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1. Introduction 
In recent years, autonomous driving has emerged as one of the most desirable research areas in the 

artificial intelligence (AI) community. Vehicles can now operate automatically to carry out routine 

driving activities effectively and safely [1]. The four functional modules that make up autonomous 

vehicles’ core components are environment sensing, decision-making, motion planning, and motion 

control [2]. The decision-making and motion planning modules, which link environment sensing with 

motion control, constitute the autonomous vehicle's “brain” and are considered to be of the utmost 

importance [3], [4]. The lane-changing choice is an important component of the research in this area, 

and the driving decision-making system is the key technology for maintaining the driving safety of AVs 

[5]–[7]. Making decisions in unpredictable and dynamic traffic settings is one of the difficulties in 

achieving full automation of driving [8]. Making decisions involves coming up with a series of motion 

behaviors to carry out certain tasks, like merging into a crowded lane, navigating an unguarded 

crossroads, and overtaking with ease on a highway [1], [9]. The robot motion planning algorithm 
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 The increasing trend of autonomous driving vehicles in smart cities 

emphasizes the need for safe travel. However, the presence of obstacles, 

potholes, and complex road environments, such as poor illumination and 

occlusion, can cause blurred road images that may impact the accuracy of 

maneuver prediction in visual perception systems. To address these 

challenges, a novel ensemble model, named ABHO-based deep CNN-

BiLSTM has been proposed for traffic sign detection. This model combines 

a hybrid convolutional neural network (CNN) and bidirectional long short-

term memory (BiLSTM) with the alarming-based hunting optimization 

(ABHO) algorithm to improve maneuver prediction accuracy. Additionally, 

a modified hough-enabled lane generative adversarial network (ABHO 

based HoughGAN) has been proposed, which is designed to be robust to 

blurred images. The ABHO algorithm, inspired by the defending and social 

characteristics of starling birds and  Canis latrans, allows the model to 

efficiently search for the optimal solution from the available solutions in 

the search space. The proposed ensemble model has shown significantly 

improved accuracy, sensitivity, and specificity in maneuver prediction 

compared to previously utilized methods, with minimal error during lane 

detection. Overall, the proposed ensemble model addresses the challenges 

faced by autonomous driving vehicles in complex and obstructed road 

environments, offering a promising solution for enhancing safety and 

reliability in smart cities.  
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frequently serves as an inspiration for conventional motion planning techniques, such as artificial 

potential fields (APF).  

A heuristic-based hybrid APF-based motion planning technique was presented in [10]. Combining 

the proposed methods with optimization algorithms significantly enhanced their performance [11]. An 

autonomous vehicle’s decision-making layer must take into account interactive and synergetic input from 

other cars to produce human-like driving behaviors. The intentions and responses of nearby cars may be 

modeled and predicted using probabilistic approaches and partially observable Markov decision processes 

(POMDP) [1]. Despite significant advancements, there are few reports of autonomous vehicles (AVs) 

making decisions that take into account other vehicles' social interactions. Capturing the features during 

vehicle interactions is crucial for improving the decision-making of AVs [4].The emergence of connected 

and autonomous vehicles (CAVs) that can sense their environment, make decisions, exercise 

autonomous control, and exchange data with other vehicles and infrastructure is the result of the quick 

development of communication technology and autonomous driving technology [12]–[14]. The authors 

in [15] construct a decision-making system by merging Markov Decision Process (MDP) and RL since 

RL can offer numerous advantages in tackling complex uncertain sequential decision issues. Deep neural 

networks (DNN) are used to create a human-like decision-making system that can adjust to actual 

driving circumstances [4], [16].  

Traditional control methods, such as constant spacing (CS) policy, constant time headway (CTH) 

policy, and sliding mode control (SMC) [17]–[19], have a poor ability to adapt to the environment and 

are unable to make precise and efficient decisions based on a variety of complex driving situations, 

particularly in situations where CAVs and conventional driver-controlled vehicles coexist [14]. The 

search engine, probabilistic sampling, prospective field, approximation curve, and mathematical 

optimization approaches are the five primary groups among the many algorithms that have been 

researched for path planning [3]. The most popular and useful path planning algorithm is the one called 

graph search. In terms of avoiding collisions, the graph search method performs well. The thickness of 

the grid, however, frequently affects its ideal course. A typical sampling approach that effectively searches 

the best path while taking non-holonomic restrictions into account is known as rapidly exploring 

random trees (RRT) [20]. However, RRT needs to continue to strengthen its security and the fineness 

of its intended course [4]. One drawback of these techniques is that some gesture parameters, which are 

frequently employed in path planning, are non-linear and non-convex, which might lead to the NP-

hard (non-deterministic polynomial-time hard) issue [11], [21]. 

In this research, traffic sign detection and maneuver prediction-based vehicle control are used to 

control autonomous driving cars. Social behaviors, such as driving patterns and targets of the vehicles in 

the immediate surrounding area, are taken into account. The hybridized algorithm is utilized for both 

traffic sign detection and maneuver prediction, which is motivated by advanced algorithms for AV 

control and decision-making. The modified Hough-enabled Lane GAN model is used to accurately 

segment the surrounding driving area in the input image for maneuver prediction, while the ensembled 

CNN-BiLSTM classifier is then applied to predict the traffic sign and make accurate decisions for 

autonomous driving. In addition, Alarming-based hunting optimization, the alarming-based hunting 

optimization (ABHO) algorithm is well implemented in the modified Hough-enabled Lane GAN and 

the ensembled CNN-BiLSTM classifier for lane detection and traffic sign prediction. The shared weights 

in the lane detection technique and the tunable parameters in the traffic sign prediction technique are 

controlled by the ABHO algorithm. 

The research utilizes several techniques for autonomous driving, including a modified Hough-

enabled Lane GAN model for maneuver prediction, an ensemble CNN-BiLSTM classifier for traffic sign 

detection, and the ABHO algorithm for controlling shared weights in the lane detection technique and 

tunable parameters in the traffic sign prediction technique. The paper is organized into sections on 

existing works, safe driving in an intelligent environment method, results, and a conclusion. 
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2. Related works and Challenges 
The implementation of autonomous vehicles (AVs) is expected to have a considerable positive impact 

on traffic safety by reducing the number of accidents by up to 94%. However, AV accidents can still 

occur due to various unforeseen environmental obstacles, such as human-driven vehicles, bicycles, 

animals, and passengers. Even fully autonomous cars cannot guarantee being completely crash-free under 

these circumstances. As a result, ethical concerns arise when dealing with such challenges, particularly 

when human lives are at stake. This section provides an overview of traditional approaches to decision-

making-based autonomous vehicles, including path selection and braking, as well as their benefits and 

challenges. 

In this section, the autonomous vehicle-based decision-making process using various strategies is 

revealed. An effective fuzzy CoCoSo approach was created by [22] built on the logarithmic method and 

Power Heronian function to address the problem of additional benefit selection in vehicular management 

techniques. Three primary stages make up the suggested MCDM paradigm. The MCDM’s inputs, such 

as criteria, options, and experts, are chosen in the first step. The logarithmic technique is used to 

determine the optimal parameters in the second step. The final stage ranks the options according to the 

Power Heronian function. The suggested fuzzy LM PH’CoCoSo methodology’s efficacy is undeniable. 

However, the technical intricacy of the fuzzy WPHA and fuzzy WGPHA functions for evaluating the 

computational technique can be a constraint. The decision-making and mobility control for traffic 

movements of an autonomous vehicle (AV) taking into account the human behaviors of other traffic 

users were addressed in this [4] unique integrated approach. When making decisions and predicting the 

condition of a course of an autonomous vehicle, the Stackelberg Game theory and Model Predictive 

Control (MPC) are both employed. The ability of the agile solution to handle various social contacts 

with other vehicle drivers demonstrates its viability and efficacy. Only the velocity and acceleration 

behaviors are taken into account for obstacle vehicles because the lane-change behaviors of these vehicles 

are not part of the high-speed driving situation. An automated, safe, and effective decision-making 

paradigm for AVs was put forth by [23] for driving at junctions. To find the best navigation rule in 

terms of security and protection, the deep Q-network method was used. The suggested approach might 

aid in developing the decision-making component of AVs to improve travel convenience and traffic flow. 

This study’s shortcomings include the fact that the bigger standard deviations meant that driving 

comfort was reduced. In an environment of rapid change, [14] presented an autonomous braking 

decision-making technique that chooses the best course of action using deep reinforcement learning 

(DRL). To increase safe driving, the automobile can proactively adopt the best braking behavior in an 

urgent situation once the strategy has been trained correctly. To execute high-level control techniques 

to coordinate CAVs in typical circumstances, multi-agent reinforcement learning is necessary. 

A unique LC decision (LCD) model is presented by [7] that enables autonomous cars to acquire 

judgments that are similar to those made by humans. This approach integrates the XGBoost algorithm 

with a deep autoencoder (DAE) network. The presented method is currently only relevant to the 

traditional LC decision-making mechanism in straight lanes or curved lanes on motorways due to the 

complication and instability of regular traffic. A predictive control paradigm for moral judgments in 

driverless vehicles is presented forth by [24] using the principles of rational ethics. The author proposes 

the use of powerful AI tools and reasonable procedures to develop ethical guidelines for autonomous 

vehicles. One such approach is the Lexicographic Optimization-based Model Predictive Controller (LO-

MPC), which prioritizes barriers and restrictions to ensure the flexible application of ethical principles. 

To address lane change decision-making [11], the author proposes a risk-aware driving decision strategy 

using deep reinforcement learning's Risk Awareness Prioritized Replay Deep Q-Network (RA-

PRDQN). This approach aims to identify a sequence of actions that minimize risk and prevent accidents 

with the host car in congested environments with both static and dynamic obstacles. The sample 

selection probability function can be improved by considering vehicle location sets and incorporating 

stopping behavior for speed regulation using deep reinforcement learning. Another decision-making [1] 

system prioritizes the safe and effective operation of autonomous vehicles. The author presents a 

simulation of passing driving situations and defines standard methods such as the intelligent driver model 

and minimization of overall braking caused by merging traffic. For highway overtaking, the author 
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proposes using the Dyna-H algorithm, which combines a modified Q-learning algorithm with a heuristic 

planning approach. Overall, these approaches aim to develop safe and ethical decision-making systems 

for autonomous vehicles. To develop online decision-making techniques for autonomous vehicles, deep 

learning and enhanced RL algorithms must also be combined. The proposed model achieved high 

accuracy in detecting traffic signs and predicting lanes compared to the existing techniques [25]. The 

research aims to enhance the decision-making capabilities of autonomous vehicles to ensure safety, 

energy efficiency, and mobility. The author [23] efficiently ranked the agents relying upon their 

importance in making decisions, using the CNN network that effectively learned the features and 

obtained the domain knowledge. The decision–making system acts as the central nerve of driverless 

vehicles and is important for the safe and effective operation of vehicles [26]. While considering the 

surrounding environment, the other car motion and the evaluation of self-esteemed vehicles, decision-

making is indicated to develop reasonable and safe driving characteristics at the human level [27]. 

The challenges considered during the development of effective decision-making of autonomous 

vehicles are as follows: 

• In the decision-making process for motion planning, Stackelberg game theoretic optimization and 

Model Predictive Control (MPC)-based optimization are used to determine the optimal course of 

action, which is then executed within predefined limits. However, if these limits are too narrow, the 

motion planner may struggle to find viable alternatives. On the other hand, setting the boundaries 

too broadly can significantly increase the computational complexity of position control [4]. 

• Therefore, it is crucial to strike a balance between setting limits that are too narrow or too broad. 

This will ensure that the motion planner can find feasible solutions within a reasonable timeframe. 

Achieving the optimal direction of flow within the expected timeframe is a complex task that requires 

careful consideration and balancing of various factors [4]. 

• However, using a fuzzy control system on a vehicle has the drawback of requiring a level of 

understanding to define fuzzy rules and similarity measures. The choice of the membership function 

is where a fuzzy logic-based control technique becomes challenging. Bandwidth is significantly 

impacted by the settings for the membership function and fuzzy word set [14]. 

• The fact that various motion requirements employed in motion planning are frequently non-linear 

and non-convex poses a drawback of the risk awareness prioritized replay deep Q-network technique 

[11]. This may result in the NP-hard (non-deterministic polynomial-time hard) problem. 

• One major drawback of probabilistic-based techniques is that they solely use specialized information 

to provide rule-based action, failing to make the right decisions in disruptive environments and 

ignoring the learning aspects of the human drivers in navigation [11]. 

• The diminishing gradient experienced during training presents the biggest difficulty in using simple 

RNNs. The number of instances the gradient signal is ultimately multiplied can be as great as the 

time steps taken. When dealing with sequence data, a standard Recurrent Neural Network (RNN) 

may not be suitable for capturing long-term dependencies. This is because, in a deep or extended 

sequence analysis, the gradient of the network's output may struggle to impact the weights of the 

preceding layers. As a result, it becomes challenging for the network to record long-term 

dependencies in the sequence data. The network’s weights won’t be properly updated under gradient 

vanishing, leading to very low weight values [28]. 

3. Method 
In this section decision-making system for the autonomous driving cars using deep models are 

discussed. The autonomous vehicles require a strong decision controller to support the safe-driving 

experience in the smart cities for which the road video dataset is acquired. To the video frames, traffic 

sign detection and maneveur prediction is done using modified CNN-BiLSTM classifier and ABHO-

Hough GAN model. The algorithm, ABHO is designed for training the classifier parameters to support 
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the prediction with accuracy. The ABHO algorithm is developed by integrating the hunting 

characteristics of Canis latrans with the leadership hierarchy and alarming nature of starling birds. On 

the other hand, the pre-processed video data is fed forward to the ABHO-Hough GAN model, which 

is tuned by ABHO that has shown good image enhancement and image restoration capabilities. ABHO-

Hough GAN model has the tendency to update the performance based on the optimization algorithm 

and effective maneuver detection. Fig.1 (a) and Fig.1 (b) shows the illustration of the intelligent 

transportation using maneveur prediction. 

 

(a) Real-time Driving scenario in autonomous driving system 

 

(b) Illustration of decision-making in autonomous vehicle 

Fig. 1.  The illustration of the intelligent transportation using maneveur prediction 

3.1. Road vehicle video database 
The road vehicle video database [4] is utilized in this research for traffic sign detection and maneveur 

prediction as the initial step, which is expressed as 

𝐷𝐷 = ∑ 𝐷𝐷𝑑𝑑𝑑𝑑
𝑖𝑖=0   (1) 
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where, the utilized road vehicle database is denoted as D , and the total available videos in the database 

is denoted as dD , which is in the range of 0 to d . Each video from the database is supposed to hold Ff
number of video frames and for ensuring the accurate support system, the frame-wise processing is 

enabled. 

3.2. Traffic sign detection using Optimized CNN-BiLSTM classifier 
The video frames are acquired from the road video, for which the traffic sign detection is done 

through the designed ABHO-Ensembled model. Fig. 2 shows ABHO-Ensembled model with three 

layers of CNN, a layer of convolution, leaky RelU, and MaxPooling, which makes-up the ensemble 

model’s initial channel. The deep CNN holds the filter size as 264 with the kernel size of of dimension. 

Initially, the frame is processed using the CNN structure of the first channel to extract spatial 

characteristics, but the depth of time features extracted from the raw high-dimensional data is 

insufficient. To finish the extraction of the data time-series features and extract the long-term 

dependencies between the data features, the BiLSTM structure of dimension is employed. While the 

model is being trained, the BiLSTM structure can prevent gradient disappearance and gradient 

explosion. After reshaping the output from CNN, the BiLSTM utilizes the dropout size, which is then 

fed to the dense layer for an efficient detection of the traffic sign in each frame. 

 

Fig. 2.  ABHO-Ensembled model for traffic sign detection 

3.2.1. Algorithm for tuning the Ensemble model 
The traffic sign detection is the basic need for ensuring the safe driving using the autonomous cars 

and the accurate detection depends on the ensembled fusion parameters, which is decided optimally 

using ABHO. ABHO is proposed by employing the exceptional behavior of the Canis latrans [29] and 

the starling bird [30] for the observation of traffic signs in the road video. The ability of the Canis latrans 

relies in the effective balance between the exploitation and exploration stages. The social grading system 

of the guiding beta and a lack of emphasis on following dominant norms are what distinguish the 

Coyote’s algorithmic behavior. The ABHO approach places more emphasis on social interactions and 

opinion-sharing during the hunting process. Certain common issues, such as the excessive processing 

time and inadequate searching potential in the Canis latrans performance, are resolved through the 

characteristics, such as scary as well as the defending characters of the starling bird. The combined 

behavior enhances the resilience and power of the suggested ABH optimization, leading to a good 

performance. The starling bird is highly intelligent and has a good memory when compared to many 

other small birds. The technique is to be used to solve global optimization issues due to its simplicity, 
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scalability, and high performance. The performance of the starling bird is evaluated to the optimization 

problems that belong to popular engineering applications. 

1) Inspiration 
The Coyote algorithm, which is based on the Canis lupus genus, inspired by the Canis latrans species, 

and serves as both an ecological and swarm intelligence criterion, is the basis for the population-based 

approach that is suggested. Even though the Canis latrans is used as the pack leader, the social hierarchy 

and dominant standards of these species are disregarded by its unique mathematical structure 

configuration. Furthermore, unlike grey wolf hunting, Canis latrans hunting emphasizes the social 

structure and experiences that share as a whole rather than only hunting prey. By considering the social 

organization of the Canis latrans and their environmental adaption, the suggested method offers a unique 

mathematical model in comparison to metaheuristics. It also provides novel techniques to balance the 

exploration and exploitation phases of the optimization process. The Canis latrans’s behavior has been 

linked to both internal (such as gender, social standing, and pack membership) and extrinsic (like 

snowfall height, snowpack severity, climate, and corpse weight) factors. As a result, the alarming-based 

hunting mechanism was proposed based on the social settings of the Canis latrans and starling birds. 

2) Mathematical modeling of alarming-based hunting optimization 
The three top most significant phases in the ABHO algorithm is the initialization, fitness evaluation 

of the population, and establishing ranking depending on the measured fitness. 

• Initialization: According to the social environment, the Canis latrans’s worldwide population in 

addition to the starling bird population is randomly generated, which is expressed as, 

 

𝑃𝑃 = {𝑃𝑃1,𝑃𝑃2,𝑃𝑃3, …𝑃𝑃𝑖𝑖 , …𝑃𝑃𝑥𝑥  (2) 

where, x be the total population in an attained cluster, the solutions are denoted as Ρ  and equation 
(3) provides the following random values that are generated individually for the 

tha
 Canis latrans 

in the 
thu  pack at the dimension of k . 

𝐺𝐺𝑎𝑎,𝑘𝑘
𝑢𝑢,𝑟𝑟 = 𝑐𝑐𝑘𝑘 + 𝑒𝑒𝑘𝑘(𝑦𝑦𝑘𝑘 − 𝐶𝐶𝑘𝑘)  (3) 

where the 

thk
 resolution parameter is utilized to represent the upper and lower bounds as

k kc and y
 

in the social context 

G
,respectively. 

• Population ranking: The fitness values are measured for the attained solutions individually for the 

effective ranking, which assists to proceed with the following hunting process.  

• Establish ranking groups: As the consequence of establishing the feasible random solutions, the Canis 

latrans’s deviation resultant to the social conditions is determined by the following equation, 

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 𝐹𝐹(𝑃𝑃)  (4) 

The Canis latrans  are dispersed randomly across the population, therefore they may decide to separate 

from the group and become alone instead of joining them. The maximum capacity of Canis latrans 

that may be separated from the group over the total population. 

• Choose producer position: Unlike followers, producers can look for food in a wider variety of 

locations, and the producers are expected to have substantial energy stores and give followers access 

to foraging places or directions. It is in charge of locating locations with abundant food supplies. The 

evaluation of an individual's fitness values determines their degree of energy reserves. The starling 

bird starts chirping as alarm messages as soon as they spot the predator. The producers must guide 

all followers to the safe location if the alert value exceeds the safety level. Each iteration updates the 

producer's location as follows: 
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𝑃𝑃𝑡𝑡+1 = �𝑃𝑃𝑡𝑡 ∗ 𝑒𝑒𝑒𝑒𝑒𝑒
� −𝑖𝑖
𝛽𝛽,𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡

�

𝑃𝑃𝑡𝑡 + 𝑈𝑈.𝑊𝑊
𝑖𝑖𝑖𝑖
𝑟𝑟2 < 𝑇𝑇
𝑟𝑟2 ≥ 𝑇𝑇  (5) 

Depending on the social characteristics of the Canis latrans, the position of the starling bird is 

updated as, 

𝑃𝑃𝑡𝑡+1 = �
1

2
�𝑤𝑤1𝑦𝑦1 + 𝑤𝑤2𝑦𝑦2 + 𝑃𝑃𝑡𝑡 �1 + 𝑒𝑒𝑒𝑒𝑒𝑒

� −𝑖𝑖
𝛽𝛽,𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡

��� 𝑟𝑟2 < 𝑇𝑇

𝑃𝑃𝑡𝑡 + 𝑈𝑈.𝑊𝑊 + 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 × 𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
  (6) 

where the weights of Canis latrans group are denoted as

1w
and

2w
, the personal best population is 

represented as

best
persΡ

. The random variable is represented as

2r
and 

U
with the threshold of

Τ
at the 

iteration of

t
. 

• Choose follower position: The regulations must be upheld by the followers, who should also act as 

producers by acting like the starling bird with the highest energy. Many hungry followers are more 

prone to fly to different locations in search of food to increase their energy. Followers look for food 

by following the producer who can offer the best food. While waiting for food, some followers may 

be constantly watching the producers and struggling for it to increase their predation rate. Some 

followers keep a closer eye on the producers, as was already mentioned. They quickly leave their 

present designation to struggle for food as soon as they learn that the producer has acquired nice 

food. If they succeed, they can instantly receive the producer's food; if not, the regulations are still 

followed. The following is a description of the follower’s role updating formula. 

𝑃𝑃𝑡𝑡+1 = �
U. exp(𝑃𝑃𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 − 𝑃𝑃𝑡𝑡) + 𝑈𝑈𝑚𝑚𝑚𝑚𝑚𝑚. (𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 − 𝑃𝑃𝑡𝑡)

𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡+1 + �𝑃𝑃𝑡𝑡 − 𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡+1 �.𝐵𝐵+.𝑊𝑊 + 𝑉𝑉𝑡𝑡+1   (7) 

where the matrix is represented as
Β

and

W
, in which the velocity of a producer in approaching the 

food and staying away from enemies is denoted as

V
.  

• Choose remaining followers: The starling bird in the center of the group randomly walks to be close 

to others, whereas the starling bird at the group's edge swiftly goes into the safe region to gain a 

better position when aware of the danger. It is possible to express the mathematical model as follows: 

𝑃𝑃𝑡𝑡+1 = �
𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝�𝑃𝑃𝑡𝑡 − 𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝� + β�𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔 − 𝑃𝑃𝑡𝑡�

1

2
�2𝑃𝑃𝑡𝑡 + 𝑘𝑘 � 𝑃𝑃𝑡𝑡−𝑃𝑃𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤

(𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓−𝑃𝑃𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤)+𝜀𝜀
�� + 𝑤𝑤1𝑦𝑦1 + 𝑤𝑤2𝑦𝑦2

𝑖𝑖𝑖𝑖 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 > 𝐹𝐹𝑔𝑔𝑔𝑔𝑔𝑔 (8) 

where the worst as well as the global fitness is denoted as

worstF
and

gloF
. The Canis latrans share 

other groups' perspectives and methods for moving from one location to another, yet they lack these 

traits when hunting and adapting to new social conditions. Therefore, the integration of the 

defending characters of the starling bird prevents the Canis latrans from falling into the local 

optimum, and there needs to be a solution back so that the algorithm can avoid reaching the local 

optimum. Incorporating an integrating operation to increase the algorithm's ability to avoid the local 

optimum is the most popular remedy for this problem. In this work, the optimization is improved 

by integrating the social characteristics of Canis latrans with the starling bird. By incorporating the 

defending behavior while renovating the social state during opinion sharing, the ABHO optimization 

has greater flexibility, quick resolution, and incredibly consistent findings. Thus, to improve the 

effectiveness of the ABHO optimization and fine-tune the classifier's hyperparameters for improved 

vehicle control. 
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Fig. 3 shows the Proposed ABHO pseudocode, This system adjusts the positions of the starling bird 

and reduces energy waste in a random movement to reach ideal solutions with the fewest iterations. 

1.      Total population

x
 

2. Output: Best population 

3. Initialization 

4.  Initialize population 

5.   𝑃𝑃 = {𝑃𝑃1,𝑃𝑃2,𝑃𝑃3, …𝑃𝑃𝑖𝑖 , …𝑃𝑃𝑥𝑥 

6.   Population ranking 

7.   Based on fitness  

8.  Establish ranking groups 

9.   𝑊𝑊ℎ𝑖𝑖𝑖𝑖𝑖𝑖(𝑡𝑡<𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚)
  

10.    { 

11.    𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶1=𝐹𝐹(𝑃𝑃)𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝1(𝑥𝑥)
  

12.    𝐹𝐹𝐹𝐹𝐹𝐹∀𝑖𝑖,𝑖𝑖={1,…,𝑥𝑥}, # producer 1 

13.     { 

14.     Update position based on equation (6) 

15.     } 

16.    End for 

17.    𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶2=𝐹𝐹(𝑃𝑃)𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓2(𝑥𝑥)
 

18.    𝐹𝐹𝐹𝐹𝐹𝐹∀(𝑥𝑥+1≥𝑖𝑖≤𝑚𝑚)
, # Follower 2 

19.     { 

20.     Update position based on equation (7) 

21.     } 

22.    End for 

23.    𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶3=𝐹𝐹(𝑃𝑃)𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 (𝑥𝑥)
 

24.    𝐹𝐹𝐹𝐹𝐹𝐹∀(𝑚𝑚+1 ≥ 𝑖𝑖 ≤ 𝑚𝑚), # Remaining followers 

25.     { 

26.     Update position based on equation (8) 

27.     } 

28. Rank population 

29.  Update the ranked groups 

30.   𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 
31.    𝑡𝑡 = 𝑡𝑡 + 1 

32. End while 

Fig. 3.  Proposed ABHO pseudocode 

Once the traffic sign in the traversing road is detected, the lane segmentation is processed using 

ABHO-Hough GAN model for maneveur prediction. Thus, both the lane segmentation as well as the 

maneveur prediction is performed in order to control the autonomous vehicle. 

3.3. Modified Hough enabled optimized generative adversarial network for lane segmentation and 
maneveur prediction 

Once the traffic sign detection is accomplished, the lane segmentation and maneveur prediction is 

guided using the ABHO-Hough GAN model, which comprises of a generator as well as the 

discriminator. In this research, a ABHO-Hough GAN model is developed for the background 

subtraction of driving scenes, where the lanes are determined by a discriminator using shared weights 

and evaluated by a generator depending on the input road vehicle data. The ABHO-Hough GAN model 

is a remarkable tool for identifying shapes and curves in the road vehicle video images. To determine the 

particular location or gain geometrical details of the vehicle, it is used to detect loops, ellipses, and lines. 

The Hough transform is a great tool for recognizing lane lines for the self-driving automobiles in the 

target area, and the actual benefit of this model is that it predicts lanes that are precise and narrow rather 

than the broad, flexible boundaries that CNN's typically introduce. The hough Lane transform 

recognizes lanes in multiple continuous frames as opposed to only the current frame, which is dissimilar 

from the aforementioned deep-learning-based methods that only detect lanes and are considered a time-
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based issue. The proposed technique can provide robust performance in lane detection under difficult 

circumstances with more detailed information. Using the sign detection and lane segmentation outputs, 

the maneveur detection is proceded using the optimized GAN. In Fig. 4, Hough Lane enabled optimized 

GAN model is presented, where the lane segmentation is done using the optimized GAN model, and 

the hough lane transform supports the maneveur prediction, where the ABHO algorithm guides the 

segmentation model to acquire the accurate prediction. The detailed sketch on the ABHO algorithm is 

presented in section 3.2.1. 

 
Fig. 4.  ABHO-Hough GAN model for Maneuver prediction 

4. Results and Discussion 
In this section, the reliability of the ABHO-Hough GAN for the maneuver prediction and ABHO-

tuned CNN-BiLSTM for traffic sign detection is revealed depending on the performance using the 

various epoch. The comparative analysis is implemented to show the better efficiency of the proposed 

model in the research area of an autonomous vehicle. The implementation of both lane prediction and 

traffic sign detection is done in python on windows 10 OS with 8 GB RAM and the road vehicle video 

dataset is used for estimation. 

The road dataset was enumerated through the aerial images over 1171. Every aerial image is disguised 

over 2.25 square kilometers with 1500 dimensions from 1500 pixels. The data was divided into three sets 

in terms of unpremeditated. The following sets are an 1108-image training set, a 14-image validation 

set, and a 49-image test set. The dataset contains a large amount of urban, suburban as well as rural 

districts which is present in 2600 square kilometer. To obtain knowledge of real-time decision-making, 

the test data was helped by enclosing more than 110 square kilometers unaided. The experimental 

validation of the approach is visualized in Fig. 5. 

The performance metrics used for the traffic sign detection along with the ABHO-tuned CNN-

BiLSTM is explained as follows 

• Accuracy: The percentage of samples that the ABHO-based CNN-BiLSTM properly identifies while 

determining the autonomous vehicle's decision-making system is known as accuracy, and it is given 

by, 

𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑎𝑎𝑎𝑎𝑎𝑎 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

  (9) 

• Sensitivity: The true positive outcome of the result from ABHO-based CNN-BiLSTM when the 

decision-making occurs on the autonomous vehicle, described the sensitivity in terms of probability 

and it is given as, 
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𝑠𝑠𝑠𝑠𝑠𝑠 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑝𝑝𝑝𝑝𝑝𝑝
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑝𝑝𝑝𝑝𝑝𝑝 𝑎𝑎𝑛𝑛𝑑𝑑 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑛𝑛𝑛𝑛𝑛𝑛

  (10) 

• Specificity: The true negative of the result from ABHO-based CNN-BiLSTM when the decision-

making occurs on the autonomous vehicle, described the specificity in terms of probability and it is 

given as, 

𝑠𝑠𝑠𝑠𝑠𝑠 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑛𝑛𝑒𝑒𝑔𝑔
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑛𝑛𝑛𝑛𝑛𝑛 𝑎𝑎𝑎𝑎𝑎𝑎 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑝𝑝𝑝𝑝𝑝𝑝

  (11) 

 

(a) Original Road image acquired from the input dataset 

 

(b) Traffic sign detection 

 

(c) Lane detection 

 

(d) Maneuver prediction 

Fig. 5.  Autonomous driving system- Experimentation.  

The performance metrics used for the lane detection along with the ABHO-Hough GAN is explained 

as follows. 

• Mean Absolute Error: The distinction between the magnitudes of the measurement of an individual 

with the quantity of true value for the ABHO-based Hough GAN, when identifying the lane 

prediction on an autonomous vehicle is defined as the Mean Absolute Error (MAE) and it is given 

as, 

𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑣𝑣
∑ �𝑞𝑞𝑗𝑗 − 𝑞𝑞�𝑣𝑣
𝑗𝑗=1   (12) 

where, the total error is represented as v , and jq q− denotes an absolute error. 

• Mean Square Error: The error quantity in the statistical model as well as the difference between the 

experimental and predicted rate from the ABHO-based Hough GAN in the decision-making 

function processed for lane prediction on the autonomous vehicle which is estimated in terms of 

Mean Square error (MSE) and it is given as, 

𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑟𝑟
∑ (𝑔𝑔𝑗𝑗 − 𝑔𝑔𝑗𝑗)2𝑟𝑟
𝑗𝑗=𝑖𝑖   (12) 

where, the available data is denoted as r , jg describes prediction, and jg represents the observed 
value. 
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• Root mean squared error: ABHO-based Hough GAN in an autonomous vehicle is used to determine 

land prediction in terms of using the mean square value of error in the root which was described as 

root mean squared error (RMSE) and it is given as, 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �1
𝑍𝑍
∑ (𝑄𝑄𝑍𝑍 − 𝑅𝑅𝑗𝑗)2𝑍𝑍
𝑗𝑗=1   (13) 

where, the observed sample is denoted as jR , a predicted sample is represented as ZQ with Z
observations. 

The performance depending on maneuver prediction and traffic sign detection using ABHO-based 

Hough GAN as well as the ABHO-based deep CNN-BiLSTM are described in the following section.  

4.1. Manuveur prediction and traffic sign detection analysis 
The error-based values such as MAE, MSE, and RMSE for ABHO-based Hough GAN for the lane 

prediction are represented in Fig. 6 (a) represents both the percentage of MAE as well as the training 

percentage based on the epoch value.  

 

(a) MAE 

 

(b) MSE 

 

(c) RMSE 

Fig. 6.  Manuveur prediction analysis 

When the number of training data is 90 for the epoch value 20, and then the attained value of MAE 

for the ABHO-based Hough GAN is 8.469. Fig. 6 (b) represents both the percentage of MSE as well as 

the training percentage, based on the epoch value. When the number of training data is 50 for the epoch 

value 20, then the attained value of MSE for the ABHO-based Hough GAN is 8.776. Fig. 6 (c) represents 

both the percentage of RMSE as well as the training percentage, based on the epoch value. When the 

number of training data is 90 for the epoch value 20, then the attained value of RMSE for the ABHO-

based Hough GAN is 12.203. 
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The performance measures-based values such as accuracy, sensitivity, and specificity for ABHO-based 

deep CNN-BiLSTM for traffic sign detection are represented below in Fig. 7 (a) represents both 

percentage of accuracy as well as the training percentage based on the epoch value. When the number 

of training data is 50for the epoch value is 20, then the attained value of accuracy for the ABHO-based 

deep CNN-BiLSTM is 84.848. 

 

(a) Accuracy 

 

(b) Sensitivity 

 

(c) Specificity 

Fig. 7. Traffic sign detection analysis 

Fig. 7 (b) represents both percentages of sensitivity as well as the training percentage based on the 

epoch value. When the number of training data is 60for the epoch value is 40, then the attained value 

of sensitivity for the ABHO-based deep CNN-BiLSTM is 87.500. Fig. 7 (c) represents both percentage 

of specificity as well as the training percentage based on the epoch value. When the number of training 

data is 50 for the epoch value is 20, then the attained value of specificity for the ABHO-based deep 

CNN-BiLSTM is 80.429. 

The methods considered for comparing the reliability of lane detection are [25], [31]–[33], SegNet-

ConvLSTM with SSO, SegNet-ConvLSTM with GWO, SegNet-ConvLSTM with FHO, GAN Model, 

GAN with COA, GAN with GWO, TCWO based GAN, GAN with SSO. The methods considered for 

comparing the reliability of traffic sign prediction are [34]–[40], TCWO-based ensemble deep CNN-

BiLSTM, and deep CNN-BiLSTM with SSA, respectively. 

Accurate and reliable traffic sign recognition is crucial for self-driving vehicles to make informed 

decisions and avoid accidents. With better prediction accuracy, automated driving systems can respond 

more quickly and appropriately to traffic signs, such as speed limit signs, stop signs, and yield signs, 

leading to improved safety for passengers and other road users. Additionally, accurate traffic sign 

recognition can help optimize vehicle speed and reduce energy consumption, leading to improved 

efficiency and reduced emissions. Overall, the practical implications of improved traffic sign prediction 

accuracy are numerous and essential for the successful implementation of automated driving systems in 

real-world environments. 
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4.2. Comparison of maneuver prediction models 
For evaluating the errors MAE, MSE, and RMSE, the proposed ABHO-based Hough GAN is 

compared with the other existing methods represented in Fig. 8 (a) represents the MAE for both the 

proposed as well as the existing depending on the percentage of trained data. When the number of 

training data is 90 %, the error rate of the proposed method is 2.149. Then the attained improved 

variation of MAE for the ABHO-based Hough GAN is 64.39 % when compared with the existing GAN 

with SSO model. 

Fig. 8 (b) represents the MSE for both the proposed as well as the existing depending on the 

percentage of trained data. When the number of training data is 80 %, the error rate of the proposed 

method is 4.348. Then the attained improved variation of MSE for the ABHO-based Hough GAN is 

54.82 % when compared with the existing GAN with SSO model. Fig. 8 (c) represents the RMSE for 

both the proposed as well as the existing depending on the percentage of trained data. When the number 

of training data is 90 %, the error rate of the proposed method isb6.027. Then the attained improved 

variation of RMSE for the ABHO-based Hough GAN is 44.03 % when compared with the existing 

GAN with SSO model. 

 

(a) MAE 

 

 

(b) MSE 

 

(c) RMSE 

Fig. 8.  Comparative analysis for maneuver prediction models 

For evaluating the performance measures accuracy, sensitivity, and specificity, the proposed ABHO-

based deep CNN-BiLSTM is compared with the other existing methods. The accuracy for both the 

proposed as well as the existing depending on the percentage of trained data. When the number of 

training data is 90 %, the accuracy rate of the proposed method is 99.703 %. Then the attained improved 

variation of accuracy for the ABHO-based deep CNN-BiLSTM is 2.20 % when compared with the 

exiting deep CNN-BiLSTM with the SSA model. 
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When the number of training data is 90 %, the sensitivity rate of the proposed method is 99.200 %. 

Then the attained improved variation of sensitivity for the ABHO-based deep CNN-BiLSTM is 1.47 % 

when compared with the exiting deep CNN-BiLSTM with the SSA model. When the number of 

training data is 90 %, the specificity rate of the proposed method is 99.839 %. Then the attained 

improved variation of specificity for the ABHO-based deep CNN-BiLSTM is 4.11 % when compared 

with the exiting deep CNN-BiLSTM with the SSA model. 

The performance of the ABHO-based maneuver prediction and traffic sign detection approaches is 

presented in Table 1 and Table 2. The proposed model outperforms other methods in terms of accuracy, 

sensitivity, and specificity for both traffic sign detection and maneuver prediction, which is crucial for 

effective decision-making and control of autonomous vehicles. The proposed maneuver prediction model 

also exhibits lower mean absolute error, mean square error, and root mean square error compared to 

existing models. 

Table 1.  Comparison for maneuver prediction 

 
Methods 

Manaveur prediction 90 % Training 
MAE MSE RMSE 

UNet 18.940 13.670 13.445 

SegNet 18.111 13.667 13.278 

UNet-ConvLSTM 18.022 13.664 13.247 

SegNet-ConvLSTM  17.932 11.605 12.768 

SegNet-ConvLSTM with SSO  17.770 11.510 12.687 

SegNet-ConvLSTM with GWO  17.767 11.414 12.607 

SegNet-ConvLSTM with FHO 17.765 11.319 12.526 

GAN Model 4.646 4.646 9.529 

GAN with COA 4.142 4.142 9.083 

GAN with GWO 2.895 2.895 7.895 

TCWO based GAN 2.406 2.406 7.387 

GAN with SSO 6.034 6.034 10.768 

ABHO based HoughGAN 2.149 2.149 6.027 

Table 2.  Comparison for traffic sign detection 

Methods Traffic Sign Detection 90 % Training 
Accuracy (%) Sensitivity (%) Specificity (%) 

SVM 93.182 91.304 92.857 

DeepRNN 93.333 92.308 94.595 

DeepCNN 93.590 92.308 95.238 

DeepCNN with SSA 94.643 95.122 96.154 

DeepCNN with GWO 95.522 96.429 97.059 

DeepCNN with FHO 97.778 97.727 97.917 

DeepCNN-BiLSTM 94.593 98.970 94.593 

DeepCNN-BiLSTM with COA 98.667 98.875 98.667 

DeepCNN-BiLSTM with GWO 98.875 99.619 98.875 

TCWO based Ensample with DeepCNN-

BiLSTM 98.875 98.364 98.875 

DeepCNN-BiLSTM with SSA 97.505 97.737 95.740 

ABHO based deep CNN-BiLSTM 99.703 99.200 99.839 

5. Conclusion 
This research proposes an efficient and precise autonomous decision-making technique for AVs to 

promptly exit hazardous situations. The approach involves developing traffic sign detection and 

maneuver prediction models using ABHO-based deep CNN-BiLSTM and ABHO-based HoughGAN 

techniques. The modified Hough-enabled lane GAN is responsible for accurately segmenting the driving 

area from the input image based on shared weights to facilitate decision-making. The ensemble CNN-

BiLSTM classifier is used to anticipate traffic signs and assist the driver in making informed decisions. 
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The ABHO-based model improves traffic sign prediction accuracy by 2.20%, 1.42%, and 4.11. The use 

of the modified Hough-enabled lane GAN technique and ensemble CNN-BiLSTM classifier for lane 

detection and traffic sign prediction respectively, both effectively implemented by the ABHO algorithm, 

can provide a strong foundation for the development of a comprehensive autonomous decision-making 

approach. The ABHO algorithm can also contribute to improving the accuracy and efficiency of the 

models by regulating shared weights and tunable parameters more precisely.The performance 

improvement achieved in the traffic sign prediction model in this research can potentially be further 

enhanced in future work. Additionally, future research can explore the interactions of coexisting AVs 

and employ multi-agent learning algorithms to implement wide control algorithms to manage CAVs in 

typical circumstances. Other potential avenues for future work may include exploring the robustness and 

scalability of the proposed approach, as well as addressing ethical and legal issues related to the use of 

AVs. Moreover, there is the challenge of integrating the autonomous decision-making approach with 

existing transportation infrastructure and regulatory frameworks. New regulations and policies will need 

to be developed to ensure the safe and effective deployment of autonomous vehicles on public roads. 

The integration of autonomous vehicles into existing transportation infrastructure will also require 

significant upgrades to road infrastructure and communication systems. 
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