research

Continuous non-revisiting genetic algorithm

Abstract

The non-revisiting genetic algorithm (NrGA) is extended to handle continuous search space. The extended NrGA model, Continuous NrGA (cNrGA), employs the same tree-structure archive of NrGA to memorize the evaluated solutions, in which the search space is divided into non-overlapped partitions according to the distribution of the solutions. cNrGA is a bi-modulus evolutionary algorithm consisting of the genetic algorithm module (GAM) and the adaptive mutation module (AMM). When GAM generates an offspring, the offspring is sent to AMM and is mutated according to the density of the solutions stored in the memory archive. For a point in the search space with high solution-density, it infers a high probability that the point is close to the optimum and hence a near search is suggested. Alternatively, a far search is recommended for a point with low solution-density. Benefitting from the space partitioning scheme, a fast solution-density approximation is obtained. Also, the adaptive mutation scheme naturally avoid the generation of out-of-bound solutions. The performance of cNrGA is tested on 14 benchmark functions on dimensions ranging from 2 to 40. It is compared with real coded GA, differential evolution, covariance matrix adaptation evolution strategy and two improved particle swarm optimization. The simulation results show that cNrGA outperforms the other algorithms for multi-modal function optimization.published_or_final_versio

    Similar works