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ABSTRACT

To reduce the cost of lifting to orbit, modern spacecraft and structures used in space applica-

tions are designed from light material as flexible multibody system. Moreover The unprece-

dented requirements for rapid retargeting, precision pointing and tracking capability have

made these multibody highly flexible spacecraft vulnerable to dynamic excitation caused by

the slewing/pointing maneuver, vibration and external disturbances. As a result, this will de-

grade the performance of the spacecraft including the pointing accuracy. Thus the aspect of

modeling and control become extremely important for the safe and effective operation. De-

spite the numerous research, the development of high performance, nonlinear control laws for

attitude stability, rapid slewing and precision pointing remain the primary objective of scien-

tists and engineers. The aim of the work presented in this thesis is to investigate the stability,

performance, and robustness of a class of fuzzy control system called Takagi-Sugeno (T-S)

applied to a flexible multi-body spacecraft, and to show the advantage and the simplicity in

implementing the T-S fuzzy controller over other baseline nonlinear controllers.
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CHAPTER 1

Introduction

The problem of dynamics and control of flexible structure remains a big challenge despite the

huge amount of literature accumulated over the years. Indeed, flexible spacecraft dynamics

tend to differ from rigid body dynamics in several important ways. First, flexible dynamics

are higher order than rigid body dynamics. The full set of dynamics for a rigid body system

involves only twelve states. Additional actuator dynamics need to be added. A flexible space-

craft model have an infinite number of states unless the model is truncated and even though,

the number of states still large. This will increase the complexity of the control problem.

Hence, design techniques that work well for tenth order systems may have difficulty handling

systems with ten times that many states. The second important difference between rigid body

and flexible body dynamics is that often the mathematical models developed to predict the

flexible dynamics differ from the physical system. The physical model is highly influenced

by the mechanical property such as mass distribution, material stiffness and damping. As a

result, the controller design based on mathematical models must be made robust to withstand

the discrepancies between the mathematical model and physical system. The third differ-

ence between these dynamics is that rigid body dynamics can often be treated as decoupled,

whereas flexible body dynamics are most often highly coupled. As a result, control problems

that can often be treated as a series of SISO problems when dealing with rigid body systems

become MIMO problems when dealing with flexible systems. The fourth difference between

these dynamics is the goal of the systems designed to control them. Rigid body control usually

involves commanding the rigid degrees of freedom to follow desired trajectories. By contrast,
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the goal of flexible spacecraft controllers is either to perform the desired rigid body control

without exciting flexible modes, or to provide active damping for structural modes that are

excited.

Over the last forty years, the amount of literature accumulated on the subject of spacecraft

dynamics and control is very rich. For instance, Hughes [1] derived the equations of mo-

tion for a chain of flexible multi-body systems using the Newton-Euler approach. Using the

Lagrangian approach, Modi and Ibrahim [2] presented the general equations of motion for a

large spacecraft with deployable flexible members, taking into consideration the gravitational

effect, the shifting center of mass, the variable moments of inertia and transverse oscillation.

Meirovich et al. [3] developed the equations of motions for a flexible spacecraft with retarget-

ting flexible antennas using the Lagrangian approach by mean of quasi-coordinates. Modern

techniques like finite element analysis (FEA) are also being used.

Most of the literature on flexible spacecraft control is concerned mainly with two problems:

attitude stability and vibration suppression. To mention a few, Meirovitch et al. [3, 5] pro-

vided a procedure for vibration control using a method of assumed mode. Juang and Junkins

[6] used the eigenvalues assignment technique to improve the control robustness. Agrawal

and Bang [7] developed a closed-loop switching function to provide a good attitude per-

formance in the presence of a modeling error and disturbances. Other techniques such as

proportional–integral (PI) control [4], optimal control [8], output-feedback [9], and model

reference adaptive control [10], [11] have been proposed.

In the past few years, there has been a growing interest to investigate and implement fuzzy

controllers for nonlinear systems. These types of nonlinear controllers are especially useful

in the presence of incomplete knowledge of the plant or actuator dynamics. A number of

researchers have considered the Takagi-Sugeno (T-S) fuzzy model-based control for attitude

stabilization of rigid spacecraft and aircraft. For instance, Park et al. [12], [13] proposed an

optimal T-S fuzzy controller based on the inverse optimal approach with input constraints.
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Zhang et al. introduced a T-S fuzzy model with output-feedback [14], decay rate [15], and

H∞ control for a rigid spacecraft [16]. Butler et al. [17] introduced a T-S fuzzy model-based

PDC flight control for controlling a damaged rigid aircraft. Hong and Nam [18] proposed

a stable fuzzy control design with a pole placement constraint. The application of a fuzzy

controller to a flexible spacecraft is relatively new [19, 23].

The aim of this research is to investigate the stability, performance, and robustness of a class of

fuzzy control system called Takagi-Sugeno (T-S) applied to a flexible multi-body spacecraft.

First, the effect of disturbances will be investigated and a control law based on T-S model with

disturbance rejection and full state feedback law will be implemented. Next, to accommodate

uncertainties in the state estimation and actuators, a new fuzzy model is adopted. Moreover,

for practical implementation, the output feedback control law with upper bound constraints on

the actuators amplitude is considered. Then, we compare the results with a nonlinear sliding

mode controller. To improve the performance and the stability of the controller, we investigate

the use of a reference model based controller, and compare the results with an adaptive control

law designed specifically for this system.
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CHAPTER 2

Mathematical Model

2.1 Introduction

The problem of modeling and control of flexible spacecraft has been a subject of consider-

able research in recent years. These spacecraft would consist of a rigid platform and several

flexible appendages, such as long beams, solar panels, antennas etc. Flexibility of various

components of the spacecraft introduces many unforeseen complexities in the process of sys-

tem modeling and controller design. To ensure satisfactory performance, it is essential to take

into account the distributed nature of the flexible members.

The most natural model for a flexible spacecraft could be given by a hybrid system, i.e. a

combination of a finite dimensional model for the rigid parts, and an infinite dimensional

model for the elastic parts. Since infinite dimensional model is not practical, the commonly

used approach for modeling the dynamics of the elastic parts is to approximate by considering

some finite number of modes. A wide list of contributions in this area can be found in the

literature [24, 26]. Techniques of finite dimensional control theory have also been utilized in

designing stabilizing regulators [27, 30]. However, the number of modes of a flexible structure

is actually infinite, and for a given accuracy the number of modes that should be included in

the model is also not known a priori. Another problem associated with the controller designed

on the basis of this reduced order model is the lack of control on the unmodeled modes, which

is usually known as control spillover. Hybrid models for some simple flexible structures have

been discussed previously [31, 35]. In this chapter, the dynamics of a flexible spacecraft,

4



consisting of a rigid platform and a beam, developed by Meirovitch [3] will be introduced

and used for control and analysis through out the remaining chapters.

2.2 Equations of Motion

Consider a flexible spacecraft in the inertial frame G. The spacecraft consists of a rigid

platform, in frame B, and one flexible antenna in frame A, as shown in Fig. (2.1). The
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Fig. 2.1: Model of the flexible spacecraft.

position vector of a point on the platform and on the flexible antenna can be written in matrix

form as

RQ = R0 + rQ (2.1)

and

R = R0 + ro + r + δ (2.2)
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where R0 ∈ R3×1 is the position vector from the origin of the frame G to the center of the

body frame B, rQ ∈ R3×1 is the position vector of a point on the platform with respect to

the body frame B, ro ∈ R3×1 is the position vector from the frame B to the point where the

antenna is attached to the platform, r ∈ R3×1 is the position of an undeformed point on the

antenna with respect to the frame A, and δ ∈ R3×1 is the position vector with respect to the

undeformed antenna expressed in the frame A. The absolute velocity vector of point Q on the

platform and the differential element with mass dm on the elastic antenna can be expressed,

respectively as:

VQ = V0 +G ωB × rQ (2.3)

and

V = v + ACB(V0 + GωB × ro) + (ACB GωB + BωA)× (r + δ) (2.4)

where ACB is the rotation matrix from the B frame to the A frame, v = δ̇ is the velocity

vector of a point on the antenna with respect to the frame A, GωB is the angular velocity of

the platform with respect to frame G, and BωA is the angular velocity of the flexible antenna

with respect to frame B. It should be noted that

GωB = Hθ̇ (2.5)

where for the (3-1-3) Euler angle sequence, is given by

H =


cθy cθz sθz 0

−cθy sθz cθz 0

sθy 0 1

 (2.6)

and the symbols s and c in Eq. (2.6) denote sine and cosine functions, respectively.

Using the Lagrange equations in terms of quasi-coordinates, θ = [θx, θy, θz]
T , we obtain a set

6



of hybrid ordinary and partial differential equations as follows

d

dt

(
∂L
∂V0

)
+ Gω̃B

(
∂L
∂V0

)
− BCG

(
∂L
∂R0

)
= Fp (2.7)

d

dt

(
∂L̂
∂ω

)
+ Ṽ0

(
∂L
∂V0

)
+ Gω̃B

(
∂L
∂ω

)
−
(
HT
)−1 ∂L

∂θ
= Mp (2.8)

∂

∂t

(
∂L̂a
∂v

)
− ∂T̂a

∂δ
−L δ = Û (2.9)

where L = T − V is the Lagrangian, T is the kinetic energy, V is the potential energy. L̂a

is the Lagrangian density, T̂a is the kinetic energy density for the antenna, and L is a matrix

of differential operators. The vectors Fp ∈ R3×1 and Mp ∈ R3×1 are external forces and

moments acting on the rigid platform, Û is the nonconservative force density associated with

the antenna and, Gω̃B is a skew symmetric matrix giving by

Gω̃B =


0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

 (2.10)

The kinetic energy and the potential energy of the system can be determined from the follow-

ing equations

T =
1

2

∫
mp

V T
Q VQdmp +

1

2

∫
m

V TV dm (2.11)

and

V =
1

2
[δ, δ] (2.12)

where [., .] represents an energy inner product [3]. Note that all the quantities in Eq. (2.7) and

Eq. (2.8) are expressed in the B frame while the quantities in Eq. (2.9) are expressed in the
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A frame. By using the following equation

δ(r, t) = Φ(r)q(t) (2.13)

where Φ(r) ∈ R3×n is a matrix of admissible functions and q(t) ∈ Rn×1 is a vector of

generalized coordinates, we can replace the partial differential equation Eq. (2.9) by the

ordinary differential equation.

d

dt

(
∂L
∂q̇

)
− ∂L
∂q

= Q (2.14)

where

Q =

∫
D

ΦT ÛdD (2.15)

The Kinetic and potential energy are as follows:

T =
1

2

∫
mp

V T
Q VQdmp +

1

2

∫
m

V TV dm =
1

2
mtV

T
0 V0 + V0

T S̃Tt
GωB+

1

2
GωB

T It GωB +
1

2
BωA

T I BωA + V T
0

ACBT S̃T BωA+

GωB
T

(r̃o
ACBT S̃T + ACBT I)BωA +

1

2
q̇TMeq̇ −

1

2
qT H̄(BωA)q+

V T
0
ACBT Φ̄q̇ + V T

0
ACBTBω̃A Φ̄q + GωB

T
r̃o

ACBT Φ̄q̇+

GωB
T
r̃o

ACBTBω̃A Φ̃q + q̇T Φ̄TACBGωA + q̇T Φ̄T BωA + q̇T H̃(BωA)q+

GωB
T BCA J(BωA)q + BωA

T [ ∫
m

r̃ Bω̃AΦdm
]
q

(2.16)

and

V =
1

2
[δ, δ] =

1

2
qT [Φ,Φ]q =

1

2
qTkeq (2.17)

where ke = [Φ,Φ] is the stiffness matrix of the antenna. It should be noted that Eqs. (2.16–

8



2.17) are derived assuming small elastic motion, hence the terms of order higher than two

have been neglected.

The various quantities in Eqs. (2.16–2.17) are as follows:

mt = mp +m (2.18)

It = Ip + (mr̃o r̃
T
o + BCAT I BCA + r̃To

BCAT S̃ BCA + BCAT S̃T ACB r̃o) (2.19)

S̃t = mr̃o + BCAT S̃ BCA (2.20)

S =

∫
m

r dm (2.21)

Ip =

∫
mp

r̃Q r̃
T
Q dmp (2.22)

I =

∫
m

r̃ r̃T dm (2.23)

Me =

∫
m

ΦTΦ dm (2.24)

Φ̄ =

∫
m

Φ dm (2.25)
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Φ̃ =

∫
m

r̃ Φ dm (2.26)

H̃(BωA) =

∫
m

ΦTBω̃AΦdm (2.27)

H̄(BωA) =

∫
m

ΦT (Bω̃A)2Φdm (2.28)

J̄(BωA) =

∫
m

[r̃ Bω̃A + r̃ BωA]Φdm (2.29)

It can be shown [3] that the mathematical model of the flexible spacecraft represented by Eqs.

(2.7–2.9) can be written as:

ẋ = A(t)x(t) +B(t)u(t) +D(t)d(t) (2.30)

where

A(t) =

 0 I

−M−1(t)K(t) −M−1(t)G(t)

 (2.31)

and

B(t) =

 0

M−1(t)B∗(t)

 (2.32)

and

D(t) =

 0

M−1(t)

 (2.33)

where I is identity matrix, M(t) is the mass matrix, K(t) is the stiffness matrix, B∗(t) is

10



a matrix that relates the discrete force vectors to the modal vectors, and d(t) is the inertial

disturbance vector.

The state vector, x ∈ Rn×1 and the control vector u ∈ Rm×1 are defined as

x = [RT
0 θ

T qT V T
0

GωB
T
q̇T ]T (2.34)

and

u = [F T
p MT

p f
T
1 fT2 ]T (2.35)

where f1 ∈ R3×1, f2 ∈ R3×1 represent the actuator force vector at the middle and tip of the

antenna.

The various quantities in Eqs. (2.30–2.33) are as follow:

M(t) =


mt S̃Tt

BCA Φ̄

S̃t It BCA Φ̃ + r̃o
BCA Φ̄

Φ̄T ACB Φ̃T ACB + Φ̄T ACB r̃To Me

 (2.36)

K(t) =


0 0 BCA(B ˜̇ω

A
+ Bω̃A

2
)Φ̄

0 0 r̃o
BCA(Bω̃A

2
+B ˜̇ω

A
)Φ̄ + BCA[Bω̃AJ(BωA) + J(Bω̇A)]

0 0 Ke + H̄(BωA) + H̃(B ˜̇ω
A

)

 (2.37)

G(t) =


0 2 ACB( ˜̃S BωA)ACB 2 BCA Bω̃A Φ̄

0 G22 G23

0 [Φ̃T Bω̃A
T − JT (BωA)]ACB 2 H̃(BωA)

 (2.38)
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where

G22 = BCA(2 Bω̃A I− trace(I) Bω̃A)ACB + 2 r̃o
BCA( ˜̃S BωA)BCA (2.39)

and

G23 = 2 r̃o
BCA Bω̃A Φ̄ + BCA Bω̃A Φ̃ + BCAT J(BωA) (2.40)

moreover

B∗(t) =

 I b

0 c

 (2.41)

where

b =

 BCA BCA

r̃o
BCA + BCAr̃1 r̃o

BCA + BCAr̃2

 (2.42)

and

c =

[
ΦT (r1) ΦT (r2)

]
(2.43)

finally

d(t) =


BCA(S̃ Bω̇A + Bω̃AS̃ Bω̃A)

r̃o
BCA(S̃ Bω̇A + Bω̃AS̃ Bω̃A)− BCA(I Bω̇A + Bω̃A I Bω̃A)

−Φ̃T Bω̇A +
∫
m

ΦTBω̃A r̃ Bω̃Adm

 (2.44)

2.3 Open Loop Response

The maneuver consist of retargteting the antenna relative to the platform through a 45◦ angle

about the x − axis, such that it points to a given direction in the inertial frame. The angular

velocity of the antenna is BωA = [β̇x 0 0]T . Ideally, the maneuver should not cause elastic
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deformation, and this likely to require a long maneuver time. For a minimum time maneuver,

the acceleration of the antenna is bang-bang as seen in Fig. (2.2).
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Fig. 2.2: Angular position, velocity, and acceleration of the antenna.

The elastic motion consist of bending vibration in the x and y directions assuming no vibration

in the z direction. The vibration is represented by identical admissible functions in each

direction in the form of

φxi = φyi = −[cos(ζiz)− cosh(ζiz)] + ξi[sin(ζiz)− sinh(ζiz)] i = 1, 2, . . . , n (2.45)

The vectors ξ ∈ R1×n and ζi ∈ R1×n depend upon the adopted number of admissible func-

tions. The matrix of admissible functions for a one-beam antenna is in the form of

Φ(r) =


φx 0

0 φy

0 0

 (2.46)
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To examine the response of the open-loop system, we use the nominal values of the spacecraft

parameters which are listed in the following table. For the purpose of simulation, we assume

that the platform and the elastic antenna inertia matrix are diagonal.

Table 2.1: Parameters of the Flexible Spacecraft
Parameters Values

ξ [0.7341, 1.0185, 0.9992, 1, 1]
ζ [ 1.8750, 4.6940, 7.9000, 10.9950, 14.1370]
l 1.5 m
ro [0 0 0.12]Tm
m 2.2 kg
mp 228 kg
S [0 0 1.7]T kg ·m
Φ̃ [0.569 0.091 0.032 0.017 0.010]m · l
Φ̄ [0.783 0.434 0.254 0.182 0.141]m
Ip diag[17.7 65 80] kg ·m2

I diag[1.7 1.7 0] kg ·m2
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Fig. 2.3: Elastic displacement δy of the antenna

The system is characterized by two factors that distinguish it from most commonly encoun-

tered systems. It is time varying and it is subjected to persistence disturbances, both factors
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arise from the retargetting of the maneuver of the antenna.
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Fig. 2.4: Angular position of the rigid platform θx
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Fig. 2.5: Position of the platform center-of-gravity Ry

The open-loop response of the rigid platform rotation and translation as well as the elastic

deformation of the antenna is shown in Figs. (2.3–2.6).
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Fig. 2.6: Position of the platform center-of-gravity Rz

2.4 Reduced Model and Control Problems

In general, structure used in space applications are lightly damped, hence they are more sus-

ceptible to vibration and dynamic excitation. As mentioned earlier the controller is designed

based on the reduced model of the flexible structure and the control of only a small number

of modes is considered. It was demonstrated by Balas et al. [36], that even for a simple loop

flexible beam, control spillover can cause closed–loop instability and increase the response

time due to unmodeled higher frequencies. The open–loop response for different admissible

functions is shown in Figs. (2.7–2.8), it can be seen that with five admissible functions we

can reach a relatively accurate model.

For the specific maneuver shown in Fig. (2.2), the fast fourier analysis (FFT) reveals that for

the nominal model without uncertainties, the antenna will vibrate with two dominant frequen-

cies, the first one is around 1Hz and the second is about 15Hz as seen in Fig. (2.9) However,

By adding 15% uncertainty in flexural rigidity of the the antenna, the second dominant fre-
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Fig. 2.7: Elastic displacement δy of the antenna for different admissible functions
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Fig. 2.8: Angular position of the rigid platform θx for different admissible functions

quency will increase up to 32 Hz as seen in Fig. (2.10)
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Fig. 2.9: Frequency of the flexible antenna for different admissible functions
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Fig. 2.10: Frequency of the flexible antenna with uncertainty for different admissible func-
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CHAPTER 3

Takagi-Sugeno Fuzzy Control

3.1 Introduction

The Takagi-Sugeno (T-S) fuzzy model [37] has become very popular in recent years. One of

the reason is that the stability and performance characteristics of the system represented by

the T-S model can be analyzed using a Lyapunov function approach [38, 43]. A further and

significant step has also been taken to utilize Lyapunov-function based control techniques to

the control synthesis problem for the T-S model. The parallel distributed compensation (PDC)

[39] [40] is one such control design framework that has been proposed and developed over

the last few years. It has also been shown that within the framework of the T-S fuzzy model

and PDC control design, design conditions for stability and performance of a system can be

stated in terms of the feasibility of a set of linear matrix inequalities (LMIs) [39] [40]. The

gains of the controller can be determined automatically using LMI formulation.

3.2 The Takagi Sugeno (T-S) Model

The fuzzy model proposed by Takagi and Sugeno [44] is described by the fuzzy IF-THEN

rules which represent local linear input-output relations of a nonlinear system. The main

feature of a T-S fuzzy model is to express the local dynamics of each fuzzy implication by a

linear system model. The ith rule of the T-S fuzzy models for a dynamic system are of the

following forms.
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Model Rule i:

IF z1(t) is about µi1[z1(t)], and . . . , zp(t) is about µip[zp(t)] THEN

 ẋ(t) = Aix(t) +Biu(t)

y(t) = Cix(t)
(i = 1, 2, . . . , r) (3.1)

where Ai ∈ Rn×n is the nominal system matrix, Bi ∈ Rn×m is the nominal control matrix

and Ci ∈ Rs×n is the output matrix , x(t) ∈ Rn×1 is the state vector, u(t) ∈ Rm×1 is the

control input, and y(t) ∈ Rs×1 represents the output vector. The variable zp(t) is a vector of

measurable parameters, in general, these parameters may be functions of the state variable,

external disturbances, time and uncertainties. We will use r to represent the number of IF–

THEN rules, and µip to represent the membership functions of the fuzzy sets.

The firing strength of each rule can be determined using a T − norm product

wi[z(t)] =

p∏
j=1

µij[z(t)] , (i = 1, 2, . . . , r) (3.2)

and the fuzzy basis functions are determined from

hi[z(t)] =
wi[z(t)]
r∑
i=1

wi[z(t)]

, (i = 1, 2, . . . , r) (3.3)

After combining all the rules for the T-S models, the overall system can be approximated as

ΣTS :


ẋ(t) =

r∑
i=1

hi[z(t)]
{
Aix(t) +Biu(t)

}
y(t) =

r∑
i=1

hi[z(t)]Cix(t)

(3.4)

If the parameter zp(t) is independent of the state vector or control input of the system, as is

the case of the maneuver of the flexible spacecraft, then in this case, Eq. (3.4) will describe

20



a time-varying linear system. It should be noted that the fuzzy model described by Eq. (3.4)

can be modified to accommodate external disturbances and uncertainties as we will explain

in Chapters 4, 5 and 6.

3.3 Parallel Distributed Compensator (PDC)

The Parallel Distributed Compensation (PDC) theory introduced by Wang et al. [39] provides

a procedure to design a fuzzy controller from a given T-S fuzzy model. The feedback control

law for each model rule is designed from the corresponding rule of a T-S fuzzy model. There-

fore, each control rule has the same premise variables as the T-S model, i.e., “IF” statement

but different consequent, i.e., “THEN" statement. The general structure of each control rule

is as follows

Control Rule i:

IF z1(t) is about µi1[z1(t)], and . . . , zp(t) is about µip[zp(t)], THEN

u(t) = −Kix(t), (i = 1, 2, . . . , r) (3.5)

whereKi ∈ Rm×n represents the state feedback gain, The overall control law with fuzzy basis

functions become

u(t) = −
r∑
i=1

hi(z)Kix(t) (3.6)

The feedback control law described by Eq. (3.6) has a simple structure, and it can be modified

to include a reference model as it will be seen in Chapter 6.
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3.4 Fuzzy Observer

In practice, all of the states are not fully measurable, and thus it is necessary to design a fuzzy

observer in order to implement the fuzzy controller Eq. (3.6). It is known for a linear system

that if the pairs Ai, Ci, (i = 1, 2 . . . , r) are observable, the fuzzy system Eq. (3.1) is called

locally observable. It is also known [45] that stabilizing state feedback and an observer yield a

stabilizing output feedback controller, this is known as the separation principle. The observer

has the following structure [45][46]

ΣObserver :


˙̂x(t) =

r∑
i=1

hi[z(t)]
{
Aix̂(t) +Biu(t) + Li[y(t)− ŷ(t)]

}
ŷ(t) =

r∑
i=1

hi[z(t)]Cix̂(t)

(3.7)

where Li ∈ Rn×s is the observer gain, y(t) is the measurable output, and ŷ(t) is the estimated

output vector. The fuzzy observer is required to satisfy e(t) = x(t) − x̂(t) → 0 as t → ∞.

This condition guarantees that the steady state error between x(t) and x̂(t) converge to zero.

In the presence of the fuzzy observer Eq. (3.7), the PDC fuzzy controller Eq. (3.6) takes on

the following form

u(t) = −
r∑
i=1

hi[z(t)]Kix̂(t), (i = 1, 2, . . . , r) (3.8)

3.5 T-S Fuzzy Model Validation

In this section, first we present the open-loop response of the T-S fuzzy model for the flexible

spacecraft described by Eq. (3.1), then in the following chapters we examine and compare

the stability, performance and robustness of the proposed controller with a baseline controller.

22



We choose two rules to fuzzify the input variable β(t) as shown in Fig. (3.1). The matrices

Universe of discourse, β ∈ [0  45°]

-10 0 10 20 30 40 50

 µ
i(β

) 

0

0.2

0.4

0.6

0.8

1

Rule 1
Rule 2

Fig. 3.1: Fuzzy Membership Function

Ai, and Bi, (i = 1, 2) are derived by local approximation in the fuzzy partition space of β at

points β = 0◦ and β = 45◦. We validate the T-S fuzzy model by comparing the open-loop

response of the T-S fuzzy model with the nonlinear model Eqs. (2.7–2.9) for the input shown

in Fig. (2.2). For the sake of brevity, only the results for Rz, Ry, θx, and Uy are shown in Figs.

(3.2–3.5).

We notice that the maximum relative error in approximating the T-S fuzzy model to the non-

linear model is on the order of 10−2 for the position Ry to 10−4 for the elastic deflection of

the antenna. We consider that with two rules, the approximation of the fuzzy model is sat-

isfactory. It should be noted that with more rules, the approximation of the nonlinear model

with the fuzzy model tend to be more accurate but the computational cost is high.
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Fig. 3.2: Position of the platform center-of-gravity Rz for nonlinear and fuzzy model.
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Fig. 3.3: Position of the platform center-of-gravity Ry for the nonlinear and fuzzy model.
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Fig. 3.4: Angular position of the rigid platform θx for the nonlinear and fuzzy model.
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Fig. 3.5: Elastic displacement of the antenna in the y-direction for the nonlinear and fuzzy
model.
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CHAPTER 4

Full-State Feedback Fuzzy Control with
Actuator Norm Constraint

4.1 Introduction

In this chapter, we presents a robust full state feedback fuzzy control law with actuator norm

constraints based on Takagi-Sugeno (T-S) fuzzy model for attitude stabilization and vibra-

tion suppression of a flexible spacecraft made of a rigid platform and a flexible antenna.

First, the linear matrix inequality conditions are derived then the parallel distributed compen-

sator technique is applied to the spacecraft. The controller produces an asymptotically stable

closed-loop system which is robust to external disturbances and has a simple structure which

make it easy to implement. Numerical simulation is provided for performance evaluation of

the proposed controller design.

4.2 Linear Matrix Inequality approach

4.2.1 Stability Conditions

Using Lyapunov stability theory, the stability of a continuous fuzzy system Eq. (3.4) with a

control input u(t) = 0 is stated in the following theorem

Theorem 4.2.1. The equilibrium of the continuous fuzzy system Eq. (3.4) is globally asymp-

totically stable if there exists a common positive definite matrix P for all subsystems such that
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ATi P + PAi < 0 (i = 1, 2, . . . , r) (4.1)

4.2.2 Stable Closed-Loop System

Now we consider the closed-loop system with u(t) 6= 0. Using the the parallel distributer

compensator given by:

u(t) = −
r∑
i=1

hi(z)Kix(t) (4.2)

and the fuzzy system given by the following Eq. (3.4)

ẋ(t) =
r∑
i=1

hi[z(t)]
{
Aix(t) +Biu(t)

}
(4.3)

we obtain the following

ẋ(t) =
r∑
i=1

r∑
j=1

hi[z(t)]hj[z(t)]
{
Ai −BiKj

}
x(t) (4.4)

let

Gij = Ai −BiKj (4.5)

Equation (4.4) becomes

ẋ(t) =
r∑
i=1

hi[z(t)]hj[z(t)]Giix(t) + 2
r∑
i=1

r∑
j=1

hi[z(t)]hj[z(t)]
{Gij +Gji

2

}
x(t) (4.6)

using the stability condition stated in theorem 4.2.1, we can derive the stability condition for

a continuous system described by Eq. (4.6)

Theorem 4.2.2 ([38]). The equilibrium of the continuous fuzzy control system described by

Eq. (4.6) is globally asymptotically stable if there exists a common positive definite matrix P
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such that
GT
iiP + PGii < 0

(Gij+Gji

2

)T
P + P

(Gij+Gji

2

)
≤ 0

(i, j = 1, 2, . . . , r, i 6= j | hi ∩ hj 6= ∅) (4.7)

The purpose of the fuzzy control design problem is to determine Ki, (i = 1, 2, . . . r) which

satisfy the conditions of theorem 4.2.2 with a common positive definite matrix P .

Multiplying the inequality in theorem 4.2.2 on the left and right by P−1 and let X = P−1 we

get

 −XA
T
i − AiX +XKT

i B
T
i +BiKiX > 0

−XATi − AiX −XATj − AjX +XKT
j B

T
i +BiKjX +XKT

i B
T
j +BjKiX ≥ 0

(4.8)

let Mi = KiX , substituting into Eq. (4.8) yields the following stability condition

 −XA
T
i − AiX +MT

i B
T
i +BiMi > 0

−XATi − AiX −XATj − AjX +MT
j B

T
i +BiMj +MT

i B
T
j +BjMi ≥ 0

∀i, j = 1, 2, . . . , r, i 6= j | hi ∩ hj 6= ∅

4.2.3 Stable Closed-Loop with Fuzzy Observer

It was shown by Xiao et al. [46] that the fuzzy controller and the fuzzy observer can be

independently designed to be stable. Moreover, if the premise variable is independent of

the states as in the case that is being studied in this dissertation, and using the condition
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e(t) = x(t)− x̂(t) with Eq. (3.8) we get the following:


ẋ(t) =

r∑
i=1

r∑
j=1

hi[z(t)]hj[z(t)]
{

(Ai −BiKj)x(t) +BiKje(t)
}

ė(t) =
r∑
i=1

r∑
j=1

hi[z(t)]hj[z(t)]
{
Ai − LiCj

}
e(t)

(4.9)

Let xa(t) = [x(t) e(t)]T and

Gij =

 Ai −BiKj BiKj

0 Ai − LiCj

 (4.10)

Using the same procedure as in the previous section, we get the following theorem:

Theorem 4.2.3. The equilibrium of the augmented system Eq. (4.9) is globally asymptotically

stable stable if there exists a common positive definite matrix P such that


GT
iiP + PGii < 0

(Gij+Gji

2

)T
P + P

(Gij+Gji

2

)
≤ 0

(i 6= j | hi ∩ hj 6= ∅) (4.11)

let Mi = KiP1 and N = P2Li, substituting into Eq. (4.11) yields the following stability

condition



P1 > 0, P2 > 0

P1A
T
i −MT

i B
T
i + AiP1 −BiMi < 0

P1A
T
i −MT

j B
T
i + AiP1 −BiMj + P1A

T
j −MT

i B
T
j + AjP1 −BjMi < 0

ATi P2 − CT
i N

T
i + P2Ai −NiCi < 0

ATi P2 − CT
j N

T
i + P2Ai −NiCj + ATj P2 − CT

i N
T
j + P2Aj −NjCi < 0

(4.12)

If a feasible solution exist, the matrices P1, P2,Mi, and Ni can be found by convex optimiza-
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tion techniques. The feedback gains and the observer gains can be calculated respectively as

Ki = MiP
−1
1 (4.13)

and

Li = P−1
2 Ni (4.14)

4.2.4 Disturbance Rejection

A successfully designed control system should always be able to maintain stability and perfor-

mance levels in spite of uncertainties in system dynamics and/or in the working environment

to a certain degree. The robustness issue was not that prominently considered until late 1970s

and early 1980s with the pioneering work by Zames [47] and Zames and Francis [48] on the

theory, now known as the H∞ control theory. The H∞ control theory provides a systematic

design procedures of robust controllers for linear systems.

Consider the following fuzzy system with disturbance:

ΣTS :


ẋ(t) =

r∑
i=1

hi[z(t)]
{
Aix(t) +Biu(t) + Eiv(t)

}
y(t) =

r∑
i=1

hi[z(t)]Cix(t)

(4.15)

where v(t) is the deterministic disturbance due to spacecraft configuration change. We assume

that all the states are available. The disturbance rejection can be realized by:

Minimize: γ
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Subject To:

sup
||v(t)||2 6=0

||y(t)||2
||v(t)||2

≤ γ (4.16)

Theorem 4.2.4. The feedback gainsKi that stabilize the fuzzy model Eq. (4.15) and minimize

γ, can be obtained by solving the following LMIs:

min
M1,...,Mr

γ2 (4.17)

subject to :

X > 0 (4.18)





−1
2
(XATi −MjB

T
i +

AiX −BiMj+

XATj −MT
i B

T
j +

AjX −BjMi)


−1

2
(Ei + Ej)

1
2
X(Ci + Cj)

T

−1
2
(Ei + Ej)

T γ2I 0

1
2
(Ci + Cj)X 0 I


≥ 0 (4.19)

where Mi = KiX and X = P−1
1 , ∀ i, j = 1, 2, . . . , r, i 6= j | hi ∩ .hj 6= ∅

Proof. Consider the quadratic Lyapunov function V [x(t)] = xT (t)P1x(t), where P1 > 0 and

γ ≥ 0 such that ∀t.

V̇ [x(t)] + yT (t)y(t)− γ2vT (t)v(t) ≤ 0 (4.20)

integrating Eq. (4.20), we get

∫ tf

0

{
V̇ [x(t)] + yT (t)y(t)− γ2vT (t)v(t)

}
dt ≤ 0 (4.21)
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assuming the initial condition x(0) = 0 we have

V [x(tf )] +

∫ tf

0

{
yT (t)y(t)− γ2vT (t)v(t)

}
dt ≤ 0 (4.22)

and since V [x(tf )] ≥ 0, this implies

||y(t)||2
||v(t)||2

≤ γ (4.23)

using Eq. (4.20) we have

ẋT (t)P1x(t) + xT (t)P1ẋ(t) +
r∑
i=1

r∑
j=1

hi[z(t)]hj[z(t)]xT (t)CT
i Cjx(t)− γ2vT (t)v(t) (4.24)

=
r∑
i=1

r∑
j=1

hi[z(t)]hj[z(t)]xT (t)(Ai −BiKj)
TPx(t) +

r∑
i=1

r∑
j=1

hi[z(t)]hj[z(t)]xT (t)

P (Ai −BiKj)x(t) +
r∑
i=1

r∑
j=1

hi[z(t)]hj[z(t)]xT (t)CT
i Cjx(t)− γ2vT (t)v(t)

+
r∑
i=1

hi[z(t)]vT (t)ET
i Px(t) +

r∑
i=1

hi[z(t)]xT (t)PEiv(t)

(4.25)

=
r∑
i=1

r∑
j=1

hi[z(t)]hj[z(t)][xT (t) vT (t)]




(Ai −BiKj)

TP1

+P1(Ai −BiKj)

+CT
i Cj

 P1Ei

ET
i P1 −γ2I


 x(t)

v(t)

 ≤ 0

(4.26)
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Equation (4.26) can be written as



 −
r∑
i=1

r∑
j=1

hi[z(t)]hj[z(t)]
{

(Ai −BiKj)
TP1

+P1(Ai −BiKj) + CT
i Cj

}
 −P1

r∑
i=1

hi[z(t)]Ei

−
r∑
i=1

hi[z(t)]ET
i P1 −γ2I


≥ 0 (4.27)

⇒



 −
r∑
i=1

r∑
j=1

hi[z(t)]hj[z(t)]
{

(Ai −BiKj)
TP1

+P1(Ai −BiKj)
}

 −P1

r∑
i=1

hi[z(t)]Ei

−
r∑
i=1

hi[z(t)]ET
i P1 −γ2I



−


r∑
i=1

r∑
j=1

hi[z(t)]hj[z(t)]CT
i Cj 0

0 0

 ≥ 0

(4.28)

⇒



 −
r∑
i=1

r∑
j=1

hi[z(t)]hj[z(t)]
{

(Ai −BiKj)
TP1

+P1(Ai −BiKj)
}

 −P1

r∑
i=1

hi[z(t)]Ei

−
r∑
i=1

hi[z(t)]ET
i P1 −γ2I



−


r∑
i=1

hi[z(t)]CT
i

0


[

r∑
i=1

hi[z(t)]Ci 0

]
≥ 0

(4.29)
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⇒
r∑
i=1

r∑
j=1

hi[z(t)]hj[z(t)]



−1
2

{
(Ai −BiKj)

TP1+

P1(Ai −BiKj)+

(Aj −BjKi)
TP1+

P1(Aj −BjKi)
}


−1

2
P1(Ei + Ej)

1
2
(Ci + Cj)

T

−1
2
(Ei + Ej)

TP1 −γ2I 0

1
2
(Ci + Cj) 0 I


≥ 0

(4.30)

multiplying both side by the block diagonal [X I I], where X = P−1
1 , we obtain Eq. (4.19).

4.2.5 Constraints On the Control Input

Theorem 4.2.5. Assume that the initial condition x(0) is known, the constraint ||u(t)||2 ≤ µ

is satisfied ∀ t ≥ 0 if the LMIs

 1 x(0)T

x(0) X

 ≥ 0 (i = 1, 2, . . . , r) (4.31)

 X MT
i

Mi µ2I

 ≥ 0 (i = 1, 2, . . . , r) (4.32)

Proof. using ||u(t)||2 ≤ µ, we have

uT (t)u(t) =
r∑
i=1

r∑
j=1

hi[z(t)]hj[z(t)]xT (t)KT
i Kjx(t) ≤ µ2
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hence
1

µ2
=

r∑
i=1

r∑
j=1

hi[z(t)]hj[z(t)]xT (t)KT
i Kjx(t) ≤ 1

since xT (t)X−1x(t) < xT (0)X−1x(0) ≤ 1,∀t > 0 if

1

µ2
=

r∑
i=1

r∑
j=1

hi[z(t)]hj[z(t)]xT (t)KT
i Kjx(t) ≤ xT (t)X−1x(t)

therefore
r∑
i=1

r∑
j=1

hi[z(t)]hj[z(t)]xT (t)[
1

µ2
KT
i Kj −X−1]x(t) ≤ 0

=
1

2

r∑
i=1

r∑
j=1

hi[z(t)]hj[z(t)]xT (t)
[ 1

µ2
KT
i Kj +

1

µ2
KT
j Ki − 2X−1

]
x(t)

=
1

2

r∑
i=1

r∑
j=1

hi[z(t)]hj[z(t)]xT (t)
[ 1

µ2
(KT

i Ki +KT
j Kj)−

1

µ2
(KT

i −Kj)(K
T
i −Kj)− 2X−1

]
x(t)

≤ 1

2

r∑
i=1

r∑
j=1

hi[z(t)]hj[z(t)]xT (t)
[ 1

µ2
(KT

i Ki +KT
j Kj)− 2X−1

]
x(t)

=
r∑
i=1

hi[z(t)]xT (t)
[ 1

µ2
KT
i Ki −X−1

]
x(t)

if
1

µ2
KT
i Ki −X−1 ≤ 0 (4.33)

using the Schur complement and let Mi = KiX , we get Eq. (4.32)

4.2.6 Constraints on Initial Condition

Theorem 4.2.6. Assume that the initial condition is unknown but bounded ||x(0)|| ≤ φ, then

xT (0)X−1x(0) ≤ 1 (4.34)
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if

φ2I ≤ X (4.35)

Proof. using Eq. (4.35), we write

X−1 ≤ 1

φ2
I (4.36)

therefore

xT (0)X−1x(0) ≤ 1

φ2
xT (0)x(0) ≤ 1 (4.37)

4.3 Numerical Simulation

The developed controller has been applied to the flexible spacecraft model Fig. (2.1). The

parametres of the spacecraft are listed in Table. 2.1. We neglect the axial deflection, in the

z-direction, in the beam and choose five admissible functions to approximate the deflections

of the appendage in the x and y directions in terms of the generalized coordinates.

The spacecraft has twelve actuators, six on the platform for controlling the position and atti-

tude along three axes and four actuators in the middle and tip of the appendage in the x and y

directions. The time history of the tip of the appendage in the y-direction and the first Euler

angle are shown in Figs. (4.1,4.2), respectively. The plots show the open-loop as well as the

closed-loop responses with three different input constraint upper bounds, µ. It can be seen

that by increasing µ, i.e. the actuator force, one may cause the controller do a better job in

vibration suppression and attitude stabilization.

The components of the position vector of the platform are in Fig. (4.3). It can be seen from

the plot that the position vector stabilizes around (0, 0, 0) after about 25 seconds. Figure (4.4)

shows the time history of attitude parameters, Euler angles, when µ = 5 lbf. The platform
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Fig. 4.1: Elastic displacement of the antenna in the y direction for different input control
upper bounds, µ.
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Fig. 4.2: Angular position of the rigid platform for different input control upper bound, µ.

attitude stabilizes after about 20 seconds.

To check the boundedness of the input controls, we plot the time history of the actuator
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Fig. 4.3: Position of the platform center of gravity in the inertial frame with input constraint
upper bound of µ = 5 lbf.
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Fig. 4.4: Angular position of the rigid platform with input constraint upper bound of µ = 5
lbf.
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forces, and moments on the platform for µ = 5lbf . The results are shown in Figs. (4.5,4.6),

respectively.
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Fig. 4.5: Actuator forces on the platform with input constraint upper bound of µ = 5 lbf.
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Fig. 4.6: Actuator moments on the platform with input constraint upper bound of µ = 5 lbf.
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It can be seen that the control inputs generated by the proposed PDC controller are bounded.

In addition, the actuator forces at the tip and in the lateral directions of the appendage are

shown in the Fig. (4.7). The control forces are bounded as well.
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Fig. 4.7: Actuator forces on the tip of antenna in the x and y directions with input constraint
upper bound of µ = 5 lbf.
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CHAPTER 5

Robust-Optimal Fuzzy Control With
Individual Actuator Constraint

5.1 Introduction

In most applications, real systems are vulnerable to external disturbances, uncertainty and

measurement noise. Furthermore there are always differences between mathematical models

used for design and the actual system. Hence, a control engineer is required to design a

controller which will stabilize a plant and satisfy certain performance levels in the presence

of disturbance signals, noise interference, unmodelled plant dynamics and plant parameter

variations. Those design objectives are best realized via the feedback control mechanism.

Therefore, robustness is of crucial importance in control system design.

In this chapter, we present a robust-optimal fuzzy controller for position and attitude stabi-

lization, and vibration suppression of the flexible spacecraft during an antenna retargeting

maneuver. The fuzzy controller is based on the Takagi-Sugeno (T-S) fuzzy model and uses

the parallel distributed compensator (PDC) technique to stabilize quadratically the closed-

loop system. The proposed controller is robust to parameter and unstructured uncertainties of

the model. We improve the performance and the efficiency of the controller by minimizing the

upper bound of the actuator’s amplitude and maximizing the uncertain terms included in the

T-S fuzzy model. In addition to actuator amplitude constraints, a fuzzy model-based observer

is considered for estimating unmeasurable states. Using Lyapunov stability theory and linear

matrix inequalities (LMIs), we formulate the problem of designing an optimal-robust fuzzy
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controller/observer with actuator amplitude constraint as a convex optimization problem. Nu-

merical simulation is provided to demonstrate and compare the stability, performance, and

robustness of the proposed fuzzy controller with a baseline nonlinear controller.

5.2 Takagi-Sugeno (T-S) Fuzzy Model for Uncertain Sys-

tems with Disturbance

The fuzzy model proposed by Takagi and Sugeno [44] can be modified to accommodate

disturbances and uncertainties [49]. The ith rule of the T-S fuzzy models for a dynamic

system with uncertainty is of the following forms.

Model Rule i:

IF z1(t) is about µi1[z1(t)], and . . . , zp(t) is about µip[zp(t)] THEN

ẋ(t) = [Ai + ∆Ai]x(t) + [Bi + ∆Bi]u(t) + ϕ(t), (i = 1, 2, . . . , r) (5.1)

where Ai ∈ Rn×n is the nominal system matrix, Bi ∈ Rn×m is the nominal control matrix,

x(t) ∈ Rn×1 is the state vector, u(t) ∈ Rm×1 is the control input, and ϕ(t) ∈ Rn×1 represents

the disturbance due to the reconfiguration of the spacecraft during the maneuver.

The parameter uncertainties in the system and control matrices are defined as ∆Ai = Dai∆ai(t)Eai,

and ∆Bi = Dbi∆bi(t)Ebi, respectively. The ∆ai(t) and ∆bi(t) blocks satisfy the following

conditions [50][51]

||∆ai(t)|| ≤
1

γai
, ||∆bi(t)|| ≤

1

γbi
(5.2)

and

∆ai(t) = ∆T
ai(t), ∆bi(t) = ∆T

bi(t) (5.3)

and Dai ∈ Rn×p, Eai ∈ Rp×n, Dbi ∈ Rn×q and Ebi ∈ Rq×m are constant row vectors which
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characterize the structure of the uncertainty.

The firing strength of each rule can be determined using a T − norm product as in Eq. (3.2)

wi[z(t)] =

p∏
j=1

µij[z(t)] , 0 ≤ µij[z(t)] ≤ 1, (i = 1, 2, . . . , r) (5.4)

and the fuzzy basis functions are determined using Eq. (3.3)

hi[z(t)] =
wi[z(t)]∑r
i=1 wi[z(t)]

,

p∑
i=1

hi[z(t)] = 1, (i = 1, 2, . . . , r) (5.5)

After combining the rules for the T-S models, the overall system can be approximated as

ΣTS :


ẋ(t) =

r∑
i=1

hi[z(t)]
{

[Ai + ∆Ai]x(t) + [Bi + ∆Bi]u(t)
}

+ ϕ(t)

y(t) =
r∑
i=1

hi[z(t)]Cix(t)

(5.6)

The Parallel Distributed Compensation (PDC) introduced by Wang et al. [39] uses the esti-

mated state provided from the observer Eq. (3.7) as a feedback. The general structure of each

control rule is as follows

Control Rule i:

IF z1(t) is about µi1[z1(t)], and . . . , zp(t) is about µip[zp(t)], THEN

u(t) = −Kix̂(t), (i = 1, 2, . . . , r) (5.7)

where Ki ∈ Rm×n represents the state feedback gain, x̂(t) denotes the state vector estimated

by the fuzzy observer. The overall control law with fuzzy basis functions becomes

u(t) = −
r∑
i=1

hi(z)Kix̂(t) (5.8)
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It should be noted that the actuator amplitude constraint is subject to the following constraints

| uk |≤ µk, (k = 1, 2, ...,m) (5.9)

5.3 Robust Stability Condition

Substituting Eq. (3.6) into Eq. (5.6), yields

ẋ(t) =
r∑
i=1

r∑
j=1

hi[z(t)]hj[z(t)]

{
Ai −BiKj + [Dai Dbi]

 ∆ai 0

0 ∆bi


 Eai

−EbiKj

}x(t)

(5.10)

The following theorem presents the robust stability conditions for the fuzzy model described

by Eq. (5.6)

Theorem 5.3.1. The fuzzy system Eq. (5.6) is stabilized via the PDC controller Eq. (3.6)

∃ P1 > 0 satisfying  Sii < 0

Tij < 0
(i 6= j | hi ∩ hj 6= ∅) (5.11)

where

Sii =



(Ai −BiKi)
TP1 + P1(Ai −BiKi) ∗ ∗ ∗ ∗

DT
aiP1 −I ∗ ∗ ∗

DT
biP1 0 −I ∗ ∗

Eai 0 0 −γ2
aiI ∗

−EbiKi 0 0 0 −γ2
biI


(5.12)
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and

Tij =



Tij(1, 1) ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

DT
aiP1 −I ∗ ∗ ∗ ∗ ∗ ∗ ∗

DT
biP1 0 −I ∗ ∗ ∗ ∗ ∗ ∗

DT
ajP1 0 0 −I ∗ ∗ ∗ ∗ ∗

DT
bjP1 0 0 0 −I ∗ ∗ ∗ ∗

Eai 0 0 0 0 −γ2
aiI ∗ ∗ ∗

−EbiKj 0 0 0 0 0 −γ2
biI ∗ ∗

Eaj 0 0 0 0 0 0 −γ2
ajI ∗

−EbjKi 0 0 0 0 0 0 0 −γ2
bjI



(5.13)

where

Tij(1, 1) = (Ai−BiKj)
TP1 +P1(Ai−BiKj) + (Aj −BjKi)

TP1 +P1(Aj −BjKi) (5.14)

The (∗) denotes the transposed elements for symmetric positions.

Proof. Equation (5.10) can be written as

ẋ(t) =
r∑
i=1

h2
i [z(t)]

{
Ai −BiKi + [Dai Dbi]

 ∆ai 0

0 ∆bi


 Eai

−EbiKi

}x(t)

+
r∑
i=1

∑
i<j

hi[z(t)]hj[z(t)]

{
Ai −BiKj + Aj −BjKi + [Dai Dbi]

 ∆ai 0

0 ∆bi


 Eai

−EbiKj

+ [Daj Dbj]

 ∆aj 0

0 ∆bj


 Eaj

−EbjKi

}x(t) (5.15)
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now let’s consider the Lyapunov function V [x(t)] = xT (t)P1x(t), then

V̇ [x(t)] = ẋT (t)P1x(t) + xT (t)P1ẋ(t)

=
r∑
i=1

h2
i [z(t)]xT (t)

{(
Ai −BiKi + [Dai Dbi]

 ∆ai 0

0 ∆bi


 Eai

−EbiKi

)T

P1

+ P1

(
Ai −BiKi + [Dai Dbi]

 ∆ai 0

0 ∆bi


 Eai

−EbiKi

)}x(t)

+
r∑
i=1

∑
i<j

hi[z(t)]hj[z(t)]xT (t)

{(
Ai −BiKj + [Dai Dbi]

 ∆ai 0

0 ∆bi


 Eai

−EbiKj

)T

P1 + P1

(
Ai −BiKj + [Dai Dbi]

 ∆ai 0

0 ∆bi


 Eai

−EbiKj

)

(5.16)

+

(
Aj −BjKi + [Daj Dbj]

 ∆aj 0

0 ∆bj


 Eaj

−EbjKi

)T

P1

+ P1

(
Aj −BjKi + [Daj Dbj]

 ∆aj 0

0 ∆bj


 Eaj

−EbjKi

)}x(t)

=
r∑
i=1

h2
i [z(t)]xT (t)

{
(Ai −BiKi)

TP1 + P1(Ai −BiKi) + P1[Dai Dbi]

 DT
ai

DT
bi

P1

+ [ET
ai − (EbiKi)

T ]

 ∆ai 0

0 ∆bi


T  ∆ai 0

0 ∆bi


 Eai

−EbiKi

−(
 DT

ai

DT
bi

P1

−

 ∆ai 0

0 ∆bi


 Eai

−EbiKi

)T( DT
ai

DT
bi

P1 −

 ∆ai 0

0 ∆bi


 Eai

−EbiKi

)}x(t)

+
r∑
i=1

∑
i<j

hi[z(t)]hj[z(t)]xT (t)

{
(Ai −BiKj)

TP1 + P1(Ai −BiKj) + P1[Dai Dbi]
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 DT
ai

DT
bi

P1 + [ET
ai − (EbiKj)

T ]

 ∆ai 0

0 ∆bi


T  ∆ai 0

0 ∆bi


 Eai

−EbiKj


−

( DT
ai

DT
bi

P1 −

 ∆ai 0

0 ∆bi


 Eai

−EbiKj

)T( DT
ai

DT
bi

P1 −

 ∆ai 0

0 ∆bi


 Eai

−EbiKj

)+ (Aj −BjKi)
TP1 + P1(Aj −BjKi) + P1[Daj Dbj]

 DT
aj

DT
bj

P1

+ [ET
aj − (EbjKi)

T ]

 ∆aj 0

0 ∆bj


T  ∆aj 0

0 ∆bj


 Eaj

−EbjKi

−(
 DT

aj

DT
bj

P1

−

 ∆aj 0

0 ∆bj


 Eaj

−EbjKi

)T( DT
aj

DT
bj

P1 −

 ∆aj 0

0 ∆bj


 Eaj

−EbjKi

)}x(t)

if

(Ai −BiKj)
TP1 + P1(Ai −BiKj) + P1[Dai Dbi]

 DT
ai

DT
bi

P1 + [ET
ai − (EbiKj)

T ]

 1
γ2ai
I 0

0 1
γ2bi
I


 Eai

−EbiKj

+ (Aj −BjKi)
TP1 + P1(Aj −BjKi) + P1[Daj Dbj]

 DT
aj

DT
bj

P1 + [ET
aj − (EbjKi)

T ]

 1
γ2aj
I 0

0 1
γ2bj
I


 Eaj

−EbjKi

 < 0 (5.17)

then

d

dt
x(t)TP1x(t) <

r∑
i=1

h2
i [z(t)]xT (t)

{
(Ai −BiKi)

TP1 + P1(Ai −BiKi) + P1[Dai Dbi] DT
ai

DT
bi

P1 + [ET
ai − (EbiKi)

T ]

 ∆ai 0

0 ∆bi


T  ∆ai 0

0 ∆bi


 Eai

−EbiKi

−(
 DT

ai

DT
bi

P1
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−

 ∆ai 0

0 ∆bi


 Eai

−EbiKi

)T( DT
ai

DT
bi

P1 −

 ∆ai 0

0 ∆bi


 Eai

−EbiKi

)}x(t)

≤
r∑
i=1

h2
i [z(t)]xT (t)

{
(Ai −BiKi)

TP1 + P1(Ai −BiKi) + P1[Dai Dbi]

 DT
ai

DT
bi

P1

+ [ET
ai − (EbiKi)

T ]

 ∆ai 0

0 ∆bi


T  ∆ai 0

0 ∆bi


 Eai

−EbiKi

−(
 DT

ai

DT
bi

P1

−

 ∆ai 0

0 ∆bi


 Eai

−EbiKi

)T( DT
ai

DT
bi

P1 −

 ∆ai 0

0 ∆bi


 Eai

−EbiKi

)}x(t)

=
r∑
i=1

h2
i [z(t)]xT (t)

{
(Ai −BiKi)

TP1 + P1(Ai −BiKi) + P1[Dai Dbi]

 DT
ai

DT
bi

P1

+ [ET
ai − (EbiKi)

T ]

 ∆ai 0

0 ∆bi


T  ∆ai 0

0 ∆bi


 Eai

−EbiKi

−(
 DT

ai

DT
bi

P1

−

 ∆ai 0

0 ∆bi


 Eai

−EbiKi

)T( DT
ai

DT
bi

P1 −

 ∆ai 0

0 ∆bi


 Eai

−EbiKi

)}x(t)

if

(Ai −BiKi)
TP1 + P1(Ai −BiKi) + P1[Dai Dbi]

 DT
ai

DT
bi

P1 + [ET
ai − (EbiKi)

T ]

 1
γ2ai
I 0

0 1
γ2bi
I


 Eai

−EbiKi

 < 0 (5.18)

then
d

dt
xT (t)P1x(t) < 0
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since

||∆ai(t)|| ≤
1

γai
, ||∆bi(t)|| ≤

1

γbi

using the Schur complement, Eq. (5.17) and Eq. (5.18) can be written as Eq. (5.11)

5.4 Optimal Fuzzy Control

The control objective of optimal fuzzy control is to minimize certain performance functions.

The fuzzy controller proposed by Tanaka et al. [49] minimizes the upper bound of the follow-

ing cost function

J =

∫ ∞
0

[yT (t)Wy(t) + uT (t)Ru(t)]dt (5.19)

where

y(t) =
r∑
i=1

hi[z(t)]Cix(t) (5.20)

and W = W T > 0 and R = RT > 0 are weighting coefficient matrices. The following

theorem presents a basis for the optimal control problem

Theorem 5.4.1. The fuzzy system Eq. (3.4) is stabilized via the PDC controller Eq. (3.6)

∃ P1 > 0 satisfying  Uii < 0

Vij < 0
(i 6= j | hi ∩ hj 6= ∅) (5.21)

where

Uii =


(Ai −BiKi)

TP1 + P1(Ai −BiKi) ∗ ∗

Ci −W−1 ∗

−Ki 0 −R−1

 (5.22)
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and

Vij =



Vij(1, 1) ∗ ∗ ∗ ∗

Ci −W−1 ∗ ∗ ∗

−Kj 0 −R−1 ∗ ∗

Cj 0 0 −W−1 ∗

−Ki 0 0 0 −R−1


(5.23)

and

Vij(1, 1) = (Ai−BiKj)
TP1 +P1(Ai−BiKj) + (Aj −BjKi)

TP1 +P1(Aj −BjKi) (5.24)

Proof.

Corollary 5.4.1.1. ∀W > 0, we have

−CT
i WCi − CT

j WCj ≤ −CT
i WCj − CT

j WCi (5.25)

Corollary 5.4.1.2. ∀W > 0 and R > 0, we have

− [CT
i −KT

j ]

 W 0

0 R


 Ci

−Kj

− [CT
j −KT

i ]

 W 0

0 R


 Cj

−Ki


≤ −[CT

i −KT
j ]

 W 0

0 R


 Cj

−Ki

− [CT
j −KT

i ]

 W 0

0 R


 Ci

−Kj


(5.26)
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from 5.4.1.1, we have

− [CT
i −KT

j ]

 W 0

0 R


 Ci

−Kj

− [CT
j −KT

i ]

 W 0

0 R


 Cj

−Ki


= −CT

i WCi −KT
j RKj − CT

j WCj −KT
i RKi

≤ −CT
i WCj −KT

j RKi − CT
j WCi −KT

i RKj

= [CT
i −KT

j ]

 W 0

0 R


 Cj

−Ki

− [CT
j −KT

i ]

 W 0

0 R


 Ci

−Kj


(5.27)

now let’s consider the new variable

ŷ(t) =

 y(t)

u(t)

 =
r∑
i=1

hi[z(t)]

 Ci

−Ki

x(t) (5.28)

Equation (5.19) can be written as

J =

∫ ∞
0

ŷT (t)

 W 0

0 R

 ŷ(t) dt (5.29)

then from the Schur complement we can write

(Ai −BiKi)
TP1 + P1(Ai −BiKi) + [CT

i −KT
i ]

 W 0

0 R


 Ci

−Ki

 < 0 (5.30)
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and

(Ai −BiKj)
TP1 + P1(Ai −BiKj) + (Aj −BjKi)

TP1 + P1(Aj −BjKi) + [CT
i −KT

i ] W 0

0 R


 Ci

−Kj

+ [CT
i −KT

j ] + [CT
j −KT

i ]

 W 0

0 R


 Cj

−Ki

 < 0.

(5.31)

From Eq. (5.30) and Eq. (5.31), we obtain

(Ai −BiKi)
TP1 + P1(Ai −BiKi) < 0 (5.32)

and

(Ai −BiKj)
TP1 + P1(Ai −BiKj) + (Aj −BjKi)

TP1 + P1(Aj −BjKi) < 0. (5.33)

Using theorem 4.2.2, we conclude that the fuzzy system is globally asymptotically stable.

Next we consider the Lyapunov function V [x(t)] = xT (t)P1x(t), we would like to prove that

J < xT (0)P1x(0)

d

dt
xT (t)P1x(t) = ẋT (t)P1x(t) + xT (t)P1ẋ(t)

=
r∑
i=1

r∑
j=1

hi[z(t)]hj[z(t)]xT (t)

{
(Ai −BiKj)

TP1 + P1(Ai −BiKj)

}
x(t)

=
r∑
i=1

h2
i [z(t)]xT (t)

{
(Ai −BiKi)

TP1 + P1(Ai −BiKi)

}
x(t)

+
r∑
i=1

∑
i 6=j

hi[z(t)]hj[z(t)]xT (t)

{
(Ai −BiKj)

TP1 + P1(Ai −BiKj)

}
x(t)

<
r∑
i=1

h2
i [z(t)]xT (t)

{
(Ai −BiKi)

TP1 + P1(Ai −BiKi)

}
x(t)

− xT (t)

{
r∑
i=1

∑
i<j

hi[z(t)]hj[z(t)][CT
i −KT

j ]

 W 0

0 R


 Ci

−Kj

+
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r∑
i=1

∑
i<j

hi[z(t)]hj[z(t)][CT
j −KT

i ]

 W 0

0 R


 Cj

−Ki

}x(t)

< −xT (t)

{
r∑
i=1

h2
i [z(t)][CT

i −KT
j ]

 W 0

0 R


 Ci

−Kj

}x(t)−

xT (t)

{
r∑
i=1

∑
i<j

hi[z(t)]hj[z(t)][CT
j −KT

i ]

 W 0

0 R


 Cj

−Ki

+

r∑
i=1

∑
i<j

hi[z(t)]hj[z(t)][CT
j −KT

i ]

 W 0

0 R


 Cj

−Ki

}x(t)

≤ −xT (t)

{
r∑
i=1

h2
i [z(t)][CT

i −KT
i ]

 W 0

0 R


 Ci

−Ki

}x(t)

− xT (t)

{
r∑
i=1

∑
i<j

hi[z(t)]hj[z(t)][CT
i −KT

j ]

 W 0

0 R


 Cj

−Ki

+

r∑
i=1

∑
i<j

hi[z(t)]hj[z(t)][CT
j −KT

i ]

 W 0

0 R


 Ci

−Kj

}x(t)

= −xT (t)

{
r∑
i=1

r∑
j=1

hi[z(t)]hj[z(t)][CT
i −KT

i ]

 W 0

0 R


 Cj

−Kj

}x(t)

= −xT (t)

{(
r∑
i=1

hi[z(t)][CT
i −KT

i ]

 W 0

0 R

)( r∑
i=1

hi[z(t)]

 Ci

−Ki

)}x(t)

= −yT (t)

 W 0

0 R

 y(t)

therefore

d

dt
xT (t)P1x(t) < −ŷT (t)

 W 0

0 R

 ŷ(t) (5.34)
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Integrating both sides, we get

J =

∫ ∞
0

ŷT (t)

 W 0

0 R

 ŷ(t) dt < −xT (t)P1x(t) |∞0 (5.35)

since the fuzzy control system is stable,

J =

∫ ∞
0

ŷT (t)

 W 0

0 R

 ŷ(t) dt < xT (0)P1x(0) (5.36)

5.5 Fuzzy Controller Design

The fuzzy controller needs to address the problem of actuator amplitude constraint described

by Eq. (5.9). The problem of actuator amplitude constraint has been addressed in the literature

as a bounded norm problem on the magnitude of the control input, i.e., ||u(t)|| ≤ µ. See for

instance Tanaka and Wang [49]. This condition gives a conservative control gain. In this

section, we derive an individual actuator amplitude constraint in terms of LMI. Then, we cast

the fuzzy controller design as an optimization problem. It should be noted that the actuator

amplitude constraint is subject to the following constraints:

| uk |≤ µk, (k = 1, 2, ...,m). (5.37)

The following theorem gives the conditions that need to be satisfied for the robust−optimal

fuzzy control with amplitude saturation.

54



Theorem 5.5.1. if ∃ P1 > 0, P2 > 0, ∀ i, j = 1, 2, . . . , r, i < j ≤ r, i 6= j | hi∩hj 6= ∅, the

robust-optimal fuzzy PDC controller Eq. (5.8) which quadratically stabilizes Eq. (5.6) and

satisfies the following constraints

||x(0)|| ≤ φ2 (5.38)

and

|uk| ≤ µk, (k = 1, 2, ...,m) (5.39)

can be found by minimizing the following augmented cost function

min
(µ1,...,µk,γa1,...,γar,γb1,...,γbr,φ)

Ja = ΛTΨΛ (5.40)

subject to :

Sii < 0 (5.41)

Tij < 0 (5.42)

Uii < 0 (5.43)

Vij < 0 (5.44)

ATi P2 − CT
i N

T
i + P2Ai −NiCi < 0 (5.45)

ATi P2 − CT
j N

T
i + P2Ai −NiCj + ATj P2 − CT

i N
T
j + P2Aj −NjCi < 0 (5.46)
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1

µ2
k

MT
i D

T
kDkMi −X ≤ 0 (5.47)

X − φ2I ≥ 0 (5.48)

where Dk is a (1 ×m) zero row matrix in which the kth element is 1, and Ψ is a weighting

matrix. It should be noted that since X = P−1 and Mi = KiP
−1, then the matrices Λ, Sii,

Tij , Uii, and Vij become [42]

Λ = [µ1, . . . , µm, γa1, . . . , γar, γb1, . . . , γbr, φ]T , (5.49)

Sii =



XATi + AiX −BiMi −MT
i B

T
i ∗ ∗ ∗ ∗

DT
ai −I ∗ ∗ ∗

DT
bi 0 −I ∗ ∗

EaiX 0 0 −γ2
aiI ∗

−EbiMi 0 0 0 −γ2
biI


(5.50)

and

Uii =


XATi + AiX −BiMi −MT

i B
T
i ∗ ∗

CiX −W−1 ∗

−Mi 0 −R−1

 (5.51)
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and

Tij =



Tij(1, 1) ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

DT
ai −I ∗ ∗ ∗ ∗ ∗ ∗ ∗

DT
bi 0 −I ∗ ∗ ∗ ∗ ∗ ∗

DT
aj 0 0 −I ∗ ∗ ∗ ∗ ∗

DT
bj 0 0 0 −I ∗ ∗ ∗ ∗

EaiX 0 0 0 0 −γ2
aiI ∗ ∗ ∗

−EbiMj 0 0 0 0 0 −γ2
biI ∗ ∗

EajX 0 0 0 0 0 0 −γ2
ajI ∗

−EbjMi 0 0 0 0 0 0 0 −γ2
bjI



(5.52)

and

Vij =



Vij(1, 1) ∗ ∗ ∗ ∗

CiX −W−1 ∗ ∗ ∗

−Mj 0 −R−1 ∗ ∗

CjX 0 0 −W−1 ∗

−Mi 0 0 0 −R−1


(5.53)

where

Tij(1, 1) = Vij(1, 1) = XATi +AiX−BiMj−MT
j B

T
i +XATj +AjX−BjMi−MT

i B
T
j (5.54)

where X = P−1
1 , Mi = KiP

−1
1 , and Ni = P2Li, then the feedback gains and the observer
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gains can be obtained from the following equations, respectively.

Ki = MiP
−1
1 , Li = P−1

2 Ni, (i = 1, 2, . . . , r). (5.55)

Proof. To show the proof of Eqs. (5.47) and (5.48), let us start with Eq. (5.9), the individual

actuator amplitude constraint, and rewrite it in the following form:

u2
k(t) = uT (t)DT

k Dku(t) ≤ µ2
k, (k = 1, 2, . . . ,m) (5.56)

Using Eq. (4.2), we get

u2
k(t) =

r∑
i=1

r∑
j=1

hi[z(t)]hj[z(t)]xT (t)KT
i D

T
kDkKjx(t) ≤ µ2

k (5.57)

⇒

1

µ2
k

r∑
i=1

r∑
j=1

hi[z(t)]hj[z(t)]xT (t)KT
i D

T
kDkKjx(t) ≤ 1. (5.58)

Using a quadratic Lyapunov function V (x) = x(t)TP1x(t), let us assume that

xT (0)P1x(0) ≤ 1; ∀t > 0 (5.59)

and
1

µ2
k

r∑
i=1

r∑
j=1

hi[z(t)]hj[z(t)]xT (t)KT
i D

T
kDkKjx(t) ≤ xT (t)P1x(t) (5.60)

therefore Eq. (5.58) will be satisfied. Let us rewrite Eq. (5.58) as

r∑
i=1

r∑
j=1

hi[z(t)]hj[z(t)]xT (t)
[ 1

µ2
k

KT
i D

T
kDkKj − P1

]
x(t) ≤ 0. (5.61)
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Following a similar procedure in [49] and after some algebraic manipulation, we can show

that

1

µ2
k

KT
i D

T
kDkKi − P1 ≤ 0 (5.62)

or
1

µ2
k

MT
i D

T
kDkMi −X ≤ 0 (5.63)

which proves Eq. (5.47). Using Eq. (4.2.6), Eq. (5.9) can be written as

xT (0)
(
P1 −

1

φ2
I
)
x(0) ≤ 0 (5.64)

or

X − φ2I ≥ 0 (5.65)

which completes the proof of Eq. (5.48).

The schematic diagram of the system is shown in Fig. (5.1). From the nonlinear model

we obtain the matrices Ai, Bi, ∆Ai, ∆Bi, hi, and y. The controller and observer gains are

obtained from the LMI solver. Using the estimated states and the controller gains, the fuzzy

control law u is used to stabilize the flexible spacecraft.

5.6 Numerical Simulation

We will use Matlab toolbox YALMIP [52] to solve Eqs. (5.40). YALMIP is a modeling lan-

guage for solving convex optimization problems. To examine the performance of the closed-

loop system, we use the same maneuver as in Fig. (2.2) which consists of a 45-degree antenna

retargeting maneuver. We use the nominal values of the spacecraft parameters which are listed
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Fig. 5.1: Schematic diagram of the system.

in table 2.1.

The matrices in Eq. (5.19) are W = 80 I16×16, and R = 0.01 I12×12. The spacecraft has ten

actuators; six on the platform for controlling the position and attitude along three body-axes,

and four actuators in the middle and tip of the antenna in the xa and ya directions.

5.6.1 Sliding Mode Control Law

We compare the effectiveness of the T-S fuzzy controller with a sliding mode controller which

we call a baseline controller. The baseline controller is designed based on Eqs. (2.30–2.33)

which can be written as

ΣOL :

 ẋ1 = x2

ẋ2 = −M−1(t)K(t)x1 −M−1(t)G(t)x2 −M−1(t)B∗(t)u(t)−M−1(t)d(t)

(5.66)

where x1 = [RT
0 θT qT ]T and x2 = [V T

0
GωB

T
q̇T ]T . The equations of motion that describe

the dynamic system in Eq. (5.66) are known as the regular form[53], the nonlinear feedback
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control law that stabilizes the origin and constrains the motion of the system to the manifold

s = x2 + λ x1 (5.67)

can be determined as

uSM = (M−1(t)B∗(t))�[−M−1(t)K(t)x1 − (M−1(t)G(t)− λ)x2]− γ(x) sat
(s
ε

)
(5.68)

where λ and ε are real positive numbers and γ(x) satisfies the following condition

γ(x) ≥ ρ(x)

1− k0

+ γ0 γ0 > 0, k0 ∈ [0 1]. (5.69)

It should be noted that a height slope saturation function sat
(
s
ε

)
is used in Eq. (5.68) to avoid

issues associated with discontinuity and chattering.

5.6.2 Simulation for Nominal System

Figure (5.2) shows the displacement of the antenna tip in the y-direction for the open-loop

and closed-loop systems without uncertainties.

It can be seen that the closed-loop of the system with T-S fuzzy controller and sliding mode

controller are very close. Both controllers can stabilize the system and suppress the vibration

in the antenna.

The time history of the Euler angle θx for the T-S fuzzy controller, sliding mode controller

along with the estimated θ̂ are shown in Fig. (5.3). It can be seen that the sliding mode

controller has faster response and slightly better performance than the T-S fuzzy controller.

In addition, we notice that the observed maximum relative error is on the order of 10−3. The

closed loop response of the position vector of the platform center-of-gravity is shown in Fig.
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Fig. 5.2: Elastic displacement δy of the antenna in the y direction.
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Fig. 5.3: Angular position of the rigid platform θx.

(5.4). It is clear that both controllers have very similar performance.

Figures (5.5) and (5.6) show the time history of the actuator amplitude uy = My ≤ |µ5| =
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Fig. 5.4: Position of the platform center-of-gravity Rz.
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Fig. 5.5: Actuator moment My on the rigid platform.

3.1029N.m and actuator force on the tip of the antenna f2y ≤ |µ11| = 11.2303N , where µ5

and µ11 represent the upper bounds on the actuator amplitudes.
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Fig. 5.6: Actuator force f2x on the antenna tip in the x-direction.

5.6.3 Simulation for System With Uncertainty

As mentioned before, one of the advantages of a fuzzy controller is to cope with systems

and actuators uncertainties. To examine the robustness of the proposed fuzzy controller-

observer, we investigate the effect of uncertainties on the geometry, mass, and mass moment-

of-inertia of the spacecraft. We simulate the closed-loop system with l = 1.5 l∗, m = 0.9 m∗,

mp = 1.5 m∗p, Ip = 1.5 I∗p, and I = 0.9 I∗ where superscript * denotes the nominal values

listed in 2.1.

To compare the results with a nominal case, the time history of Uy, θx, and Rz are shown

in Figs. (5.7–5.9), respectively. The results shows the superiority of the T-S fuzzy over the

sliding mode controller in the presence of uncertainties and disturbance in the system. It can

be seen clearly in Fig. (5.8) that the baseline nonlinear controller fails to stabilize the system.
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Fig. 5.8: Angular position of the rigid platform θx for a system with uncertainties.
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Fig. 5.9: Position of the platform center-of-gravity Rz for a system with uncertainties.

5.6.4 Higher Frequency Modes and Controller Performance

Theoretically, the mathematical model used to describe the dynamics of the flexible spacecraft

has an infinite number of modes. To control the system completely, each mode would need to

be considered in the feedback control scheme. Because it is not practical to include an infinite

number of mode, the controller is designed based on the reduced model. The truncated model

when used for control system design results in what is commonly referred to as controller

spillover. It was demonstrated by Balas et al. [36], that even for a simple loop flexible

beam, control spillover can cause closed–loop instability and increase the response time due

to unmodeled higher frequencies. To check the performance of the fuzzy controller developed

in the previous section, we used the same controller gains and modified the parameters of the

spacecraft such as the flexure rigidity EI = 1.5 EI∗ and the length of the antenna l = 0.8 l∗

such that we excite higher mode frequency. Then we compare the results with the sliding

mode controller. The simulation results are shown in Figs. (5.10–5.13)

It should be noted that we expected that the sliding mode controller will perform better since
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Fig. 5.10: Elastic displacement of the antenna δy in the y-direction for higher frequency mode.
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Fig. 5.11: Angular position of the rigid platform θx for a system with higher frequency mode.

the gains of the sliding mode controller are calculated in real time based on the modified

model.
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Fig. 5.12: Position of the platform center-of-gravity Rz for a system with higher frequency
mode.
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Fig. 5.13: Position of the platform center-of-gravity Rz for a system with higher frequency
mode.

We notice that despite the higher modes being excited, the fuzzy controller was able to sta-

bilize the platform and eliminate the vibration in the antenna. This shows that the fuzzy

controller being used has a good performance and can cope with unmodeled dynamics, dis-
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turbances and uncertainties.
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CHAPTER 6

Robust Model-Reference Fuzzy Control

6.1 Introduction

In this chapter, a novel application of a robust fuzzy controller for the position and attitude

stabilization of a flexible spacecraft is presented. The proposed controller follows a reference

model to stabilize the position and the attitude, and to suppress the vibration in the flexible

antenna during a retargating antenna maneuver. The fuzzy controller is designed based on

the Takagi-Sugeno (T-S) fuzzy model of the system. We use a full-order fuzzy observer to

estimate the unavailable states and apply the parallel distributed compensation (PDC) control

technique to stabilize quadratically the closed-loop system while the actuator amplitude con-

straints are enforced. The controller is robust to model uncertainties and disturbance. The

fuzzy controller design process is cast into a convex optimization problem in the form of

linear matrix inequalities (LMIs). Numerical simulations and comparison results with a non-

linear baseline controller are provided to demonstrate the performance and the robustness of

the proposed fuzzy controller.

6.2 Takagi-Sugeno (T-S) Fuzzy Modeling

Takagi-Sugeno fuzzy models allow describing nonlinear dynamical models by a set of linear

time invariant (LTI) models interconnected by nonlinear functions. Each rule associates a LTI

model as a concluding part to a weight function obtained from the premises. In this chapter,
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we focused on the class of uncertain and disturbed TâĂŞS fuzzy models described by Eq.

(5.6). The bounded uncertainties and external disturbances are added, in a classical way, to

each nominal LTI models.

ΣTS :


ẋ(t) =

r∑
i=1

hi[z(t)]
{

[Ai + ∆Ai]x(t) + [Bi + ∆Bi]u(t)
}

+ ϕ(t)

y(t) =
r∑
i=1

hi[z(t)]Cix(t)

(6.1)

where Ai ∈ Rn×n is the nominal system matrix, Bi ∈ Rn×m is the nominal control matrix,

x(t) ∈ Rn×1 is the state vector, u(t) ∈ Rm×1 is the control input, and ϕ(t) ∈ Rn×1 repre-

sents a disturbance term with a finite energy. The modeling of parameter uncertainty blocks

satisfies the conditions stated in Eq. (5.2), and ∆Ai = Hi∆a(t)Eai, and ∆Bi = Hi∆b(t)Ebi,

respectively. In addition, we use a fuzzy observer to estimate the unavailable states. The fuzzy

observer is based on the model without uncertainties as seen in Eq. (4.9).

Σobs :


˙̂x(t) =

r∑
i=1

hi(z)
{
Aix̂(t) +Biu(t) + Li[y(t)− ŷ(t)]

}
ŷ(t) =

r∑
i=1

hi(z)Cix̂(t)

(6.2)

where Li ∈ Rn×s is the observer gain, y(t) ∈ Rs×1 is the measurable output, and ŷ(t) is the

estimated output vector.

6.3 Parallel Distributed Compensation (PDC) Control and

H∞ Performance

Consider the desired trajectory

ẋr(t) = Arxr(t) (6.3)
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where xr(t) ∈ Rn×1 is the reference state andAr ∈ Rn×n is a Hurwitz matrix. The attenuation

of external disturbances is guaranteed using the H∞ performance [54], and it is expressed as

follows ∫ tf

0

[xr(t)− x(t)]TQ [xr(t)− x(t)]dt ≤ η2

∫ tf

0

ϕT (t)ϕ(t)dt (6.4)

where tf is the final time, Q = QT > 0 is a positive definite matrix, and η is an attenuation

level. The feedback control law is based on the Parallel Distributed Compensation (PDC)

technique as

ui(t) = −Ki[xr(t)− x̂(t)] (i = 1, 2, . . . , r) (6.5)

where Ki ∈ Rm×n represents the feedback gain and x̂(t) denotes the state vector estimated

by the fuzzy observer.

6.4 Output Feedback LMI Tracking Control

Let x̃(t) = [e0(t) ep(t) xr]
T , where e0(t) = x(t) − x̂(t) is the error between the states and

the estimated states, and ep(t) = x(t)− xr(t) is the error between the states and the reference

model. Substituting Eq. (6.5) into Eq. (6.1), we obtain

˙̂x(t) =
r∑
i=1

r∑
j=1

hi[z(t)]hj[z(t)]Ãijx̃(t) + S̃Φ̃(t) (6.6)

where

Ãij =


Ai − LiCj ∆Ai + ∆BiKj ∆Ai

−BiKj −∆BiKj Ai +BiKj + ∆Ai + ∆BiKj Aj − Ar + ∆Ai

0 0 Ar

 (6.7)

72



and

S̃ =


I 0

I −I

0 I

 (6.8)

and

Φ̃(t) =

 ϕ(t)

0

 (6.9)

with Q̃ = diag[0 Q 0], Eq. (6.4) can be transformed into the following

∫ tf

0

x̃T (t)Q̃ x̃(t)dt ≤ η2

∫ tf

0

Φ̃T (t)Φ̃(t)dt (6.10)

the stability condition of the closed-loop system described by Eq. (6.6) withH∞ performance

is stated in the following theorem:

Theorem 6.4.1 ([55]). ∀ t > 0 and hi[z(t)]hj[z(t)] 6= 0, if ∃ a matrix P̃ = P̃ T > 0 and a

constant η > 0 such that the following inequality are satisfied ∀ i, j = 1, 2, . . . , r

 Υii < 0

2
r−1

Υii + Υij + Υji ≤ 0
i 6= j (6.11)

where

Υii =

 ÃTijP̃ + P̃ Ãij + Q̃ P̃ S̃

S̃T P̃ −η2I

 (6.12)

then, the asymptotic stability of the system Eq. (6.6) is guaranteed with H∞ tracking control

performance with an attenuation η

Proof. Using the Lyapunov function:

V [x̃(t)] = x̃T (t)P̃ x̃(t) (6.13)
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then

V̇ [x̃(t)] = x̃T (t)Q̃x̃(t)− η2Φ̃T (t)Φ̃(t) ≤ 0 (6.14)

Equation (6.14) can be written as

x̃T (t)
[ r∑
i=1

r∑
j=1

hi[z(t)]hj[z(t)](ÃTijP̃ + P̃ Ãij + Q̃)
]
x̃(t)+

+ΦT (t)S̃T P̃ x̃(t) + x̃T (t)P̃ S̃Φ̃(t)− η2Φ̃T (t)Φ̃(t) ≤ 0.

(6.15)

or

 x̃(t)

Φ̃(t)


T

r∑
i=1

r∑
j=1

hi[z(t)]hj[z(t)]

 ÃTijP̃ + P̃ Ãij + Q̃ P̃ S̃

S̃T P̃ −η2I


 x̃(t)

Φ̃(t)

 ≤ 0. (6.16)

It was shown in [55] that Eq. (6.16) is satisfied if condition in Eq. (6.11) holds. To derive the

LMI conditions, the following lemmas are needed

Lemma 6.4.2. [50] for real matrices X, Y and S = ST > 0 with appropriate dimensions

and a positive constant γ, the following inequalities must hold:

XTY + Y TX ≤ γXTX + γ−1Y TY (6.17)

and

XTY + Y TX ≤ XTS−1X + Y TSY. (6.18)

Lemma 6.4.3. For real matrices A, B, W, Y, Z and Q with appropriate dimensions then

 Y +BTQ−1b W T

W Z + AQAT

 < 0⇒

 Y W T +BTAT

W + AB Z

 < 0. (6.19)
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Proof. the proof of lemma (6.4.3) is as follows:

 Y W T +BTAT

W + AB Z

 =

 Y W T

W Z


 0 BTAT

AB 0

 < 0 (6.20)

from inequality (6.18), ∃ Q such that

 0

A

 [B 0] +

 BT

0

 [0 AT ] ≤

 0

A

Q[0 AT ] +

 BT

0

Q−1[B 0] (6.21)

Lemma 6.4.4. [56] let a matrix Ω < 0, a matrix X with appropriate dimension such that

XTΩX ≤ 0, and a scalar α, the following inequality holds:

XTΩX ≤ −α(XT +X)− α2Ω−1 (6.22)

Proof. Since Ω is negative definite matrix, then if XTΩX ≤ 0, hence ∃ α ∈ R such that:

(X + αΩ−1)TΩ(X + αΩ−1) ≤ 0 (6.23)

XTΩX + α(XT +X) + α2Ω−1 ≤ 0 (6.24)

Theorem 6.4.5. ∀ i, j = 1, 2, . . . , r, i < j ≤ r, and hi[z(t)]hj[z(t)] 6= 0, if there ∃ P1 =

P T
1 > 0, P2 = P T

2 > 0, P3 = P T
3 > 0, Yi, Zi, positive constants µn; (n = 1, ..., 8), and η,
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such that the following conditions are satisfied:

 Υii < 0

2
r−1

Υii + Υij + Υji ≤ 0
i 6= j (6.25)

where

Υij =


Γij (∗) −BiYj N 01×8

08×2 08×8

 Ψij

 (6.26)

where

Γij =



−2αN 0 (∗) (∗) (∗) 0 0 0

0 −2αN 0 0 0 0 0 (∗)

EbiYj 0 −µ−1
1 I 0 0 0 0 0

EbiYj 0 0 −µ−1
5 I 0 0 0 0

αI 0 0 0 Γij(5, 5) (∗) (∗) P1

0 0 0 0 HT
i P1 Γij(6, 6) 0 0

0 0 0 0 HT
i P1 0 −µ4I 0

0 αI 0 0 P1 0 0 −η2I



(6.27)

where

Γij(5, 5) = P1Ai − ZiCj + + ATi P1 − CT
j Zi

and

Γij(6, 6) = −(µ−1
1 + µ−1

2 + µ−1
3 )−1I
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and

Ψij =



Ψij(1, 1) (∗) (∗) (∗) (∗) (∗) (∗) 0 (∗)

N −Q−1 0 0 0 0 0 0 0

EbiYj 0 −µ−1
2 I 0 0 0 0 0 0

EbiYj 0 0 −µ−1
7 I 0 0 0 0 0

EaiN 0 0 0 −µ−1
3 I 0 0 0 0

EaiN 0 0 0 0 −µ−1
6 I 0 0 0

ATi − ATr 0 0 0 0 0 Ψij(7, 7) (∗) (∗)

0 0 0 0 0 0 Eai −µ−1
8 0

−I 0 0 0 0 0 P3 0 −η2I


(6.28)

where

Ψij(1, 1) = AiN +BiYj +NTAi + YjB
T
i + (µ−1

5 + µ−1
6 + µ−1

7 + µ−1
8 )HiH

T
i

and

Ψij(7, 7) = ATr P3 + P3Ar + µ4E
T
aiEai

where (∗) in the LMI formulation indicates a transpose quantity in a symmetric matrix.

Proof. For a convenient design, we consider the following matrix P̃ = diag[P1 P2 P3], then

Eq. (6.16) can be written as:

r∑
i=1

r∑
j=1

hi[z(t)]hj[z(t)]

(
Π̃ij + ∆Π̃ij

)
≤ 0 (6.29)
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where

Π̃ij =



 P1(Ai − LiCi)

+(Ai − LiCi)TP1

 ∗ 0 ∗ 0

−P2Bi

 P2(Ai +BiKj)

+(Ai +BiKj)
TP2 +Q

 ∗ ∗ ∗

0 (ATi − ATr )P2 ATr P3 + P3Ar 0 ∗

P1 P2 0 −η2I 0

0 −P2 P3 0 −η2I


and

∆Π̃ij]



−P1∆BiKj −KT
j ∆BT

i P1 ∗ ∗ 0 0 −P2∆BiKj +KT
j ∆BT

i P1

+∆ATi P1


 P2(∆Ai + ∆BiKj)

+(∆Ai + ∆BiKj)
TP2 +Q

 ∗ 0 0

∆ATi P1 ∆ATi P2 0 0 0

0 0 0 0 0

0 0 0 0 0


Then using lemma 6.4.3 we get

r∑
i=1

r∑
j=1

hi[z(t)]hj[z(t)]∆Π̃ij ≤
r∑
i=1

r∑
j=1

hi[z(t)]hj[z(t)]diag

[
d1ij d2ij d3i 0 0

]

where

d1ij = (µ1 + µ5)KT
j E

T
biEbiKj + (µ−1

1 + µ−1
2 + µ−1

3 + µ−1
4 )P1HiH

T
i P1

d2ij = (µ2 + µ7)KT
j E

T
biEbiKj + (µ−1

5 + µ−1
6 + µ−1

7 + µ−1
8 +)P2HiH

T
i P2 + (µ3 + µ6)ET

aiEai

d3ij = (µ4 + µ8)ET
aiEai.
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Then the inequality Eq. (6.29) will hold if:

r∑
i=1

r∑
j=1

hi[z(t)]hj[z(t)]



Θij(1, 1) ∗ 0 ∗ 0

−P2BiKj Θij(2, 2) ∗ ∗ ∗

0 (ATi − ATr )P2 Θij(3, 3) 0 ∗

P1 P2 0 −η2I 0

0 −P2 P3 0 −η2I


≤ 0

(6.30)

where

Θij(1, 1) = P1(Ai − LiCi) + (Ai − LiCi)TP1 + d1ij

Θij = (2, 2)P2(Ai +BiKj) + (Ai +BiKj)
TP2 +Q+ d2ij

Θij(3, 3) = ATr P3 + P3Ar + d3i

Inequality Eq. (6.30) can rearranged as:

r∑
i=1

r∑
j=1

hi[z(t)]hj[z(t)]



Θij(1, 1) ∗ 0 ∗ 0

P1 −η2I ∗ 0 0

−P2BiKj P2 Θij(2, 2) ∗ ∗

0 0 (ATi − ATr )P2 Θij(3, 3) ∗

0 0 −P2 P3 −η2I


≤ 0

(6.31)

Pre–post multipling of the inequality Eq. (6.31) by diag
[
N N N I I

]
, and let N =

P−1
2 , Yi = KiN and Zi = P1Li, we obtain:

r∑
i=1

r∑
j=1

hi[z(t)]hj[z(t)]

 Σ(1, 1) ∗

Σ(2, 1) Σ(2, 2)

 ≤ 0 (6.32)
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where

Σ(1, 1) =

 N 0

0 N

Ω1ij

 N 0

0 N

+

 (µ1 + µ5)Y T
j E

T
biEbiYj 0

0 0

 (6.33)

Σ(2, 1) =


−BiYj N

0 0

0 0



Σ(2, 2) =


Ω2ij ∗ ∗

ATi − ATr ATr P3 + P3Ar + d3i ∗

−I P3 −η2I


and

Ω1ij =

 P1Ai − ZiCj + ATi P1 − CT
j Z

T
i + (µ−1

1 + µ−1
2 + µ−1

3 + µ−1
4 )P1HiH

T
i P1 P1

P1 −η2I


and

Ω2ij = NAi +BiYj + ATi N + Y T
j B

T
i +NQN + (µ2 + µ7)Y T

j E
T
biEbiYj

+ (µ−1
5 + µ−1

6 + µ−1
7 + µ−1

8 +)HiH
T
i P2 + (µ3 + µ6)NET

aiEai

Applying lemma 6.4.4 to Eq. (6.33) and using the Schur complement we obtain:



−2αN + (µ1 + µ5)Y T
j E

T
biEbiYi 0 ∗ 0

0 −2αN 0 ∗

αI 0 Ξij(3, 3) ∗

0 αI P1 −η2I


(6.34)
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where

Ξij(3, 3) = P1Ai − ZiCj + ATi P1 − CT
j Z

T
i + (µ−1

1 + µ−1
2 + µ−1

3 + µ−1
4 )P1HiH

T
i P1

substituting Eq. (6.34) into Eq. (6.32) we obtain the following:



Hij(1, 1) 0 αI 0 ∗ 0 0

0 −2αN 0 αI ∗ 0 0

αI 0 Hij(3, 3) P1 0 0 0

0 αI P1 −η2I 0 0 0

−BiYj N 0 0 Hij(5, 5) ∗ ∗

0 0 0 0 ATi − ATr Hij(6, 6) ∗

0 0 0 0 −I P3 −η2I



(6.35)

Applying the Schur complement to the diagonal blocks, the conditions of theorem 6.4.5 hold

The design of a model-reference robust fuzzy controller that follows a reference input (6.3),

satisfies H∞ norm for a given attenuation level η, satisfies the actuators amplitude constraints

[22] given by | uk |≤ αk, (k = 1, 2, ...,m) for an arbitrary bounded initial conditions

‖x(0)‖ ≤ δ2, can be formulated in terms of linear matrix inequalities and cast as an opti-

mization problem in the following form:

min
(αk,η)

J = ΛTΩΛ. (6.36)
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Subject to : 

Υii < 0

2
r−1

Υii + Υij + Υji ≤ 0

1
α2
k
Y T
i D

T
kDkYi −N ≤ 0

N − δ2I ≥ 0

i 6= j. (6.37)

The controller gains and observer gains are obtained as follows:

Ki = YiN
−1 (6.38)

Li = P−1
1 Zi (6.39)

The design process of the fuzzy controller consists of the following steps:

1. Model the parameters of uncertainty ∆a and ∆b in Eq. (5.2), and generate the matrices

Hi, Eai and Ebi.

2. Choose a weighting matrix Ω in the cost function J Eq. (5.40) and the matrix Q in Eq.

(6.4)

3. The values of µ1, µ2 and µ3 will be chosen arbitrarily [57] but they will be balanced by

the computed values of µ4, µ5, µ6, µ7 and µ8 .

4. If a feasible solution exists, the matrices P1, Yi, N , and Zi can be computed by an

optimization algorithm.

5. The controller and observer gains are computed using Eq. (6.38) and Eq. (6.39).

The schematic diagram of this process is shown in Fig. (6.1).
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Fig. 6.1: Schematic diagram of the system.

6.5 Numerical Simulation

In this section, we present and compare the stability, performance and robustness of the pro-

posed controller with the baseline controller. We use the Matlab toolbox YALMIP [52] to

solve Eqs. (6.36). YALMIP is a modeling language for solving convex and non convex op-

timization problems. To examine the performance of the closed-loop system, we use a 45◦

antenna retargeting maneuver. The nominal values of the spacecraft parameters are listed in

Table. 2.1.

The matrices in Eqs. (6.4,6.36) are Q = 10−2I16×16 and Ω = diag[102I6×6 10−2I6×6], where

I is the identity matrix. The spacecraft has ten actuators; six on the platform for controlling

the position and attitude along three body-axes, and four actuators in the middle and tip of the

antenna in the xe and ye directions.
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6.5.1 Adaptive Control Law

To compare the performance of the T-S fuzzy controller, we choose the model-reference adap-

tive controller (MRAC) with σ modification as a baseline. σ modification is perhaps the sim-

plest modification method that demonstrates the potential for improved robustness [58]. The

σ modification is quite effective and yet simple to implement. Therefore, it is frequently used

in adaptive control to ensure robustness.

The adaptive control law is designed based on Eqs. (2.30 – 2.33) which can be written as:

ẋ(t) = A(t)x(t) +B(t)[u(t) + Θ∗T (t)Φ(x)] (6.40)

where x(t) ∈ R16×1 is the state vector, u(t) ∈ R12×1 is the control vector, A(t) ∈ R16×16 is

known, B(t) ∈ R16×12 is also known, Θ∗ ∈ R16×12 is the unknown parameter and Φ(x) =

D(t)d(t) is a known, bounded function. The adaptive control law can be formulated as:

u(t) = Kx(t)x(t)−ΘT (t)Φ(x) (6.41)

where

Θ̇(t) = −ΓΘ[Φ(x)eTPB(t) + σΘ(t)] (6.42)

and

Kx(t) = B�(t)[Ar(t)− A(t)] (6.43)

where e(t) = xr(t)− x(t) is the tracking error, ΓΘ = ΓTΘ > 0 ∈ R16×16 is an adaptation rate

matrix and P = P T > 0 ∈ R16×16 solves the Lyapunov equation PAr + ATr P = −Q where

Q = QT > 0 is a positive definite matrix.
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6.5.2 Simulation for Nominal System

We simulate the adaptive closed loop response with Q = 0.1I16×16, ΓΘ = 10I16×16 and

σ = 0.1. Figure (6.2) shows the displacement of the antenna tip in the ye-direction for the

open-loop and closed-loop systems without uncertainties.
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Fig. 6.2: Elastic displacement δy of the antenna tip in the y direction.

It can be seen that the settling time for the adaptive controller is slightly better than the fuzzy

controller. However both controllers can stabilize the system and suppress the vibration in the

antenna.

The time history of the Euler angles θx, θy, and θz, for the T-S fuzzy controller, adaptive

controller, reference model along with the estimated θ̂ are shown in Figs. (6.3),(6.4) and (6.5)

It can be seen that the fuzzy controller has slightly better performance, it tracks closely the

reference input, but the adaptive controller has faster response than the T-S fuzzy controller.

In addition, we notice that the observer maximum relative error is on the order of 10−3.

The closed loop response of the position vector of the platform center-of-gravity is shown
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Fig. 6.3: Angular position of the rigid platform θx.
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Fig. 6.4: Angular position of the rigid platform θy.

in Figs. (6.6), (6.7) and (6.8). It is clear that the fuzzy controller performs better than the

adaptive controller.
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Fig. 6.5: Angular position of the rigid platform θz.
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Fig. 6.6: Position of the rigid platform center-of-gravity Rx.

The forces and moments acting on the platform and the elastic antenna are shown in Figs.

(6.9–6.12)
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Fig. 6.7: Position of the rigid platform center-of-gravity Ry.
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Fig. 6.8: Position of the rigid platform center-of-gravity Rz.
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Fig. 6.9: Actuator force Fy on the rigid platform center-of-gravity.
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Fig. 6.10: Actuator force Fz on the rigid platform center-of-gravity.

6.5.3 Simulation for System With Uncertainty

As mentioned before, one of the advantages of a fuzzy controller is that it is able to cope

with system and actuator uncertainties. To examine the robustness of the proposed fuzzy
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Fig. 6.11: Actuator moment Mx on the rigid platform center-of-gravity.
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Fig. 6.12: Actuator force on the tip of the elastic antenna in the x direction.

controller-observer, we investigate the effect of uncertainties in the geometry, mass, and mass

moment-of-inertia of the spacecraft. The parameters of the spacecraft with uncertainties are
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listed in Table 2 where (∗) indicate the nominal values of parameters as listed in Table. 6.1.

Table 6.1: Parameter of the Flexible Spacecraft with uncertainties
Parameters Values

l 1.35 l∗

m 0.65 m∗

mp 1.35 m∗p
Ip 1.35 I∗p
I 0.65 I∗

To compare the results with a nominal case, the time history of Uy, θx, and Rz are shown in

Figs. (6.13 – 6.15) respectively.
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Fig. 6.13: Elastic displacement δy of the antenna tip in the y-direction for a system with
uncertainties .

The results show the superiority of the T-S fuzzy controller over the adaptive controller in

the presence of uncertainties and disturbance in the system. It can be seen clearly that the

adaptive controller fails to track closely the reference input of the system.
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Fig. 6.14: Angular position θx of the rigid platform for a system with uncertainties.
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Fig. 6.15: Position of the platform center-of-gravity Rz for a system with uncertainties.
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CHAPTER 7

Conclusions and Future Work

7.1 Conclusions

In this dissertation, we have studied the dynamics and control problems for a multibody flex-

ible spacecraft made of a rigid platform and flexible appendages. The first objective was the

development of a fuzzy control law for attitude stability and vibration suppression. The sec-

ond objective was to demonstrate the superiority of the Takagi-Sugeno (T-S) fuzzy control

over other nonlinear controller.

In Chapter 2, the equations of motion of multibody flexible spacecraft were developed based

on a Lagrange technique in term of quasi-coordinate. The method of assumed mode was used,

and it was shown that with five admissible functions, a good approximation can be reached

to capture a higher order mode of vibration. Moreover it was shown that the dynamics of the

system can be written in state space form for control purposes.

In Chapter 3, we introduced the Takagi-Sugeno (T-S) fuzzy modeling and control algorithm.

Using a certain number of rules, the (T-S) fuzzy system can uniformly approximate any real

continuous function and its derivatives to any degree of accuracy. Once the fuzzy model

is validated, the parallel distributed compensator (PDC) approach provides a procedure to

design a fuzzy controller from a given T-S fuzzy model. The general structure of the (PDC) is

very simple and this simplicity gives the PDC a superiority for practical implementation. The

feedback gains are obtained by mean of a linear matrix inequality (LMI) and the stability can

be shown using the Lyapunov theories.
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In Chapter 4, a (T-S) fuzzy model for a spacecraft with a flexible appendage such as a com-

munication antenna was presented. The model is based on the weighted sum of local linear

models. We use the full state-feedback stabilization combined with theH∞ control techniques

and design a nonlinear controller which is asymptotically stable. The input control constraint

is considered in this design. The simulation results demonstrate the efficacy of the proposed

PDC and the T-S fuzzy control model for attitude control and vibration suppression of the

flexible spacecraft. The main advantage of PDC is its simple structure and consequently, ease

of implementation.

In Chapter 5, we presented a robust-optimal T-S fuzzy model-based controller for posi-

tion/attitude stabilization and vibration suppression of flexible spacecraft during a retargeting

antenna maneuver. The proposed fuzzy controller is designed based on the Takagi-Sugeno

fuzzy model of a spacecraft. The stability of the closed-loop system is guaranteed based on

the Lyapunov stability theorem. The nonlinear optimal controller is robust to model uncer-

tainties and has a disturbance rejection property. Furthermore, it satisfies the actuator ampli-

tude constraint. Comparison of the T-S fuzzy control law with the sliding mode nonlinear

control law, shows that the proposed controller is simple and therefore easier to implement.

Numerical simulations and results demonstrate the stability, performance, robustness and the

advantage of the proposed T-S fuzzy controller over the baseline sliding mode controller.

In Chapter 6, we presented a novel application of a robust model-reference fuzzy controller,

to control the position and attitude of a flexible spacecraft consisting of a rigid platform and

a flexible antenna during a minimum time retargating antenna maneuver. The controller is

designed based on the T-S fuzzy model of the flexible spacecraft and derived based on the

parallel distributed compensator (PDC) technique. The main objective is its ability to track

a reference input and to suppress the vibration while the actuator amplitudes are constrained

and the H∞ robustness criteria is guaranteed. A full-order fuzzy model-based observer was

utilized to estimate the unavailable states. The proposed T-S fuzzy controller is simple, and
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hence easy to implement. Numerical simulation shows the superiority of the proposed fuzzy

controller in dealing with uncertainty and disturbances.

7.2 Future Work

Although it is beyond the scope of this dissertation project, several directions for future re-

search to the work appear promising. These are:

• Actuator amplitude constraint on lower bounds: Due to fuel limitations and geometric

design constraints, it is evident that all thrusters have finite upper bounds on the amount

of force that they can provide. There is also a minimum nonzero force or impulse that

imposes a lower bound on deliverable thrust. This means that arbitrarily small forces

cannot be applied using thrusters. This limits the control precision that can be achieved,

which can be critical during mission phases as docking or proximity operations.

• When implementing active control in large space structure, care must be taken to avoid

spillover. to do so, a complete dynamic model of the flexible structure that includes

the actuator dynamics and multiple appendages need to be developed. a) extending this

work for control of multiple flexible appendage or antenna

• Building a physical experiment for validating the mathematical model and testing the

performance, robustness, and stability of the developed controller on a physical system.

• extending the model and developing a new controller for large amplitude vibrations and

highly flexible components

• extending this work for control of multiple flexible appendage or antenna with different

physical characteristics.
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APPENDIX A

A.1 Nomenclature

Ai Nominal system matrix of the ith fuzzy rule

Bi Nominal control matrix of the ith fuzzy rule

ACB Rotation matrix from the B-frame to the A-frame.

GCB Rotation matrix from the B-frame to the G-frame.

EI Flexural rigidity of the antenna.

f1 Actuator force components on the middle of the appendage

f2 Actuator force vector on the tip of the appendage

Fp Actuator force vector on the spacecraft platform.

I Identity matrix.

I Moment of inertia of the antenna.

Ip Moment of inertia of the platform.

Ki State-feedback gain of the ith fuzzy rule

K Stiffness matrix.

l Antenna length.

Li Observer gain of the ith fuzzy rule

L̂a Lagrangian density of the antenna.

m Mass of the antenna.

M Mass matrix.

mp Mass of the platform.
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Mp Actuator moment vector on the platform.

OXY Z Cartesian coordinate system attached to the G-frame

oxyz Cartesian coordinate system attached to the B-frame

q Generalized coordinate vector.

R Position vector of a point on the appendage with respect to point O

Ro Position vector of the the origin of the B-frame with respect to point O

RQ Position vector of an arbitrary point on the B-frame with respect to point O

rQ Position vector of a point in the spacecraft with respect to point O

r Position vector of a point in the undeformed appendage with respect to its hinge point

ro Position vector of the appendage hinge point with respect to point O

T̂a Kinetic energy density of the antenna.

Û Nonconservative force density.

V Velocity vector of a point on the antenna.

VQ Velocity vector of an arbitrary point on the B-frame with respect to G-frame

Vo Velocity vector of the the origin of the B-frame.

β Input angular position command to the antenna.

δ Deflection of the flexible antenna.

θx, θy, θz Euler angles.

Φ Matrix of admissible functions.

ωx, ωy, ωz Spacecraft angular velocity.

GωB Angular velocity of the platform.

Gω̃B Skew-symmetric angular velocity matrix.

ϕ(t) Disturbance vector

µi Fuzzy membership function
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A.2 Fuzzy Model Parameters, Controller and Observer gains

A.2.1 Fuzzy Model Parameters:

A1 =



08×6 08×2 I8×8

08×6

2.46 0

0 2.42

0 0

0 −12.07

3.26 0

0 0

−341.87 0

0 −369.67

08×8



A2 =



08×6 08×2 I8×8

08×6

2.46 0

0 1.85

0 1.57

0 −11.76

2.58 0

1.52 0

−340.81 0

0 −367.87

08×8



B1 =



08×12

0.06 0 0 0 0 0 0.03 0 0 0.04 0 0

0 0.06 0 0 0 0 0 0.03 0 0 0.03 0

0 0 0.06 0 0 0 0 0 0.06 0 0 0.06

0 0 0 0.08 0 0 0 0.12 0 0 0.43 0

0 0 0 0 0.02 0 0.03 0 0 0.12 0 0

0 0 0 0 0 0.02 0 0 0 0 0 0

0.05 0 0 0 0.07 0 4.61 0 0 13.72 0 0

0 0.05 0 0.24 0 0 0 4.88 0 0 14.71 0



B2 =



08×12

0.06 0 0 0 0 0 0.03 0 0 0.04 0 0

0 0.06 0 0 0 0 0 0.02 0.04 0 0.03 0.04

0 0 0.06 0 0 0 0 0.02 0.05 0 0.02 0.05

0 0 0 0.08 0 0 0 0.12 0.02 0 0.42 0.02

0 0 0 0 0.02 0 0.02 0 0 0.09 0 0

0 0 0 0 0 0.02 0.02 0 0 0.06 0 0

0.05 0 0 0 0.05 0.03 4.60 0 0 13.69 0 0

0 0.04 0.03 0.24 0 0 0 4.88 0.06 0 14.66 0.06
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A.2.2 Full State Feedback Fuzzy Controller Gains:

KT
1 =



3.72 0 0 0 −0.15 0.02 2.27 0 0 −0.42 0 0

0 3.39 0.48 1.07 0 0 0 1.48 −1.52 0 −0.49 −1.52

0 0.58 2.81 −0.44 0 0 0 1.43 1.68 0 −0.48 1.68

0 0.49 0.06 2.92 0 0 0 −0.47 0.48 0 0.11 0.48

−0.91 0 0 0 5.53 0.12 1.20 0 0 0.19 0 0

−0.15 0 0 0 0.21 5.57 −0.05 0 0 −0.73 0 0

0.81 0 0 0 0.47 −0.07 0.37 0 0 −0.90 0 0

0 1.53 1.19 −24.69 0 0 0 7.25 −6.35 0 −1.90 −6.35

7.70 0 0 0 −0.72 −0.02 4.57 0 0 −0.85 0 0

0 7.00 1.13 2.09 0 0 0 3.13 −3.05 0 −1.04 −3.05

0 1.27 5.36 −0.97 0 0 0 2.84 3.07 0 −0.94 3.07

0 1.16 0.05 9.05 0 0 0 −1.67 1.60 0 0.41 1.60

−3.17 0 0 0 17.42 0.74 3.61 0 0 0.61 0 0

−0.60 0 0 0 1.04 18.16 −0.12 0 0 −2.33 0 0

−0.03 0 0 0 0.04 0.17 0.51 0 0 1.50 0 0

0 0 0.01 −0.21 0 0 0 0.53 −0.04 0 1.39 −0.04



KT
2 =



3.72 0 0 0 −0.14 −0.01 2.28 0 0 −0.39 0 0

0 3.72 0.15 0.60 0 0 0 2.03 0.15 0 −0.67 0.15

0 0.07 2.42 0.18 0 0 0 −0.01 2.42 0 0 2.42

0 0.53 −0.03 2.96 0 0 0 −0.58 −0.03 0 0.15 −0.03

−0.93 0 0 0 5.53 0.12 1.09 0 0 −0.32 0 0

−0.11 0 0 0 0.19 5.57 0.26 0 0 0.81 0 0

0.82 0 0 0 0.37 0.23 0.35 0 0 −0.91 0 0

0 1.52 1.43 −25.71 0 0 0 8.63 1.43 0 −2.38 1.43

7.70 0 0 0 −0.70 −0.08 4.59 0 0 −0.77 0 0

0 7.64 0.45 1.17 0 0 0 4.19 0.45 0 −1.39 0.45

0 0.34 4.62 0.19 0 0 0 0.14 4.62 0 −0.05 4.62

0 1.26 −0.20 9.23 0 0 0 −2.03 −0.20 0 0.53 −0.20

−3.22 0 0 0 17.42 0.76 3.29 0 0 −0.89 0 0

−0.47 0 0 0 1.00 18.15 0.90 0 0 2.60 0 0

−0.05 0 0 0 0.13 −0.10 0.52 0 0 1.50 0 0

0 −0.01 0.02 −0.22 0 0 0 0.54 0.02 0 1.38 0.02
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