9,717 research outputs found

    Continuous non-revisiting genetic algorithm

    Get PDF
    The non-revisiting genetic algorithm (NrGA) is extended to handle continuous search space. The extended NrGA model, Continuous NrGA (cNrGA), employs the same tree-structure archive of NrGA to memorize the evaluated solutions, in which the search space is divided into non-overlapped partitions according to the distribution of the solutions. cNrGA is a bi-modulus evolutionary algorithm consisting of the genetic algorithm module (GAM) and the adaptive mutation module (AMM). When GAM generates an offspring, the offspring is sent to AMM and is mutated according to the density of the solutions stored in the memory archive. For a point in the search space with high solution-density, it infers a high probability that the point is close to the optimum and hence a near search is suggested. Alternatively, a far search is recommended for a point with low solution-density. Benefitting from the space partitioning scheme, a fast solution-density approximation is obtained. Also, the adaptive mutation scheme naturally avoid the generation of out-of-bound solutions. The performance of cNrGA is tested on 14 benchmark functions on dimensions ranging from 2 to 40. It is compared with real coded GA, differential evolution, covariance matrix adaptation evolution strategy and two improved particle swarm optimization. The simulation results show that cNrGA outperforms the other algorithms for multi-modal function optimization.published_or_final_versio

    Inferring differentiation pathways from gene expression

    Get PDF
    Motivation: The regulation of proliferation and differentiation of embryonic and adult stem cells into mature cells is central to developmental biology. Gene expression measured in distinguishable developmental stages helps to elucidate underlying molecular processes. In previous work we showed that functional gene modules, which act distinctly in the course of development, can be represented by a mixture of trees. In general, the similarities in the gene expression programs of cell populations reflect the similarities in the differentiation path

    Sparse multi-view matrix factorisation: a multivariate approach to multiple tissue comparisons

    Full text link
    Gene expression levels in a population vary extensively across tissues. Such heterogeneity is caused by genetic variability and environmental factors, and is expected to be linked to disease development. The abundance of experimental data now enables the identification of features of gene expression profiles that are shared across tissues, and those that are tissue-specific. While most current research is concerned with characterising differential expression by comparing mean expression profiles across tissues, it is also believed that a significant difference in a gene expression's variance across tissues may also be associated to molecular mechanisms that are important for tissue development and function. We propose a sparse multi-view matrix factorisation (sMVMF) algorithm to jointly analyse gene expression measurements in multiple tissues, where each tissue provides a different "view" of the underlying organism. The proposed methodology can be interpreted as an extension of principal component analysis in that it provides the means to decompose the total sample variance in each tissue into the sum of two components: one capturing the variance that is shared across tissues, and one isolating the tissue-specific variances. sMVMF has been used to jointly model mRNA expression profiles in three tissues - adipose, skin and LCL - which are available for a large and well-phenotyped twins cohort, TwinsUK. Using sMVMF, we are able to prioritise genes based on whether their variation patterns are specific to each tissue. Furthermore, using DNA methylation profiles available, we provide supporting evidence that adipose-specific gene expression patterns may be driven by epigenetic effects.Comment: in Bioinformatics 201
    • ā€¦
    corecore