951 research outputs found

    Flowshop scheduling problems with due date related objectives: A review of the literature

    Get PDF
    3rd International Conference on Industrial Engineering and Industrial Management XIII Congreso de Ingeniería de Organización Barcelona-Terrassa, September 2nd-4th 200

    Stability and resource allocation in project planning.

    Get PDF
    The majority of resource-constrained project scheduling efforts assumes perfect information about the scheduling problem to be solved and a static deterministic environment within which the pre-computed baseline schedule is executed. In reality, project activities are subject to considerable uncertainty, which generally leads to numerous schedule disruptions. In this paper, we present a resource allocation model that protects a given baseline schedule against activity duration variability. A branch-and-bound algorithm is developed that solves the proposed resource allocation problem. We report on computational results obtained on a set of benchmark problems.Constraint satisfaction; Information; Model; Planning; Problems; Project management; Project planning; Project scheduling; Resource allocati; Scheduling; Stability; Uncertainty; Variability;

    Minimum tardiness scheduling in flow shops : construction and evaluation of alternative solution approaches / 1993:153

    Get PDF
    Includes bibliographical references (p. 23-24)

    A survey of scheduling problems with setup times or costs

    Get PDF
    Author name used in this publication: C. T. NgAuthor name used in this publication: T. C. E. Cheng2007-2008 > Academic research: refereed > Publication in refereed journalAccepted ManuscriptPublishe

    Four decades of research on the open-shop scheduling problem to minimize the makespan

    Full text link
    One of the basic scheduling problems, the open-shop scheduling problem has a broad range of applications across different sectors. The problem concerns scheduling a set of jobs, each of which has a set of operations, on a set of different machines. Each machine can process at most one operation at a time and the job processing order on the machines is immaterial, i.e., it has no implication for the scheduling outcome. The aim is to determine a schedule, i.e., the completion times of the operations processed on the machines, such that a performance criterion is optimized. While research on the problem dates back to the 1970s, there have been reviving interests in the computational complexity of variants of the problem and solution methodologies in the past few years. Aiming to provide a complete road map for future research on the open-shop scheduling problem, we present an up-to-date and comprehensive review of studies on the problem that focuses on minimizing the makespan, and discuss potential research opportunities

    Continuous Process Improvement Implementation Framework Using Multi-Objective Genetic Algorithms and Discrete Event Simulation

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.Purpose Continuous process improvement is a hard problem, especially in high variety/low volume environments due to the complex interrelationships between processes. The purpose of this paper is to address the process improvement issues by simultaneously investigating the job sequencing and buffer size optimization problems. Design/methodology/approach This paper proposes a continuous process improvement implementation framework using a modified genetic algorithm (GA) and discrete event simulation to achieve multi-objective optimization. The proposed combinatorial optimization module combines the problem of job sequencing and buffer size optimization under a generic process improvement framework, where lead time and total inventory holding cost are used as two combinatorial optimization objectives. The proposed approach uses the discrete event simulation to mimic the manufacturing environment, the constraints imposed by the real environment and the different levels of variability associated with the resources. Findings Compared to existing evolutionary algorithm-based methods, the proposed framework considers the interrelationship between succeeding and preceding processes and the variability induced by both job sequence and buffer size problems on each other. A computational analysis shows significant improvement by applying the proposed framework. Originality/value Significant body of work exists in the area of continuous process improvement, discrete event simulation and GAs, a little work has been found where GAs and discrete event simulation are used together to implement continuous process improvement as an iterative approach. Also, a modified GA simultaneously addresses the job sequencing and buffer size optimization problems by considering the interrelationships and the effect of variability due to both on each other

    Scheduling Models with Additional Features: Synchronization, Pliability and Resiliency

    Get PDF
    In this thesis we study three new extensions of scheduling models with both practical and theoretical relevance, namely synchronization, pliability and resiliency. Synchronization has previously been studied for flow shop scheduling and we now apply the concept to open shop models for the first time. Here, as opposed to the traditional models, operations that are processed together all have to be started at the same time. Operations that are completed are not removed from the machines until the longest operation in their group is finished. Pliability is a new approach to model flexibility in flow shops and open shops. In scheduling with pliability, parts of the processing load of the jobs can be re-distributed between the machines in order to achieve better schedules. This is applicable, for example, if the machines represent cross-trained workers. Resiliency is a new measure for the quality of a given solution if the input data are uncertain. A resilient solution remains better than some given bound, even if the original input data are changed. The more we can perturb the input data without the solution losing too much quality, the more resilient the solution is. We also consider the assignment problem, as it is the traditional combinatorial optimization problem underlying many scheduling problems. Particularly, we study a version of the assignment problem with a special cost structure derived from the synchronous open shop model and obtain new structural and complexity results. Furthermore we study resiliency for the assignment problem. The main focus of this thesis is the study of structural properties, algorithm development and complexity. For synchronous open shop we show that for a fixed number of machines the makespan can be minimized in polynomial time. All other traditional scheduling objectives are at least as hard to optimize as in the traditional open shop model. Starting out research in pliability we focus on the most general case of the model as well as two relevant special cases. We deliver a fairly complete complexity study for all three versions of the model. Finally, for resiliency, we investigate two different questions: `how to compute the resiliency of a given solution?' and `how to find a most resilient solution?'. We focus on the assignment problem and single machine scheduling to minimize the total sum of completion times and present a number of positive results for both questions. The main goal is to make a case that the concept deserves further study

    The job shop tardiness problem: A decomposition approach

    Full text link
    An important criterion for evaluating the effectiveness of many manufacturing firms is their ability to meet due dates. In low to medium volume discrete manufacturing, typified by traditional job shops and more recently by flexible manufacturing systems, this criterion is usually operationalized on the shop floor through the use of prioritizing dispatching rules. The widespread use of dispatching rules has led to a number of investigations where the due date performance of various rules is compared. In contrast to previous research on dispatching rules, this paper proposes a new approach that decomposes the dynamic problem into a series of static problems. These static problems are solved in their entirely, and then implemented dynamically on a rolling basis. To illustrate this approach, a specific heuristic is developed that constructs the schedule for the entire system by focusing on the bottleneck machine. Computational results indicate that significant due date performance improvement over traditional dispatching rules can be obtained by using this new approach.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/30576/1/0000211.pd
    corecore