264 research outputs found

    Constructing curves using BI-ARCS

    Get PDF

    Abstract splines in Krein spaces

    Get PDF
    "Vegeu el resum a l'inici del document del fitxer adjunt"

    Abstract splines in Krein spaces

    Get PDF
    We present generalizations to Krein spaces of the abstract interpolation and smoothing problems proposed by Atteia in Hilbert spaces: given a Krein space K and Hilbert spaces H and E (bounded) surjective operators T:H→K and VH→E, ρ>0 and a fixed z0∈E, we study the existence of solutions of the problems argmin{[Tx,Tx]K: Vx=z0} and argmin{[Tx,Tx]K+ρ{norm of matrix}Vx-z0{norm of matrix}E2x∈H}.Facultad de Ciencias Exacta

    Invariant Reconstruction of Curves and Surfaces with Discontinuities with Applications in Computer Vision

    Get PDF
    The reconstruction of curves and surfaces from sparse data is an important task in many applications. In computer vision problems the reconstructed curves and surfaces generally represent some physical property of a real object in a scene. For instance, the sparse data that is collected may represent locations along the boundary between an object and a background. It may be desirable to reconstruct the complete boundary from this sparse data. Since the curves and surfaces represent physical properties, the characteristics of the reconstruction process differs from straight forward fitting of smooth curves and surfaces to a set of data in two important areas. First, since the collected data is represented in an arbitrarily chosen coordinate system, the reconstruction process should be invariant to the choice of the coordinate system (except for the transformation between the two coordinate systems). Secondly, in many reconstruction applications the curve or surface that is being represented may be discontinuous. For example in the object recognition problem if the object is a box there is a discontinuity in the boundary curve at the comer of the box. The reconstruction problem will be cast as an ill-posed inverse problem which must be stabilized using a priori information relative to the constraint formation. Tikhonov regularization is used to form a well posed mathematical problem statement and conditions for an invariant reconstruction are given. In the case where coordinate system invariance is incorporated into the problem, the resulting functional minimization problems are shown to be nonconvex. To form a valid convex approximation to the invariant functional minimization problem a two step algorithm is proposed. The first step forms an approximation to the curve (surface) which is piecewise linear (planar). This approximation is used to estimate curve (surface) characteristics which are then used to form an approximation of the nonconvex functional with a convex functional. Several example applications in computer vision for which the invariant property is important are presented to demonstrate the effectiveness of the algorithms. To incorporate the fact that the curves and surfaces may have discontinuities the minimizing functional is modified. An important property of the resulting functional minimization problems is that convexity is maintained. Therefore, the computational complexity of the resulting algorithms are not significantly increased. Examples are provided to demonstrate the characteristics of the algorithm

    Abstract splines in Krein spaces

    Get PDF
    We present generalizations to Krein spaces of the abstract interpolation and smoothing problems proposed by Atteia in Hilbert spaces: given a Krein space K and Hilbert spaces H and E (bounded) surjective operators T:H→K and VH→E, ρ>0 and a fixed z0∈E, we study the existence of solutions of the problems argmin{[Tx,Tx]K: Vx=z0} and argmin{[Tx,Tx]K+ρ{norm of matrix}Vx-z0{norm of matrix}E2x∈H}.Facultad de Ciencias Exacta

    Spiral tool paths for high-speed machining of 2D pockets with or without islands

    Get PDF
    We describe new methods for the construction of spiral tool paths for high-speed machining. In the simplest case, our method takes a polygon as input and a number δ>0 and returns a spiral starting at a central point in the polygon, going around towards the boundary while morphing to the shape of the polygon. The spiral consists of linear segments and circular arcs, it is G1 continuous, it has no self-intersections, and the distance from each point on the spiral to each of the neighboring revolutions is at most δ. Our method has the advantage over previously described methods that it is easily adjustable to the case where there is an island in the polygon to be avoided by the spiral. In that case, the spiral starts at the island and morphs the island to the outer boundary of the polygon. It is shown how to apply that method to make significantly shorter spirals in some polygons with no islands than what is obtained by conventional spiral tool paths. Finally, we show how to make a spiral in a polygon with multiple islands by connecting the islands into one island. Keywords: Spiral-like path, Medial axis, Smoothing, High-speed machinin
    corecore