10,408 research outputs found

    Self-avoiding walks and connective constants

    Full text link
    The connective constant μ(G)\mu(G) of a quasi-transitive graph GG is the asymptotic growth rate of the number of self-avoiding walks (SAWs) on GG from a given starting vertex. We survey several aspects of the relationship between the connective constant and the underlying graph GG. \bullet We present upper and lower bounds for μ\mu in terms of the vertex-degree and girth of a transitive graph. \bullet We discuss the question of whether μϕ\mu\ge\phi for transitive cubic graphs (where ϕ\phi denotes the golden mean), and we introduce the Fisher transformation for SAWs (that is, the replacement of vertices by triangles). \bullet We present strict inequalities for the connective constants μ(G)\mu(G) of transitive graphs GG, as GG varies. \bullet As a consequence of the last, the connective constant of a Cayley graph of a finitely generated group decreases strictly when a new relator is added, and increases strictly when a non-trivial group element is declared to be a further generator. \bullet We describe so-called graph height functions within an account of "bridges" for quasi-transitive graphs, and indicate that the bridge constant equals the connective constant when the graph has a unimodular graph height function. \bullet A partial answer is given to the question of the locality of connective constants, based around the existence of unimodular graph height functions. \bullet Examples are presented of Cayley graphs of finitely presented groups that possess graph height functions (that are, in addition, harmonic and unimodular), and that do not. \bullet The review closes with a brief account of the "speed" of SAW.Comment: Accepted version. arXiv admin note: substantial text overlap with arXiv:1304.721

    Percolation and isoperimetry on roughly transitive graphs

    Get PDF
    In this paper we study percolation on a roughly transitive graph G with polynomial growth and isoperimetric dimension larger than one. For these graphs we are able to prove that p_c < 1, or in other words, that there exists a percolation phase. The main results of the article work for both dependent and independent percolation processes, since they are based on a quite robust renormalization technique. When G is transitive, the fact that p_c < 1 was already known before. But even in that case our proof yields some new results and it is entirely probabilistic, not involving the use of Gromov's theorem on groups of polynomial growth. We finish the paper giving some examples of dependent percolation for which our results apply.Comment: 32 pages, 2 figure

    Graphs, permutations and topological groups

    Get PDF
    Various connections between the theory of permutation groups and the theory of topological groups are described. These connections are applied in permutation group theory and in the structure theory of topological groups. The first draft of these notes was written for lectures at the conference Totally disconnected groups, graphs and geometry in Blaubeuren, Germany, 2007.Comment: 39 pages (The statement of Krophollers conjecture (item 4.30) has been corrected

    Equality of Lifshitz and van Hove exponents on amenable Cayley graphs

    Get PDF
    We study the low energy asymptotics of periodic and random Laplace operators on Cayley graphs of amenable, finitely generated groups. For the periodic operator the asymptotics is characterised by the van Hove exponent or zeroth Novikov-Shubin invariant. The random model we consider is given in terms of an adjacency Laplacian on site or edge percolation subgraphs of the Cayley graph. The asymptotic behaviour of the spectral distribution is exponential, characterised by the Lifshitz exponent. We show that for the adjacency Laplacian the two invariants/exponents coincide. The result holds also for more general symmetric transition operators. For combinatorial Laplacians one has a different universal behaviour of the low energy asymptotics of the spectral distribution function, which can be actually established on quasi-transitive graphs without an amenability assumption. The latter result holds also for long range bond percolation models
    corecore