. Therefore, a new effective 

method to generate input and output data and model unstable systems based on the current 

frameworks by using measured input and output data can be investigated to expand the 

applications of the developed controllers. 
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APPENDIX A . GAIN CALCULATION OF THE MAMDANI PI FUZZY 

CONTROLLER IN CASE 1 

The conditions of the error and the time rate of change of error relative to the 

activated membership functions for case 1 (Figure A-1) are given by: 
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1 1 1 1
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 (A.1) 

 

Figure A-1: Error and the time rate of change of the error in case 1. 

By assuming that p
E , 1p

E + , q
R , and 1q

R +  are four non-zero input membership 

functions of the error and the time rate of change of the error, the membership values can 

be found as follows: 
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The premises , ( , 1 and , 1)
i j

H i p p j q q= + = +  of the four activated rules for case 

1 are calculated by using the minimum operations: 
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The change in control output ( )u k∆  can be calculated by using singleton 

fuzzification, minimum inference, and centroid defuzzification methods: 
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In Case 1, since ( 1)
r

K r L q< + , the following inequalities can be obtained: 

 2 3 2 0
r

D qL L K r L= + − > >  and (A.9) 
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As the output membership functions ,i j
U  are bounded by [ ]1,1− , the following 

were used:  
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From the definition of 1 1( ( ))S e k  in Eq. (2.32) and the above inequalities, the upper 

bound of 1 1( ( ))S e k  can be computed as follows: 
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where 
e

M  is the maximum magnitude of the error signal, 
0

sup ( )
k

e
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Hence, the gain of the operator 1S  in case 1 is 1 1p
γ=S . 
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APPENDIX B . GAIN CALCULATION OF THE MAMDANI PI FUZZY 

CONTROLLER IN CASE 2 

The conditions of the error and the time rate of change of error relative to the 

activated membership functions for case 2 (Figure B-1) are given by: 
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Figure B-1: Error and the time rate of change of the error in case 2. 

By assuming that p
E , 1p

E + , q
R , and 1q

R +  are four non-zero input membership 

functions of the error and the time rate of change of the error, the membership values can 

be found as follows: 
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The premises , ( , 1 and , 1)
i j

H i p p j q q= + = +  of the four activated rules for case 

2 are calculated by using the minimum operations: 
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The change in control output ( )u k∆  can be calculated by using singleton 

fuzzification, minimum inference, and centroid defuzzification methods: 
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In case 2, since ( 1)
e

K e L p< + , the following inequalities can be obtained: 

 2 3 2 0
e

D Lp L K e L= + − > >  and (B.9) 
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As the output membership functions ,i j
U  are bounded by [ ]1,1− , the following 

were used:  
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From the definition of 1 1( ( ))S e k  in Eq. (2.32) and the above inequalities, the upper 

bound of 1 1( ( ))S e k  can be computed as follows: 
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where 
e

M  is the maximum magnitude of the error signal, 
0

sup ( )
k

e
M e k
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= , and  
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Hence, the gain of the operator 1S  in case 2 is 1 1p
γ=S .  
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APPENDIX C . GAIN CALCULATION OF THE MAMDANI PI FUZZY 

CONTROLLER IN CASE 3 

The conditions of the error and the time rate of change of error relative to the 

activated membership functions for case 3 (Figure C-1)  are given by: 
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Figure C-1: Error and the time rate of change of the error in case 3. 

By assuming that p
E , 1p

E + , q
R , and 1q

R +  are four non-zero input membership 

functions of the error and the time rate of change of the error, the membership values can 

be found as follows: 
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The premises , ( , 1 and , 1)
i j

H i p p j q q= + = +  of the four activated rules for case 

3 are calculated by using the minimum operations: 
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The change in control output ( )u k∆  can be calculated by using singleton 

fuzzification, minimum inference, and centroid defuzzification methods: 
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In case 3, the following inequalities can be obtained: 

 2 3 2 0
r

D qL L K r L= + − > >  (since ( 1)
r

K r L q< + ) and (C.9) 
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As the output membership functions ,i j
U  are bounded by [ ]1,1− , the following 

were used:  
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 (C.11) 

From the definition of 1 1( ( ))S e k  in Eq. (2.32) and the above inequalities, the upper 

bound of 1 1( ( ))S e k  can be computed as follows: 
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where 
e

M  is the maximum magnitude of the error signal, 
0

sup ( )
k

e
M e k

≥

= , and  

 
( )

1 1

2
, r r ee r

T C G K MK T K

L L
γ β

++
= =  (C.13) 

Hence, the gain of the operator 1S  in case 3 is 1 1p
γ=S . 
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APPENDIX D . GAIN CALCULATION OF THE MAMDANI PI FUZZY 

CONTROLLER IN CASE 4 

The conditions of the error and the time rate of change of error relative to the 

activated membership functions for case 4 (Figure D-1) are given by: 

1
AND ( 1

1 1
) AND

22
1

2 2
e L p rLp L q LL q e rp L q

     
< + < +

 
< + < − +  + > −     

     
 

 (D.1) 

 

Figure D-1: Error and the time rate of change of the error in case 4. 

By assuming that p
E , 1p

E + , q
R , and 1q

R +  are four non-zero input membership 

functions of the error and the time rate of change of the error, the membership values can 

be found as follows: 
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The premises , ( , 1 and , 1)
i j

H i p p j q q= + = +  of the four activated rules for case 

4 are calculated by using the minimum operations: 

 ( ),

( 1)
min ( ), ( ) ( )

p q q

r
Rq E Rp

L q K r
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r
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e
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L+ + ++ + =
−

= =µ µ µ  (D.7) 

The change in control output ( )u k∆  can be calculated by using singleton 

fuzzification, minimum inference, and centroid defuzzification methods: 
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(D.8) 

In case 4, the following inequalities can be obtained: 

 2 2 0
e

D K e L Lp L= + − > >  (since
e

K e Lp> ) and (D.9) 



128 
 

1

1

( ) ( 1) ( ) ( 1)

( 1)
( )

r r r r r r
e e e e

e e r r

r

r r

r
G K G K G K G K

G K e k e k C G K e k e k C
T T T T

T G K G K T C G K e k
e k

T T

 
+ − − + ≤ + + − − + 

 

+ + −
≤ +

 (D.10) 

As the output membership functions ,i j
U  are bounded by [ ]1,1− , the following 

were used:  
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From the definition of 1 1( ( ))S e k  in Eq. (2.32) and the above inequalities, the upper 

bound of 1 1( ( ))S e k  can be computed as follows: 
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where 
e

M  is the maximum magnitude of the error signal, 
0

sup ( )
k

e
M e k

≥

= , and  
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1 1

2
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L L
γ β
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= =  (D.13) 

Hence, the gain of the operator 1S  in case 4 is 1 1p
γ=S .  
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APPENDIX E . GAIN CALCULATION OF THE MAMDANI PI FUZZY 

CONTROLLER IN CASE 5 

The conditions of the error and the time rate of change of error relative to the 

activated membership functions for case 5 (Figure E-1) are given by: 

1
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2
1 1 1
2 2 2
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Figure E-1: Error and the time rate of change of the error in case 5. 

By assuming that p
E , 1p

E + , q
R , and 1q

R +  are four non-zero input membership 

functions of the error and the time rate of change of the error, the membership values can 

be found as follows: 
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The premises , ( , 1 and , 1)
i j

H i p p j q q= + = +  of the four activated rules for case 

5 are calculated by using the minimum operations: 
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The change in control output ( )u k∆  can be calculated by using singleton 

fuzzification, minimum inference, and centroid defuzzification methods: 
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In case 5, the following inequalities can be obtained: 

 2 3 2 0
r

D qL L K r L= + − > >  (since ( 1)
r

K r L q< + ), (E.9) 
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As the output membership functions ,i j
U  are bounded by [ ]1,1− , the following 

were used:  
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From the definition of 1 1( ( ))S e k  in Eq. (2.32) and the above inequalities, the upper 

bound of 1 1( ( ))S e k  can be computed as follows: 
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where 
e

M  is the maximum magnitude of the error signal, 
0

sup ( )
k

e
M e k

≥

= , and  
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2
, r r ee r
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Hence, the gain of the operator 1S  in case 5 is 1 1p
γ=S .  
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APPENDIX F . GAIN CALCULATION OF THE MAMDANI PI FUZZY 

CONTROLLER IN CASE 6 

The conditions of the error and the time rate of change of error relative to the 

activated membership functions for case 6 (Figure F-1) are given by: 

1
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2
1 1 1
2 2 2

L p Le L p r Lq L p Lq e rq
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Figure F-1: Error and the time rate of change of the error in case 6. 

By assuming that p
E , 1p

E + , q
R , and 1q

R +  are four non-zero input membership 

functions of the error and the time rate of change of the error, the membership values can 

be found as follows: 
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The premises , ( , 1 and , 1)
i j

H i p p j q q= + = +  of the four activated rules for case 

6 are calculated by using the minimum operations: 
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The change in control output ( )u k∆  can be calculated by using singleton 

fuzzification, minimum inference, and centroid defuzzification methods: 
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In case 6, the following inequalities can be obtained: 

 2 3 2 0
e

D Lp L K e L= + − > >  (since ( 1)
e

K e L p< + ), (F.9) 
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As the output membership functions ,i j
U  are bounded by [ ]1,1− , the following 

were used:  
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From the definition of 1 1( ( ))S e k  in Eq. (2.32) and the above inequalities, the upper 

bound of 1 1( ( ))S e k  can be computed as follows: 
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where 
e

M  is the maximum magnitude of the error signal 
0

sup ( )
k

e
M e k

≥

= , and  
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L L
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Hence, the gain of the operator 1S  in case 6 is 1 1p
γ=S .  



135 
 

APPENDIX G . GAIN CALCULATION OF THE MAMDANI PI FUZZY 

CONTROLLER IN CASE 7 

The conditions of the error and the time rate of change of error relative to the 

activated membership functions for case 7 (Figure G-1) are given by: 

1 1
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2 2
e L p rLp Lq LL q p Lqe r

   
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Figure G-1: Error and the time rate of change of the error in case 7. 

By assuming that p
E , 1p

E + , q
R , and 1q

R +  are four non-zero input membership 

functions of the error and the time rate of change of the error, the membership values can 

be found as follows: 
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The premises , ( , 1 and , 1)
i j

H i p p j q q= + = +  of the four activated rules for case 

6 are calculated by using the minimum operations: 
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The change in control output ( )u k∆  can be calculated by using singleton 

fuzzification, minimum inference, and centroid defuzzification methods: 
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pL U U LU

+ + + + +

+ + +
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+ − +

+ − +

+ −

 (G.8) 

In case 7, the following inequalities can be obtained: 

 2 2 0
e

D K e L Lp L= + − > >  (since
e

K e Lp> ), (G.9) 
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≤ +
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As the output membership functions ,i j
U  are bounded by [ ]1,1− , the following 

were used:  
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From the definition of 1 1( ( ))S e k  in Eq. (2.32) and the above inequalities, the upper 

bound of 1 1( ( ))S e k  can be computed as follows: 
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 (G.12) 

where 
e

M  is the maximum magnitude of the error signal 
0

sup ( )
k

e
M e k

≥

= , and  

 
( )

1 1

2
, r r ee r

T C G K MK T K

L L
γ β

++
= =  (G.13) 

Hence, the gain of the operator 1S  in case 7 is 1 1p
γ=S . 
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APPENDIX H . GAIN CALCULATION OF THE MAMDANI PI FUZZY 

CONTROLLER IN CASE 8 

The conditions of the error and the time rate of change of error relative to the 

activated membership functions for case 8 (Figure H-1) are given by: 

 
1 1

AND AND
2 2

e L p rLp Lq LL q p Lqe r
   

< + < + − > −  <  
   

<   (H.1) 

 

Figure H-1: Error and the time rate of change of the error in case 8. 

By assuming that p
E , 1p

E + , q
R , and 1q

R +  are four non-zero input membership 

functions of the error and the time rate of change of the error, the membership values can 

be found as follows: 

 
{ } { 1}

( 1
,

)
p p

e e
E E

L

L p K e K e Lp

L
µ µ

+

+ − −
= =  (H.2) 

 
{ } { 1}

( 1
,

)
q q

r
R R

r

L

L q K r K r Lq

L
µ µ

+

+ − −
= =  (H.3) 
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The premises , ( , 1 and , 1)
i j

H i p p j q q= + = +  of the four activated rules for case 

6 are calculated by using the minimum operations: 

 ( ),

( 1)
min ( ), ( ) ( )

p q p

e
Rq E Ep

L p K e
H e r e

L
µ µ µ

+ −
= = =   (H.4) 

 ( )1 11, min ( ), ( ) ( )
qp pE Ep

e
Rq

K e Lp
H e r e

L
µ µ µ

+ ++ =
−

= =   (H.5) 

 ( )1 1, 1 min ( ), ( ) ( )
p q q

r
Eq Rp R

K r Lq
H e r r

L
µ µ µ

+ ++ =
−

= =   (H.6) 

 ( )1 1 11, 1 min ( ), ( ) ( )
p q q

r
Eq Rp R

K r Lq
H e r r

L
µ µ µ

+ + ++ + =
−

= =  (H.7) 

The change in control output ( )u k∆  can be calculated by using singleton 

fuzzification, minimum inference, and centroid defuzzification methods: 
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, , ,
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1

)
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i j E E i j i j
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e e r r

e e r

p q p q p q p q

r

e r H

i p p j q q
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U U
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U U UK e Lp K r Lq K r Lq
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L
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L L

L L L

U
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L

µ µ

µ µ

+ + + +
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 
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 (H.8) 

In case 8, the following inequalities can be obtained: 

 2 02
r

K r qL LD L− += > >  (since
r

K r Lq> ), (H.9) 
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As the output membership functions ,i j
U  are bounded by [ ]1,1− , the following 

were used:  
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From the definition of 1 1( ( ))S e k  in Eq. (2.32) and the above inequalities, the upper 

bound of 1 1( ( ))S e k  can be computed as follows: 
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where 
e

M  is the maximum magnitude of the error signal 
0

sup ( )
k

e
M e k

≥

= , and  
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1 1

2
, r r ee r

T C G K MK T K

L L
γ β

++
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Hence, the gain of the operator 1S  in case 8 is 1 1p
γ=S .  
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APPENDIX I . COEFFICIENT MATRICES OF THE TYPE-2 T-S FUZZY MODEL 

REPRESENTING THE ETA 

Rule 1R   

1min 1max

1 0.001 0 1 0.001 0

0 1 0 0 1 0

0 78.366 1.0365 0 72.107 1.0447

   
   = =   
   − −   

A A   (I.1) 

 [ ] [ ]1min 1max0 0 0.0245 0 0 0.0249= =B B   (I.2) 

Rule 2R   

2min 1max

1 0.001 0 1 0.001 0

0 1 0 0 1 0

0 78.3412 1.0365 0 72.0821 1.0447

   
   = =   
   − −   

A A  (I.3) 

 [ ] [ ]2min 2max0 0 0.0245 0 0 0.0249= =B B   (I.4) 

Rule 3R   

                3min 3max

1 0.001 0 1 0.001 0

0 1 0 0 1 0

0 89.0027 1.0329 0 85.5089 1.0427

   
   = =   
   − −   

A A   (I.5) 

 [ ] [ ]3min 3max0 0 0.0265 0 0 0.0269= =B B   (I.6) 

Rule 4R   

                4min 4max

1 0.001 0 1 0.001 0

0 1 0 0 1 0

0 89.0252 1.0329 0 83.5317 1.0427

   
   = =   
   − −   

A A   (I.7) 

 [ ] [ ]4min 4max0 0 0.0269 0 0 0.0265= =B B   (I.8) 
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APPENDIX J . FEEDBACK GAINS OF THE RTSFC FOR CONTROLLING THE 

ETA 

Table J-1: Feedback gains of the RTSFC for the EHA with 0.03α = . 

Rule jR  jK  
jk  

1 [ ]510 -1.5068 -0.0036 -0.0001⋅  50.0187 10⋅  

2 [ ]510 -1.4550 -0.0018 -0.0001⋅  50.0180 10⋅  

3 [ ]510 -1.3753 -0.0002 -0.0001⋅  50.0169 10⋅  

4 [ ]510 -1.3486 -0.0010 -0.0001⋅  50.0166 10⋅  

Table J-2: Feedback gains of the RTSFC for the EHA with  0.05α = . 

Rule jR  jK  
jk  

1 [ ]510 -2.8885 -0.0092 -0.0001⋅  50.0600 10⋅  

2 [ ]510 -2.7527 -0.0068 -0.0001⋅  50.0570 10⋅  

3 [ ]510 -2.6014 -0.0049 -0.0001⋅  50.0536 10⋅  

4 [ ]510 -2.5460 -0.0035 -0.0001⋅  50.0524 10⋅  

Table J-3: Feedback gains of the RTSFC for the EHA with  0.1α = . 

Rule jR  jK  
jk  

1 [ ]510 -6.9056 -0.0282 -0.0002⋅  50.2632 10⋅  

2 [ ]510 -6.5493 -0.0249 -0.0002⋅  50.2487 10⋅  

3 [ ]510 -6.0553 -0.0213 -0.0002⋅  50.2275 10⋅  

4 [ ]510 -5.9091 -0.0193 -0.0002⋅  50.2220 10⋅  
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Table J-4: Feedback gains of the RTSFC for the EHA with  0.2α = . 

Rule jR  jK  
jk  

1 [ ]610 -2.3785 -0.0103 -0.0000⋅  60.1550 10⋅  

2 [ ]610 2.8299 -0.0098 -0.0000⋅  60.1487 10⋅  

3 [ ]610 -2.1143 -0.0089 -0.0000⋅  60.1359 10⋅  

4 [ ]610 -2.0772 -0.0086 -0.0000⋅  60.1335 10⋅  
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APPENDIX K . COEFFICIENT MATRICES OF THE TYPE-2 T-S FUZZY MODEL 

REPRESENTING THE KEYHOLE DIAMETER 

mini
A , maxi

A , mini
B  and maxi

B  are matrices that contain the lower and upper value of each 

element of matrices i
Aɶ  and 

iBɶ , respectively. 

 

Rule 1R : 1
1 2
1 1.112 mm

X X
c c= = , 

1
1 800 W

U
c =  

1min 1max 1

0 1 0 1 0 1
, ,

0.0229 0.3240 0.3058 0.5777 0.0747 0.0681m

     
= = =     − −   

∆
 

A A A  

T T T4 4 5
1min 1max 10 4.2706 10 , 0 6.3463 10 , 0 1.7428 10

m

− − −     = × = × = − ×    ∆ B B B  

[ ]1 0 0.72788=C  

 

Rule 2R : 2
1 2
2 1.150 mm

X X
c c= = , 

1
2 850 W

U
c =  

2min 1max 2

0 1 0 1 0 1
, ,

0.1384 0.3051 0.1834 0.5234 0.0704 0.0521m

     
= = =     − −   

∆
 

A A A  

T T T4 4 5
2min 2max 20 4.4947 10 , 0 6.2645 10 , 0 1.6106 10

m

− − −     = × = × = − ×    ∆ B B B  

[ ]2 0 0.65256=C  

 

Rule 3R : 3
1 2
3 1.204 mm

X X
c c= = , 

1
3 900 W

U
c =  

 3min 3max 3

0 1 0 1 0 1
, ,

0.2319 0.2766 0.0481 0.4434 0.0506 0.0285m

     
= = =     − −   

∆
 

A A A   
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T T T4 4 5

3min 3max 30 6.4584 10 , 0 7.9090 10 , 0 1.4930 10
m

− − −     = × = × = − ×    ∆ B B B  

[ ]3 0 0.52771=C  

 

Rule 4R  4
1 2
4 1.247 mm

X X
c c= = , 

1
4 950 W

U
c =  

 4min 4max 4

0 1 0 1 0 1
, ,

0.1845 0.2474 0.0309 0.3713 0.0212 0.0094m

     
= = =     − −   

∆
 

A A A  

 [ ]
T TT4 5

4min 4max 40 9.2720 10 , 0 0.0010 , 0 1.3458 10
m

− −  ∆  = × = = − ×   B BB  

[ ]4 0 0.35411=C  

 

Rule 5R  5
1 2
5 1.360 mm

X X
c c= = , 

1
5 1000 W

U
c =  

5min 5max 5

0 1 0 1 0 1
, ,

0.0296 0.2224 0.2043 0.3268 0.0031 0.0022m

     
= = =     −     

∆A A A  

 
T T T4 4 5

5min 5max 50 9.0819 10 , 0 9.8927 10 , 0 1.1022 10
m

− − −     = × = × = − ×    ∆ B B B  

[ ]5 0 0.13531=C  
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APPENDIX L . CROSS-SECTIONAL IMAGES OF THE WELDING SAMPLES 

  

  (a) Sample 1     (b) Sample 2 

 

  

(c) Sample 3     (b) Sample 4 

Figure L-1: Microscopic images of the cross-sectional samples produced by the open 
loop system in case 1. 
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  (a) Sample 1     (b) Sample 2 

 

  

(c) Sample 3     (b) Sample 4 

Figure L-2: Microscopic images of the cross-sectional samples produced by the closed 
loop system in case 1. 
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  (a) Sample 1     (b) Sample 2 

 

  

(c) Sample 3     (b) Sample 4 

Figure L-3: Microscopic images of the cross-sectional samples produced by the open 
loop system in case 2. 
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  (a) Sample 1     (b) Sample 2 

 

  

(c) Sample 3     (b) Sample 4 

Figure L-4: Microscopic images of the cross-sectional samples produced by the closed 
loop system in case 2. 

  



150 
 

  

  (a) Sample 1     (b) Sample 2 

 

  

(c) Sample 3     (b) Sample 4 

Figure L-5: Microscopic images of the cross-sectional samples produced by the open 
loop system in case 3. 
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  (a) Sample 1     (b) Sample 2 

 

  

(c) Sample 3     (b) Sample 4 

Figure L-6: Microscopic images of the cross-sectional samples produced by the closed 
loop system in case 3. 
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  (a) Sample 1     (b) Sample 2 

 

  

(c) Sample 3     (b) Sample 4 

Figure L-7: Microscopic images of the cross-sectional samples produced by the open 
loop system in case 4. 
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  (a) Sample 1     (b) Sample 2 

 

  

(c) Sample 3     (b) Sample 4 

Figure L-8: Microscopic images of the cross-sectional samples produced by the closed 
loop system in case 4. 
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