653 research outputs found

    Study Of EMG Feature Selection For Hand Motions Classification

    Get PDF
    In recent days, electromyography (EMG) pattern recognition has becoming one of the major interests in rehabilitation area. However, EMG feature set normally consists of relevant, redundant and irrelevant features. To achieve high classification performance, the selection of potential features is critically important. Thus, this paper employs two recent feature selection methods namely competitive binary gray wolf optimizer (CBGWO) and modified binary tree growth algorithm (MBTGA) to evaluate the most informative EMG feature subset for efficient classification. The experimental results show that CBGWO and MBTGA are not only improves the classification performance, but also reduces the number of features

    Optimal power flow solution with current injection model of generalized interline power flow controller using ameliorated ant lion optimization

    Get PDF
    Optimal power flow (OPF) solutions with generalized interline power flow controller (GIPFC) devices play an imperative role in enhancing the power system’s performance. This paper used a novel ant lion optimization (ALO) algorithm which is amalgamated with Lévy flight operator, and an effectual algorithm is proposed named as, ameliorated ant lion optimization (AALO) algorithm. It is being implemented to solve single objective OPF problem with the latest flexible alternating current transmission system (FACTS) controller named as GIPFC. GIPFC can control a couple of transmission lines concurrently and it also helps to control the sending end voltage. In this paper, current injection modeling of GIPFC is being incorporated in conventional Newton-Raphson (NR) load flow to improve voltage of the buses and focuses on minimizing the considered objectives such as generation fuel cost, emissions, and total power losses by fulfilling equality, in-equality. For optimal allocation of GIPFC, a novel Lehmann-Symanzik-Zimmermann (LSZ) approach is considered. The proposed algorithm is validated on single benchmark test functions such as Sphere, Rastrigin function then the proposed algorithm with GIPFC has been testified on standard IEEE-30 bus system

    Evolving CNN-LSTM Models for Time Series Prediction Using Enhanced Grey Wolf Optimizer

    Get PDF
    In this research, we propose an enhanced Grey Wolf Optimizer (GWO) for designing the evolving Convolutional Neural Network-Long Short-Term Memory (CNN-LSTM) networks for time series analysis. To overcome the probability of stagnation at local optima and a slow convergence rate of the classical GWO algorithm, the newly proposed variant incorporates four distinctive search mechanisms. They comprise a nonlinear exploration scheme for dynamic search territory adjustment, a chaotic leadership dispatching strategy among the dominant wolves, a rectified spiral local exploitation action, as well as probability distribution-based leader enhancement. The evolving CNN-LSTM models are subsequently devised using the proposed GWO variant, where the network topology and learning hyperparameters are optimized for time series prediction and classification tasks. Evaluated using a number of benchmark problems, the proposed GWO-optimized CNN-LSTM models produce statistically significant results over those from several classical search methods and advanced GWO and Particle Swarm Optimization variants. Comparing with the baseline methods, the CNN-LSTM networks devised by the proposed GWO variant offer better representational capacities to not only capture the vital feature interactions, but also encapsulate the sophisticated dependencies in complex temporal contexts for undertaking time-series tasks

    A hybrid Grey Wolf optimizer with multi-population differential evolution for global optimization problems

    Get PDF
    The optimization field is the process of solving an optimization problem using an optimization algorithm. Therefore, studying this research field requires to study both of optimization problems and algorithms. In this paper, a hybrid optimization algorithm based on differential evolution (DE) and grey wolf optimizer (GWO) is proposed. The proposed algorithm which is called “MDE-GWONM” is better than the original versions in terms of the balancing between exploration and exploitation. The results of implementing MDE-GWONM over nine benchmark test functions showed the performance is superior as compared to other stat of arts optimization algorithm

    Introductory Review of Swarm Intelligence Techniques

    Full text link
    With the rapid upliftment of technology, there has emerged a dire need to fine-tune or optimize certain processes, software, models or structures, with utmost accuracy and efficiency. Optimization algorithms are preferred over other methods of optimization through experimentation or simulation, for their generic problem-solving abilities and promising efficacy with the least human intervention. In recent times, the inducement of natural phenomena into algorithm design has immensely triggered the efficiency of optimization process for even complex multi-dimensional, non-continuous, non-differentiable and noisy problem search spaces. This chapter deals with the Swarm intelligence (SI) based algorithms or Swarm Optimization Algorithms, which are a subset of the greater Nature Inspired Optimization Algorithms (NIOAs). Swarm intelligence involves the collective study of individuals and their mutual interactions leading to intelligent behavior of the swarm. The chapter presents various population-based SI algorithms, their fundamental structures along with their mathematical models.Comment: Submitted to Springe

    Improved Reptile Search Optimization Algorithm using Chaotic map and Simulated Annealing for Feature Selection in Medical Filed

    Get PDF
    The increased volume of medical datasets has produced high dimensional features, negatively affecting machine learning (ML) classifiers. In ML, the feature selection process is fundamental for selecting the most relevant features and reducing redundant and irrelevant ones. The optimization algorithms demonstrate its capability to solve feature selection problems. Reptile Search Algorithm (RSA) is a new nature-inspired optimization algorithm that stimulates Crocodiles’ encircling and hunting behavior. The unique search of the RSA algorithm obtains promising results compared to other optimization algorithms. However, when applied to high-dimensional feature selection problems, RSA suffers from population diversity and local optima limitations. An improved metaheuristic optimizer, namely the Improved Reptile Search Algorithm (IRSA), is proposed to overcome these limitations and adapt the RSA to solve the feature selection problem. Two main improvements adding value to the standard RSA; the first improvement is to apply the chaos theory at the initialization phase of RSA to enhance its exploration capabilities in the search space. The second improvement is to combine the Simulated Annealing (SA) algorithm with the exploitation search to avoid the local optima problem. The IRSA performance was evaluated over 20 medical benchmark datasets from the UCI machine learning repository. Also, IRSA is compared with the standard RSA and state-of-the-art optimization algorithms, including Particle Swarm Optimization (PSO), Genetic Algorithm (GA), Grasshopper Optimization algorithm (GOA) and Slime Mould Optimization (SMO). The evaluation metrics include the number of selected features, classification accuracy, fitness value, Wilcoxon statistical test (p-value), and convergence curve. Based on the results obtained, IRSA confirmed its superiority over the original RSA algorithm and other optimized algorithms on the majority of the medical datasets

    TRUSS STRUCTURE OPTIMIZATION BASED ON IMPROVED WOLF PACK ALGORITHM

    Get PDF
    Aiming at the optimization of truss structure, a wolf pack algorithm based on chaos and improved search strategy was proposed. The mathematical model of truss optimization was constructed, and the classical truss structure was optimized. The results were compared with those of other optimization algorithms. When selecting and updating the initial position of wolves, chaos idea was used to distribute the initial value evenly in the solution space; phase factor was introduced to optimize the formula of wolf detection; information interaction between wolves is increased and the number of runs is reduced. The numerical results show that the improved wolf pack algorithm has the characteristics of fewer parameters, simple programming, easy implementation, fast convergence speed, and can quickly find the optimal solution. It is suitable for the optimization design of the section size of space truss structures
    • …
    corecore