

UNIVERSITY OF
ILLINOIS L1HRARY

AT URBANA-C: iAivlPAIGN

BOOKSTACKS

Digitized by the Internet Archive

in 2012 with funding from

University of Illinois Urbana-Champaign

http://www.archive.org/details/minimumtardiness153rama

Faculty Working Paper 93-0153

330

B385

1993:153 COPY 2

STX

THE LIBRARY OF THE

SEP 2 2 1993

UNIVERSITY OF ILLINOIS

Minimum Tardiness Scheduling in Flow Shops:

Construction and Evaluation of

Alternative Solution Approaches

Narayan Raman
Department of Business Administration

University of Illinois

Bureau of Economic and Business Research

College of Commerce and Business Administration

University of Illinois at Urbana-Champaign

BEBR
FACULTY WORKING PAPER NO. 93-0153

College of Commerce and Business Administration

University of Illinois at Urbana-Champaign

August 1993

Minimum Tardiness Scheduling in Flow Shops:

Construction and Evaluation of

Alternative Solution Approaches

Narayan Raman
Department of Business Administration

MINIMUM TARDINESS SCHEDULING IN FLOW SHOPS:
CONSTRUCTION AND EVALUATION OF
ALTERNATIVE SOLUTION APPROACHES

Narayan Raman

Department of Business Administration
University of Illinois at Urbana-Champaign

Champaign, Illinois 61820

August 1993

EXECUTIVE SUMMARY

Surveys of industrial scheduling practice show that meeting

customer due dates is a critical concern for many manufacturing systems.

While there is considerable research on the effectiveness of scheduling

rules in job shops, very little work is reported on flow shops.

Although the scheduling rules developed for job shops can be applied in

flow shops as well, we show that the inherent structure of a flow shop

can be utilized to construct an effective solution procedure. In

particular, for the total tardiness problem, we develop conditions for

local optimality in a 2-machine flow shop, and use these results to

generate an efficient improvement heuristic procedure. We also

construct solution methods that utilize the notion of shifting

bottlenecks.

Our computational experience reveals the superiority and

robustness of the proposed approaches under a variety of problem

scenarios. The results of this study indicate the need to look beyond

permutation schedules for solving the flow shop tardiness problem.

Furthermore, they suggest that the criterion for determining machine

criticality needs to take the scheduling objective into consideration.

While it appears intuitive to impute criticality on the basis of machine

workloads, and thereby, consider the machines for scheduling in the

order of their workloads, this approach may freguently result in

inferior shop performance.

1 . INTRODUCTION

Surveys of industrial scheduling practice show that meeting

customer due dates is a critical concern for many manufacturing systems

(Panwalker et al. 1973, Smith et al. 1986). This has generated

substantive research on due date based scheduling objectives such as

minimizing total job tardiness. Much of this research deals with the

relative effectiveness of priority dispatching rules (see, for example,

Conway 1965, Carroll 1965, Baker and Bertrand 1982, Kanet and Hayya

1982, Baker and Kanet 1983, Baker 1984 and Vepsalainen and Morton 1987)

under different problem scenarios in dynamic job shops. A parallel body

of work investigates dominance conditions that insure local optimality

between adjacent jobs in any schedule for static single machine problems

(see, for example, Rinnooy Kan 1976).

However, very little work is reported on the static tardiness

problem in flow shops, although they represent many real systems. While

the scheduling rules developed for job shops can clearly be applied in

flow shops, it may be possible to generate more effective schedules by

exploiting their inherent structure as done by Ow (1985) and Morton and

Pentico (1993). Following these studies, flow shop scheduling

approaches can be classified as either centralized or decentralized . A

centralized approach generates the schedule for the entire flow shop

simultaneously and in order to do so, it utilizes global information.

However, the resulting scheduling problem is quite difficult to solve.

On the other hand, the decentralized approach schedules only one machine

at a time. While it strives only for local optimality, the resulting

problem is usually easier to solve (also see Ow 1985 for a related

discussion)

.

Morton and Pentico (1993) describe several scheduling procedures

under these two classes. Ow's (1985) procedure provides a compromise

between the centralized and decentralized approaches. She develops

conditions for local optimality between adjacent jobs in a 2-machine

flow shop. She utilizes these conditions for developing a heuristic

solution method that focuses on the bottleneck machine in a

proportionate flow shop. However, its performance in a general flow

shop is unknown. It is useful to also note that Ow's approach results

in a permutation schedule; while these schedules are generally believed

to be effective, it may be possible to generate nonpermutation schedules

that are superior.

This paper has a two objectives. First, we construct two

alternative decentralized scheduling approaches to the general flow shop

tardiness problem. The first approach is based on developing

alternative conditions of local optimality for a 2-machine system.

However, unlike Ow (1985), these conditions are based on considering

only one machine at a time. They also provide theoretical insight into

the merit of focusing on the bottleneck as done by Ow. We use these

conditions to construct an active nonpermutation schedule for the

general flow shop problem by decomposing it into several single machine

problems. The second approach utilizes the notion of shifting

bottlenecks originally proposed by Adams, Balas and Zawack (1988) for

solving the job shop makespan problem. We propose alternative ways in

which this approach can be adapted for minimizing tardiness in a flow

shop.

Second, we present a comprehensive evaluation of several

centralized and decentralized scheduling methods. These include methods

developed in this study as well as others proposed in previous research.

While minimizing mean tardiness (MT) is the primary criterion of

schedule effectiveness, we also investigate the robustness of each

procedure by evaluating it for the measures of proportion of tardy jobs

(PT) as well as mean flow time (MFT) . While PT is clearly a due date

based scheduling measure, we believe that the ability of any system to

quote and maintain short job due dates is closely linked with its

ability to control MFT.

The paper is organized as follows. The minimum tardiness problem

is formulated in § 2 . We also present a network representation of this

problem in order to better describe scheduling approaches that are

presented in the later sections. We develop conditions for local

optimality for 2-machine flow shops in § 3 . In § 4 and § 5,

respectively, we describe the various centralized and decentralized

scheduling approaches proposed in past research. In § 5, we

additionally construct a scheduling method that utilizes the results

developed in § 3. We also present the alternative scheduling approach

that is based on shifting bottlenecks. Our computational experience is

discussed in § 6, and the main results of this paper are summarized

in § 7.

2. THE FLOW SHOP TARDINESS PROBLEM

We consider a static problem with N jobs that are all available

for scheduling at time zero in an M-machine flow shop. Let J = {1,...,N}

denote the set of these jobs. The input parameters include the

operation processing times p- of job j on machine m, job processing

times Pj =
2Jm-i Pjm' anc* J *3 c*ue dates d-. The primary decision variable

is c- —the time at which job j finishes processing on machine m. Let

c- = c-
M
be the completion time, T- = max (0, c-

M
-d-) be the tardiness, and

E- = max (0,d-c
M) be the earliness of job j. The minimum tardiness

problem (MTP) is stated as

N

MTP max 52 T
j

(!)

c :m - c im ;> p:m V c im - c jm > pim , Vj.ieJ, and Vm (2)

Cj, * Pji. Vj (3)

c
jra

" Cj,,., ^ p jm , m = 2,...,M (4)

c jM
+ Ej - T

d
= dj, Vj (5)

c 3m ^ 0, Vj ,m; Ej.Tj z 0, Vj (6)

(1) specifies the objective of minimizing total tardiness. (2) insure

that no more than one operation is processed on a machine at any time.

(3) and (4), respectively, require that the first operation of any job

cannot start before the job is released, and any subsequent operation is

scheduled only after its predecessor is completed. (5) define job

tardiness while (6) specify the nature of the variables.

Following Balas (1970), and Adams, Balas and Zawack (1988), MTP

can be represented as a network as shown in Figure 1. The nodes in this

graph, other than the dummy start and finish nodes, depict individual

operations, while the directed conjunctive arcs, shown in solid lines,

indicate the order in which the operations in each job are to be

processed. The disjunctions formed by constraints (2) are shown by the

broken arcs with double-ended arrows; these disjunctive arcs relate to

the sequence in which the jobs are processed at each machine. In this

network representation, a disjunctive arc is said to be settled whenever

its direction is determined by assigning a relative order of processing

between the two operations linked by that arc. Finding a complete

schedule is equivalent to settling all pairs of disjunctive arcs.

Insert Figure 1 Here

MTP is a difficult problem to solve optimally even for single machine

systems (Du and Leung 1990). However, .limited results are available for

a 2-machine flow shop. First, a permutation schedule is optimal in

these systems. Ow (1985) also develops conditions under which a

schedule is locally optimal, i.e., two adjacent jobs follow a given

order. In the next section, we develop alternative conditions of local

optimality

.

3 . THE 2-MACHINE FLOW SHOP

Consider an arbitrary schedule in a 2-machine flow shop in which

jobs i and j are processed consecutively. Let t
1
and t

2
be the times at

which machines 1 and 2 become available for processing i and j

.

Figure 2 depicts two of the several configurations that are possible for

the case in which i precedes j (denoted by i < j). [Note that we need

consider only permutation schedules since they are optimal in a

2-machine flow shop.

]

Insert Figures 2a and 2b Here

Let x
+

= max(x,0) and x" = min(x,0); then, as shown in Figure 2a,

S. = (0' t
-|

+Pj m-t 2) ^- s the leading idle time resulting on machine 2 when

i < j . In the alternative scenario depicted in Figure 2b,

S. = (0, t
i

+P
1

-

m
~t 2) " ^- s the waiting time of i at machine 2, while

(S.+p-
1
-p-

2)

+
is the trailing idle time on this machine. [The leading

+ - .

idle time S. and the trailing idle time (S.+p-.-pj,) when j < i are

+ -
i i

similarly defined.] Note that, in any schedule, S S =0. Let c (c)ii i j

denote the completion time of i (j) on machine 2 when i -< j . Then

Ci = t2 + Si* + pi2 , and c/ t 2
+ p l2

+ Si + (Si" +pn -p
l2)

* + p j2 .

Ow shows that a schedule in which i < j is locally optimal only if

PrMt^t,) > Prn (tlf t 2) .
(7)

where

Pr lj (t
1
,t 2)

=

Pi2 + Si

_ (dj -Ci
1
)^ * Si - (S

3

~ *p u -P j2
)*

Pj2 + s;

is the priority of i relative to j ; Pr-- (t^t,) is similarly defined.

Note that this result reguires considering both machines for computing

priority values. We now develop an alternative set of conditions that

relate to individual machines. Let r- be the ready time of job i on

machine m in any partial schedule; then r-- = 0, and r-
2

= c
,i

= fc
i

+ Pn

Define the operation due date d- of o on machine m as follows;

d-, = d-; d-. = d- - p j2
/ and the priority of job i at machine m as

P im =max(max(i im,tj +p im ,d im } + max (r im , t m) . (8)

Next, we introduce the notion of schedule conflict . Job j is said to

conflict with job i on machine m in any schedule, denoted by i < j,

if j succeeds i and is available for processing on machine m before i is

completed, i.e., r
jm

< c
im

. Note that in this case, the trailing idle

time (S.+p-.-p-
2)

+ is zero. The situation in which i conflicts with

job j, denoted by j (i, is similarly defined. Clearly, both i and j

conflict with each other on machine 1, i.e., i < > j. However, four

configurations are possible on machine 2:

2
1. There is no conflict, denoted by j </ > i, as shown in

Figure 3,

2
2. Both jobs conflict with each other, or i 4 > j, as shown in

Figure 4,

2 2
3. j conflicts with i, i 4= j, j <^= i, as shown in Figure 5,

and

2 2
4. i conflicts with j, j < i, i </ j, as shown in Figure 6.

Insert Figures 3 through 5 Here

[Note that Figures 3 through 6 show only one instance of each

+ +
configuration; in particular, in all these instances, S = S = 0.1 We

i J

now state the conditions for local optimality.

2Remark 1. If 1 () j, then i < j in an optimal solution if and only if

P
i2 * P

J2-

Proof: Refer to Appendix 1.

2
Remark 2. If i (/) j, then i ^ j in an optimal solution if and only if

p
i1 * Pir

Proof: Refer to Appendix 2.

2 2Remark 3. Let j «== i, but i ^*=- j. If P n < P^, then P
j2

< P-
2

, and i

precedes j in an optimal schedule. Alternatively, if P-
2

s P-
2

, then

P-., < P^, and j precedes i in an optimal solution.

Proof: Refer to Appendix 3.

Remarks 1 and 2 provide some insight into the merit of focusing on

the bottleneck machine in order to compute relative job priorities as

proposed by Ow (1985) and Morton and Pentico (1993). Note that schedule

conflicts are more likely to occur on bottleneck machines. Also recall

that i and j always conflict on machine 1. If they do not conflict on

machine 2, as in configuration 1, then Remark 1 indicates that machine 1

is the critical machine, and the overall relative priorities of i and j

should be based on P^ and P-^. Alternatively, if conflicts do occur on

machine 2, as shown in configuration 2, then P
j2

and P-
2
computed on this

machine should determine the overall relative priority of these two

jobs. This remark also indicates that when conflicts occur at both

machines, the second machine is dominant.

Remark 3 indicates that, in the case of one-way conflicts as in

configurations 3 and 4, the relative order of priorities P- and P-

remains the same on both machines. Selecting the job with the smaller P

is sufficient for local optimality.

4. CENTRALIZED SCHEDULES

We now describe the various solution approaches proposed in the

literature for the flow shop mean tardiness problem. Wherever

necessary, we also discuss the modifications made in these procedures

for the purpose of this study. In this section, we consider only

centralized procedures; the decentralized methods are discussed in § 5

.

As mentioned earlier, Ow (1985) suggests a procedure that focuses

on the known bottleneck in the system. The system is then treated as a

2-machine flow shop comprising the first machine and the bottleneck

machine, and the local optimality conditions (7) are used to determine

the relative ordering of individual jobs. Ow proposes an alternative

form of the priority function that computes the priority of job i as

Pr,

Pib + s;
exp

(d
i
- ClV_+ h(s; -S)

k(p + S)
(9)

where b is the bottleneck machine, h is a measure of the opportunity

cost of a time unit on b, k is a look-ahead parameter, S is the average

idle time on b, and p is the average processing time on b. The job with

the maximum priority is processed next. In terms of the results of § 3,

this approach essentially resolves the scheduling conflicts on the

bottleneck machine. In so doing, it ignores conflicts that arise at

10

machines downstream to the bottleneck machine. As Ow notes, it is

reasonable to assume in a proportionate flow shop that the order in

which jobs are completed at the last machine is the same as the order on

the bottleneck machine.

In order to apply this rule in a general flow shop, we modify it

as follows. Each machine in the flow shop is considered to be a

bottleneck in turn, and a schedule for the entire shop is developed in

the manner described by Ow. Among the M schedules generated, we select

one with the minimum total tardiness. Henceforth, we call this approach

the Modified Focused Scheduling (MFS) method. Consistent with Ow

(1985), this approach develops a permutation schedule for the shop.

Morton and Pentico (1993) describe Botflow family of rules that

generate the schedule for the entire flow shop by solving the single

machine tardiness problem with respect to job ready times and operation

due dates at the bottleneck machine. These problems are solved either

in a single pass or through multiple iterations. The sequence of jobs

obtained eventually is enforced on each machine in the system to obtain

a permutation schedule.

In this study, we implement the Botflow 3 method which is the most

general among the Botflow rules. Similar to MFS, this method develops a

schedule based on each machine in turn, and eventually selects the best

among them. The job ready time and operation due date values used in

the single machine problem are updated iteratively. Suppose that the

machine under consideration is m. Let r-
m
(k), d

]m
(k), and c- m (k) denote,

respectively, the ready time, operation due date and completion time of

11

job i at machine m in iteration k. Then the job ready times at the

beginning of the first iteration are determined by

r-ta (l) =i

0, m = 1

ETi
1

Pi.» m = 2,...,M

(10)

and the initial operation due dates by

apn , m = 1

(ID

di.r-i + aPim- m = 2,...,M

for i = 1,...,N, where a = dj/p
5

- is the flow allowance factor. Subject to

these parameters, jobs are sequenced according to the Rachamadugu and

Morton (Rachamadugu and Morton 1982) heuristic. According to this

method, the priority of job i on machine m is given by

Aim = z^- exp
dim

~ (tm +p im)

where pm = —]j^V. Pim is the average job processing time on machine m, k

is a look-ahead parameter, and t is the time at which machine m is next

available. At this time, only those jobs that are available at the

machine are considered, and the job with the maximum A- is selected.

The relative job order obtained in this manner is implemented at all

machines to obtain the complete shop schedule. At the next iteration,

r^
m
reflects the total processing and waiting time incurred by i prior

to its arrival at m in the previous iteration. d- is similarly

12

modified to reflect the actual lead time incurred by i after it is

processed at m at the previous iteration. In particular, at the k th

iteration,

and

(13)

dim (k) =di - [c iM (k-l) - c im (k-l)] . (13)

Iterations stop when there is no improvement in the tardiness values

obtained in two consecutive iterations. This approach is implemented

for each machine in turn, and the best among the M shop schedules

generated in this manner is selected. Henceforth, we call this rule

Botf low.

5. DECENTRALIZED SCHEDULES

Decentralized schedules can be further categorized into

constructive schedules and the shifting bottleneck schedules. These two

categories are now described.

5 . 1 Constructive Schedules

Constructive schedules are developed chronologically. They deal

with individual machines in the order they become available for

processing the waiting jobs. Because of the fixed seguence in which

these machines are visited by all jobs, they can be scheduled in the

order of their indexes. In terms of the network shown in Figure 1, this

approach starts with the left and proceeds to the right. At a given

13

machine, the job to be taken up for imminent processing is selected by a

priority dispatching rule. Morton and Pentico (1993) evaluate a number

of different priority rules, such as First-come-f irst-serve, Weighted

Shortest Processing Time, Earliest Due Date, Slack per Remaining

Operation, COVERT, RM-1 and RM-Iter. They report the superiority of

RM-1 and RM-Iter rules based on their computational experience;

consequently, in this paper, we investigate these two rules only.

RM-1 implements the Rachamadugu and Morton (1982) heuristic for

solving the single machine tardiness problem at each machine. This

approach constructs a nondelay schedule by considering machines 1

through M in that order in a single pass. At each machine, the job

ready times and due dates are computed by using (10) and (11). However,

unlike Botflow, RM-1 generates nonpermutation schedules because priority

dispatching is done at each machine individually.

RM-Iter implements RM-1 while updating r- and d- in an iterative

manner according to (12) and (13). The procedure terminates when no

improvement in tardiness values is observed in consecutive iterations.

The third constructive approach considered in this study is based

on extending the results in Remarks 1 through 3 to yield an iterative

improvement heuristic in a general flow shop. This procedure starts

with a feasible nondelay schedule, and iteratively improves upon it by

resequencing jobs to eventually generate an active schedule.

At any iteration, the machines are scanned in the order of their

index, and at each machine, the schedule is scanned from front to back.

Suppose that j and i are two adjacent jobs on any machine m, such that

j < i in the given schedule, and these two jobs conflict, i.e.,

14

r
im

< c
im*

Then i and J are candidates for a switch if P
jm

< P. , where

P
)m

and P- are obtained from (8). The switch occurs if

6T(i,j,m) = £ (T^ - T^) <

k«8i"

where S^ is the set of jobs comprising i, j and all jobs that follow

these two jobs, and T. and T^, respectively, are the tardiness of k

before and after the switch. Note that (8) computes priorities even for

those jobs that are currently not on the machine by considering their

ready times. Whenever such a job is schedule ahead of another job that

is currently available at the machine, forced idle time results on the

machine. This situation is depicted in Figure 7 in which job i has a

ready time r- > t > r- .1 lm m jm

Insert Figure 7 Here

If P- < P- , then it is locally optimal to schedule i ahead of j.im jm' j c j

However, the resulting forced idle time at this machine may delay the

completion of one or more jobs following i and j which, in turn, could

result in higher tardiness for these jobs. Let I = (r
jm

- tm)

+ be the

forced idle time induced by scheduling i ahead of j. Then, denoting the

completion time of the job in position k by c [k!m and c (k)m before and

after the switch, respectively, and assuming that the order of jobs

following i and j do not change because of the switch, we have

15

c [k)m = max(c [lr]m ,c [k . llm + I m)

and

TMm = max(0,c'[k]m -d (k]ra)

for all jobs that follow i and j. Note that, while computing the

revised completion times, if we find a job for which there is no change

in the completion time, i.e., a job in position k such that c [lf)m = c [k) m ,

we need not consider any of the remaining jobs in the schedule since

their completion times and tardiness values will remain unchanged after

the switch.

The initial schedule is a nondelay schedule that is generated by

using the RM-1 method. Similar to RM-Iter, job ready times and

operation due dates in subsequent iterations are determined by (12) and

(13); and the procedure terminates when there is no improvement in the

tardiness values obtained in two consecutive iterations. Henceforth, we

refer to this solution method as the Flow Shop Decomposition (FSD

)

procedure.

5.2 The Shifting Bottleneck Schedules

Shifting bottleneck (SB) schedules are similar to constructive

schedules in that they deal with only one machine at a time. However,

while constructive schedules consider machines in the order of their

indexes, SB schedules consider them in the order of their criticality.

As each machine is fully scheduled, the criticality indexes of the

remaining machines are updated. When all machines are scheduled at the

end of a cycle, this process is repeated for the next cycle; the

16

procedure is terminated when no improvement in the solution value occurs

for given number of cycles. The shifting bottleneck approach is used

successfully by Adams et al. (1988) for the job shop makespan problem.

Under the SB approach, the problem to be solved at a given machine

requires minimizing total tardiness subject to the operation arrival

times and operation due dates obtained by considering only the settled

arcs. Initially, these comprise only the conjunctive arcs representing

the precedence relationships within each job; the ready times and

operation due dates are determined by (10) and (11). The resulting

solution assigns an order on the processing of the various jobs on this

machine, and thereby, settles the disjunctive arcs corresponding to that

machine. In the general case, determining the ready times and operation

due dates requires solving two longest path problems with respect to the

settled arcs in the network given in Figure 1 (Adams et al. 1988).

It is possible to construct alternative procedures within the

overall framework of the shifting bottleneck approach. These procedures

will differ in how the criticality of a machine is defined, and the

manner in which the single machine tardiness problem is solved. In this

study, we use two alternative ways of defining machine criticality. In

the first method, it is determined by the relative machine workload.

Under this approach, machines are scheduled in the order of their

workloads. In the second approach, machine criticality is measured by

the magnitude of total tardiness obtained by solving the individual

single machine problems. In particular, we solve the single machine

tardiness problem with respect to the settled arcs on each unscheduled

machine at the beginning, and thereafter whenever a machine is

17

scheduled. The machine at which the maximum value of total tardiness is

realized is next selected for consideration. In the following, we refer

to these two approaches as SB1 and SB2, respectively.

The single machine tardiness problem is solved by applying the

Rachamadugu and Morton (1982) heuristic to yield a nondelay schedule.

Under each of SB1 and SB2 approaches, we additionally generate an active

schedule in a manner similar to FSD.

6 . COMPUTATIONAL STUDY

The experimental study evaluates the relative performance of the

various centralized and decentralized scheduling procedures described in

§ 4 and § 5. In particular, we consider MFS and Botflow among the

centralized, and RM-1, RM-Iter, FSD, SB1 and SB2 among the decentralized

methods. Both nondelay and active versions of SB1 and SB2 were

implemented; however, in order to simplify presentation, we report the

results of only the active schedules since they were superior in most

cases.

Consistent with Ow (1985), we use h = 20, and k = 2.0 in (9) while

implementing MFS. Similarly, following Vepsalainen and Morton

(1988), we set k = 2.0 in RM-1 and RM-Iter. As proposed in Adams et al.

(1988), we incorporate local reoptimization in both SB1 and SB2 whenever

a machine is schedule. This step essentially reseguences each of the

scheduled machines with respect to the most recent set of settled arcs.

Reoptimization is carried up to three iterations; however, when all

machines are scheduled, reoptimization continues until no further

improvement is observed.

18

6 . 1 Experiment Design

Two parameters— Z and R are used to control the tightness and the

variation of job due dates respectively. The tardiness factor Z is an

approximate measure of the proportion of tardy jobs, while R determines

the range of job due dates. For given Z and R, job due dates are

sampled from a uniform distribution in the interval

[d(l -R/2) ,d(l +R/2)] , where d =cmax (l-Z) is the average job due date,

and cmax is the makespan of the sequence obtained by scheduling all

operations on a f irst-come-f irst-serve basis at each machine. Z and R

have been used extensively for generating test data in single machine

tardiness problems (see, for example, Vepsalainen and Morton 1988).

Because of the forced machine idle times, Z is only an approximate

measure of the proportion of tardy jobs in a job shop. Nonetheless, it

helps anchor due date tightness at various levels.

Individual problem scenarios are generated by varying one or more

of the parameters: i) Number of machines M, this was considered at two

levels--4 and 8, ii) number of jobs N, this was considered at two

levels—25 and 50, iii) Z, this was considered at three levels—0.25,

0.50 and 0.75, and iv) R, this was considered at two levels—0.50 and

1.50. Within each scenario, ten problems are randomly generated by

sampling operation processing times from a uniform distribution in the

interval [1, 100]. The average solution value across these instances

under each scheduling approach is presented in Tables 1 through 6. We

also report in parentheses the number of times a given scheduling rule

is found to be the best among those tested across these ten instances.

In total, 240 problems are solved for each scheduling approach.

19

The primary performance measure is total tardiness (TT). For

reporting purposes, we use the normalized value given by]F\ T]/^ Pj

In order to evaluate the robustness of each method, we also report the

proportion of tardy jobs (PT) and the total job flow time (TFT) values.

Similar to total tardiness, we normalize total flow time with respect to

the sum of job processing times.

6.2 Experimental Results

Tables 1 and 2 give the total tardiness values for M = 4 and

M = 8, respectively. These results show that, at low Z values, SB1

performs the best when the due date range is small, while Botflow, SB2

and RM-Iter are the best rules for larger R values. This results holds

across all tested values of M and N. However, for medium and high

values of Z, FSD is clearly the best rule in terms of the tardiness

values as well as the number of times it finds the best solution. The

performance of other rules is somewhat mixed with SB1, SB2 , RM-Iter and

Botflow doing well under different scenarios. Overall, FSD performs the

best, followed by RM-Iter, SB2 and Botflow. While an increase in Z

leads to improved performance of MFS and RM-1, it results in a rapid

deterioration in the performance of SB1.

Insert Tables 1 and 2 Here

For the measure of PT, Tables 3 and 4 indicate that MFS and FSD are the

best methods overall with MFS somewhat better for smaller, 4-machine

system while FSD does better for the larger system. In general, these

two rules yield comparable values. Among the other rules Botflow is

effective at low Z values. The relative performance of RM-1 and RM-Iter

20

improves with an increase in Z, while SB1 and SB2 progressively perform

poorly; this is particularly so for SB1.

Insert Tables 3 and 4 Here

Tables 5 and 6 report the TFT values for the various rules. For the

4-machine, 25-jobs system, RM-1 and MFS return the best values when Z is

small, while FSD becomes increasingly superior as Z increases. It

remains superior for all Z and R values when N = 50, and also for the

8-machine, 25-job system. For the 8-machine, 50-job system, FSD

continues to be effective; in this case, MFS, SB2 and RM-Iter also

perform well. Overall, FSD is seen to be the best rule; MFS is the next

best, followed by RM-1 and RM-Iter. All these rules are also generally

robust. Similar to the other two criteria, the performance of SB1

deteriorates with an increase in Z.

Insert Tables 5 and 6 Here

In summary, FSD has the best overall performance among the various rules

tested. It is better, in particular, for medium and large values of Z;

however, it remains robust across all scenarios for all three

performance measures tested. Among the other methods, RM-Iter and, to a

lesser extent, SB2 and RM-1 perform well in terms of both effectiveness

and robustness. MFS exhibits shortest processing time rule (SPT) like

properties (Baker 1984). It yields low PT and TFT values, and also does

well for the TT criterion when tardiness levels are high. Botflow does

well for small systems, low tardiness factor and high due date ranges.

Between the two shifting bottleneck approaches, SB2 is generally more

21

effective for all three measures. SB1 is quite sensitive to Z, its

performance deteriorates rapidly when due dates become increasingly

tighter.

7 . SUMMARY

This paper examines alternative scheduling approaches for

minimizing tardiness in a flow shop. In view of the problem complexity,

we consider only heuristic solution methods. While job shop scheduling

rules can clearly be used in a flow shop as well, we show that the

inherent structure of a flow shop can be utilized to construct an

effective, decomposition based solution method. In particular, we

develop conditions for local optimality in a 2-machine flow shop, and

use these results to generate an improvement heuristic procedure. We

also construct solution procedures that utilize the notion of shifting

bottlenecks.

In an extensive computational study, we compare these methods with

others that have been proposed in past research, and show their

effectiveness under a variety of problem scenarios and across the

scheduling measures of proportion of tardy jobs and total flow time as

well. This study provides two other results that should be of interest

to both researchers and practitioners. First, the experimental results

show that permutation schedules may not perform very well for some

scheduling criteria such as total tardiness. While nonpermutation

schedules are less restrictive, and therefore, are likely to be more

effective, they usually require more computational effort. The results

of this study indicate that the difference in the tardiness values may

22

be large enough to justify incurring this additional computational

burden.

Second, the difference in the performance of SB1 and SB2 suggest

that the criterion for determining the bottleneck machine needs to

problem specific. While it appears reasonable to deem the machine with

the largest workload to be the most critical machine as done in SB1,

this approach may actually lead to inferior schedules. In this study,

SB2 , which defined criticality on the basis of tardiness values instead,

resulted in superior performance.

H-NR.3-56

23

REFERENCES

1. Adams, J., E. Balas and D. Zawack (1988), "The Shifting Bottleneck

Procedure in Job Shop Scheduling," Management Science, 34, 391-401.

2. Baker, K. R. (1984), "Sequencing Rules and Due Date Assignments in

a Job Shop," Management Science, 30, 1093-1104.

3. Baker, K. R. and J. M. W. Bertrand (1982), "A Dynamic Priority Rule

for Sequencing Against Due Dates," Journal of Operations

Management , 3, 37-42.

4. Baker, K. R. and J. J. Kanet (1983), "Job Shop Scheduling with

Modified Due Dates," Journal of Operations Management, 4, 11-22.

5. Balas, E. (1969), "Machine Sequencing via Disjunctive Graphs: An

Implicit Enumeration Algorithm," Operations Research , 17, 941-957.

6. Carroll, D. C. (1965), "Heuristic Sequencing of Single and Multiple

Component Jobs," Ph.D. Dissertation, MIT, Cambridge, MA.

7. Conway, R. W. (1965), "Priority Dispatching and Job Lateness in a

Job Shop," Journal of Industrial Engineering , 16, 123-130.

8. Du, Z. and J. Y.-T. Leung (1990), "Minimizing Total Tardiness on

One-Machine is NP-Hard, " Mathematics of Operations Research, 15,

483-495.

9. Kanet, J. J. and J. C. Hayya (1982), "Priority Dispatching with

Operation Due Dates in a Job Shop, " Journal of Operations

Management, 2, 155-163.

10. Morton, T. E. and D. W. Pentico (1993), Heuristic Scheduling

Systems, John Wiley and Sons, New York, NY.

24

11. Ow, P. S. (1985), "Focused Scheduling in Proportionate Flow Shops,"

Management Science, 31, 852-869.
»

12. Panwalker, S. S., R. A. Dudek and M. L. Smith (1973), "Sequencing

Research and the Industrial Problem," in Symposium on the Theory of

Scheduling, edited by S. E. Elmaghraby, Springer-Verlag, Berlin.

13. Rachamadugu, R. V. and T. E. Morton (1982), "Myopic Heuristics for

the Single Machine Weighted Tardiness Problem," Working Paper

#30-82-83, Graduate School of Industrial Administration, Carnegie

Mellon University, Pittsburgh, PA.

14. Raman, N. and F. B. Talbot (1993), "The Job Shop Tardiness Problem:

A Decomposition Approach, " European Journal of Operational

Research , 69, forthcoming.

15. Rinnooy Kan, A. H. G. (1976), Machine Scheduling Problems:

Classification , Complexity and Computations , Nijhoff, The Hague,

Netherlands.

16. Smith, M. L. , R. Ramesh, R. A. Dudek and E. L. Blair (1986),

"Characteristics of U.S. Flexible Manufacturing Systems--A Survey,"

in Proceedings of the Second ORSA/TIMS Conference on Flexible

Manufacturing Systems, Ann Arbor, MI, 477-486.

17. Vepsalainen, A. P. J. and T. E. Morton (1988), "Improving Local

Priority Rules with Global Lead-Time Estimates: A Simulation

Study," Journal of Manufacturing and Operations Management, 1,

102-118.

25

TABLE 1 - Total Tardiness

4-Machine System

Z;R

Scheduling Rule

RM-1 RM-Iter FSD SB1 SB2 Botflow MFS

N = 25

0.25;0.50 0.21 (0) 0.16 (0) 0.17 (1) 0.06 (6) 0.11 (2) 0.10 (0) 0.15 (2)

0.25;1.50 0.49 (0) 0.04 (5) 0.06 (4) 0.05 (4) 0.03 (7) 0.03 (6) 0.19 (2)

0.50;0.50 1.01 (0) 1.00 (0) 0.80 (5) 0.95 (2) 1.01 (0) 1.01 (1) 0.88 (3)

0.50;1.50 1.14 (0) 0.96 (0) 0.88 (3) 1.04 (3) 0.90 (4) 0.90 (0) 0.98 (1)

0.75;0.50 2.28 (0) 2.26 (1) 1.83 (8) 3.40 (0) 2.37 (0) 2.49 (0) 2.14(1)

0.75;1.50 2.40 (0) 2.34 (2) 2.07 (7) 3.01 (0) 2.36 (0) 2.50 (0) 2.33 (1)

W = 50

0.25;0.50 0.42 (0) 0.22 (2) 0.21 (0) 0.10 (8) 0.15 (1) 0.17 (0) 0.20 (2)

0.25;1.50 0.51 (0) 0.00 (10) 0.08 (4) 0.00 (10) 0.00 (10) 0.00 (10) 0.01 (9)

0.50;0.50 1.59 (0) 1.57 (0) 1.15 (6) 1.42 (3) 1.52 (0) 1.63 (0) 1.51(1)

0.50;1.50 1.75 (0) 1.34(1) 1.18 (5) 1.21 (4) 1.18 (5) 1.19 (4) 1.39 (0)

0.75;0.50 3.92 (1) 3.87 (1) 3.42 (7) 4.55 (1) 4.22 (0) 4.45 (0) 3.84 (1)

0.75;1.50 4.25 (0) 3.77 (3) 3.69 (5) 4.19 (0) 3.99 (1) 4.05 (0) 3.78 (3)

26

TABLE 2 - Total Tardiness

8-Machine System

Z\R

Scheduling Rule

RM-1 RM-Iter FSD SB1 SB2 Botflow MFS

N = 25

0.25;0.50 0.25 (0) 0.21 (0) 0.11 (2) 0.04 (9) 0.24 (0) 0.17 (0) 0.21 (0)

0.25;1.50 0.44 (0) 0.10 (2) 0.20 (3) 0.13 (2) 0.10 (5) 0.10 (2) 0.34 (2)

0.50;0.50 0.90 (0) 0.87 (0) 0.54 (9) 1.07 (0) 0.97 (0) 0.89 (0) 0.79 (1)

0.50;1.50 0.94 (0) 0.87 (0) 0.68 (8) 1.29 (0) 0.86 (1) 0.86 (1) 0.90 (0)

0.75;0.50 1.81 (1) 1.81 (1) 1.18 (7) 2.97 (0) 1.88 (0) 1.83 (0) 1.71(1)

0.75;1.50 1.80 (0) 1.77 (0) 1.30 (8) 2.43 (0) 1.78 (0) 1.81 (0) 1.68 (2)

N = 50

0.25;0.50 0.39 (0) 0.32 (0) 0.23 (0) 0.04 (9) 0.22 (1) 0.22 (1) 0.35 (0)

0.25;1.50 0.63 (0) 0.04 (5) 0.09 (2) 0.04 (1) 0.02 (5) 0.02 (5) 0.24 (0)

0.50;0.50 1.26 (2) 1.26 (2) 1.13(4) 1.34 (3) 1.31 (0) 1.32 (1) 1.23 (0)

0.50;1.50 1.36 (0) 1.22 (1) 1.07 (5) 1.35 (2) 1.11(1) 1.12(1) 1.30 (0)

0.75;0.50 2.75 (1) 2.73 (2) 2.60 (4) 4.72 (0) 2.92 (0) 2.96 (0) 2.69 (3)

0.75;1.50 2.65 (0) 2.62 (1) 2.02 (9) 5.04 (0) 2.71 (0) 2.90 (0) 2.67 (0)

27

TABLE 3 - Proportion of Tardy Jobs

4-Machine System

Z;R

Scheduling Rule

RM-1 RM-Iter FSD SB1 SB2 Botflow MFS

N = 25

0.25;0.50 0.23 (0) 0.27 (0) 0.25 (0) 0.26 (1) 0.20 (3) 0.20 (2) 0.17 (6)

0.25;1.50 0.24 (1) 0.10 (6) 0.10 (7) 0.15 (3) 0.19 (1) 0.11 (6) 0.14 (3)

0.50;0.50 0.51 (4) 0.52 (3) 0.50 (4) 0.74 (0) 0.64 (0) 0.61 (1) 0.48 (5)

0.50;1.50 0.54 (4) 0.65 (0) 0.58 (1) 0.95 (0) 0.92 (0) 0.76 (1) 0.50 (7)

0.75;0.50 0.84 (1) 0.83 (2) 0.82 (3) 0.95 (0) 0.90 (0) 0.85 (0) 0.78 (5)

0.75;1.50 0.86 (2) 0.89 (1) 0.87 (3) 0.97 (0) 0.98 (0) 0.94 (0) 0.81 (7)

N = 50

0.25;0.50 0.20 (1) 0.22 (1) 0.13 (7) 0.19 (1) 0.19 (1) 0.19 (2) 0.16 (3)

0.25;1.50 0.15 (0) 0.00 (10) 0.04 (4) 0.00 (10) 0.00 (10) 0.00 (10) 0.01 (9)

0.50;0.50 0.47 (3) 0.48 (2) 0.46 (4) 0.62 (0) 0.59 (0) 0.58 (0) 0.43 (5)

0.50;1.50 0.45 (2) 0.60 (0) 0.43 (5) 0.77 (0) 0.78 (0) 0.72 (0) 0.44 (5)

0.75;0.50 0.80 (1) 0.79 (1) 0.78 (3) 0.93 (0) 0.90 (0) 0.83 (2) 0.77 (6)

0.75;1.50 0.80 (1) 0.78 (1) 0.76 (4) 0.95 (0) 0.92 (0) 0.88 (0) 0.76 (4)

28

TABLE 4 - Proportion of Tardy Jobs

8-Machine System

Z\R

Scheduling Rule

RM-1 RM-Iter FSD SB1 SB2 Botflow MFS

N = 25

0.25;0.50 0.36 (0) 0.38 (0) 0.20 (8) 0.40 (1) 0.44 (0) 0.35 (1) 0.32 (1)

0.25;1.50 0.39 (0) 0.28 (3) 0.26 (5) 0.38 (2) 0.36 (1) 0.30 (4) 0.32 (1)

0.50;0.50 0.67 (2) 0.70 (1) 0.59 (9) 0.93 (0) 0.84 (0) 0.75 (0) 0.62 (6)

0.50;1.50 0.65 (3) 0.72 (1) 0.70 (1) 0.99 (0) 0.98 (0) 0.82 (2) 0.60 (7)

0.75;0.50 0.94 (1) 0.94 (1) 0.84 (7) 0.99 (0) 0.98 (0) 0.91 (1) 0.90 (3)

0.75;1.50 0.94 (1) 0.94 (2) 0.84 (7) 1.00 (0) 0.99 (0) 0.96 (0) 0.93 (4)

N = 50

0.25;0.50 0.31 (1) 0.31 (1) 0.25 (3) 0.24 (5) 0.31 (0) 0.30 (0) 0.26 (1)

0.25;1.50 0.29 (0) 0.13 (5) 0.24 (0) 0.20 (1) 0.14 (1) 0.10 (5) 0.20 (0)

0.50;0.50 0.60 (2) 0.60 (2) 0.52 (7) 0.74 (0) 0.74 (0) 0.67 (0) 0.57 (4)

0.50;1.50 0.61 (0) 0.71 (0) 0.57 (4) 0.97 (0) 0.94 (0) 0.88 (0) 0.55 (6)

0.75;0.50 0.87 (1) 0.87 (1) 0.87 (2) 0.99 (0) 0.95 (0) 0.91 (0) 0.83 (8)

0.75;1.50 0.86 (5) 0.88 (3) 0.79 (5) 1.00 (0) 1.00 (0) 0.96 (0) 0.86 (4)

29

TABLE 5 - Total Flow Time

4- Machine System

Z-R

Scheduling Rule

RM-1 RM-Iter FSD SB1 SB2 Botflow MFS

N = 25

0.25;0.50 4.28 (1) 4.53 (0) 4.41 (1) 4.93 (0) 4.68 (0) 4.46 (0) 4.05 (8)

0.25;1.50 4.36 (5) 4.76 (1) 4.72 (1) 4.88 (0) 5.03 (0) 4.78 (0) 4.45 (4)

0.50;0.50 4.36 (0) 4.36 (0) 4.06 (4) 5.05 (0) 4.56 (0) 4.41 (1) 4.05 (5)

0.50;1.50 4.22 (0) 4.33 (0) 4.13 (4) 5.23 (0) 4.57 (0) 4.33 (0) 4.01 (6)

0.75;0.50 4.12 (0) 4.10 (0) 3.65 (8) 6.03 (0) 4.26 (0) 4.31 (0) 3.93 (2)

0.75;1.50 4.26 (1) 4.24 (1) 3.92 (6) 5.24 (0) 4.31 (0) 4.41 (0) 4.15 (3)

N = 50

0.25;0.50 7.72(1) 8.26 (0) 7.44 (4) 8.37 (0) 8.21 (0) 8.21 (0) 7.57 (5)

0.25;1.50 7.83 (5) 8.17 (0) 7.78 (6) 8.57 (0) 8.27 (0) 8.50 (0) 8.00 (2)

0.50;0.50 7.54 (0) 7.56 (0) 7.08 (5) 8.42 (0) 7.94 (0) 7.94 (0) 7.15 (5)

0.50;1.50 7.54 (0) 7.97 (0) 7.30 (4) 8.61 (0) 8.14 (0) 7.95 (0) 7.44 (6)

0.75;0.50 7.23 (1) 7.18 (1) 6.70 (7) 9.61 (0) 7.69 (0) 7.77 (0) 7.05 (2)

0.75;1.50 7.23 (1) 7.18 (1) 6.70 (7) 9.61 (0) 7.69 (0) 7.77 (0) 7.05 (2)

30

TABLE 6 - Total Flow Time

8- Machine System

Z\R

Scheduling Rule

RM-1 RM-Iter FSD SB1 SB2 Botflow MFS

N = 25

0.25;0.50 2.89 (0) 2.93 (0) 2.63 (6) 3.26 (0) 3.22 (0) 2.98 (0) 2.77 (4)

0.25;1.50 3.07 (1) 3.14 (0) 2.68 (4) 3.35 (1) 3.19 (0) 3.15 (0) 2.94 (4)

0.50;0.50 2.96 (0) 2.96 (0) 2.56 (9) 3.71 (0) 3.21 (0) 3.03 (0) 2.81 (1)

0.50;1.50 2.94 (1) 2.99 (1) 2.74 (6) 4.11 (0) 3.12 (0) 3.01 (0) 2.88 (3)

0.75;0.50 2.92 (1) 2.92 (1) 2.25 (8) 4.36 (0) 3.00 (0) 2.93 (0) 2.81 (1)

0.75;1.50 2.91 (0) 2.89 (0) 2.31 (9) 3.90 (0) 2.92 (0) 2.92 (0) 2.80 (1)

N = 50

0.25;0.50 4.87 (1) 4.93 (0) 4.65 (4) 4.97 (0) 5.11 (0) 4.92 (0) 4.64 (6)

0.25;1.50 4.84 (3) 5.15 (0) 4.77 (3) 5.29 (0) 4.65 (4) 5.14 (0) 4.81 (3)

0.50;0.50 4.65 (2) 4.65 (2) 4.43 (5) 5.36 (0) 5.01 (0) 4.90 (0) 4.55 (3)

0.50;1.50 4.79 (0) 4.84 (0) 4.49 (5) 5.55 (1) 4.98 (0) 4.90 (0) 4.67 (4)

0.75;0.50 4.63 (2) 4.60 (2) 4.45 (4) 7.36 (0) 4.84 (0) 4.84 (0) 4.52 (4)

0.75;1.50 4.59 (0) 4.58 (1) 3.77 (9) 7.71 (0) 4.75 (0) 4.89 (0) 4.58 (0)

31

Figure 1: Network Representation of the Flow Shop Sequencing Problem

32

Pi1 TL

'12 (Pn-P 12
)-"

'J2

Figure 2a: 2-Machine Flow Shop: Schedule with Leading Idle Time

'11 Pj1

Pi2
(

S
i

+P;2~Pn)' '\2

Figure 2b: 2-Machine Flow Shop: Schedule with Trailing Idle Time

33

Pil Pji

Pi2 Pj2

Pjl Pil

Pj2 Pi2

Figure 3: 2-Machine Flow Shop: Configuration 1

Pii Pji

Pi2 Pj2

Pjl Pil

Pj2 Pi2

Figure 4: 2-Machine Flow Shop: Configuration 2

t1

34

Pi 1 Pj1

Pi2

t 2

Pj2

Pj1 Pi 1

tl

Pj2

t 2

Pi2

Figure 5: 2-Machine Flow Shop: Configuration 3

Pi 1 Pji

Pi2 Pj2

tl

t 2

Pj1 Pi 1

Pi2 Pi2

t 2

Figure 6: 2-Machine Flow Shop: Configuration 4

Pjm Pirn

-m

Pirn Pjm

r;im

Figure 7: Impact of Forced Idle Time

35

36

APPENDIX 1

Proof of Remark 1

Note that in this case, there is no trailing idle time with either

of the jobs, i.e., Sf+p^-p^ = S^+p^-p^ = 0. The proof is based on

considering two levels of problem instances that are mutually exclusive

and collectively exhaustive. At the first level, we consider four

subcases

:

A. No leading idle times with either of the jobs, i.e., Si = Sj* = .

B. Leading idle time following both jobs, i.e., S^ > 0, S/ > .

C. Leading idle time following i but not j, i.e., Si" > 0, Sj* = .

D. Leading idle time following j but not i, i.e., Sj* = 0, S-f > 0.

According to Remark 1, i precedes j in an optimal schedule if and

only if

max{max(t
1
+ pu , t 2) +p i2 - dil + max(t

x
+p j: , t

2)

^ maxfmaxCtj + Pj X , t 2) + p+j2, dj} + max(tj + P jl , t2) .

Within each level, we consider all feasible scenarios. Let o--

denote the subsequence in which i < j , and a
y

be the alternative

subsequence in which j < i. Let Tj and T- (T. and T.) denote the

tardiness of i and j in a- , (a,,). Let T, • = T- + T. and T-- = T. + T..J
i j j i 'J i J J i j i

Then, it suffices to show that AT = T-- - T-- < if and only if (AO) is

satisfied.

We use a 4-tuple (v^v-jV^) to represent all possible scenarios

that need to be considered, where

37

v. = 1 if Tj > 0, and otherwise,

v
2

= 1 if T- > 0, and otherwise,

v, = 1 if I > 0, and otherwise,
3

j

v, = 1, if T. > 0, and otherwise.

There are sixteen scenarios possible depending upon whether or not i and

j are tardy in the two sequences. These can be represented as (0000),

(0001), ..., (1111). However, note that T, < T and T < T-, which implies
i

l j J

that i) if v- = 1 then v, = 1, and ii) if v, = 1, then v., = 1

.

Consequently, the only scenarios that we need to consider are (0000),

(0001), (0101), (0110), (0111), (0100), (1001), (1101), and (1111).

Among these, (0000) is handled trivially. It is easy to see that

AT > in (0100) and (0110). It is sufficient to show that these

scenarios are infeasible if (A0) is true. We prove this to be so for

(0100); the proof for (0110) is similar, and therefore, it is omitted.

Similarluy, it can be seen that AT < in (0001) and (1001). It is

sufficient to show that (A0) is automatically true in these scenarios.

The proof of this result is similar to that of the infeasibility of

(0100) referredt o above, and it is omitted.

The remaining four scenarios are less obvious; these are delat

with individually. In summary, we deal with the following five

scenarios:

1. (1111): Both i and j are late in either position,

2. (0101): Both i and j are early if scheduled first, late

otherwise,

3. (0111): i is early if scheduled first, late otherwise; j is late

in either position,

38

4. (1101): j is early if scheduled first, late otherwise; i is late

in either position, and

5. (0100): j is early if scheduled first, late otherwise; i is early

in either position.

I. Sj* = s* =

Pi1 'j1

P,2
J2

J1 Pi1

'j2 'i2

Figure 8: Subcase I

Note that in this subcase,

AT = T- • - T

= [(t2 +pi2 -di)
+
+ (tj+p^+p^-d;,)*]

" [(ta+p^-dj)** (t^Pia+p^-di)*]

and according to Remark 1, i precedes j if and only if

max{t;, + p i2 , dj} <. max{t 2
+p j2 , d^} .

(A0)

We need consider only the following instances

39

i) Both i and i are late in both positions :

In this case,

T±j = (t2 +pi2 -di) + (tj+Pia+p^-dj),

Tji = (ta+Pja-dj) + (ta+Pia+Pja-di)

and

AT = Ttj
- Tn = p i2

- pj2 . (1)

As t2 ^ t
T

+ maxtpjj, p^} , t
2

+ p i2 £ d
i

, and t
2

+ p j2 i dj, (AO) reduces to

the condition that i precedes j if

p l2 <S p j2
.

(Al)

From (1) and (Al), it follows that i precedes j if and only if AT < 0.

ii) Both i and j are early if scheduled first, late otherwise :

In this case,

AT = (ta+Pia+Pja-dj) - (t2 +pj2
+ Piz

~ di) = d
i
" d

j
(2)

and (AO) reduces to the condition that i precedes j if

d
4
jdj. (A2)

From (2) and (A2) it follows that i precedes j if and only if AT < 0.

40

iii) i early if scheduled first, late otherwise; j late in either
position :

In this case,

AT = (t2 +pi3 +pj2 -d.,) - (t2 +pj2 -d,) - (t
2
+ p i2 + p j2 -d±)

(^

)

<*t
- (t

2
+p

j2)

From (A0), i precedes j if

d
t

£ t2 + Pj2 (A3)

and Remark 1 is both necessary and sufficient for local optimality

iv) i early if scheduled first; late otherwise; i late in either
position ;

In this case

AT = (t 2 +p i2 -d i) + (tj+p^+Pjj-dj) - (t2 +pj2 +pi2 -d i)

(4)

= (t 2 +p i2) - d

From (A0), i precedes j if

t2 +p la ScL. (A4)

and Remark 1 is both necessary and sufficient for local optimality.

41

v) i is early if scheduled first, late otherwise; i is early in

either position ;

We need to show that this case is infeasible if DR(2) favors i

over j

In this case,

^ = t 2
+ p i2

+ pj2
- <L > (5)

But because i is early in the latter position

ta
+ P i2

+ Py, ~ di < (6)

(5) and (6) imply that d- > d- (7)

But since P-
2

^ P:
2
favors i, from (AO) we have d

f

< d-. This

contradicts (7) and the desired infeasibility is established.

II. s^ > 0; s-j* =

'y\

'\2 'j2

1L 'ii

J2 Pi2

Figure 9: Subcase II

Note that in this subcase,

42

AT = [(t^+Pu+Pu-dJ* + (ti+p^+p^+p^-dj)*]

- [(ta+pja-dj)* + (ta+Pja+Pia-di)*]

and according to Remark 1, i precedes j if

max{t 1 +pil +pl2 , djj + (tj+p^) ^ max(t
2
+p

j2 , dj) + t2 .
(BO)

i) Both i and j are late in both positions ;

AT = T
4j
-T

j4 = (ti+Pu+Pia-di) + (tt +p4l + Pl2 +Pja -dj>

- (t
2
+p j2 -dj) - (t 2 +p]2+ p i2 -d i) (8)

= (ta+p^+Pia) + (ti+p^) - (t 2 +pj2)
- t2 .

From (BO), i precedes j if and only if

(t
a
+pn +p i2) + (tj+Pn) £ (t2 +pj2) + t2 .

Hence, Remark 1 is both necessary and sufficient for local optimality.

ii) Both i and j are early if scheduled first, late otherwise ;

AT = (ti+Pii+Pia+p^-dj) - (t
2
+p j2 +p l2 -di)

= di + (t4 +Pu) - dj - t 2 .

From (BO), i precedes j if

di + (ti+Pu) * dj + t2 .

Hence, Remark 1 is both necessary and sufficient for local optimality.

43

iii) i early if scheduled first, late otherwise;

i late in either position :

AT = (ti+Pu+Pia+Pja-dj) - (ta +pja -d,)

- (ta+Pja+p^-di) (10)

= d
t

+ U 2
+p 1:) - (ta +pJa) - t 2 .

From (BO), i precedes j if

d
i

+ (ti+Pn) s (t 2
+p j2)

- t,

Hence, Remark 1 is both necessary and sufficient for local optimality,

iv) j early if scheduled first, late otherwise;
i Late in either position :

AT = (t^+Pn+Pia-di) + (t
1
+p 11+Pi2 +p j2 -d j

)

" (t 2
+ Pj2

+ Pi 2
-d

i) <">

= (ti+Pn+Pig) + (t^Pn) - dj - t2 .

From (BO), i precedes j if

(t
1
+ P 11

+ Pi 2)
+ (tt+PiJ £ dj + t2 .

Hence, Remark 2 is both necessary and sufficient for local optimality.

v) j early if scheduled first, later otherwise;
i early in either position :

We need to show that this case is infeasible. We have

AT = t
a

+ Pil + p i2
+ pj2

- <L >

44

(12)

But since i is early in the latter position

t 2
+ P j2

+ Pi2 ~ d
t < (13)

From (12) and (13), we have

di + (t^p,,) - <L - t 2 > (14)

But since i precedes j, from (BO) we have

di + Ui+Pn) * dj + t.

This contradicts (14) and the desired infeasibility is established.

Ill . Si* = 0; s-j >

Pil 'j1

'i2 ']2

Pi
J1 'i1

'JL
Pi2

Figure 10: Subcase III

In this subcase,

45

AT = [(ta+Pij-dJ* + (t
2
+p l2 +pj2 -d j

)']

- [(ti+p^+Pja-dj)
4

+ (tj+p^+pja+p^-di)*]

and according to Remark 1, i precedes j if and only if

max{t 2 +p i2 , d t
} + t 2

<; max{t
:
+pjn +pj2 , d

3
} + (tj+p^). (CO)

i) Both i and j are late in both positions ;

AT = (t2 +pi2 -di) + (ta+p^+p^-dj) - (tj+p^+p^-dj)

- (t^p^+Pja+Pia-di) (15)

= (t2 +p i2) + t2
- (t :+Pjl +p

j2)
- (t1+Pjl).

From (CO), i precedes j if

(t2 +pi2) + t
2 £ (C1+ pjl+Pj2) + (t

T

+ Pjl) .
(C9)

Hence, Remark 1 is both necessary and sufficient for local optimality.

ii) Both i and i are early if scheduled first, late otherwise ;

AT = (ta+Pia+Pja-dj) - (tx +pn +pi2 -dt)

(1°)
= d4

+ t2
- (ti+p^) - dj.

From (CO) and (16), i precedes j if and only if AT < 0. Hence, Remark 1

is both necessary and sufficient for local optimality.

46

iii) i is early if scheduled first, late otherwise;

i is late in both positions :

AT = (ta+Pia+p^-dj) - (t^+p^+Pja-dj)

- (t^-t-pji+p^+Pia-dJ (17)

= di + ta
- (tj+p^+Pja) - (tj+PjJ •

From (CO) and (17), i precedes j if and only if AT < 0. Hence, Remark 1

is both necessary and sufficient for local optimality.

iv) j is early if scheduled first, late otherwise;
i is late in both positions :

AT = (ta +p la -dt) + (ta+Pia+p^-dj)

- (t+p^+p^+Pu-di) (18)

= (t2 +p i2) + t2
- d

j
- (tj+Pji) .

From (CO) and (18), i precedes j if and only if AT < 0. Hence, Remark 1

is both necessary and sufficient for local optimality.

v) i is early if scheduled first; late otherwise;
i is early in both positions :

We need to show that this instance is infeasible.

In this case

AT = t 2
+ Pi2 + Pj2 -d

j
> 0. (19)

But since i is early in the latter position

ti + Pji + Pj 2
+ P i2 " d

t <

47

(20)

From (19) and (20)

di + t 2 " d
j
-(ti + Pji) > o (21)

But, since i precedes j, it follows from (CO) that

<*i
+ ta * d

j

+ (ti + Pji)

which contradicts (21) and the required infeasibility is established,

IV. Sj > 0, s-j* >

Pil Pji

'\2 J2

'jl 'i1

'J2 'i2

Figure 11: Subcase IV

In this subcase,

AT = [(t^Pu+Pu - dtK + (t 1+Pil+Pi:+p j2
- dj)*]

- [(ti+pjj+pja-dj)* + (tj+Pjj+p^+p^-di)*]

48

and according to Remark 1, i precedes j if and only if

maxUj + pn + p i2 , d
t } + (t^p^) s max{t

a
+p5l

+ pj2 , d.,} + (t^+p^). (DO)

i) Both i and i are late in both positions :

AT = (tj+Pu+Pia " dt) + (tj+Pn+Pij+Pja-dj)

- (ti+pji+pja-dj) + (ti+p^+Pja+Pia-dJ (22)

= (tj+Pu+p^) + (t 1+Pil) - (ti+p^+pja) - (t 1+Pjl).

From (DO) and (22), i precedes j if and only if AT < 0. Hence, Remark 1

is both necessary and sufficient for local optimality.

ii) Both i and j are early if scheduled first, late otherwise :

AT = (t
1
+pil+Pi2 +p 32 -d j

) - (t
1
-p jl +p 32

>p i2 -d i)

= d±
+ (t

t
+pu) - dj - (t^+p^) .

From (DO) and (23), i precedes j if and only if AT < 0. Hence, Remark 1

is both necessary and sufficient for local optimality.

iii) i is early if scheduled first, late otherwise;

i is late in both positions :

AT = (ti+p^+Pia+P-ja-dj) + (t, +p 3l + p j2 -dj

)

" (ti+Pji+Paa+Pu-di) (24)

= d
4

+ (t
:
+pu) - (tj+p^+pja) - (t^PjJ.

From (DO) and (24), i precedes j if and only if AT < 0. Hence, Remark 1

is both necessary and sufficient for local optimality.

49

iv) i is early if scheduled first, late otherwise;
i is late in both positions ;

AT = (tj+Pii+Piz+Pja-dj) + (t^+Pn+Pia-dt)

- (t^Pji+p^+Pu-di) (25)

= (ti+p^+Pia) + (t^+Pn) - dj - (t^+Pji).

From (DO) and (25), i precedes j if and only if AT < 0. Hence, Remark 1

is both necessary and sufficient for local optimality.

v) j is early if scheduled first, late otherwise;
i is early in both positions :

As before, we show that if i precedes j according to Remark 1,

then this instance is not feasible.

Note that, in this case

AT = t, + pn + p i2
+ p j2

- d
3

> (26)

But since i is early in the latter position

ti + Pji + Pj2 + Pi 2
" d

t < 0. (27)

From (26) and (27), it follows that

d, + (t 1+Pil)
- dj - (tj+PjJ > 0. (28)

However, since i precedes j according to Remark 1

50

d
i

+ (ti+Pu") * dj + t^+pji) .

But this contradicts (28) and the infeasibility of this instance is

established.

51

APPENDIX 2

Proof of Remark 2

Note that in this case, there are trailing idle times following

both jobs, i.e., Si~+Pji-p i2 > 0; S-j" + pn - p j2 > 0. As with the proof of

Remark 1, this proof is based on considering four subcases and five

scenarios within each subcase.

According to Remark 2, i precedes j if and only if

max{t
:
+p il , d

t
-p i2 } <; maxft, +p

:1 , d
:
-p

j2 } .
(E0)

Consider the following subcases:

I. S;* = s-j" =

,1 J1

'i2 '12

Pjj P,"1

j2 Pi2

Figure 12: Subcase I

AT = T- - T •

t (t 2
+ Pi 2

- di)* + (tj+Pii+p^+Pja-dj)*]

- [(t2 +Pj2 -dj)*
+ (ti+Pj^Pn+p^-di)*]

52

Consider the following instances:

i) Both i and j are late in both positions :

AT = (t^p^-di) + (tj+Pii+p^+p^-dj)

- (t2+Pj2 -d
j

)
- (t^Pji+Pii+p^-di)

= 0.

Both sequences are equally good, and without losing any generality

Remark 2 is necessary and sufficient for local optimality.

ii) Both i and j are early if scheduled first, late otherwise :

AT = (ti+p^p^+p^-dj) - (t^Pji+Pii+p^-di)

= (di-p l2)
- (dj-p^)

and (E0) reduces to

di " P i2 * dj"Pj2- (E1)

From (El) and (29), i precedes j if and only if AT < and Remark 2

holds.

(29)

53

iii) i is early if scheduled first, late otherwise;

i is late in either position ;

Note that, in this case, (EO) reduces to

d
i

" Pi2 * t
l

+ Pjl'

or ^ i tj + p^ + p i2 * t
2

+ pi2 .

But this contradicts the assumption that i is early if scheduled first

It follows that in this instance Remark 2 is infeasible.

iv) i is early if scheduled first; late otherwise;
i is late in either position :

AT = (t2 +pl2 -di) + (t^p^+p^+p^-dj)

- (t^p^+Pi^p^-di)

= c 2
- (d

:

-
Pj2) < 0.

Also note that in this instance (EO) reduces to

ti + Pi, « d, - Pj2

or dj ;> t, + pia
+ pj2 .

(E2)

But since j is early in the first position

dj * t 2 + p j2 ;> t, * Pi, + p j2

and (E2) is always satisfied.

Hence, in this instance P-., < P^ always, and AT is always negative

and Remark 2 holds.

54

v) i is early if scheduled first, late otherwise;
i is early in either position ;

AT = t
a

+ Pll + Pjl * pj2
- dj > 0. (30)

But because, i is early in the later position

ti + Pji + Pii + Pi. - d4 < 0. (31)

(30) and (31) imply that

Pj2
" dj - p i2 + d, > 0. (32)

However, since P^ < P-.,

d
i

" Pl2 ^ d
j

" Pj2«

But this contradicts (32) and the infeasibility of this instance is

established.

II. Si* > 0, s-j* =

55

Pi1 ;

J1

Pi2 '12

Ml Pi1

'j2 Pi2

Figure 13: Subcase II

AT = [(t^+Pu+pia-di)* + (ti+Pii+Pji+Pja-dj)*]

" [(ta+Pja-dj)* + (tj+p^+Pij+Pia-di)*] .

Consider the following instances:

i) Both i and j are late in either position :

Note that, in this case (E0) reduces to

t, * Pi! <. t, + pn .

But this is infeasible because tj + p ix > t 2 £ t 2
+ p j: as seen in the

figure. Hence, in this instance P
f1

i P -.,.

ii) Both i and i are early if scheduled first, late otherwise :

AT = (ti+Pii+p^+Pja-dj) - (ti+pjj+p^+pu-di)

= (di-p i2) - (d-j-pja) •

(33)

And (E0) reduces to

56

di - P i2 * dj -p
j2 .

(E3)

From (33) and (E3), i precedes j if and only if AT < and Remark 2

holds.

iii) i early if scheduled first, late otherwise;

i late in either position :

In this case (EO) reduces to

d, - p i2 itt
* Pj,

or di * tx
+ p^ + pi2 .

(E4;

Because i is early in the first position

d
i

* t
2

+ p i2 > t, + p 31
+ p i;

which contradicts (E4). Hence, in this instance, P
(1

i. P-.

iv) i early if scheduled first, late otherwise;

i late in either position

AT = (t^+p^+p^-di) + (t^Pn+p^+Pjj-dj)

" (t
1
+ Pjl

+ Pii + Pi2" d i)
(34)

= (t x +pu) - (dj-p j2) .

And (EO) reduces to

t, + Pn * dj-pjj. (
E5

>

From (34) and (E4), i precedes j if and only if AT < 0,

v) i early if scheduled first; i early in

either position ;

In this case, (E0) reduces to

57

d
i

" Pi2 * dj ~ Pj2- (E6)

because i is early in the later
position

because j is late in the later
position.

But d, - p j2
> t

1
+ Pj1 + pn

> d- - p->
J

F J2

This contradicts (E6). Hence, in this instance, P
(1

s. P-.

III. s* = 0, s- >

Ml Mi

Pi2 J2

Pj1 p,-1

Pj2 Pi2

Figure 14: Subcase III

AT = [(ta+Pia-di)* + (tx +pu +pn +pj2 -dj)
+

]

- [(ti+p-jj+pja-dj)* + (t^p^+p^+Pia-di)*]

Consider the following instances:

58

i) Both i and j are late in either position ;

AT = (t 2
+p i2 -d a

) + (t^+p^+p^+p^-dj)

- (t^p^+Pja-dj) - (tj+p^+p^+Pia-dil

= t2
- (tj+Pji) < 0.

Note that in this case, (EO) reduces to

t, + pn $ t x
+ Pj,

which is always true in this instance because

t, + Pn $ t 2 i ti p 3l .

ii) Both i and j are early if scheduled first, late otherwise :

AT = (di-pia)
- (dj-pja)

And (EO) reduces to

(di-Pia) £ (dj-pj2)

Hence, i precedes j according to Remark 2 if and only if AT < 0,

59

iii) i early if scheduled first, late otherwise;

i late in either position ;

AT = (ti+Pii+p^+Pja-dj) - (t^+p^+p-ja-d-j)

- (ti+p^+Pii+Pia-dJ

= (d^p^) - (t 1+ p3l) .

(EO) reduces to

(di-Pia) <> (t^pjj .

Hence, i precedes j according to Remark 2 if and only if AT <

iv) j early if scheduled first, late otherwise;

i late in either position :

AT = (ta+Pia-dJ + (C, +p i: +pja +pj2
-dj

)

- (ti+p^+Pii+p^-di)

= t
2

+ p j2
- dj < t

T
+ pja

+ p j2
- dj <

because j is early in the first position.

In this case, (EO) reduces to

maxU, + pil(dj - p l2 } ^ dj - p j2 .
(E7)

Note that t
1

+ p^ < t
2

, and because i is late in the first position

d- - p-
2
< t

2
as well.

Hence the LHS of (E7) is less than t-,. Clearly, d- - p-
2

>

t
1

+ p.., > t
2

, hence (E7) will always be satisfied, and Remark 2 holds.

v) i early if scheduled first, late otherwise;
i early in either position ;

From (EO), i is favored in this case if

60

d
i

" Pi2 * d
j

" Pj2 (E8)

But, since i is early in the later position and j is not,

d
i

" Pi2 * t, + pn + p jT > d, - pj2

which contradicts (E8). Hence, in this instance P^ * P-.

IV. 3j > 0, s-j* >

Ml T!

Pi2 'j2

J-1
P,"1

12 M2

Figure 15: Subcase IV

AT = [(t^Pi^p^-di)* + (t^p^+Pji+p^-dj)*]

- [(t^Pji+p^-dj)* + (t^+Pji+Pu+Pia -<*!>*]

Consider the following instances:

61

i) Both i and j late in both positions :

AT = (ti+Pii+p^-di) + (t
1
+p]1 +p jl

+ Pj2 -d
j

)

- (ti+p^+p-^-d-j) - (t^p^+Pii+p^-di) (35)

= Pii " Pji-

In this case, (EO) reduces to

t
x

+ Pll S t, + Pjl .
(E9)

From (35) and (E9), it can be seen that i precedes j if and only if

AT < 0.

ii) Both i and j early if scheduled first, late otherwise ;

AT = (di-p^) - (dj-p^) . (36)

From (EO), in this case, i precedes j if

di -
Pi2 . dj -

Pj2 .
(E10)

From (36) and (E10), i precedes j if and only if AT < 0.

iii) i early if scheduled first, late otherwise;
i late in either position :

AT = d
t

- (t 1+Pjl+ p i?) . (37)

62

(EO) reduces to

d
A

- p 12 s tj Pjl . (Ell)

From (37) and (Ell), i precedes j if and only if AT < 0.

iv) j early if scheduled first, late otherwise;
i late in either position ;

AT = <t1+Pll +p j2)
- dr (38)

(EO) reduces to

t, Pil <; dj -p
j2 .

(E12)

From (38) and (E12), i precedes j if and only if AT < 0.

v) j early if scheduled first, late otherwise;
i early in either position ;

(EO) reduces to

di -P la * dj -p
j2 .

(E13)

Since j is late in the later position

ti + Pii + Pji + Pj2 " dj >

or dj - p j2
< t, + Pil + Pjl <, d

i
- p 12

(39)

since i is early in the later position. But (39) contradicts (E13).

Hence, this instance is infeasible.

63

APPENDIX 3

Proof of Remark 3

The proof is based on considering various subcases and scenarios

that are possible when j - i, but i - j. Note that in this case,

trailing idle times are such that Si"+Pj 1
-p

i2 > 0; Sj + p tl
- p j2

= 0.

Consistent with the statement of Remark 3, we assume the P-,, < P^, and

show that i precedes j in an optimal solution, and P-
2

< P-
2

«

Considering the following subcases.

I. Sj* = s* =

fc
1

p,-1 Pj1

Pi2 P
J2

'11 ',1

'jL 'i2

Figure 16: Subcase I

AT = [(t2 +pi2 -di)
+

+ (t
1
+p il+ pjl+Pj2 -d

j

)']

- [(t2
+Pj2- dj>* + (ta+Pja+Pta-di)*]

In this case, in order to show that P-
2

^ P;?' we need to show that

max{t
2
+p i2 , dj} <. max{t;,+pj2/ dj (F0)

64

Because P-., < P-.,, we have

max{t
1
+pn , di-p i2 } <. maxftj +p jl , d^ -p

j2 } .
(Fl)

i) Both i and i late in both positions ;

AT = (tj+p^-dj + (tj+pii+p^+p^-dj)

- (C^p^-dj) - (t^p^+p^-di) (40)

= (ti+Pu+Pja) - (t2 +pj2) < o.

In this case, (F0) reduces to

t 2
+ p i2 s t2 + pu

or p i2 s p j?

which is always true because t
2

+ p j2
< t

1
+ p.. + p.. < t-, + p--,. Hence,

in this case P-
2

^ P
j2

.

ii) Both i and i early if scheduled first, late otherwise ;

AT = (t^Pii+Pj! +p j2 -dj) - (t
2
+p j2

+p i2 -d 1
)

= (d
t
-d

3
) + [(t 1+Pil * Pjl) - (t a +p ia)] .

(41)

In this case, (Fl) reduces to

d
i " Pi2 S d

j " Pj2

^ d
i " Pi2 " d

j ^ "Pj2

(F2)

From (41) and (F2

)

65

AT s t
x

* Pil + Pjl - (ta +pja)

<; 0.

In this case, (FO) reduces to

d^dj. (F3)

From (F3) and (41), it can be seen that if AT < then (F3) is true, and

the desired result is established.

iii) i early if scheduled first, late otherwise;

i late in either position ;

AT = (t^+Pu+p^+pjj-dj) - (t 2 +pj2 -d.j)

- (t 2
+ P32 + Pi 2 -cli) (42)

= [d
i
-(t2+Pj ,)] H" [<tr+P il +Pjl) " (t2 +Pla)].

From (Fl), in this case we have

d
t

- p i2
<; max{t

1
+p jl , dj -prJ . (

F4
)

If the RHS in (F2) equals d- - p-
2

, then

d, -p
i2 * d

3
-p

j2
<; t2

(42a)

because j is late in either position.

From (42) and (42a),

66

AT s t
x

+ Pil + Pjl - (t2 +pj2) s

Alternatively if RHS in (F4) equals t
1

+ p^, then

d
t

- p i2
<; t, + Pjl (42b)

and from (42) and (42b)

AT <. -(t2 +pja) + (Pn-Ca) < 0.

Hence P^ < P^ implies AT < 0.

The second term in the RHS of (42) is non-negative. Hence AT <

implies

d
t

- (t2 +pj2) i 0. (43)

In this case (F0) reduces to

diSta+Pja- <
F5

>

From (43) and (F5), it follows that if AT < 0, then (F5) is true,

67

iv) i early if scheduled first, late otherwise;
i late in either position :

AT = (t2 *p±2 -dt) + (ti+Pu+Pji+P^-d.,)

- (tj+p^+Pia-di)

= (t1+Pil+Pjl)
- dj < 0.

Because j is early in the first position,

d
j * t a + p j2 i tx + Pil + pjv

Hence AT < 0.

In this case, (F0) reduces to

t 2
+ p i2 s dj

which is always true because d- > t
2

+ p j2
> t

2
+ p j2

- Hence, in this

case AT < and P
l2

< P-
2

.

v) j late in either position; i early in either position ;

We need to show that this case is infeasible. (Fl) implies in

this case

di - p i2 <; maxtt^+p^.dj-pjjj} .
(F6;

If the RHS in (F6) equals t
1

+ p^, then

68

d
! * tl + Pjl + Pi2 * t 2 + P la .

But this contradicts the fact that i is early in the later position and

hence

d
i

* t
2 + p j2 + p i2 .

On the other hand, if the RHS in (F6) is d- - p-,, then

d
i * d

j
" P 3 2

+ Pi2

< t2
+ pi2 ,

because j is late in the first position. This contradicts the fact that

i is early in the earlier position.

II. s* > 0, s? =

Pil Pj-1

Pi2 Pj"2

Pj1 Pil

'j2 Pi2

Figure 17: Subcase II

69

AT = [(ti+Pu+Pia-dJ* + (t^+Pii+Pji+P^-dj)*]

" [(tg+Pja-dj)
4

+ (ta+Pja+Pia-di)
4
] .

In order to show that P^ - p
j2'

we need to show that

max{t
:
+pu +p i2 , d^ + (t^PiJ ^ max{t

2 +p j2/ dj} + t
2

.
(GO)

Consider the following instances:

i) Both i and i are late in either position :

AT = (ti+Pn+Pia-di) + (tj+Pn+Pji+p^-dj)

- (ta+Pjz-dj) - (ta+p^+p^-di) (44)

= (t^p^) + (t^Pij+p^) - (t 2 +pj2) -t
2

.

In this case, (GO) reduces to

(t 1+Pil+Pi2) + (t,+p 4l) i (t2 +Pj2) + t 2 .
(Gl)

From (44) and (Gl), it follows that AT < implies that (C3) is true.

But p-
2

< p-., hence t
1

+ p j2
< t

1
+ p^ < t 2> Also,

t
l

+ Pi! + Pjl * t 2
+ Pj2"

It follows from (44) that

AT <

70

ii) Both i and j are early if scheduled first, late otherwise :

AT = (t 1+Pll+Pjl)
- (t 2 +p i2) + (di-dj). (45)

From (Fl), in this case we have

d
t

- p i2 £ d
3

- p j2

"* d i " d
j " Pi2 * "Pj2

Hence,

AT «; (t 1+ p 11+Pjl)
- (ta +pj2) <. 0. (45a)

(GO) reduces to

d
{

+ (t, +pu) ^ d
3

+ t
a

(
G2

)

or (dj-dj) + (t, tpu) - t2 £ 0.

Note that in this case, p-
2

< p.-j- (46)

From (45), (45a), and (46) it follows that (G2) is true.

iii) i early if scheduled early, late otherwise;

i late in either position ;

AT = (t^+Pu+Pjj+Pja-dj) - (t 2
+p j2 -d :

)

- (t a +pja
+Pia-<U <

47
>

= (di-t2
-p

j2) + (ti+Pn) + (Pji-Pi2) " c 2-

71

From (Fl), we have in this case

di - pi2 4 maxtti+Pj^dj-pj;,} .
(G3)

If the RHS in (G3) equals d- - p j2
, then

d
i

_
Pi2 ^ d

j
" Pj2 ^ t 2

because j is late in the first position.

But, since t
2

> t
1

+ p.^, this implies that d
f

< t
1

+ pn + p j2

which contradicts the fact that i is early if scheduled first. Hence

RHS in (G3) must equal t
1

+ p-.,. Hence

d> " P i2 * t, - Pjl (47a)

substituting (47a) into (47) yields

AT = (t^+Pn+Pji) - (t2 +pj2)
- t2 + pj2 £ 0. (47b)

In this case, (GO) reduces to

d i+ (t1+Pil) £ (ta +pJa) + t 2 .
(G4)

From (46), (47a), and (47b) it follows that (G4) is true.

72

iv) i early if scheduled first, late otherwise;
i late in either position ;

AT = (t^+p^+Pia-dt) + (t^+Pii+p^+p^-dj)

- (ta+Pja+Pta-dJ (48)

(C i
+ Pii + Pji) + (tj+Pn) - dj - t 2 .

From (Fl), we have

c
i

+ Pn * d
i " P 32

Substituting this expression in (48), we have

AT <; (t^+p^+p^) - (t 2
+p

j2) 5 0. (48a;

In this case (GO) reduces to

(ti + Pti + Pi 2)
+ (t x +pla) * dj + t

2
.

(G5)

From (48) and (48a), it follows that (G5) is true.

v) j late in either position; i early in either position :

The proof of infeasibility of this case is identical to that of

Subcase IV; it is, therefore, omitted.

III. s* = 0, s-* >

73

'i1 'i1

Pi2 J2

'J1 Pi1

J2 '\2

Figure 18: Subcase III

AT = (t2 +pi2 -di)
+

+ (t 1+ p il+Pjl+ p j2 -d j

)^

- (ti+p^+p^-dj)* - (t^p^+p^+p^-di)*

(F0) reduces to

max{t
2
+ p l2 , d

x } + t
2

^ max{t
1 +PJ, +p j2 , d^} + (t^+p^) (HO)

Consider the following instances:

i) Both i and i late in either position :

AT = (t 2 +p i2 -dj) + (ti+Pii+p^+p^-dj)

- (t^p^+p^-dj) - (ti+Pji+Pja+p^-di)

= t2
- (t^p^+p^) < 0.

(49)

(HO) reduces to

74

(ta +pla) + t a £ (t 1+Pjl +p]2) + (t 1+Pjl). (HI)

But

t,it,+ pu (50)

and

t2
+ Pi2 < t, + PU + Pj! £ t

a
-+ Pn + Pj2 .

Hence (H8) is always satisfied.

ii) Both i and j early if scheduled first, late otherwise

AT = (tj+Pii+p^+Pja-dj) - (ti+Pja+P-ja+p^-di)

= (d
1
-d

D
) + (Pu-Pij)

= (di-dj) (t 1+ p, 1+ p Dl) - (t 1+Pjl +p i2)
(51)

= (di-dj) + {(ti+p^+pjj - p i2 }
- (t x +pn)

> (d
t
-dj) + t 2

- (t, +pjx) .

From (Fl), we have

maxfti+Pn, di-p l2 } s dj - pj2 .

Hence

di " dj S Pll - Pj2 .
(51a)

Hence

(HO) reduces to

From (51a) and (51b), it follows that (H2) is true.

iii) i early if scheduled first, late otherwise;
i late in either position :

From (Fl), we have

d
i

" Pi2 * t, + pu

Hence,

AT i Pil - p s

(HO) reduces to

75

AT = (di-dj) + (Pu-Pia)

s di - dj + p j2
- P i2 / because pu < pj2

(51b)

£ from (51a)

.

dj + t
2 * dj + (t 1+Pjl)

or (di-dj) + t2
- (t 1+Pjl) s 0. (H2)

AT = (t^+Pn+p^+Pja-dj) - (ti+Pji+p^-dj)

- (ti+Pji+Pj.+Pi.-di) (52)

" d
i " (ti + Pji + Pj-J + (Pii-PiJ •

76

dj + t 2 * (t,+ Pj ,+p j2) + (t,+ Pjl) .
(H3)

By carrying out algebraic manipulations in (52) similar to ii) above, it

can shown that (H3) is true in this scenario as well.

iv) j early if scheduled first, late otherwise;
i late in either position :

AT = (ta+Pij-dJ + (t^+Pn+Pji+Pja-dj)

- (t^+Pji+Pja+Pia-di)

= t a
+ p tl

- dj < t, + pjj + Pi, - dj <

since d- is early if scheduled first.
J

(HO) reduces to

t a
+ P i2

+ t
a * d

D
+ (t,+p

3
,)

which is always true from (50) and the fact that

dj z t, + Pj! + p j2 > ta + p i2 .

Hence, in this instance, P
j2

- P,2 anc* AT < always.

v) j late in either position; i early in either position :

Need to show that this case is infeasible. From (Fl), in this

case we have

max{C, +p 11# di-p l2 } stj + pu

- d
4

<. t, + Pj, + p i;

which contradicts the fact that i is early in the later position,

IV. Si* > 0; s-j* >

77

p,-1 Pj1

P,"2 Pj2

J

j1 11

J2
P,2

Figure 19: Subcase IV

AT = (ti+Pii+Pij-dJ* + (t 1 +pil +pjl +pj2 -dj
)

+

" (t^Pji+Pja-dj)* - (t
1
+pjl +pja +p 12 -d 1 :

(F0) reduces to

maxUi+Pij+Pi^di} + (t^p^) s max{t
a
+pjx +pj2/ dj} + (tj+p^). (10]

Consider the following instances:

i) Both i and j late in both positions

AT = (tj+Pi^Pia-di) + (t^Pn+p^+Pja-dj)

- (ti+p^+pjj-dj) - (t^p^+Pja+Pia-di)

2Pn " (Pji+Pja) •

(53)

From (Fl) , we have

78

ti + Pii * t
: + pn

°r Pil ^ Pj!-

But, as seen from Figure 19, p-., < p-
2

as well. Hence,

2p tl <. Pjj + p j2 and AT <. . (53a)

(10) reduces to

(t1+Pi2 +p i2) + Ui+Pu) * (t1+Pjl +p
32) + (ti+pjj

or 2 Pil + p i2 s (Pjl +p j2) + Pjl .
(II)

But p i2
< pj-,. because

Si" + Pj, - Pi, > 0.

Hence, from (53) and (53a) (II) is true.

ii) Both i and j early if scheduled first, late otherwise :

AT = (t^+Pii+pjj+Pja-dj) - (t 1 +pjl +pj2 +pla -d1)

= (di-dj) + (Pu-Piz) •

From (Fl), we have in this case

(54)

(55)

d
i

- Pi2 ^ d
j

" Pj2

- d± - dj + (Pj2 -Pi2) £

- d
t

- dj + (Pii
_
Pi 2) * ° because p i: s p j2

- AT ^ from (55) .

(10) reduces to

From (55a), it follows that (12) is true.

iii) i early if scheduled first, late otherwise;

i late in either position :

In this case, (Fl) reduces to

di - p 12 s t
1

+ Pjl

or d
t

- (t
x
+pu -p

i2) <;

or di - (ti+p^-p^) + (Pii-pj2) * 0, because pu s p j2

- AT <. 0, from (56) .

79

(55a)

di + Pil ± <L + p i2 . (12)

AT = (ti+Pu+p^+p^-dj) - (t^+Pji+p^-dj)

- (t 1+ pn+ pj2+Pi2 -di) (56;

= di - (ti+p^+p^) + (Pn-p la) •

(56a;

(10) reduces to

80

or d
t

- (tj+p^+p^) + (pn -
Pjl) <; o. (13)

From (56) and (56a), it follows that (13) is true,

iv) j early if scheduled first, late otherwise;
i late in either position ;

AT = (t^Pi^p^-d;) + (ti+Pn+p^+p^-dj)

" (t
1 +pjl +pja +p 12 -d1) (57)

= Pn + (t
x
+pu) - dj.

In this case, (Fl) reduces to

ti + Pu * dj - p j2

or t, + pn - dj + p j2
<;

- c
i

+ Pii " d
j

+ Pn * ° because pu <; pu2

- AT s 0, from (57) .

(10) reduces to

(t 1+ pil+ p i2) + (t
x
+pu) s dj + (t

x
+pjx)

or (ti+Pu) - dj + (Pn+Pia - Pjx) s 0.

From (57) and (57a), it follows that (14) is true.

v) j late in either position; i early in either position ;

We need to show that this case is infeasible. (Fl) reduces to

(57a)

14

81

d
i

" Pi2 * tl + Pjl

- dt s tx + p 3l + p i2

which contradicts the fact that i is early in the later position.

This completes the proof of the first part of Remark 3. The proof for

the second part of this remark is similar, and it is consequently

omitted.

HECKMAN
BINDERY INC.

JUN95
u a t H«,P N. MANCHESTER
Bound -Io-lita^

|ND|ANA 46962

