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ARTICLE

Complete deconvolution of cellular mixtures
based on linearity of transcriptional signatures
Konstantin Zaitsev1,2,3, Monika Bambouskova1,4, Amanda Swain1,4 & Maxim N. Artyomov1,4

Changes in bulk transcriptional profiles of heterogeneous samples often reflect changes in

proportions of individual cell types. Several robust techniques have been developed to dissect

the composition of such mixed samples given transcriptional signatures of the pure com-

ponents or their proportions. These approaches are insufficient, however, in situations when

no information about individual mixture components is available. This problem is known

as the complete deconvolution problem, where the composition is revealed without any a

priori knowledge about cell types and their proportions. Here, we identify a previously

unrecognized property of tissue-specific genes – their mutual linearity – and use it to reveal

the structure of the topological space of mixed transcriptional profiles and provide a noise-

robust approach to the complete deconvolution problem. Furthermore, our analysis reveals

systematic bias of all deconvolution techniques due to differences in cell size or RNA-content,

and we demonstrate how to address this bias at the experimental design level.
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There are over 200 distinct cell types in the human body1,2,
and many more subtypes are discovered regularly due to
advances in cell sorting, imaging, and single-cell profiling

technologies. However, for many complex biological mixtures,
exhaustive knowledge of individual cell types and their specific
markers is lacking. Yet, such complex tissue samples are routinely
collected and profiled during clinical practice and biological
research providing a tremendous yet underused biomedical
resource.

This complexity has been tackled computationally, resulting in
a group of approaches referred to as expression deconvolution
methods3–11. The general premise of these deconvolution meth-
ods assumes that expression signals from each cell type are lin-
early additive, making the contribution of each cell type
proportional to its fraction in the mixture. The existing partial
deconvolution methods rely on marker genes, i.e. genes that are
known to be expressed in a cell-specific manner3,4,12. Current
state-of-the-art methods either fit their algorithms to a specific
platform and tissue type (e.g. blood/Cibersort5, PERT6, or tumor/
TIMER13, DeMix14) or use an iterative approach to refine an
initial list of marker genes and improve algorithm convergence12.
At present, deconvolution based on cell-specific markers can be
performed quite robustly in the appropriate context. However, in
circumstances when little to no information about the underlying
cell types is available, current deconvolution methods can be quite
unstable7.

Here, we propose a strategy to perform complete deconvolu-
tion of transcriptional profiles that is robust to technical and
biological noise and can reveal the subpopulation structure of
complex mixtures without any a priori knowledge about the
underlying cell types. To achieve this, we introduce the notion of
mutual linearity of tissue-specific genes and reveal a linear sub-
space (simplex) generated by changes in cell type frequencies
within the cohort of samples. We provide a computational
approach to unbiasedly select collinear genes and show that fil-
tering out non-collinear genes dramatically improves the per-
formance of deconvolution approaches in realistic noisy data. We
illustrate the power of the approach by applying our method to
simulated data with and without noise, published benchmark
datasets, human and mouse blood profiling in different platforms,
as well as TCGA data.

Furthermore, understanding the linear structure of the space
revealed a major underappreciated aspect of both partial and
complete deconvolution approaches: individual cell types often
have varying cell size (per cell RNA content) which leads to a
limitation in identifying cellular frequencies in the mixture.
Specifically, it implies that any computational deconvolution of
transcriptional data can only accurately deconvolve the fraction
of RNA contributed by each cell type, which is not identical to the
fraction of specific cells in the mixture. We validate this obser-
vation by profiling a collection of mixtures of two cell types of
drastically different sizes—HEK cells and Jurkat cells. We show
that while one can readily identify specific cell types within the
mixture, accurate deconvolution of cellular fractions is only
possible when taking into account a relative cell size coefficient
that can be derived by using ERCC spike-ins.

Results
Cell-type-specific genes are defined by mutual linearity. Cell-
type-specific genes are defined by their exclusive expression in
only one component within a mixture. In an ideal scenario,
expression of a cell-type-specific gene behaves exactly linearly
with the proportions of the corresponding mixture component.
For instance, the liver-specific genes Tat and Proc are linear with
the liver fraction in the mixtures profiled in GSE19830 (ref. 15)

(Fig. 1a, b). As a consequence, expression levels of the genes
specific to the same mixture component are also mutually linear
with each other (i.e. obeying equation y= k·x), as shown for Tat
and Proc in Fig. 1b (right panel). Importantly, to establish such
mutual linearity, one does not need to know the proportions in
the mixed samples—only the gene expression profiles of mixed
samples are required to evaluate the mutual linearity of each pair
of genes.

Mathematically, mutual linearity provides us with a unique
measure that can potentially evaluate the cell-type specificity of a
gene. Indeed, given an expression profile of all mixed samples,
one can directly probe linearity of all pairs of genes, yielding well-
defined clusters of genes that are mutually linear to each other
(Fig. 1c, left and central panels). Using this approach on known
mixtures of lung, liver, and brain tissues (GSE19830) shows that
such mutually linear gene clusters directly correspond to tissue-
specific gene signatures (Fig. 1c right panel, Supplementary
Data 1). The mutually linear gene sets can then be used as input
for traditional partial deconvolution techniques that require sets
of tissue-specific genes. Figure 1d shows the application of the
Digital Signal Algorithm (DSA)3 to these gene sets. This approach
yields both the proportions and transcriptional profiles of the
pure components within each mixture with a very high level of
accuracy (Fig. 1d). This illustrates that leveraging the mutual
linearity of cell-specific genes reveals the composition of cell
mixtures in terms of both its components and their proportions
without any a priori knowledge about either. It is important to
note that this approach only reveals the cell types that vary within
the cohort of the samples and does not discriminate between
cellular subtypes that vary in the exact same way across all
samples. However, this caveat is intrinsic to all complete
deconvolution approaches.

Row-normalization aligns mutual linearity to identity line.
Practically speaking, mutual linearity is assessed as the ability of
the expression of two genes to obey a y ¼ k � x fit, with the
proportionality coefficient optimized for each pair of genes y and
x. Naturally, the need to optimize the proportionality coefficient k
for all possible gene pairs (i.e. � 10; 000 ´ 10; 000 ¼ 108 combi-
nations) introduces considerable uncertainty to the process of
searching for tissue/cell-specific genes. To eliminate this com-
plication, we introduce a transformation such that all genes
specific to one cell type become mutually linear with the coeffi-
cient k= 1 (Fig. 2a). For instance, consider the genes that are
specific to liver tissue in GSE19830—Tat, Proc, etc. Since they are
connected by the mutual linearity relationship y ¼ k � xð Þ, the
expression values for Proc in each sample can be obtained by
multiplying expression of Tat by an appropriate proportionality
coefficient (e.g. by 1.89 in Fig. 2b). Therefore, the sum of all of the
expression values in the row (i.e. across all samples) will differ by
the same multiplication coefficient (Fig. 2b). Hence, if we nor-
malize each expression value by the sum over the row, these
multiplication coefficients will cancel out, yielding a row-
normalized expression table where all the genes specific to one
tissue are described by an identical vector (Fig. 2b). This trans-
formation significantly simplifies the search for tissue specific
genes, as it is sufficient to evaluate the accuracy of ~y ¼ ~x fit for all
gene pairs.

Of note, if row-normalization is applied to a vector of cell
type proportions p, it yields the normalized vector ~p that is
also identical to row-normalized vectors of the genes ~x specific
to this cell type (Fig. 2b). This correspondence reveals that
the same mutual linearity relationship that exists between the
expression of tissue-specific genes also extends to the cell type
proportions (Fig. 2a, b).
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Mutual linearity reveals cellular populations in HNSCC tumor.
We illustrate the power of the proposed approach by dissecting
cellular heterogeneity within tumor samples (e.g. TCGA16). The
work by Puram et al.17 dissected head and neck squamous cell
carcinoma (HNSCC) tumors at single-cell resolution, explicitly
describing transformed and non-transformed cell types within
this tumor type, thus providing the ground truth for the cell type
composition of HNSCC tumors. We applied our approach on the
bulk whole tumor gene expression profiles of 415 samples from

the HNSCC TCGA cohort and then used single-cell RNA-seq
data to validate the deduced cell types within this tumor envir-
onment (Fig. 2c). The TCGA dataset was first trimmed to keep
only 10,000 well-expressed genes and then row-normalized. For
all pairs of row-normalized genes, we evaluated the extent of their
linearity and kept 217 genes that have strong linear relationships
(see Methods). Clustering these genes revealed seven major
clusters that accumulated mutually linear genes (Fig. 2d). These
clusters tentatively corresponded to the individual cell types that
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Fig. 1 Mutual linearity of cell-type-specific genes enables complete deconvolution. a Design of gene expression dataset GSE19830. RNA from three
different rat tissues: kidney, brain, and liver were mixed together in known proportions. Gene expression data for pure and mixed samples were measured
via microarray profiling. b Linear regression without intercept between % of liver and Tat/Proc expression (left), linear regression between Tat and Proc
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make up the tumors. To validate this result, we re-analyzed sin-
gle-cell RNA-seq data from Puram et al. (GSE103322 (ref. 17). As
Fig. 2e shows, 5902 cells separate into tumor cells, endothelial
cells, fibroblast, myocyte, and immune cells. We then mapped the
genes from each of the seven linear clusters obtained from the
TCGA data onto the single-cell RNA-seq data. Indeed, as Fig. 2f
shows, each of the linear clusters was enriched in an individual
subpopulation, revealing myocytes, macrophages, two distinct
fibroblast subtypes, endothelial and immune cells (mostly T cells),
as well as genes specific to tumor subpopulations (Supplementary
Data 2).

Transformed gene expression space forms simplex. Mutual
linearity of cell-type specific genes suggests that the space of the
mixed gene expression profiles might have a distinct underlying
structure. Thus, we systematically investigated the topological
properties of this gene expression space. A complete gene
expression table is a collection of N vectors, where N is the
number of profiled samples (e.g. 33 in the case of GSE19830),
yielding a matrix X (e.g. 12,000 × 33 dimensions, see Fig. 3a,
assuming ~12,000 well-expressed genes). Similarly, the

composition of a mixed sample is described by a vector of the
proportions of pure cell types, and the complete collection of
mixed samples is described by N such vectors, yielding matrix H
(3 × 33 dimensions in case of GSE19830, see Fig. 3a, right side).
The convergence between the row-normalized expression of cell-
type-specific genes and cell type proportions (see discussion
around Fig. 2a, b) suggests that there might be a common space
in which both vectors co-exist. Indeed, the rows of both matrices,
H and X, have the same dimensionality—equal to the number of
samples in the dataset, N. This means that the vectors that make
up the transposed matrices HT and XT have the same dimen-
sionality, and can be mapped as points within the common
N-dimensional space. In total, matrix HT will contribute as many
points as there are pure cell types (3 in the case of GSE19830) and
matrix XT will contribute as many points as there are genes in
the gene expression table (e.g. ~12,000) (Fig. 3b).

The convergence of row-normalized vectors of expression and
cell proportion can be readily visualized in this N-dimensional
space: when matrices H and X are row-normalized and then
transposed (or first transposed and then column-normalized),

the points described by vectors ~H
T
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identical to the points described by the vectors of tissue-specific

genes from the matrix ~X
T
(e.g. ~X

T
proc; Fig. 3c). This convergence is,

in fact, a reflection of the very specific topological structure of the

matrix ~X
T
in the N-dimensional space. Specifically, we find that

all the points described by vectors in ~X
T
lie on a ðK � 1Þ-dimen-

sional simplex in the N-dimensional space, with K being the
number of pure cell types and N being the number of samples
in the dataset. For the GSE19830 dataset, given the row-
normalized and transposed expression table (~12,000 × 33
dimensions), all of the ~12,000 points in the 33-dimensional
space should lie within a triangle—a two-dimensional simplex
enclosed by three vertices (Fig. 3c). In more accurate terms, one
can formulate the following Transcriptional Simplex Lemma:

the row-normalized gene expression vector for any gene i ~X
T
�;i

� �
can be represented as a linear combination of the pure cell type

row-normalized proportion vectors ~H
T
�;j

� �
with non-negative

coefficients αj that sum to one (Fig. 3), i.e. they form a K−1
dimensional simplex in N-dimensional space. The rigorous proof
of this statement is provided in the Supplementary Note 1 but,
intuitively, each gene can be represented as a linear combination
of cell proportions and appropriate normalization collapses all
cell-type-specific genes and proportions into single points that
become the corners of a simplex.

Transcriptional simplex reveals signatures and proportions.
The Transcriptional Simplex Lemma formulated above provides
a direct and systematic approach to dissect the composition
of a compendium of mixed samples: given expression table X
for many mixed samples, one has to (a) row-normalize and

transpose it yielding ~X
T
, which can then (b) be analyzed to

find the simplex hyperplane and its corners, where (c) the
corners of the simplex define cell-type-specific signatures and
cell proportions. Indeed, recent developments in the field of
spectral unmixing18,19 introduced a number of geometrical
approaches to find a simplex and its corners in multidimensional
space (see simplex in Fig. 3c). We tested three main geometrical
methods developed to date: MVSA20, SISAL21, and VCA22.
We find that the SISAL algorithm is most robust, even for noi-
sy data, and can identify the true simplex structure even in
the absence of highly tissue-specific signature genes (Supple-
mentary Fig. 1).

To illustrate the geometric approach to simplex identification,
we have computationally mixed three pure samples to obtain a
panel of 40 different mixtures. Expression profiles of the pure
cells types were obtained by independently simulating expression
of ~12,000 genes in accord with log-normal distribution. As
Fig. 4a illustrates, in such idealized mixtures, SISAL readily
finds a two-dimensional subspace with genes enclosed into
a triangular simplex. Genes selected from the corners of the
simplex are selectively expressed pure cell types (Supplementary
Fig. 2). The corners of the simplex are also the vectors of row-
normalized proportions and thus yield a precise reconstruction
of the pure cell type frequencies in the mixtures (Fig. 4a).
Importantly, if all cell-type-specific genes are removed from the
simulation dataset and the resulting simplex lacks points in
its corners (Fig. 4a), the geometric approach to simplex
identification still yields an accurate reconstruction of such
mixtures, even when they lack explicit signature genes (Fig. 4b).
This is particularly important in a biological context, where
related cell types may lack robust signatures that uniquely
discriminate them (e.g. monocytes and neutrophils, or erythro-
cytes and megakaryocytes).

Noise-robust identification of the transcriptional simplex. In
this section, we show that geometric simplex based deconvolution
provides a natural way to account for noise in the data and parse
out the linear signal coming from the mixing process. To that
end, we first created simulated mixtures following the same sce-
nario as in the previous section, but this time we added an
independent white noise component to the expression of each
gene (see Methods). As Fig. 4b shows, noise leads to blurred
boundaries of the transcriptional simplex, which introduces
uncertainty into the precise position and dimensionality of the
simplex. In fact, SISAL provides a noise-dependent procedure for
identification of simplex corners that is controlled by the single
noise-tolerance parameter tau: larger tau values lead the algo-
rithm to include as many points as possible inside the simplex,
while smaller tau values minimize the volume of the simplex,
discarding external points as noise (Fig. 4b, Supplementary
Fig. 3). Therefore, depending on the choice of tau one can end
up with a very different simplex. To choose the optimal tau
value, we can compare the deviation between an experimental
expression matrix (x) and a reconstructed matrix (W×H)
obtained from the deconvolution process. Accuracy of recon-
struction will be different for different tau (Fig. 4b, middle panel).
The optimal value of noise tolerance tau can then be readily
determined based on the accuracy of reconstruction. As Fig. 4b
(right panel) shows, an optimal value of tau yields accurate cell-
type-specific genes and correspondingly accurate cell-type pro-
portions. Beyond simulated mixtures, application of this pro-
posed approach to the benchmark dataset GSE11058 readily
reveals a tetrahedral simplex structure in accord with the fact that
this dataset is composed of four distinct cell types. Plotting
expression of the corner genes in the pure samples reveals that
they are highly cell-type-specific and yield accurate proportions
(Fig. 4c).

Singular value decomposition estimates number of cell types.
One important aspect of all deconvolution methods is that they
require knowledge of the number of pure cell types that make
up the mixture. Fortunately, understanding the linear structure of
the transcriptional space provides a direct way to infer the
number of linearly independent components that contribute to
variation in the dataset. In the idealized scenario, the matrix of
the expression data X is the product of the matrices of pure cell
type signatures W and corresponding proportions matrix H
(Fig. 4d). Both H and W are matrices of rank N (number of pure
cell types); accordingly, their product is a matrix of the same rank
N. Therefore, if we can compute the effective rank of matrix X
of mixed gene expression data, we can immediately infer the
number of pure cell types in the mixture. In practice, there are
two limitations: (1) gene expression matrix X is a non-square
matrix, and traditional eigenvalue-based approaches are not
applicable; (2) matrix X inevitably contains noise, and therefore
the rank of X cannot always be defined precisely. These limita-
tions can be circumvented to some extent by using Singular Value
Decomposition (SVD) (Methods). For instance, Fig. 4e shows the
cumulative variance explained by singular vectors obtained by
SVD of the gene expression matrix of mixed samples from Fig. 4c,
which immediately reveals that there are four major linearly
independent components that define this gene expression matrix.

Linear filtering improves deconvolution of noisy datasets.
Noise that arises in real datasets due to imperfect mixing and/or
biological perturbations can often be prohibitively large to readily
reveal the linear subspace of gene expression data. Figure 5a, b
illustrates this point using simulated mixtures of three compo-
nents with various levels of noise (see gray dots/graphs).
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Mathematically, non-zero singular vectors beyond the number
of cell types arise because SVD attempts to fit the non-linear
variation with linear components which are not relevant for the
complete deconvolution procedure. Thus, we next focused on
devising an unbiased approach to identify a subset of mutually
linear genes for any given dataset (Fig. 5c).

We first constructed a mutual linearity network by connecting
all pairs of genes with edges weighted by both their mutual
linearity coefficient and their spearman correlation (see Meth-
ods). Then, we performed null model simulations by maintaining
the network topology while permuting the weights of the edges.
These simulations yield a p-value for each gene, defined as a
the probability to observe combined mutual linearity of all
edges associated with the gene. The genes above the statistical
significance cut-off (0.01; Fig. 5c, right panel) form the set of
mutually linear genes. SVD and deconvolution procedures are
then applied to this set of genes. Red dots in Fig. 5a illustrate
the positions of such genes and show that at all noise levels,
the filtering procedure robustly identifies corner-specific genes
and filters out irrelevant noisy genes. Red bars in Fig. 5b show
that this filtering procedure effectively removes the non-linear
components of noise and provides an accurate estimation of
the number of cell types, even when the use of a non-filtered
dataset results in a completely inconclusive SVD decomposition.

This filtering procedure provides an important pre-processing
step that can be highly beneficial for all complete deconvolution
approaches, not just the ones that are based on simplex
identification. Indeed, when we applied a mutual linearity-based
filtering step prior to the brunet, deconf, and lee deconvolution
approaches, it significantly improved the ability of the algorithms
to reconstruct the data in all cases, even with high levels of noise
(Fig. 5d, e). Thus, we conclude that revealing the mutual linearity
of tissue/cell-specific genes has a significant impact on deconvo-
lution approaches and advances our ability to perform complete
deconvolution on noisy biological datasets.

Complete deconvolution pipeline. Altogether, the mutual line-
arity concepts described in the previous sections amount to the
following pipeline for complete deconvolution (Fig. 6a). First,
gene expression samples are row-normalized. Next occurs filter-
ing the dataset based on the mutual linearity of the genes. Then,
SVD-based analysis defines the putative number of cell types
that vary in the mixture. At this point, a simplex of known
dimensionality is constructed using procedure defined in Fig. 4b,
and the corners of the simplex provide information about cell
type proportions and cell-type-specific genes within the mixture.
Application of this pipeline to benchmark datasets GSE19830 and
GSE11058 yields very accurate deconvolutions (Supplementary
Figs. 4, 5).

To further illustrate the complete deconvolution pipeline, we
analyzed dataset GSE27563 (ref. 23), where mouse blood was
profiled from animals with and without tumors (total 45 mice;
Fig. 6b). After filtering (Supplementary Fig. 6), the gene
expression matrix consists of 2674 significantly mutually linear
genes, and can be described as a mixture of five cell types
(Fig. 6c). Consistently, when filtered genes are mapped onto a
tSNE projection, putative cell-type-specific genes fall in five
distinct clusters (Fig. 6d). These signatures were then compared
against a dataset of pure murine blood cell types—GSE6506
(ref. 24). This analysis revealed lymphocytes, monocytes, and
granulocytes as well as two different subtypes with enriched
erythrocytic signatures (Fig. 6e). We have further used GSE49664
(ref. 25), where murine erythroid cell subpopulations were
profiled, and we found that corner two genes corresponded to
megakaryocytes, while corner three genes corresponded to

classical erythrocytes. Thus, we identified five major blood cell
types in murine blood—erythrocytes, megakaryocytes, lympho-
cytes, monocytes, and granulocytes (neutrophils). Consistent with
biological expectations, blood of tumor-bearing animals con-
tained a significantly higher proportion of monocytes and a lower
proportion of lymphocytes (Fig. 6f).

Next, we re-analyzed the HNSCC TCGA dataset used in Fig. 2
to illustrate the relevance of mutual linearity to real large-scale
datasets. We find that after filtering there remain 680 mutually
linear genes, which can be described by the four main cell types.
When signatures of these four cell types are mapped onto single-
cell RNA-seq data, they identify as cancer cells, immune cells,
myoblasts, and fibroblasts (Supplementary Fig. 7e). The frequen-
cies of immune cells obtained from our approach match
(Supplementary Fig. 7f) the ones computed by TIMER13, the
state of the art tool for computational deconvolution of immune
infiltration into tumor tissues, which was trained on immune
signatures. This confirms the ability of mutual linearity-based
complete deconvolution to accurately dissect both cellular
composition and cellular frequencies in large-scale datasets and
those with significant noise level, while the existing complete
deconvolution approaches fail to successfully analyze datasets
of this level of complexity in the absence of the mutual linearity
filtering step (Supplementary Fig. 8).

Finally, we applied the same pipeline to human blood samples
(PBMCs) collected from 13 healthy volunteers at 0, 3, and 7 days
post-vaccination (Supplementary Fig. 9). When patients were
given the MCV4 vaccine formulation, a considerable spike in
plasma cell abundance was observed26. We analyzed PBMC gene
expression for these patients to evaluate the predictive power of
our approach. We found that the collection of 39 samples could
be described as a mixture of four cell types and used simplex-
based deconvolution of the gene expression matrix to identify
cell-type-specific signatures. Comparing the signatures with a
differentiation map of hematopoiesis27 (DMAP) and dataset
GSE45535(ref. 28), we identified the deconvolved cell types as
monocytes, T cells, erythrocytes, and plasma cells (Supplementary
Fig. 9). Consistent with general blood composition, lymphocytes
and monocytes were the predominant cell populations among
PBMCs and the proportions of the plasma cells systematically
increased on day 7 after vaccination, in accord with the FACS
measurements reported in Li et al.26.

Systematic error due to difference in cellular RNA content.
Next, we benchmarked the mutual linearity-based deconvolution
approach against experimental datasets where cellular propor-
tions were directly defined by FACS measurements. We focused
on three datasets profiling whole blood: GSE20300, GSE77343,
and E-MTAB-6413 (Fig. 7a–c). These datasets contained the
data on 24, 142, and 39 donors, and were profiled using two
different microarray platforms or RNA-sequencing (HGU133V2,
Human Gene ST Array, and RNA-seq respectively). In all cases
(see Supplementary Figs. 10–12) linear variance was reasonably
well explained by three or four cellular components, which were
identified as neutrophils, lymphocytes, monocytes, and ery-
throcytes based on comparison with the pure cell type compen-
diums DMAP and GSE45535. The partial deconvolution
algorithm CIBERSORT5 has been optimized for the HGU133
platform, and for the GSE20300 dataset cellular frequencies
obtained by our approach compared very well with CIBERSORT
(Supplementary Fig. 10f–h). However, even though cell signatures
correctly identified cell types, we observed (Fig. 7a–c) that a
fraction of lymphocytes was always systematically overestimated
in our deconvolution approach, while a fraction of neutrophils
was always underestimated, independent of the platform or
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clinical context. We hypothesized that this could be due to the
difference in cell sizes and associated RNA-per-cell content of
these cell types, as it is well known that neutrophils generally
carry much lower RNA quantity than lymphocytes. Indeed,
simulation of a mixing model with variable RNA per-cell content
shows that a difference in cell size or cellular RNA content can
lead to such systematic differences when comparing to true cell
type proportions (Fig. 7d).

To validate the effect of cell size or RNA content, we prepared
mixtures of two cell types of distinctly different sizes and cellular
RNA content: HEK and Jurkat cells (Fig. 8a, b), always ensuring
that each mixture contained total of one million cells. Consistent
with expectations, the total RNA yield from these samples
correlated with the fraction of HEK cells (Fig. 8c). We then
performed RNA-sequencing of these samples (including ERCC

spike-in controls to be able to control for the absolute RNA-
concentration), and analyzed the data using our proposed
complete deconvolution approach (see Fig. 6a). Indeed, SVD
analysis (Fig. 8d) applied after linear filtering (Supplementary
Fig. 13) revealed that the mixture was composed of two cell types,
and mutually linear genes clustered into two major clusters
associated with the genes derived from the corners of the two-
dimensional simplex (Fig. 8e). The inspection of these corner
genes revealed that they were distinctly cell type specific (Fig. 8f).
However, reconstructed cell proportions did not match the actual
cellular frequencies used in the experimental design (Fig. 8g).
This was consistent with the idea that cell size difference will
introduce a systematic error. Such an error can be compensated
provided that the relative RNA per cell content is known for the
cells in the mixture. In this case, the information can be derived
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by normalizing the data to spike-in ERCC controls, and by
comparing library depth in pure HEK and pure Jurkat cells
(Fig. 8h). This comparison shows that mRNA content in HEK
cells is approximately six times higher than in Jurkat cells.
Introducing this coefficient into the deconvolution data (see
Methods) leads to an excellent agreement between the predicted
cell proportions and the actual cell counts (Fig. 8i). Our approach
has significantly outperformed NMF-based approaches on this
real dataset (Supplementary Fig. 13a), and filtering of the
mutually linear genes in accord with mutual linearity improved
the performance of NMF methods, consistent with the simulation
results (Supplementary Fig. 13b). Importantly, the bias was
evident also when using partial deconvolution approaches (Fig. 8j)
with known cell type markers (Fig. 8k), which can be corrected
by using the spike-in derived coefficient (Fig. 8l).

Discussion
In summary, we describe a noise-robust approach to solving the
complete deconvolution problem that reveals the composition of
mixed samples based on their bulk gene expression profiles and
without any a priori knowledge about the pure components.
Provided that the input dataset is large enough to faithfully
capture the linear component of the variability across multiple
samples, our approach works robustly with and without noise and
performs well on both benchmark and complex tissue datasets.
Natural restrictions to this approach include very small cohort

samples, or noise so large that it masks the linear component of
the variability. This can happen, for instance, if a particular cell
type has a very low abundance (compared to the level of technical
noise). Likewise, for subpopulations that are transcriptionally
very close to each other, variability in the proportions of these
subpopulations must be larger than the degree of their tran-
scriptional similarity. Finally, in the case when two different cell
types co-vary with each other across all samples, our approach
will not be able to discriminate individual cell types, but rather
will view them as one supertype.

Overall, the presence of the topological structures that we
reveal has been alluded to previously by Uri Alon’s group29,
where they show that, broadly speaking, biological tasks can be
considered as polytopes in a multidimensional space. The pre-
sence of the simplex topology in mixed gene expression was
also noted by Wang et al.9 based on an analogy with hyper-
spectral image decomposition. In this context, our work provides
an explicit description of this type of transformation and its
underlying biological meaning (mutual linearity of tissue-specific
genes) coupled with a geometric approach for simplex identifi-
cation that allows robust identification of tissue-specific genes
or their proxies.

One advantage of geometrical methods for simplex identifica-
tion is that both tissue-specific genes and genes shared across
samples significantly contribute to simplex identification, as they
allow to establish the hyperplane where the simplex is located
and then find simplex boundaries. A potentially more important
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advantage of geometrical methods is that they are able to identify
a proper simplex even in situations when mixed cell types do
not have explicit signature-genes. This strategy, while con-
ceptually simple, is dramatically different from the one used by
Wang et al.9, who did not search for vertices of the simplex but
rather considered all clusters of the co-expressed genes by using
an affinity propagation algorithm and then tested all possible
combinations of these clusters to find the optimal combination

that reconstructs a dataset with the smallest error margin (Sup-
plementary Fig. 14).

As we point out in Fig. 5, the simplex-based deconvolution and
published NMF-based complete deconvolution approaches pro-
vide equally accurate solutions for both benchmark datasets and
idealized simulation datasets but behave differently in the situa-
tion of realistic levels of noise. Ability to filter out genes that are
non-cell-specific allows one to efficiently work with datasets of
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arbitrary scale and realistic levels of noise, as we highlight using
the example of the TCGA datasets (see Supplementary Fig. 8).
The ability to dissect large biological datasets is particularly
important as many marker-based deconvolution approaches are
optimized to perform with specific profiling platforms (e.g.
CIBERSORT5), or in particular biological settings, such as tumor-
infiltrating immune cells (e.g., TIMER13).

Methods
Downloaded microarray datasets. Normalized microarray data were downloaded
from the Gene Expression Omnibus (GSE11058—controlled mixtures of human
immune cell lines, GSE19830—controlled mixtures of rat brain, liver and lung,
GSE19380—controlled mixtures of brain cell subsets, GSE27563—expression data
from murine PBCs from mice with advanced mammary tumors and their tumor-
free counterparts, GSE52245—time course of young adults vaccinated with
meningococcal mcv4 and mpsv4, GSE20300—whole blood gene expression ana-
lysis of stable and acute rejection pediatric kidney transplant patients), GSE77343—
whole blood gene expression in chronic heart failures.

Cell-specific transcriptional profiles that were used for enrichment were
obtained from GSE27787 for mouse hematopoietic cells, GSE49664 for primary
megakaryocytes and erythroblasts from murine fetal liver hematopoietic stem/
progenitor cells, GSE45535 for human blood subsets including plasma cells, and
DMAP for normal human blood subsets (especially for erythrocyte
contamination).

Microarray datasets pre-processing. As microarray data contain a lot of noise,
some preprocessing steps were applied before deconvolution analysis. We use the
following steps to extract the signal and avoid unwanted noise:

Collapse probes by gene symbol: remove probes mapping to several genes, if
several probes associated to the same gene, use a probe with a maximum average
expression as representative.

Use log-transformed values to calculate an average expression for each gene.
Choose top 12000 highest expressed (on average) genes.
Remove artificial sources of linearity: genes from sex chromosomes (if samples

are not sex-matched) and ribosomal component genes (RPL/RPS).
Remove sample outliers if necessary.
Perform quantile normalization if the dataset was not normalized.
For all downstream computations, we use linear-transformed (non-log)

expression values.

TCGA data preprocessing. The gene per sample expression matrix of HNSCC
from TCGA was downloaded from https://software.broadinstitute.org/morpheus/.
Only non-protein coding genes and RPL/RPS genes were removed from the dataset
(15,807 gene symbols left). The dataset was then linear-transformed, and samples
were normalized to have the same sum of expression levels. Only the top 10,000
highly expressed genes by average expression were kept for the analysis. Only male
samples were kept for the analysis.

Cell cultures. HEK-293T were obtained from ATCC (ATCC CRL-321666) and
cultured in DMEM supplemented with 10% fetal bovine serum (FBS), 2 mM L-
glutamine, and 100 U ml−1 penicillin–streptomycin. Jurkat cells were provided by
laboratory of Prof. Robert D. Schreiber and cultured in RPMI supplemented with
10% FBS, 2mM L-glutamine, and 100 Uml−1 penicillin–streptomycin. Both cell
lines were passaged regularly twice per week. For experiment cells were harvested
2 days after last passage, pelleted, and resuspended in PBS containing 0.2% bovine
serum albumin at concentration 106 ml−1. Mixtures of given proportions were then
prepared by mixing HEK-293T and Jurkat cell suspensions into final volume of 1
ml. Cell mixtures were then pelleted and further processed.

RNA sequencing. mRNA was extracted from cell lysates by means of oligo-dT
beads (Invitrogen). For cDNA synthesis, we used custom oligo-dT primer with a
barcoded adaptor-linker sequence (CCTACACGACGCTCTTCCGATCT-XXXXX
XXX-T15). After first-strand synthesis, samples were pooled together based on
Actb qPCR values and RNA–DNA hybrid was degraded with consecutive
acid–alkali treatment. Then, a second sequencing linker (AGATCGGAAGAGCA
CACGTCTG) was ligated with T4 ligase (NEB) followed by SPRI clean-up. The
mixture then was PCR enriched 12 cycles and SPRI purified to yield final strand-
specific RNA-seq libraries. Data were sequenced on HiSeq 2500 by 40bpX11bp
pair-end sequencing. Second mate was used for sample demultiplexing.

RNA-seq data acquisition and processing. Demultiplexed single-end fastq files
were aligned to the mixture reference GRCh38 and ERCC spike-in sequences by
top-level assembly with STAR (version 2.6.1b). Gene counts were produced RSEM
(version v1.3.1).

We used Deseq2 R/Bioconductor package to obtain differential expression
between pure samples of HEK and Jurkat cell lines. Differential expression was
obtained by Deseq2 guidelines; all p values were corrected for testing multiple

genes (Bonferroni correction). The top 100 genes (upregulated in a pure cells) were
selected as cell type markers for DSA deconvolution.

Simulation dataset. We simulated a 12; 000 genes ´ 40 samples matrix of
observed gene expression X of mixed samples by simulating two matrices: a
12,000 × 3 matrix W (gene signatures) and a 3 × 40 matrix H (proportions). We
simulated W using log-normal distribution with a mean of 6 and standard
deviation of 1.5 for each sample:

8i 2 1¼ 3½ �W�;i � 2N 6;1:5ð Þ ð1Þ
and since proportions sum-to-one constraint is usually assumed in complete
deconvolution problem, we can sample matrix H uniformly from the unit simplex
using the approach described in30:

8j 2 1¼ 40½ �H�;i � U Δ3½ � : ð2Þ
Matrix X was simulated as multiplication of these two matrices plus log-normal
Gaussian noise with zero mean:

XSD¼k ¼ W ´Hþ 2N 0;kð Þ; k 2 0::7½ � ; ð3Þ
where SD and k are standard deviation and noise level. A model with SD= 0 was
used in this paper as simulation data without noise. A model with SD= 4 was used
as simulation data with noise, as the noisiest model that had distinguishable signal
by SVD.

Simulation data without signature genes was obtained by removing tissue-

specific genes—such i that

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP3
j¼1

fwi;j

� �2
s

� 0:85, where fwi;j ¼
wi;jP3

j¼1
wi;j

.

For Fig. 5 we used samples from the Liver–Brain–Lung dataset (GSE19830) as
pure samples instead of sampling log-normal matrix W. Proportions and noise
were simulated the same way as above.

For simulation with different RNA content we simulated matrix W as described
above, when we divided second column of W by two and third column by three.
This gave us three cell types with different RNA content. We simulated H to meet
sum-to-one constraint. We simulated X by multiplication of W and H and further
normalization of columns of X to have equal column sum.

Row normalization. Row normalization of dataset X is defined as a matrix ~X every
row of which is a row of matrix X normalized by its sum, i.e.

8i 2 1;N½ �; j 2 1;M½ � ~xi;j ¼ xi;jPM

k¼1
xi;k

; ð4Þ
where N is the number of genes and M is the number of samples.

Collinearity networks. To measure linearity between to genes x and y we first
normalize expression levels of these genes (~x and ~y) and then we evaluate how well
the line of ~x ¼ ~y fits the normalized expression values by calculating the average of
the two coefficients of determination R2 for two models ~x ¼ ~y (~x is dependent and
~y is variable) and ~y ¼ ~x (~y is dependent and ~x is variable). Let us denote this
linearity coefficient as R2

sym x; yð Þ. Then we calculate spearman correlation between
each pair of genes ρ x; yð Þ.

To build an undirected weighted linearity network, we use genes as nodes of the
network. We put the edge between two genes x and y if both R2

sym x; yð Þ>0 and
ρ x; yð Þ>0. We set the weight of such edge to be

Wx;y ¼ R2
sym x; yð Þρ x; yð Þ: ð5Þ

Significance test. For any gene x in the network, let us denote set of outgoing
edges as E xð Þ. Let us also denote sum of weights of E xð Þ as power of x:
P xð Þ ¼ P

j2E xð ÞWx;j .
We would like to find genes that have a power greater than at random taking

into account the topology of the network. We test this null hypothesis for each gene
by sampling weights of the network.

We first calculate powers in the actual network Pactual xð Þ. Let K be the number
of sampling iterations. Let Success xð Þ denote the number of successful samplings
for gene x, when Psampled xð Þ � Pactual xð Þ, vector Success xð Þ is initialized with zeroes.
Each iteration we will randomly shuffle weights of the edges of the network while
keeping the network topology and then calculate the sampled power of each gene: if
the sampled power of the gene x is greater or equal to the actual power of gene x,
we will increment Success xð Þ by one.

We can then calculate p-value for each gene

p xð Þ ¼ Success xð Þþ1
Kþ1 : ð6Þ

This procedure allows robust identification of genes with collinear expression
profiles and provides p values quickly. However, if one wants to adjust these p
values for multiple comparison using Bonferroni correction, one must increase the
number of sampling iterations: if a is the desired significance level and N is the
number of genes in the network then K>N

α is required to obtain the desired
confident p values.
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TCGA dataset initial processing. Another way to build a linearity network is to
calculate linearity coefficients between all pairs of genes and replace all negative
values with zeroes. We then filter the matrix of all pairwise linearities by keeping
only the genes that meet the requirements below:

Gene has at least k1 gene with linearity values of greater or equal to threshold1
Gene has at least k2 genes with linearity values of greater or equal to threshold2
The rationale behind these requirements is quite straightforward: we would like

to get rid of genes that are not linear to any other genes and want to guarantee a
finding of clusters of meaningful size. Usually, we set threshold1 to be greater than
threshold2, and selection of these thresholds may vary from dataset to dataset.

We then hierarchically cluster the filtered matrix using 1-Pearson correlation as
a distance and average linkage and this leads to the identification of linear
subnetworks.

For the TCGA dataset from Fig. 2 we used k1 ¼ 1; threshold1 ¼ 0:75 and
k2 ¼ 10; threshold2 ¼ 0:25. After filtration, only 217 genes were left, and
hierarchical clustering identified seven modules with cell-type specific clusters and
small modules that we were not able to assign to any specific cell type.

Reconstruction accuracy. The complete deconvolution problem is a factorization
problem, given X we try to find such factors W and H that will describe cell type
expression signatures and cell type proportions. We estimate the accuracy of
reconstruction (deconvolution accuracy) as the Frobenius norm of input and
estimated multiplication:

inputð ÞX � W ´H outputð Þ ð7Þ

accuracy ¼ X �W ´HFrobenius: ð8Þ

Algorithm. The algorithm takes as input matrix X of observed gene expression in
mixed samples. The algorithm consists of several key steps which will be described
below in detail:

Row normalization
Constructing collinearity network (described above)
Sampling null model and getting p values (described above)
Dataset filtering by p value
SVD and cell type number estimation
Simplex corner identification
Deconvolution

Normalization. Normalization is one of the key features of the algorithm. In the
proof of Transcriptional Simplex Lemma (Supplementary Material) we show that
sum-to-one normalization in linear space (where each gene expression level is
divided by its sum) puts all the genes in a simplex, the corners of which will are
normalized cell type proportions.

Cell-type number estimation. Cell-type number can be addressed with different
approaches. First, one might a priori know or assume the number of major cell
types in the mixture and use this number as the dimensionality of linear subspace.
If this number is not known a priori, SVD can be used to estimate the effective rank
of X: let us consider an observed gene expression N ×M (N genes and M samples,
M <N) matrix X, whose singular value decomposition is given by X=UDV, where
U and V are N ×N and M ×M unitary matrices and D is a diagonal matrix
containing singular values σ1 � σ2 � ¼ : � σM . The natural way to look at sin-
gular values is explained variance

αi ¼ σ2iPM

j¼1
σ2j
: ð9Þ

Projection to a linear subspace. Projection to linear subspace is well-described by
Nascimento et al.22. In brief, to project the dataset to a smaller linear subspace we
first normalize it and transpose it, so genes are column vectors. We then calculate
SVD for the zero-centered dataset. Once a number of cell types k is selected, the
non-centered dataset is projected to the space generated by k –1 left-singular
vectors:

~X
T
zero�centered ¼ UDVT;Uk�1 ¼ first k� 1 singular vectors of U ; ð10Þ

~X
T
projected ¼ Uk�1 ´ ~X

T
: ð11Þ

Corner identification. We tested three different algorithms for their ability to
identify simplex corners (Supplementary Fig. 1) and found that SISAL is robust to
noisy data and has a parameter tau which allows to control for noise tolerance. We
iterate through different tau

8i 2 N and i 2 �20; 0½ �; taui ¼ 2i ð12Þ
and for each tau we select the corners and then use these corners to deconvolve the
dataset and calculate the reconstruction error. We choose tau with the smallest
reconstruction error.

We also implemented an approach called Smart Corners which allows to choose
different tau for each of the cell types by calculating reconstruction errors for
possible combinations of different tau for each of the corners and then choosing
combination with the smallest reconstruction error.

Signature gene selection. When the corner is identified, the Euclidean distance
between every gene and every corner is calculated in the projected space. For each
corner we can select G closest genes to each corner. These genes will help us to
identify the cell type.

Deconvolution. We perform deconvolution using simplex corners as putative
signatures in a DSA-like manner. Let k ×m matrix Hp be simplex corners (i.e. row-
normalized H, actual cell type proportions), where k is the number of cell types and
m is the number of samples. Then we first find such coefficients α1 ¼ αk that would
fit best the equation

α1

..

.

αk

0BB@
1CCA ´Hp ¼ 111¼ 111ð Þ: ð13Þ

Then matrix H is calculated as H ¼
α1h

p
1;1 � � � α1h

p
1;m

..

. . .
. ..

.

αkh
p
k;1 � � � αkh

p
k;m

0B@
1CA, where hpi;j are ele-

ments of Hp Matrix W is then calculated using fast combinatorial non-negative
least squares.

Fraction correction. Let Wcell be an N × K matrix of true gene expression profiles
for one cell for each cell type, i.e. each column of Wcell represents an average cell of
a given cell type and different columns of Wcell might have different column sums
(i.e. one cell of a particular cell type might have more RNA molecules than the
other). Let ci; i 2 1::K½ � be a sum of ith column of matrix Wcell, i.e. coefficients
ci will represent RNA concentration per cell for each cell type. Let Hcouts be a
K ×M matrix of true cell counts within each sample. Let us also note Hfractions

as per-sample sum-to-one normalized matrix Hcounts:

Hfractions
i;j ¼ Hcounts

i;jPK

i¼1
Hcounts

i;j

: ð14Þ

If we know coefficients ci and matrix Hcouts we can easily tell how much RNA of a
given cell type is in every sample, let this be matrix Hrna:

C ¼
c1 � � � 0

..

. . .
. ..

.

0 � � � cK

0BB@
1CCA;Hrna ¼ C´Hcounts : ð15Þ

Let us also note that we can calculate Hrna�fractions in the same manner as we
calculate Hfractions:

Hrna�fractions
i;j ¼ Hrna

i;jPK

i¼1
Hrna

i;j
: ð16Þ

We will model the observed gene expression matrix X using an additive
linear model:

X ¼ Wcell ´Hcounts. In usual practice, X matrix is normalized to account for
library depth. While it can be done in several ways by calculating relative
expression values like TPMs (transcripts per millions) in RNA-seq or by
normalization between arrays (like quantile normalization) in microarray datasets;
however, results are very similar in terms column sums: they will be equal or close
to each other. We assume matrix X was preprocessed in the usual way, and we
assume Xpreprocessed has equal column sums.

Let us assume Xpreprocessed can be fully deconvolved, i.e. we can find such
Wdec;Hdec that

Xpreprocessed ¼ Wdec ´Hdecsuch that 8jPK
k¼1

Hdec
k;j ¼ 1: ð17Þ

Since X was preprocessed to have the same amount of RNA within the sample, and
H is assumed to meet a sum-to-one constraint, then Wdec is guaranteed to also
have the same column sum as X. In this case, Hdec is nothing else but Hrna�fractions.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-09990-5

14 NATURE COMMUNICATIONS |         (2019) 10:2209 | https://doi.org/10.1038/s41467-019-09990-5 | www.nature.com/naturecommunications



Once we have Hrna�fractions and coefficients ci available we can calculate
Hfractions:

c�1
i Hrna�fractions

i;jPK

i¼1
c�1
i Hrna�fractions

i;j

¼
c�1
i

Hrna
i;jPK

i¼1
Hrna
i;jPK

i¼1
c�1
i

Hrna
i;jPK

i¼1
Hrna
i;j

by unfolding 16ð Þ

¼ c�1
i Hrna

i;jPK

i¼1
c�1
i Hrna

i;j

by removing
PK
i¼1

Hrna
i;j this term is constant for every jð Þ

¼ c�1
i ci H

counts
i;jPK

i¼1
c�1
i ci H

counts
i;j

by unfolding 15ð Þ ¼ Hcounts
i;jPK

i¼1
Hcounts

i;j

¼ Hfractions
i;j by folding 14ð Þ

ð18Þ

Enrichment analysis. To identify how gene sets from simplex corners were
enriched in different cell subsets, we used two approaches: average z-score and
GSEA (gene set enrichment analysis) for pairwise comparison. Log-transformed
values from GSE27787, GSE45535, and DMAP were standardized for each gene
(i.e. z-score was calculated for each gene), then for each gene set an average z-score
across samples were calculated. For analysis of the GSE49664 dataset, differential
expression analysis between erythrocytes and megakaryocytes was carried out using
limma31 and Phantasus web-service (https://artyomovlab.wustl.edu/phantasus/):
genes were ranked by the corresponding test statistics and p was calculated using
pre-ranked gene set enrichment analysis method fgsea32 (https://github.com/ctlab/
fgsea) package with one million gene set permutations. All heatmaps were gen-
erated using pheatmap (https://CRAN.R-project.org/package=pheatmap) package.

Cell-specific transcriptional profiles that were used for enrichment were obtained
from GSE27787 for mouse hematopoietic cells, GSE49664 for primary
megakaryocytes and erythroblasts from murine fetal liver hematopoietic stem/
progenitor cells, GSE45535 for human blood subsets including plasma cells, and
DMAP for normal human blood subsets (especially for erythrocyte contamination).

Statistical analysis. Concordance between known and predicted cell-type pro-
portions, between gene expression levels, between gene expression level and cell
type proportions, between known and predicted gene expression levels in pure
tissues was determined by Pearson correlation coefficient (R) or coefficient of
determination (R2). Group comparisons were determined using a two-sided
Mann–Whitney U test. All results with p< 0.05 were considered significant.
Statistical analyses were performed with R.

Reporting Summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The produced RNA-seq dataset of mixed HEK and Jurkat cells is available at NCBI GEO
database with accession number GSE129240.

Code availability
All the scripts and methods proposed in this paper are available as an R-package at
https://github.com/ctlab/linseed. All necessary arguments and information about
removed samples to reproduce the results is present in Supplementary Table 1.
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