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Abstract splines in Krein spacesJ.L Giribet a’c,1( A. Maestripieria’c’2, F. Martínez Períab,c’* *’2

1. IntroductionSince I.J. Schoenberg introduced the spline functions [1], they have became an important notion in several branches of mathematics such us approximation theory, statistics, numerical analysis and partial differential equations, among others. Moreover, they have been useful to solve some practical issues in signal and image processing [2-5], computer graphics [6-8], learning theory [9,10] and other applications.In the sixties, a Hilbert space formulation of spline functions, known as abstract splines, was introduced by M. Atteia [11] and developed by several authors, see for instance [12-15], Given Hilbert spaces H, K, and £, consider (bounded) surjective operators T iH -• K, and V : H - • £. The abstract interpolation problem in Hilbert spaces can be stated as follows: for a fixed Zo e £, find xo e H such that Vxo = zo andlirxollJc = minflirxll^: Vx = zo}- (1)Observe that xo e V1 ({z0}) is an abstract interpolating spline (i.e. xo satisfies Eq. (1)) if and only if Txo realizes the distance between TV^zi: and the subspace T(N(V)), where 0 stands for the Moore-Penrose inverse of V. So, the existence of xo depends on the existence of a suitable (contractive) projection of TV^zn onto T(N(V)). Then, if T(N(V)) is a closed subspace of /C, the existence of xo is guaranteed because the selfadjoint projection onto T(N(V)) is always contractive.On the other hand, the abstract smoothing problem introduces a new parameter p > 0 in order to balance the amounts lirxii^ and ||Vx — zo|||. Formally, given p > 0 and a fixed zo e £, it consists in minimizing the function Fp : 7Y —» f defined byFp(x) = HTxll^+ p||Vx-zolli-
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This problem can be reduced to a least squares problem. In fact,
Fp (x) = || Lx - (0, z0) || 2f),where || ||p is the norm associated to the inner product on £x£ defined by ((y,z), (y',z'))p = (y,y')ic + p(z,z')£ if 

(y, z), (y', z') e JC x £, and L is an auxiliary operator from Ti into K, x £. Therefore, the abstract smoothing problem is also related to the existence of a selfadjoint (contractive) projection onto R(L).There is also a variational problem which mixes both abstract interpolation and smoothing problems. In the abstract mixed problem (as it is known) the “measurement operator” V : Ti £ splits up into two surjective operators. The technique used by A. Rozhenko [16] to solve this problem is similar to the one mentioned above to solve the abstract smoothing problem. So, the existence of “abstract mixed splines” also depends on the existence of a suitable contractive projection.For a complete exposition on these subjects see the books by Atteia [17], A. Bezhaev and V. Vasilenko [18], and the survey by R. Champion et al. [19],In this work, mainly motivated by the ideas exposed above, we present generalizations of the abstract interpolation, smoothing and mixed problems to Krein spaces. As we have mentioned before, the techniques used to solve these problems in the Hilbert space setting, involved contractive projections onto some subspaces. So, they (or their complementary subspaces) are asked to be closed. In order to reproduce this geometrical approach for Krein spaces, the hypothesis on the subspaces has to be modified. Recall that to guarantee the existence of a selfadjoint projection onto a subspace of a Krein space, it has to be regular. Moreover, if the projection has to be contractive then its nullspace has to be uniformly /-positive, where J stands for the fundamental symmetry of the Krein space (see [20]).First, we study the indefinite abstract interpolation problem. Specifically, if K, is a Krein space and £ and Ti are Hilbert spaces, given (bounded) surjective operators T : 7/ -> /C and V : Ti £ and a fixed zo e £, we are interested in characterizing (if there is any) those xq e Ti such that Vxq = zq and[Tx0, Tx0]/c = min{[Tx, Tx|A: Vx = z0}.Using a similar argument as in the definite interpolation problem, it can be shown that the existence of xo depends on the existence of a suitable (contractive) projection of TV^zo onto the /-orthogonal companion of T(N(V)) in (C. Then, if 
T(N(V)) is a closed uniformly /-positive subspace of /C, the existence of xo is guaranteed.On the other hand, in the indefinite abstract smoothing problem, we look for the minimizers of the function Fp : Ti R defined by

Fp(x) = [Tx, Tx]/c + p\\Vx-zo\\2£, xeH. (3)This problem can be no longer restated as a least squares problem, but as an indefinite least squares problem. The technique used to describe its solutions is similar to the one used in the definite smoothing problem, but a particular orthogonal decomposition of the range of a given operator is needed.The last problem we consider is the indefinite abstract mixed problem. If K, is a Krein space and £\, <S2 and 7/ are Hilbert spaces, consider (bounded) surjective operators T :Tl-> )C, Vi : 7/ £\ and V2 : 7/ £2. Given p > 0 and a fixed (zi, z2) e £\ x £2, we look for those xo e Ti such that VjXo = z\ which are minimizers of the function
Gp(x) = [Tx,Tx]K, +p\\V2x-z2\\2£7, xeVf^Jzi}). (4)Spline functions in indefinite metric spaces have already been studied in [9] to solve numerical aspects related to learning theory problems. Although the problems presented there are different from those studied in this work, they are closely related. In [10] another version of the abstract indefinite smoothing problem is studied: given zo e £, instead of finding the minimum of the function Fp given in Eq. (3), the authors are interested in stabilizing it.The paper is organized as follows: Section 2 contains the preliminaries. In Section 3 we study the indefinite abstract interpolation problem, we give necessary and sufficient conditions for the existence (and uniqueness) of solutions of this problem, and characterize them. Also, given a frame {/n}neN for the Hilbert space £, we give conditions to obtain different frames for subspaces of Ti composed by interpolating splines corresponding to the family {/n}neN-Section 4 is devoted to the study of the indefinite abstract smoothing problem: after characterizing its set of solutions (for a fixed p), we show that it is related to the set of solutions of an indefinite interpolation problem for a certain zp e £. Then, as it was studied by Atteia in Hilbert spaces, we analyze the convergence of the solutions of the indefinite smoothing problem to the solutions of the indefinite interpolation problem as p goes to infinity.In Section 5 the abstract mixed problem studied by A. Rozhenko and V. Vasilenko [16,21,22], is extended to Krein spaces.

2. PreliminariesAlong this work £ denotes a complex (separable) Hilbert space. If T7 is another Hilbert space then L{£, T) is the algebra of bounded linear operators from £ into T7, L(£) =L(£,£) and denote by Q the set of (oblique) projections, i.e. Q = {Q. e L(£)i Q2 = Q}. If T e L(£,F) then T*  e L(F,£) denotes the adjoint operator of T, R(T) stands for its range and 
N(T) for its nullspace. Also, if T e L(£, LF) has closed range, denotes the Moore-Penrose inverse of T.
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If S and T are two (closed) subspaces of £, denote by S + T the direct sum of S and T, S ®T the (direct) orthogonal sum of them and SqT :=S C\(S AT). If £ = S j-T, the oblique projection onto S along T, Ps//T< ¡s the unique Q e Q with R(Ps//t) = S and N(Ps//t) = ?• In particular, Ps := is the orthogonal projection onto S.2.1. Krein spacesIn what follows we present the standard notation and some basic results on Krein spaces. For a complete exposition on the subject (and the proofs of the results below) see the books by J. Bognar [23] and T.Ya. Azizov and I.S. Iokhvidov [24], the monographs by T. Ando [25] and by M. Dritschel and J. Rovnyak [26] and the paper by J. Rovnyak [27],Given a Krein space (K, [,]) with a fundamental decomposition /<’ = /<’ AG , the direct (orthogonal) sum of the Hilbert spaces (K+, [, ]) and (1C_, — [, ]) is denoted by (K, (,)). Sometimes we use the notation [, |a instead of [, ] to emphasize the Krein space considered.Observe that the indefinite metric and the inner product of K are related by means of a fundamental symmetry, i.e. a unitary selfadjoint operator J e L(K) which satisfies:[x, y] = {Jx,y}, x,yeK.If 7/ is another Krein space, given T e L(7Y, K) the /-adjoint operator of T is defined by T+ = JhT*J ic< where Jy and 

Jy are the fundamental symmetries associated to H and K, respectively. An operator T e L(K) is said to be /-selfadjoint if 
T = T+.Given a subspace S of a Krein space K, the J-orthogonal companion to S is defined byS^I = (x € AS: [x, s] = 0, for every seS|.Notice that if H is a Hilbert space, T e L(Ti, KJ) and S is a closed subspace of AS thenr+(s)± = r-1(s[±]K). (5)A subspace S of AS is non-degenerated if S A S^I = {0}. A vector x e AS is J-positive if [x, x] > 0. A subspace S of AS is /-positive if every xeS, x^O, is a /-positive vector. Moreover, it is said to be uniformly J-positive if there exists a > 0 such that[x, x] > a||x||2, for every xeS,where || || stands for the norm of the associated Hilbert space (AS, (,)). /-nonnegative, /-neutral, /-negative and /- nonpositive vectors (and subspaces) are defined analogously. Notice that if S is a /-definite subspace of AS then it is non-degenerated.
Deflnition 2.1. Let (AS, [,]) be a Krein space with fundamental symmetry /. A subspace S of AS is called regular if (S, [,]) is also a Krein space, or equivalently, S is the range of a /-selfadjoint projection.
Proposition 2.2. (See [24, Corollary 7.17].) Let K be a Krein space with fundamental symmetry J and S a J-nonnegative closed 
subspace of KJ Then, S is regular if and only if S is uniformly J-positive.

Corollary 2.3. (See [23, Theorem 8.4].) Let K be a Krein space with fundamental symmetry J and S a closed uniformly J-positive 
subspace of KJ If Q_ is the J -selfadjoint projection onto S then, given x e AS,[x — Qx, x — Qx] = min[x — y,x — y],

yeS

2.2. Angles between subspaces and reduced minimum modulus

Definition 2.4. Let S and T be two closed subspaces of a Hilbert space £. The cosine of the Friedrichs angle between S and T is defined by
c(S,T) = sup{|(x,y)|: xeSQT, ||x|| =1, yeTQS, ||y|| =1}.

It is well known thatc(S,T)<l o S + T is closed o S1 + T1 is closed o c(S±,T±)<l.Furthermore, if Ps and Pt are the orthogonal projections onto S and T, respectively, then c(S, T) < 1 if and only if 
(I — Ps)Pt has closed range, or equivalently, (I — Pt)Ps has closed range. See [28] for further details.
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Proposition 2.5. (See [29,30].) Given a Hilbert space £, let A, B e L(£) be closed range operators. Then, AB has closed range if and 
onlyifc(R(B),N(A)) < 1.

The next definition is due to T. Kato, see [31, Ch. IV, §5] for a complete exposition on this subject.
Definition 2.6. The reduced minimum modulus y(T) of an operator T e L(£) is defined by

y(T) = inf{||Tx||: ||x|| =1; xeNfT)1).
It is well known that y(T) = y(T*)  = y(T*Tf l/'2. Also, it can be shown that an operator T T 0 has closed range if and only if y(T) > 0. In this case, y(T) = ||1.

3. Indefinite abstract splines: definitions and basic resultsRecently, some interpolation methods in Reproducing Kernel Hilbert Spaces (RKHS) have shown to be useful to deal with machine learning problems. Given a data set X = {xi,...,xm} c X and labels Y ={yi,..., ym} c R, it is necessary to estimate the minimal norm function f e 7/ such that f(x,) = y,, where 7/ is a RKHS with kernel
k : X x X -> R.If E : 7/ -4 Rm is the evaluation map given by Ef = (f(x-i),..., f(xm)), the above interpolation problem consists in finding 

f eTi such that
Ef = (yt,---,ym) = y and Ilf II2 = min ||g||2.

g^E-'(y)Notice that the adjoint operator E*  : Rm -4 Ti is given by E*a  = JZjlj aik(Xi, x) where a = («i,..., am) e Rm. Then, itfollows that K = EE*  is the Gram matrix associated to the kernel k, i.e. Ky = k(x,, xj).Since Ti = R(E*)  ® N(E), it is easy to see that there is a solution to the above problem if and only if there exists
f e R(E*)  such that Ef = y, or equivalently, there exist a e Rm such that Ka = y (in this case the minimizing function isreconstructed as f (x) = E*a  = aiE(.xi, *))•  So, the interpolation spline can be defined without using the norm of the RKHS but only its kernel.In order to admit indefinite kernels to study machine learning problems, S. Canu et al. provided a definition of interpolating splines in a Reproducing Kernel Krein Space (RKKS):
Definition 3.1 (S. Canu et al.). Let X be a RKKS with kernel k: X x X R and suppose that N(E) is a regular subspace of !C. Given y e Rm, the interpolation spline f is given by

m
f(x) = ^2aik(xi,x),i=lwhere a satisfies Ka = EE+a =y, see [10, Definition 3.3],Notice that, if N(E) is a uniformly /-positive subspace of /<’, then the interpolation spline f defined by S. Canu et al. satisfies
Ef = y and [f, f ] = min [g, g], (6)

g^E-'(y)because the projection onto R(E+) along N(E) is /-contractive and f = E+a is the unique vector in E1 (y) which coincides with its projection.The aim of this section is to consider a general indefinite version of the abstract interpolation problem considered by M. Atteia (see Eq. (1)).Throughout this work, X is a Krein space with fundamental symmetry /, Ti and £ are Hilbert spaces and the operators 
T e L(Ti, X) and V e L(Ti, £) are surjective. Consider the following generalization of the abstract interpolation problem [11]:
Problem3.2. Given zo e £, find xo e V 'flzol) such that[Tx0, Tx0]/c = min{[Tx, TxR : Vx = z0}. (7)
Definition 3.3. Any element xo e V 'flzR) satisfying Eq. (7) is called an indefinite abstract spline or, more specifically, a (T, V)-interpolant to zq e £. The set of (T, V)-interpolants to zq is denoted by sp(T, V,zq).
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Considering the Moore-Penrose inverse of V, the above problem can be restated as: For a fixed zo e E, find uo e N(V) such that[r(Vtz0 + u0), r(Vtz0 + u0)])C = min{[r(V1'z0 +u), r(Vtz0 + u)]^: tie N(V)}. (8)As it was mentioned in the introduction, the following lemma shows under which conditions indefinite abstract splines do exists.

Lemma 3.4. Given zo e E, xo e V1 ({zq }) is a (T, V)-interpolant to zo if and only ifT(N(V)) is a J-nonnegative subspace ofK, and Tx0 e TjNjV))^.
Proof. Suppose that xo e 7Y is a (T, V)-interpolant to zo. Then, for every u e N(V) and a e R,[Txo, Txo] < [T(xo + au), T(xo + au)] = [Txo, Txo] + 2a Re[Txo, Tu] + a2[Tu, Tu].Therefore, 2aRe[Txo, Tu] + a2[Tu, Tu] ft 0 for every a e R, and a standard argument shows that Re[Txo, Tu] = 0. Analogously, if = ia, a e R, it follows that Im[Txo, Tu] = 0. Then, [Txo, Tu] = 0 and [Tu, Tu] > 0 for every u e N(V).Conversely, suppose that T(N(V)) is a J-nonnegative subspace of K, and there exists xo e V_1([zo}) such that Txo [±] T(N(V)). If uo =xo — V^zo e N(V) then, for every u e N(V),[T(V^zo + u), T(0zo + u)] = [T(V^zo + u0), T(V^zo + u0)] + [T(u - u0), T(u — u0)] > [Tx0, Tx0].Therefore, xo is a (T, V)-interpolant to zo. □
Remark 3.5. Notice that the framework considered by S. Canu et al. to define interpolating splines in RICKS is a particular case of ours. If K, is a RICKS consider the identity operator as T and the evaluation map E as V. Then, the hypothesis mentioned before Eq. (6) to obtain the variational characterization of the interpolating spline is the same as in Lemma 3.4.

As a consequence of Eq. (5), sp(T, V,Zq) can be characterized as the intersection of a subspace and an affine manifold of T-i.

Corollary 3.6. Suppose that T(N(V)) is a J-nonnegative subspace ofK, and let zo e E. Then,

sp(T, V,z0) = (0zo + N(V)) n T+T(N(V))±.
Proof. Given zo e E, suppose that xo e Tl is a (T, V)-interpolant to zo. Then, uo = xo — V^zt e N(V) and by the above lemma, Txo e TjNjV))^, or equivalently by Eq. (5), xo e T+T(N(V))±. Therefore, xo e (0zo + N(V)) Cl T+T(N(V))±.On the other hand, if u e N(V) is such that x= V^zo + u e T+T(N(V))±, then Tx e T(N(V))i±i and Vx = zo. So, applying Lemma 3.4, it follows that x e sp(T, V,zo). □The following lemma shows how regularity conditions on T(N(V)) determine relationships between the subspaces N(T) and T+T(N(V))±.
Lemma 3.7.(i) If T(N(V)) is non-degenerated, then N(V) Cl T+T(N(V))± = N(V) Cl N(T).(ii) IfT(N(V)) is regular, then H = N(V) + T+T(N(V))±.
Proof, (i) By Eq. (5), the inclusion N(T) Cl N(V) c N(V) Cl T+T(N(V))± is straightforward. On the other hand, if x e N(V) Cl T+T(N(V))± then Tx e T(N(V)) Cl T(N(V))[±] = {0}. Thus, x e N(V) Cl N(T).(ii) If T(N(V)) is a regular subspace of /C then K. = T(N(V)) + T(N(V))i±i. Therefore,

H = T_1 (T(N(V))) + T_1 (T(N(V))[±]) = N(V) + T+T (N(V))1(see Eq. (5)). □As mentioned above, if T(N(V)) is a regular subspace of /C then H = N(V) + T+T(N(V))±. But this may not be a direct sum. Therefore, there is a family of closed subspaces of T+T(N(V))± which are complementary to N(V). Along this work, if T(N(V)) is a regular subspace of JC we will consider the following projection:
Qo — flN(V)//T+T(N(V))1eN(V)- 0)
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Proposition 3.8. Suppose that T(N(V)) is a closed subspace of PC. Then, the set sp(T, V ,z) 0 for every z g £ if and only if T (N (V))
is uniformly J-positive. In this case, sp(T, V,z) is an affine manifold parallel to N(V) A N(T).

Proof. Suppose that T(N(V)) is a closed uniformly J-positive subspace of /C. Then, by Proposition 2.2, T(N(V)) is a regular subspace of JC, and Qo e Q (see Lemma 3.7). For a fixed z e. £, let x = (I — Qo)V^z e TL. Then, Vx = z and Tx g T(N(V))^. So, by Lemma 3.4, x g sp(T, V, z), i.e. sp(T, V, z) 0 for every ze£.Conversely, suppose that sp(T, V,z) 0 for every z e £. Then, as a consequence of Lemma 3.4, T(N(V)) is a J- nonnegative subspace of /C. Furthermore, for each z g £, there exists a vector xz g Ti such that Vxz = z and Txz g r(N(V))[-*J.  Since V^z = (V^z — xz) + xz and — xz) = 0 for every z g £, it is easy to see that NAA ç N(V) +T+T(N(V))±. Therefore, H = N(V) + T+T(N(V))± and JC = T(N(V)) + r(N(V))W. So, T(N(V)) is a regular J-nonnegative subspace of JC, i.e. T(N(V)) is a uniformly J-positive subspace of K, (see Proposition 2.2).Assuming that T(N(V)) is uniformly J-positive, if xi,X2 esp(T, V,z) then, by Lemma 3.7,Xi - x2 e N(V) n T+T(N(V))± = N(V) A N(T). □

Corollary 3.9. Suppose that T(N(V)) is a closed uniformly J-positive subspace of K. and N(T) A N(V) = {0}. Then, given z e £, 
sp(T, V,z) is a singleton. More precisely,

Sp(T, V, Z) = {fT+T(N(V))4//N(V) V^z}.
Example 3.10. In signal processing applications it is frequently assumed that the mathematical model, describing the physical phenomena under study, satisfies the following equation:

y = Hx + r],where xeC" is the quantity that needs to be estimated and H e Cmxn is known.Sometimes, due to physical restrictions, it is not possible to measure x, but the measurement y may be available. This measurement is corrupted by some noise p. According to the known information on the measurement noise, different estimation techniques can be used to approximate x. For instance, when no statistical information about the measurement noise is available, the 7Y°°-estimation technique has been proved to be a good solution for different engineering problems. Given y > 0, the 7Y°°-estimation technique consists in finding an estimation x of the vector x, such that:
II ^l|2max-------------- -  < y

xeC" ||y - Hx||2 (10)or equivalently,
min||y — Hx||2------ — ||x — x||2 > 0. (11)
xeC" y2In what follows we show that the 7Y°°-estimation technique can be formulated as an indefinite abstract spline problem. This connection has been previously considered, see for instance [32] and references therein.If w = x —x, then Eq. (11) can be written in matrix form as
min
weC" 0 0

-In
> 0. (12)

So, if 7C = Cm+n, define the symmetry J e L(/C) as J = I1"’ 0 ) and let [x, y] = x*  Jy, for every x, y g K,. Then, the \ U —ln >7Y°°-estimation technique can be rewritten as: for a fixed y > 0, find zq g Cm+n such that Vzo = yi and
[z0,z0] = min [z, z] > 0,

Vz=y,
(13)

where I — V is the orthogonal projection onto the range of the matrix ) and y\ = V(y nHx).s y Iny ' 0 'Observe that Eq. (13) is more than an indefinite splines problem, because the solution zo also has to satisfy [zo,zo] > 0. This last condition depends on the chosen parameter y > 0.
In what follows, for a fixed zo g £, it is shown that sp(T, V,zo) can be parametrized by means of a family of projections onto N(V).

Proposition 3.11. Suppose that T (N(V)) is a closed uniformly J-positive subspace of IC. Given zo g £, x g sp(T, V, zo) if and only if 
there exists Q_ g Q with R(Q.) = N(V) and N(Q.) ç T+T(N(V))1- such thatx = (I — Q.)V1zq.
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To prove the above proposition, we need the following lemma.

Lemma 3.12. Let Q_ e Q and suppose that T(N(V)) is a regular subspace ofIC. Then, R(Q.) = N(V) and N(Q_) c T+T(N(V))± if 
and only if Q_ = Q_o + Z, where Z e L(TC) is such that N(V) c N(Z) and R(Z) c N(V) n N(T).

Proof. If Q e L(H) is a projection with R(Q) = N(V) and N(Q) c T+T(N(V))±, let Z = Q - Qo. Since R(Q) = R(Q0) = 
N(V) it is trivial that N(V) c N(Z). On the other hand, consider y = Zx e R(Z): y = Qx — Qo*  e N(V) and y = (I — Q_o)x — 
(I - Q_)x e T+T(N(V))±. Then y e N(V) n T+T(N(V))± = N(V) n N(T).Conversely, given Z e L(7Y) with N(V) c N(Z) and R(Z) c N(V) Cl N(T), consider Q = Qo + Z. Then, Q2 = Q because Z2 = 0, QoZ = Z and ZQo = 0. It is easy to see that R(Q) c N(V) and, if x e N(V) then Qx = Qox = x. Therefore, R(Q) = N(V). Finally, observe that if x e N(Q) then x = (I — Q)x = (I — Qo)x — Zx e T+T(N(V))±, because N(Q0) + R(Z)ct+T(N(V))±. □
Proof of Proposition 3.11. If x = (I — Q) 0zo, where Q e Q with R(Q) = N(V) and N(Q) c T+T(N(V))±, it is easy to see that Vx = zo and Txe r(N(V))W. Then, by Lemma 3.4, xesp(T, V,zo).Conversely, as a consequence of Proposition 3.8, sp(T, V,Zq) = (I — QojVtzo + N(V) Cl N(T) because (I — Qo)V^zo e 
sp(T, V, zo). Then, if x e sp(T, V, zq) there exists u e N(V) Cl N(T) such that x = (I — Qo)0zo + u. So, consider Z e L(7f) such that Z(V^zo) = —u and Zy = 0 if y±0zo. Then,

x=(I- Qo)V^zo - ZVh0 = (I - (Qo + Z))V^o,

N(V) c N(Z) and R(Z) c N(V) Cl N(T). Therefore, by the above lemma, Q = Qo + Z e Q with R(Q) = N(V) and N(Q) c T+T(N(V))±. □
3.1. Frames of indefinite abstract splinesRecall that a sequence {/n}neN in a Banach space X is called a Schauder basis of X if for every x e X there is a unique sequence of scalars {cn}neN such that x= EXi cnfn, where the series converges in the norm topology. A vector sequence (fnlneN in X is a Riesz basis if there exist constants 0 < A < B such that 

m

n=l
m

cnfnn=l
m< B^|cn|2,n=l (14)

for all finite sequences ci,..., cm.On the other hand, given a Hilbert space £, a sequence {/n}neN in £ is a frame for £ if there exist constants 0 < A < B such that
ooA||z||2<£|(z,/n)|2<B||z||2, for every z g £. (15)n=lObserve that, if £ is a Hilbert space, {/n}neN is a Riesz basis of £ if and only if {/n}neN is a frame for £ such that, if EXi cnfn = 0, then cn = 0 for every n e N. See [33,34] for further details on this subject.In what follows, recall that T e LfH, X) and V e LfH, £) are surjective operators and suppose that T(N(V)) is a closed uniformly /-positive subspace of 1C.

Proposition 3.13. Given a sequence {/n}neN irt £, suppose that there exists a frame {gn}neN for W = TTlNlV}} such that gn e 
sp(T, V, fn) for every n e N. Then, {/n}neN is a frame for £.

Proof. If gn e sp(T, V, f„) then, by Proposition 3.11, there exists Qn e Q with R(Qn) = N(V) and N(Qn) c W, such that 
g„ = (I — QnjVlfn. Since V(I — Qn)Vl = Ig for every n e N, it is easy to see that

oo oo oo

521 /n> 12 = 52l(v*z’ Q - Qn) vVn)]2 = \(PWV*z,  gn}\2, for every z e £,n=l n=l n=lsince Pyv(I — Qn) = (I — Qn). Therefore, if {gn}neN is a frame for >V with frame bounds 0 < A < B,
co

AIIpwV*z|| 2 < 521 (z, fn)I2 < B||pwv*z|| 2 < BIIVII2||z||2,n=lfor every z e £. But || PyyV*z|| 2 > y (PyyV*) 2||z||2 = y(V Pyy)2 ||z||2. Since c(W, N(Vf) < 1 it follows by Proposition 2.5 that V Pyy has closed range, so y(V Pw) > 0. Then, {/n}neN is a frame for £, with frame bounds 0 < Ay(VPw)2<B||V||2. □
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The next result shows that, given a frame {fn}neN for £, it is possible to obtain frames of splines for any complement of 
N(V) contained in T+T(N(V))±.
Proposition 3.14. Given a sequence {fnlneN in £, consider gn = (I — Q.)V^fn e sp(T, V. fn), n e N, where Q. e L(7~i) is any fixed 
projection such thatR(Qf) = N(V) and N(Q_) ç T+T(N(Vy)\ Then,(i) (inlneN is a frame for £ if and only if {gn}n^ is a frame for N(Q_).( ii) {fnlneN is a Riesz basis of £ if and only if [gn]neN is a Riesz basis ofN(Q_).(iii) {fn}neN is a (Schauder) basis of £ if and only if [gn]neN is a (Schauder) basis ofN(Q_).

Proof. Observe that, if W = (/ — Q)Vf then R( W) = R(I — Q) = N(Q) is closed. Then, y(W) > 0.(i) Suppose that {fn}neN is a frame for £. Notice that
oo oo oo

221 (x, gn)|2 = 221 Wn)|2 = 22I(W*X’ -Ml2 for every x e W.n=l n=l n=lSo, if 0 < A < B are frame bounds for {/nlneN then
ooÂy(W)2||x||2 =Ây(W*) 2||x||2 <â||W* x||2 <22l<x’gn>|2 < B||w*x||2 < B II W ||2 ||x||2,n=lfor every x e N(W*) ± = N(Q.). Therefore, {gn}neN is a frame for N(Q). The other implication is a consequence of Proposition 3.13.(ii) Suppose that {fn}neN is a Riesz basis of £. Then it is also a frame for £ and, by item (i), the sequence {gn}neN is aframe for N(Q). Furthermore, if there exists a sequence such that afcgfc = 0, then applying V to both sidesof the equation we obtain that a^ft = 0. So, t/i; = 0 for every k g N because {fn}neN is a Riesz basis of £. Therefore, (gnlneN is a Riesz basis of N(Q). The other implication follows in the same way.(iii) It is analogous to the proof of [17, Ch. Ill, Proposition 1.1], □

Given a sequence {fn}neN in £, if N(T) Cl N(V) = {0} it is easy to see that {fn}neN is a frame for £ if and only if {gn}neN is a frame for T+T(N(V))±, where gn is the (unique) (T, V)-interpolant to fn (see Proposition 3.14). However, the following example shows that, if N(T) Cl N(V) {0}, given a frame {fn}neN for £ it is easy to construct gn g sp(T, V, fn) (for every 
n e N) such that {gn}neN is not a frame.
Example 3.15. Observe that if {fn}neN is a frame with frame bounds 0 < A < B then ||fn||2 C B. Given u g N(T) CiN(V) with 
|| u || = 1, define 

Zn(x) = {nau0 ifx = aVVn. a g C; ifx±Vtfn.Then, Zn g L(Tf) and satisfies N(Vj c N(Zn) and R(Zn) c N(T) C N(V). Furthermore, by Lemma 3.12, Q.n = Qo + Zn is a projection with R(Qn) = N(V) and N(Qn) c T+T(N(V))±. Therefore, gn = (I — Qn)0 fn g sp(T, V, fn) for every n e N.But observe that {gn}neN cannot be a frame because ||gn|| -> +oo as n -4 oo. Indeed, it is easy to see thatllgnll > Il Z„ vVn II - Il a - Qo) V'/n || >n- ||f - Qo II II0IIB1/2 -4 +œ asn^ œ.

4. Indefinite abstract smoothing splinesLet K. be a Krein space with fundamental symmetry Jp, and consider two Hilbert spaces Tl and £. Given surjective operators T g L(Ti, /C) and V g L(Ti, £), consider the following generalization of the abstract smoothing problem [17]:
Problem 4.1. Given p > 0 and a fixed zo g £, find x( i g 7T such that[Tx0, Tx0]/c + /9||Vx0 -zollf- = min([7x, Ix|A + p||Vx - z0|||). (16)
Definition 4.2. Any element xo g Tl satisfying Eq. (16) is called a (T, V, p)-smoothingspline to zo g £. The set of (T, V, p)- smoothing splines to zo is denoted by sm(T, V, p,zo).To study this problem consider the indefinite metric defined on K, x £ by:[(y, z), (y\ z')]p = [y, yz] + p(z, z')£, (y, z), (yz, z'j g£ x £. (17)
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Notice that IC x £ is a Krein space with the indefinite metric defined above. In fact, considering the fundamental symmetry 
Jk of IC and the inner product (, )p in IC x £ given by ((y, z), (y', z'))p = (y, y')/c + p{z, z')£ where (y, z), (y', z') e IC x £, the operator Jp e L(JC x £) defined as

Jp(y,z) = (J>cy,z), (y,z)e!Cx£,is a fundamental symmetry associated to (JCx£,[,}p). Also, considering the operator L : H -4 IC x £ defined by
Lx= (Tx,Vx), xgH,observe that Problem 4.1 can be restated as the following indefinite least squares problem: given p > 0 and a fixed zo e £, find xo e ft such that[£x0 - (O,zo),£xo - (0, z0)l = min[£x- (0, z0), Lx - (0, z0)l . (18)

G xeH 'Using the formulation given above, the next results characterize the solutions of the indefinite abstract smoothing problem.
Lemma 4.3. Given zo e £, xo eft is a solution of Problem 4.1 if and onlyifR(L) is J p-nonnegative and xo is a solution of the equation: 

(T+T + pV*V)x=pV*z 0.

Proof. Following the same arguments as in Lemma 3.4, it is easy to see that x( i e 7T satisfies Eq. (18) if and only if R(L) is 
Jp -nonnegative and[£xo — (0, zo), £x]^ = 0, for every x g H,or equivalently, £+(£xo — (0, zo)) = 0. Since £+ e L(IC x £, ft) is given by £+(y, z) = T+y + pV*z,  (y, z) e IC x £, it follows that (r+r + pV*V)x 0 = pV*z 0. □In order to obtain some alternative characterizations for the solutions of Problem 4.1, it is necessary to consider the particular case of a closed range operator £. The next lemma gives a condition between the operators V and T that guarantees that £ has closed range. The proof is similar to the one given in [17, Ch. Ill, Lemma 2.1] for the Hilbert space case.
Lemma 4.4. IfT(N(V)) is a closed subspace ofIC then R(L) is a closed subspace ofIC x £.
Proof. Given (y, z) e IC x £, suppose that {xn}nj»i c NIL)1 is such that Lx„ -4 (y, z). If vn = 0Vxn e N(V)X c N(£)±, then vn -4 V ' z e 7T and un = xn — vn e N(V) Cl N(£)±. Therefore, Vvn = Vxn z and Tun -4 y — TV^z.Since T(N(V)) is a closed subspace of IC, the operator W = T|n(V) : N(V) -4 IC has closed range and, for every n > 1, 
un = W^Tun because un e N(V) iAN(L)1- = N(W)1. Thus, xn = vn + un = vn + V0Tun -4 V^z-P 1/0 (y — TV^z). Furthermore, if x = V^z + 1/0(y — TV^z), it follows that Tx = y and Vx = z because y — TV^z e T(N(V)). Therefore, R(L) is a closed subspace of IC x £. □As a consequence of Corollary 2.3, if there exists argminxe^[£x — (y,z),£x — (y,z)]p for every (y,z) e JC x £, then 
R(L) is a regular subspace of IC x £. The following proposition shows that this assertion also holds considering the proper subspace of IC x £ obtained by embedding £ into IC x £.

Proposition 4.5. Problem 4.1 admits a solution for every z e £ if and only ifR(L) is a closed uniformly J p -positive subspace ofJCx£.

Proof. Suppose that, Problem 4.1 admits a solution for every z e £. Applying Lemma 4.3, it follows that R(L) is Jp- nonnegative. Given (y, z) e JC x £, consider w = u + T^y, where u e ft satisfies[£u — (0, z — V0y), Lu — (0, z — VT^y)]^ = mm[£x — (0, z — V0y), Lx — (0, z — VT^y)]^.Then, for every x e ft,[£w - (y,z),£w - (y,z)]p = [£u + (y, VT^y) - (y,z),Lu + (y, VT^y) - (y,z)]p= [£u - (0, z - V0y), Lu - (0, z - V0y)]^< [£(x - 0y) - (0, z - V0y), £(x - 0y) - (0, z - V0y)]p
= [Lx - (y,z),Lx- (y,z)]p.
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Therefore, for every (y, z) e K x £, there exists w e 77 such that[£w - (y,z),£w - (y, z)\p = mm[£x- (y,z),Lx- (y,z)]p.

Then, as in Lemma 3.4, it is easy to see that for every (y, z) e K, x £ there exists w e T~L such that £w — (y, z) e R(L)^p. 
So, £C x £ = R(L) + RjLj^p, i.e. R(L) is a regular subspace of IC x £. Thus, by Proposition 2.2, R(L) is a closed uniformly /,<>-positive subspace of IC x £.The converse implication follows from Corollary 2.3, considering the Jp-selfadjoint projection Q_ e £(/C x £) onto 
R(L). □4.1. Every indefinite smoothing spline is an indefinite interpolating splineThis subsection is devoted to show that sm(T, V, p, zo) = sp(T, V, z') for a suitable z' e £. In order to do so, a particular decomposition of R(L) is needed. If T(N(V)) is a regular subspace of IC and Qo is the projection considered in Eq. (9), consider the (bounded) operator U : £ -4 IC x £ given by

Uz= (T (I — Q0)Vtz,z), ze£.Observe that N(U) = {0} and R(U) is closed (because it is isometrically isomorphic to the graph of the bounded operator T(f-Qo)Vt).
Lemma 4.6. If T(N(V)) is a regular subspace of IC thenR(£) = (T(lV(V))x{0}) + R(U),
and this decomposition ofR(L) is orthogonal in the Krein space (IC x £, [, ]p).
Proof. Since R(Qo) = N(V), observe that R(£) = L(N(V)) + £(N(Qo)) and L(N(V)) = T(N(V)) x {0}. In order to compute £(N(Qo)), observe that I - Q_o = (I - Q.0)PN(V)± = (I - Qq)0V because N(I - Qo) = N(Pn(v)±) = N(V). Therefore, if xeN(Qo),

Lx= (Tx, Vx) = (T(I - Qo.lx. Vx) = (T(I - Qo)VTVx, Vx) = (T(I - Q0)V'fz,z) = Uz,where z = Vx. Since V(N(Qo)) = £, it follows that £(N(Qo)) = {(T(I — Qo) V^z, z): z e £} = R(U). Finally, since T(N(Qo)) Q 
T(N(V))^, it follows that L(N(V)) [_L]p £(N(Q0)). □

The next theorem shows the existence of a vector z' e £ such that sm(T, V, p,zo) = sp(T, V,z'). Also, along the proof, an expression of such z' is given in terms of the Jp -selfadjoint projection onto one of the subspaces of R(£) presented in the above decomposition.
Theorem 4.7. Suppose that T(N(V)) is a closed subspace ofIC and R(L) is a uniformly Jp-positive subspace ofJCx£. Then, given zo e £, sm(T, V, p, zo) = sp(T, V, z'), where z' is an adequate vector in £.

Proof. If zo = 0 then sm(T, V, p, 0) = N(L) = N(T) Cl N(V) = sp(T, V, 0). On the other hand, notice that R(£) is closed (see Lemma 4.4). Then, by Proposition 2.2, R(£) and T(N(V)) are regular subspaces of K, x £ and IC, respectively. So, the projection considered in Eq. (9) is bounded. Given x e H, it can be decomposed asx = Qox + (I - Qo)x = Qox + (I - Qo) Pniv)1* = v + (f - Qo) Vtz,where v = Qox e N(V) and z = Vx e £. Observe that, by Lemma 4.6,[£x - (0, z0), Lx - (0, z0)]p = [(Tv, 0), (Tv, 0)]p + [Uz - (0, z0), Uz - (0, z0)]p.Then, xo e sm(T, V, p, zo) if and only if [TQo^o, TQo^olx: = rnin [Tu, Tulr and z\ = Vxo satisfies
ueN(V)[Uzi - (0,z0), Uzi - (0,z0)]p =mm[Uz- (0,z0), Uz- (0,z0)]p.Notice that min,, .v.i/ JTu. Tu|^ is attained at every u e N(T) Cl N(V), because T(N(V)) is uniformly /^ -positive. Therefore, Qoxo e N(T) n N(V).On the other hand, since R(U) is a regular subspace of R(£) (see Lemma 4.6), R(U) is a (closed) uniformly /^-positive subspace of IC x £. Thus, by Corollary 2.3, z\ satisfies the above equation if and only if Liz, = P(0, zo), where P is the 

Jp-selfadjoint projection onto R(U).
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If S : K. x £ ^ £ is defined as S(y, z) = z then SU = Ig and z\ = SUzi = SP(O, zo). So, (I — Qo)0zi = (I — Qo) V'SPfO. zo). Therefore, xo e sm(T, V, p, zo) if and only if xo e (/ — Qo)^^SP(O, zo) + N(T) A N(V), i.e.

sm(T, V, p, z0) = sp(T, V, SP(O, z0)).
4.2. The smoothing splines converge to the interpolating splineIn the following paragraph we show that, given zo e £, if {xp]p2>i is a net in Ti such that xp e sm(T, V, p,Zq), then it converges to an interpolating spline xo e sp(T, V,zo) as p -4 oo. The proof of this result is analogous to [17, Ch. Ill, Proposition 2.2],
Proposition 4.8. Given a fixed vector zo e £, suppose that T(N(V)) is a closed subspace of K., N(T) A N(V) = {0} and R(L) is a 
uniformly Jp-positive subspace ofK, x £. Letxp e sm(T, V, p. zo) for every p > 1. Then, there exists xo e sp(T, V, zo) such thatlim ||Xz> -x0|| = 0.

p—£OQ

Proof. First, observe that if xp e sm(T, V, p, zq) then {[Txp, Txp]}p^i is an increasing net in R with an upper bound, and || Vxp - zQ|| -> 0 as p co. Indeed, given pi, p2 > 1, notice that [TxA, TxA] + pdl VxPi - z0\\2 < [Tx^., Tx^.] + Pil|VxPj. — z01|2, if i + j. Then, if pi < p2 it follows that HVXp, — z01|2 - || Vxfi2 — zQ ||2 > 0 and
[TxP2,TxP2] - [TxP1,TxP1] > pi(||Vxp, — z0||2 - ||VxP2 -z0||2) > 0.Furthermore, if x e sp(T, V,zo) for every p > 1, [Txp, Txp] + p||Vxp — zo||2 C [Tx, Tx] + p||Vx — zo||2 = [Tx, Tx], So, [Tx, Tx] — [Txp, Txp] > p|| Vxp — zq||2 > 0 for every p > 1, and this inequality implies thatlim || Vxp — Zo|| = 0.p—WThe next step is to prove that linp, , ||Xp — xo|| = 0, where xo = Vy + u for some u e N(V). Let yp = Ppi(y-pxp and observe that yp = V^Vxp -4 VT as p -4 oo.If up = xp — yp = Pn(v)Xp e N(V), then {up}ppi converges to some u e N(V). To prove this assertion, consider the closed range operator W = T|/v(V) : N(V) -4 K, (see Lemma 4.4). If Q is the J^-selfadjoint projection onto T(N(V)), let 

W' = WtQ. Then, W' satisfies WW'W = W, WWW' = W' and N(W) = T(N(V))W. By Theorem 4.7, xp esp(T, V,zp) for a suitable zp e£; then, it follows that Txp eT(N(V))^ (see Lemma 3.4). Therefore, WTxp = 0 for every p > 1, and
W'Tup = -W'Typ -4 — W'T'Pzq = ueR (Wz) C N(V) as p oo. □

5. The indefinite abstract mixed problemGiven Hilbert spaces Ti, £1 and £2, and a Krein space K, with fundamental symmetry Jk, let T e L(Ti, /C), V] e L(Ti, £1) and V2 e L(Ti, £2) be surjective operators. Then, consider the following problem:
Problem 5.1. Let p > 0. For a fixed (zi, z2) e £1 x £2, find xq e TI such that Hi xo = z\ and([Tx0, Tx0]/c + p|| V2x0 - z2||£2) min

V]X=Z]
([Tx, Tx]/c + p||V2x-z2||^). (19)

This is a generalization to Krein spaces of the mixed problem in Hilbert spaces proposed by A.I. Rozhenko in [16] (see also [21,22]).It is clear that the indefinite abstract and smoothing problems are the partial cases of the indefinite abstract mixed problem corresponding to £2 = {0}, V2 = 0 and £\ = {0}, Vi = 0, respectively. Thus, it is expected that similar results to those given in the previous sections, can be stated with some additional restrictions. We prefer to introduce the indefinite abstract mixed problem after studying the other problems in order to motivate it.As in the previous section, JCx£2 is a Krein space with the indefinite metric defined in Eq. (17) and its fundamental symmetry Jp e L(IC x £2) is given by Jp(y, z) = (J/cy, z), where (y, z) e K, x £2. Also, consider the operators L e L(Ti, K, x £2) given by
Lx=(Tx, V2x), xeTi,and Li = LP^iyp e L(Ti, K, x £2). Then, Problem 5.1 can be restated as: given p > 0 and a fixed (zi, z2) e £\ x £2, find xq eTi such that
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[£i*o - (wi, w2), £ix0 - (wi, w2)]p (20)where wi = — Tvjzi and w2 =z2 — V2vjzi.
Lemma 5.2. Given (zi, z2) e £1 x <S2, xo e H is a solution of Problem 5.1 if and only if R(£i) is J p-nonnegative and xo is a solution 
of the equation:

Pn(Vi)(T+T + pV2 V2)Pn(v,)Xo = Pn(Vi)(P+wi + w2).
Proof. It is analogous to the proof of Lemma 4.3. Notice that, in this case, L( e L(JC x ¿72,7Y) is given by L((y,z) = 
PN(Vj)L+(y,z) = PN(Vj)(T+y + pV^z), (y, z) e K. x <S2. □
Proposition 5.3. Problem 5.1 admits a solution for every (zi, z2) e ¿f x <S2 if and only if R(£i) is a closed uniformly Jp-positive 
subspace of ICx <S2.
Proof. Suppose that, Problem 5.1 admits a solution for every (zi,z2) e ¿’ i x <S2. Given (y, z) e ICx <S2, let z\ = —ViT^y and z2 = z — V2rty. Consider xq = u + T^y, where u e 7f satisfies 
for this particular pair (zi,z2) e £\ x <S2.Observe that £ix0 -(y,z) = L1u + (TPN(Vl)T^y, V2PN(V1)Tty) - (y, z) =£1u-(-£V1tz1,z2 - V2V^zf) = Lju - (wb w2). Then, for every xeH,[£ix0 - (y, z), £ix0 - (y, z)]fi = [iju - (w1; w2), Lju - (wb w2)]p< [£i(x- rTy) - (wi, w2),£i(x- rTy) - (wj,w2)]/) = [£ix- (y,z),£jx- (y,z)]p,because £ix — (y, z) = £i(x — T^y) — (wb w2). Therefore, for every (y, z) e JC x £2, there exists xq e Ti such that[Iixo - (y, z), Iixo - (y, z)]p = min[£ix - (y, z), £ix - (y, z)]p.Following the same arguments as in the proof of Proposition 4.5, it is easy to see that the above condition holds if and only if R(£i) is a closed uniformly /^-positive subspace of K, x £2. □5.1. Parametrization of the set of solutions of the indefinite abstract mixed problemThe following paragraphs follow analogous ideas to those presented in the previous section to show that every smoothing spline is an interpolating spline.Consider the operator V e LfH, £i x <S2) given by Vx = (Vix, V2x), x e 7£, and notice that N(V) = N(Vf) Cl 1V(V2) but V is not surjective. However, Lemma 3.7 also holds in this case. So, if T(N(V)) is a regular subspace of IC then, denoting TV = T+T(N(V))± ©N(V), the projection Qo = Pn(V)//W ¡s bounded. Before stating the main theorem, we need the following key lemma.
Lemma 5.4. Suppose that T (N(V)) is a regular subspace ofIC and N(V-i) + N(V2) is closed in H. Then,(i) Adi = (I — Qo)(N(Vi)) and M2 = V2(N(Vi)) are closed subspaces ofH and £2, respectively.(ii) V2\M} : Mi -> M2 is an isomorphism.(iii) R(£i) = (T(N(V)) x {0}) + L(Mi). Furthermore, L(Mi) is closed in JC x £2 and the decomposition is orthogonal in the Krein 

space (IC x £2, [, ]p).

Proof, (i) First of all, notice that Adi = R(I — Qo) 0 N(V1). Therefore, it is closed and N(Vi) = N(V) + Adi because Qo(N(Vi)) = N(V). On the other hand, by Proposition 2.5, Ad2 = R(V2Pn(vp) is closed if and only if c(N(V2), N(Vi)) < 1, or equivalently, N(Vi) + N(V2) is closed. Therefore, Ad2 is closed.(ii) To show that V2l^t : Adi M2 is an isomorphism observe that V2(Adi) = V2(Adi +N(V)) = V2(JV(Vi)) = Ad2, so it only remains to prove that V2\^ is injective. But, if x e Adi and V2x= 0 then x e N(V2) ClAdi = N(V') C\R(I — Qo) = {0}.(iii) Observe that R(£i) = £(N(Vi)) = £(N(V)) + £(Adi) because N(Vi) = N(V) + Adi. Furthermore, if x e N(Vi) then QoxeN(V) and (f-Q0)xe Adi. So, £x = (TQox, 0) + £(/ — Q0)x. Therefore, R(£i) = L(N(V)) + £(Adi) = (T(N(V)) x {0}) + £(Adi).



J.l. Ginbet et al. /J. Math. Anal. Appl. 369 (2010) 423-436 435
If (y, 0) e (T(N(V)) x {0}) i~lL(A4i), there exists m e Mt such that Tm = y and V2m = 0. Then, m = 0 because V2lA4t is an isomorphism. So, y = Tm = 0 and R(Lt) = L(N(V)) + L(Mt). As in Lemma 4.6, it is easy to see that this decomposition is orthogonal respect to the indefinite metric defined on /C x <S2-It only remains to prove that L(Mt) is a closed subspace of /C x ¿’2. Given (y, z) g L(Mt) consider }fcz» i c Mt such that Tmj; y and V2m/; z as k oo. Notice that = (V2|_vi, I1 V2mj;, because V2\m-, '-Mt -> M2 is an isomorphism. Therefore, (V2|2v1])"1zeA4i and y.zjMTfppi zi. D

Corollary 5.5. IfT(N(V)) is a regular subspace of K. and N(Vt) + N(V2) is closed in Ti then R(Lt) is closed in K. x <S2.
The next theorem shows that every mixed spline is an interpolating spline.

Theorem 5.6. Suppose that N(Vt) + N(V2) is closed in K,, T(N(V)) is a closed subspace of K, and R(Lt) is a (closed) uniformly 
J p -positive subspace ofK, x <S2. Then, given (zt, z2) g £, x £2, an element xo e Ti is a solution of Problem 5.1 if and only if

xog sp(T, V, (ei,e2)),
where (ei,e2) is a suitable vector in ¿4 x £2.
Proof. Given (zt, z2) e £| x £2, recall that if xo e Ti is a solution of Problem 5.1 then VjXo =Zi, or equivalently, PN(V])±xo = 
V^zt. Assuming that T(N(Vf) is a regular subspace of Kf V^Zt can be decomposed as V^Zt = Ut +vi, where ut = Qo^-f-Zi e 
N(V) and vt = (I — g TV. Then, the pair (wi, w2) considered in Eq. (20) satisfies-wi = TV\zt = Tut + Tvi g T(N(V)) + T(N(V))[±] and w2=z2-V2Vi.If N(Vt) + N(V2) is a closed subspace of Ti, given x g 7Y there exist (unique) u e N(V) and m e Mt such that PN(Vi)x = 
u + m (see Lemma 5.4). Thus, x = u + m + PN(y)±x and

Ltx — (wi, w2) = (T(u + ui), 0) + Lm — (— Tvj, w2).Observe that Lm — (-TVi, w2) = L(m + Vi) — (0, z2) g (T(N(V)) x {O})^ because m + Vi g N(Qo)- Then,[Ljx-(wi, w2),iix-(wi,w2)]p = [T(u + ui),T(u + ui)]K: + [Lm-(-Tvi,w2),Lm-(-Tvi,w2)]p.Therefore, xo is a solution to Problem 5.1 if and only if Pn(Vj)Xo = uo + mo, with uo g N(V) and mo e Mt satisfying [T(u0 + ui), T(u0 + ui )|a = min,, N,Vl|T(u + 11,). T(u + ut)]/c and[Lm0 - (-Tvj, w2), Lm0 - (-Tvj, w2)l = min [Lm - (-Tvt,w2),Lm - (-Tvj, w2)l .
G meMt 1Notice that, if R(Lt) is a closed uniformly /^-positive subspace of K, x £2, then T(N(V)) is a closed uniformly J/c~ positive subspace of K, and minuejy(v)[T(u + ui), T(u + ui)]/c is attained at every y g —ut + N(V) Cl N(T).On the other hand, consider the bounded operator U : A42 K, x £2 defined byuz = (ni/2|.M|),z.z).Observe that U has closed range, because it is isometrically isomorphic to the graph of the bounded operator T( V2|_vi, I1, and min [Lm — (—Tvi, w2), Lm — (—Tvi, w2)l = min [Liz — (—Tvi, w2), Uz— (—Tvi, w2)l .meATi J/3 zeM? J/3Thus, following the same argument as in Theorem 4.7 and observing that R(U) = L(Mt) is a closed uniformly /^-positive subspace of K, x £2, this last problem admits a (unique) solution given by zo = V2mo = SP(—Tvt, w2), where P is the Jp- selfadjoint projection onto L(Mt) and S :L x ¿2 ¿’2 is defined by S(y, z) = z. So, xo g Ti is a solution to Problem 5.1 ifand only ifx0 = v\zt + PN(v])X0 = ut + vi +u0 +m0 g (vj + (V2|^11)_1SP(-Tvi, w2)) + N(T) Cl N(V).Therefore, xo g Ti is a solution to Problem 5.1 if and only if xo g sp(T, V, (et, e2)), whereei =Z| + V|('V2|.M| ) 'SP('-Tv|. w2) gz’i and e2 = V2V^zt + SP(-Tvt, w2) g £2. □
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