UNIVERSITY OF COPENHAGEN

Spiral tool paths for high-speed machining of 2D pockets with or without islands

Abrahamsen, Mikkel
Published in:
Journal of Computational Design and Engineering

DOI:
10.1016/j.jcde.2018.01.003

Publication date:
2019

Document version _
Publisher's PDF, also known as Version of record

Document license:
CC BY-NC-ND

Citation for published version (APA):
Abrahamsen, M. (2019). Spiral tool paths for high-speed machining of 2D pockets with or without islands.
Journal of Computational Design and Engineering, 6(1), 105-117. https://doi.org/10.1016/j.jcde.2018.01.003

Download date: 09. apr.. 2020

https://doi.org/10.1016/j.jcde.2018.01.003
https://curis.ku.dk/portal/da/persons/mikkel-abrahamsen(63596832-461f-409a-a2cc-81023b9b8e46).html
https://curis.ku.dk/portal/da/publications/spiral-tool-paths-for-highspeed-machining-of-2d-pockets-with-or-without-islands(4bdf29d0-e503-466c-8ec6-cb679e742318).html
https://doi.org/10.1016/j.jcde.2018.01.003

Journal of Computational Design and Engineering 6 (2019) 105-117

Contents lists available at ScienceDirect

JOURNAL OF
COMPUTATIONAL
IGN AND
ENGINEERING

Journal of Computational Design and Engineering

journal homepage: www.elsevier.com/locate/jcde

Spiral tool paths for high-speed machining of 2D pockets with or without
islands ™

Mikkel Abrahamsen !

Department of Computer Science, University of Copenhagen, Universitetsparken 1, DK-2100 Kebenhavn @, Denmark

ARTICLE INFO ABSTRACT

Article history:

Received 28 November 2017

Received in revised form 3 January 2018
Accepted 16 January 2018

Available online 13 July 2018

We describe new methods for the construction of spiral tool paths for high-speed machining. In the sim-
plest case, our method takes a polygon as input and a number ¢ > 0 and returns a spiral starting at a cen-
tral point in the polygon, going around towards the boundary while morphing to the shape of the
polygon. The spiral consists of linear segments and circular arcs, it is G' continuous, it has no self-
intersections, and the distance from each point on the spiral to each of the neighboring revolutions is
at most . Our method has the advantage over previously described methods that it is easily adjustable

15@{::1? ﬁjl:e ath to the case where there is an island in the polygon to be avoided by the spiral. In that case, the spiral
Nﬁ)e dial axisp starts at the island and morphs the island to the outer boundary of the polygon. It is shown how to apply
Smoothing that method to make significantly shorter spirals in some polygons with no islands than what is obtained

by conventional spiral tool paths. Finally, we show how to make a spiral in a polygon with multiple
islands by connecting the islands into one island.
© 2018 Society for Computational Design and Engineering. Publishing Services by Elsevier. This is an open

High-speed machining

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

A fundamental problem often arising in the CAM industry is to
find a suitable tool path for milling a pocket that is defined by a
shape in the plane. A CNC milling machine is programmed to fol-
low the tool path and thus cutting a cavity with the shape of the
given pocket in a solid piece of material. The cutter of the machine
can be regarded as a circular disc with radius r, and the task is to
find a tool path in the plane such that the swept volume of the disc,
when the disc center is moved along the path, covers the entire
pocket. We assume for simplicity that the given pocket is consist-
ing of all the points where the center of the cutter is allowed to be
so that the tool path is allowed to be anywhere in the pocket and
nowhere outside.

Some work has been made on spiral tool paths that morph a
point within the pocket to the boundary of the pocket (Banerjee,
Feng, & Bordatchev, 2012; Bieterman & Sandstrom, 2003; Chuang

Peer review under responsibility of Society for Computational Design and
Engineering.

* A preliminary version of this paper appeared at ASME 2015 International Design
Engineering Technical Conferences and Computers and Information in Engineering
Conference (IDETC/CIE 2015).

! A large part of this work was made when the author worked for Autodesk, Inc.
While preparing the paper, the author was partly supported by Mikkel Thorup’s
Advanced Grant DFF-0602-02499B from the Danish Council for Independent Research
under the Sapere Aude research career program.

E-mail address: miab@di.ku.dk

https://doi.org/10.1016/j.jcde.2018.01.003

& Yang, 2007; Held & Spielberger, 2009, 2014; Held & de
Lorenzo, 2018; Huang, Lynn, & Kurfess, 2017; Huertas-Tal6n,
Garcia-Hernandez, Berges-Muro, & Gella-Marin, 2014; Patel &
Lalwani, 2017; Romero-Carrillo, Torres-Jimenez, Dorado, & Diaz-
Garrido, 2015; Xu, Sun, & Zhang, 2013; Zhou, Zhao, & Li, 2015).
The method described by Held and Spielberger (2009) yields a tool
path that (i) starts at a user-specified point within the pocket, (ii)
ends when the boundary is reached, (iii) makes the cutter remove
all material in the pocket, (iv) has no self-intersections, (v) is G’
continuous,? (vi) makes the width of the material cut away at most
¢ at any time, where § is a user-defined constant called the stepover.
Held and de Lorenzo (2018) simplified the method by Held and
Spielberger. Note that we must have ¢ <, since otherwise some
material might not be cut away. See Fig. 2(c) for an example of such
a spiral tool path. It is the result of an algorithm described in the pre-
sent paper, but has a similar appearance as the spirals described by
in Held and Spielberger (2009) and Held and de Lorenzo (2018). We
refer to Held and Spielberger (2009) for a detailed discussion of the
benefits of spiral tool paths in high-speed machining compared to
various other tool path patterns and more information on CNC
milling in general.

We describe an alternative construction of spirals that also sat-
isfy the previously mentioned properties of the construction of

2 A plane curve is G' continuous or tangent continuous if a parameterization of the
curve by arclength is differentiable.

2288-4300/© 2018 Society for Computational Design and Engineering. Publishing Services by Elsevier.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.jcde.2018.01.003
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:miab@di.ku.dk
https://doi.org/10.1016/j.jcde.2018.01.003
http://www.sciencedirect.com/science/journal/22884300
http://www.elsevier.com/locate/jcde

106 M. Abrahamsen/Journal of Computational Design and Engineering 6 (2019) 105-117

Held and Spielberger (2009). In practice, it is very common that
there is one or more islands in the pocket that should be avoided
by the cutter, for instance, if there are areas of material that should
not be machined to the same depth. It is only described by Held
and Spielberger (2009) how to handle simply-connected pockets,
i.e., there must be no islands. In their following paper (Held &
Spielberger, 2014), it is described how one can handle a pocket
with an island by connecting it to the boundary with a “bridge”,
effectively changing the topology of the pocket in order to get rid
of the island. Thus, the resulting spiral morphs a point to a shape
consisting of the island, the bridge, and the pocket boundary. Sim-
ilarly, Patel and Lalwani (2017) describes how to partition a pocket
with an island into simply-connected regions. A big advantage of
our method is that it has a natural extension to pockets with one
island in the sense that the spiral morphs the shape of the island
to the pocket boundary, see Fig. 6(b) for an example. This is our
biggest new contribution. We exploit the fact that the Voronoi dia-
gram of a pocket with an island consists of exactly one cycle and
trees rooted at that cycle to define a wave that starts at the bound-
ary of the island at time 0 and propagates outwards, reaching the
outer boundary at time 1. This wave is used to define our spiral tool
path. We shall demonstrate natural applications of this method to
make significantly shorter spirals for pockets with no islands than
one can obtain with spirals that morphs a point to the pocket
boundary, see Fig. 10 (see Fig. 11). We also show how to handle
pockets with multiple islands, see Fig. 12(b).

Banerjee et al. (2012) and Romero-Carrillo et al. (2015) also
described methods to compute a spiral that morphs an island to
the exterior boundary of a pocket. However, their methods only
work if the entire pocket boundary is visible from the island or,
even stricter, if a line segment with one endpoint at the island
boundary and the other one at the pocket boundary can be swept
over the entire pocket area — while never crossing over any part of
the exterior of the pocket or the island - by letting the endpoints
traverse the boundaries monotonically forward in clockwise direc-
tion. These methods would for instance not work for a pocket with
an island such as in Fig. 7. Our method works with no assumption
on the geometry of the pocket and the island.

The paper is based on the author’s experiences while develop-
ing the morphed spiral strategy for the Autodesk™ CAM products
(HSMWorks, Inventor HSM®, and Fusion 360®). The morphed spiral
seems to be quite popular among the users. Due to the abundant
number of real-world parts that have been available during the
development, we guarantee that it is possible to make an efficient
industrial-strength implementation of the algorithms described
here.

We use Held’s VRONT library for the computation of Voronoi
diagrams (Held, 2001). All figures in the paper are automatically
generated using our implementation of the algorithms.

The rest of the paper is structured as follows: In Section 2, we
describe our basic method for making a spiral that morphs a point
to the boundary in a simply-connected pocket. Section 3 describes
how the method is adapted to a pocket with one island. Using that
method, we describe in Section 4 an alternative spiral in simply-
connected pockets which will be superior to the one from Section 2
in many cases. In Section 5, we show how to construct at spiral
around arbitrarily many islands by first connecting the islands into
one island. Finally, we conclude the paper in Section 6 by suggest-
ing some future paths of development of spiral tool paths.

2. Computing a spiral in a pocket without islands
In this section we describe a method to compute a spiral in a

given simply-connected 2D pocket P, see Fig. 2(c). In practice,
the boundary of a pocket is often described by line segments and

more advanced pieces of curves, such as circular arcs, elliptic arcs,
and splines. However, it is always possible to use a sufficiently
accurate linearization of the input, so we assume for simplicity that
P is a polygon.

Our algorithm first constructs a polyline spiral, see Fig. 2(b). The
polyline spiral must respect the stepover 4, i.e., the distance from
every point to the neighboring revolutions and the distance from
the outermost revolution to the boundary of P is at most 4. In Sec-
tion 2.8 we devise a method for rounding the polyline spiral to get

a G' continuous spiral consisting of line segments and circular arcs.

The corners of the polyline spiral are points on the edges of the
Voronoi diagram of P, and there is a corner at each intersection
point between the spiral and the Voronoi diagram. We only con-
sider the part of the Voronoi diagram inside 7. We have found that
we get better results in practice by modifying the Voronoi diagram
slightly. We describe these modifications in Section 2.7 to avoid
too many technical details here. See Fig. 1 for a concrete example
of the modifications we make on the Voronoi diagram. Let
VD = VD(P) be the modified Voronoi diagram of the pocket P. Like
the Voronoi diagram of P, the modified diagram VD has the follow-
ing properties which are necessary and in principle also sufficient
for the computation of the spiral:

1. VD is a plane tree contained in P,

2. each leaf of VD is on the boundary of P,

3. there is at least one leaf of VD on each corner of P,
4. all the faces into which VD divides P are convex.

2.1. The wave model

We imagine that a wave starts at time t =0 at the point p,
inside P. The wave moves out in every direction such that at time
t = 1, it has exactly the same shape as P. The shape of the wave ata
specific time is called a wavefront. The wave is growing in the sense
that if 0 < t; < t; < 1, the wavefront at time t; is contained in the
wavefront at time t,. We choose p, as a point in the diagram VD
and consider VD as a tree rooted at p,. We define the time at which
the wave hits each node and the speed with which it travels on
each edge in VD. The speed of the wave is always constant or
decreasing. Thus, we create a continuous map 0 : VD +— [0, 1] that
assigns a time value between 0 and 1 to each point on VD. If p is
a point moving along a path on VD from p, to any leaf, the value
0(p) increases monotonically from 0 to 1. For each time t € [0, 1],
the wavefront is a polygon inside P and the vertices of the wave-
front are all the points p on VD such that 0(p) = t. Note that there
is exactly one such point on each path from p, to a leaf of VD for a
given t € [0,1].

We define a time step A = 1/r for some integer r and compute
the wavefront at the times t € {0,A,2A,...,rA}, where rA = 1, see
Fig. 2(a). By wavefront i, we mean the wavefront at time iA. We
choose r such that the distance from each point on wavefront i to
each of the wavefronts i — 1 and i + 1 is at most § when i > 0 and
i <, respectively. For each i =1,...,r, we compute a revolution
of the polyline spiral by interpolating between the wavefronts
i—1 and i. We describe in Sections 2.5 and 2.6 how to make the
wavefronts and the interpolation such that the stepover is
respected between neighboring revolutions.

2.2. Choosing the starting point p, and the number of revolutions of
the spiral

In order to get a spiral with small length, we try to minimize the
number of revolutions. Consider the longest path from p, to a leaf
in VD. The length of a path is the sum of edge lengths on the path. If
h is the length of the longest path, then [h/§] + 1 wavefronts are

M. Abrahamsen /Journal of Computational Design and Engineering 6 (2019) 105-117

(b)

(©)

Fig. 1. (a) The Voronoi diagram. (b) The Voronoi diagram enriched with equidistantly placed segments perpendicular to long edges. (c) The final diagram VD where double

edges going to concave corners of P are replaced by their angle bisector.

(c)

Fig. 2. Wavefronts (a), polyline spiral (b), and the final G' continuous spiral (c) in the same polygon P. The diagram VD is in gray.

necessary and sufficient for the stepover to be respected among all
neighboring wavefronts. Therefore, we choose p, as the point in VD
that minimizes the longest distance to a leaf in VD. That is a unique
point traditionally known as the center of VD. Handler (1973) gives
a simple algorithm to compute p, in time proportional to the size
of VD. The center will most likely not be a node in VD, but an inte-
rior point on some edge. In that case, we introduce a node at p, by
splitting the edge into two edges.

2.3. Our representation of VD

We consider VD as a directed, rooted tree with the node Root at
Do being the root. For a node n in VD, we let Pt[n] be the position of
the node n. Let VD[n] be the subtree rooted at node n. For a node
n # Root, we store a pointer ParentE[n] to the edge having end
node n. We say that edge ParentE[n] is the parent edge of node n
and of any edge having start node n. We also store an array

108 M. Abrahamsen /Journal of Computational Design and Engineering 6 (2019) 105-117

ChildEs[n] of the edges going out of n sorted in counterclockwise
order with the edge following ParentE[n] being the first. For Root,
the choice of the first child edge does not matter. For each edge e,
we store pointers Start[e] and Endle] to the start and end nodes of
e. We also store an index i= IndexInStartl[e] such that
ChildEs[Start[e]][ij =e. If e is an edge, we say that Startle]
and End|e] are incident to e and that e is incident to Startfe] and
End[e]. For an edge e; and node n incident to e;, we let
NextCCW(er,n) = e, where e, is the edge after e; among the edges
incident to n in counterclockwise order. The function NextCCW can
be implemented so that it runs in constant time using the values
defined here.

Using NextCCW, we can traverse all of VD in the counterclock-
wise direction in linear time. We start setting
(n,e) = (Root,ChildEs[Root][0]). In each iteration, we let n be
the other node incident to e and then set e = NextCcCW(e,n). We
stop when we have traversed every edge, ie., when
(e,n) = (Root,ChildEs[Root][0]) at the end of an iteration. Note
that each edge e is visited twice, once going down the tree
VD[Start(e]] and once going up.

2.4. Defining the movement of the wave

In the following, we outline the model after which we define
the movement of the wave. Let Hgt[n] for each node n be the length
of the longest path from n to a leaf in VD[n]. All the Hgt values can
be computed in linear time by traversing VD once. For each node n,
we define the time TmNd[n] where the wave reaches n. We set
TmNd[Root] = 0. We also define the speed VeNd[n| that the wave
has when it reaches n. We set VeNd[Root] = Hgt[Root]. The wave
starts at the root at time t = 0 and travels with constant speed
VeNd[Root] on the paths to the farthest leafs in VD. (Due to our
choice of the starting point p,, there will always be at least two
paths from p, to a leaf with the maximum length.) Hence, it
reaches those leafs at time t = 1. On all the shorter paths, we make
the wave slow down so that it reaches every leaf at time t = 1.
Generally, when the speed needs to be decreased along some path,
we let the speed be a piecewise linear function of time, so that the
first 25% of the path is used to slow down and the speed is there-
after constant.

KN

(a)

When the movement of the wave is defined, we may define
GetPt(e,t) as the point on edge e with 0(GetPt(e,t)) = t, where
TmNd[Start[e]] < t < TmNd[End[e]].

2.5. Constructing the wavefronts

We make a spiral with r= "] reyolutions, where
& =0.95-6. The number 0.95 is a hyper-parameter that we have
found to work well in practice. We use the slightly smaller step-
over ¢ so that the maximum distance between two neighboring
revolutions is smaller than ¢. That gives more flexibility to smooth
the spiral later on as described in Section 2.8. Using a number clo-
ser to O instead of 0.95 results in more revolutions and thus a
longer spiral, while a number closer to 1 increases the curvature
of the resulting spiral, since there will not be as much freedom
to smooth the spiral with circular arcs and at the same time
respecting the stepover. We set A = 1/r and compute a wavefront
for each of the times {0, A, 2A,...,rA}. The two-dimensional array
Wt stores the wavefronts so that the wavefront at time iA is the
array Wf[i]. Wavefront i is constructed by traversing VD once and
finding every point on VD with time iA in counterclockwise order.
Let e be an edge we have not visited before, and let n = Start[e]
and m =End[e]. There is a corner of wavefront i on e if
TmNd[n] < iA < TmNd[m]. If that is the case, we add GetPt(e,iA)
to the end of Wf[i]. We also make one corner in W£[0] for each of
the child edges of the root, ChildEs[Root], and all these corners
are copies of the point Pt[Root]. Using this construction, there is
exactly one corner of each wavefront on each path from Root to
a leaf of VD.

For each corner w[i][w], we store the length of the part of the

wavefront up to the corner, i.e. WfLng[i][0]=0 and
WeTnglillw] = Y, [Weli)[j] — wefi][f — 1]||, for w > 1. Here | -| is
the Euclidean norm. We also store the total length of wf[i] as

Tt1WfLngli].

We introduce a rooted tree with the wavefront corners as the
nodes. See Fig. 3(a). The parent of a corner Wf[i][w],i > 0, is the
unique corner Wf[i — 1][pw] on wavefront i — 1 on the path from
Wt[i][w] to Root. We store pw as PaWf[i][w], i.e., the parent of
Weli[w] is WE[i — 1][Pawf[i][w]].

(b)

Fig. 3. The construction of a polyline spiral in a polygon P: (a) The wavefronts in green and blue arrows from each wavefront corner W£[i][w] to its parent Wf[i — 1][Paw<[i][w]].
The diagram VD is in gray. (b) The polyline spiral in black obtained by interpolating between the wavefronts. The purple arrows are from each corner Sp[i] of the spiral to its

parent Sp[Pali]].

M. Abrahamsen /Journal of Computational Design and Engineering 6 (2019) 105-117 109

Since the distance from each wavefront corner to each of its
children is at most ¢, we get that the distance from a point on
one wavefront to the neighboring wavefronts is at most ¢'. Further-
more, since the wave is moving with positive speed towards the
leafs of VD and the faces into which VD divides P are convex,
neighboring wavefronts do not intersect each other. From the
order in which the corners of a wavefront are constructed, it is also
clear that a wavefront does not intersect itself.

2.6. Interpolating between the wavefronts

We construct a polyline spiral stored as an array Sp. For each
i=1,...,r, we construct one revolution of the spiral by interpolat-
ing between wavefront i — 1 and wavefront i. Every corner of the
spiral is a point on VD. There is exactly one spiral corner on the
path in VD from each wavefront corner Wt[ijjw] to its parent
WE[i — 1][Pawf[i][w]]. Assume for now that we know how to choose
the actual corners of the polyline spiral. We shall get back to this
shortly.

The first corner Sp[0] is on the root node of VD, and for every
other corner Spls],s > 0, we store a parent index Pa[s], such that

the parent Sp[Pals]] is the first corner we meet on the path in VD
from Sp[s] to the root. Fig. 3(b) shows the resulting polyline spiral
and the parents of each corner. We define the spiral such that the
distance between a spiral corner and its parent is at most ¢'. It fol-
lows that the distance from a point on the polyline spiral to the
neighboring revolutions is at most §'.

Here we describe how to define the Pa-pointers. When we have
constructed a spiral corner Sp[s] which is on the path from wf[i][w]
to its parent wavefront corner Wf[i — 1][pw], we know that the first
spiral corner on the path from w£[i][w] to the root is Sp[s], and we
store this information as PaSp[i][w] = s. Therefore, when we have
made a new spiral corner Sp[r] on the path from Wf[i + 1][w/] to
its parent Wf[ij[pw/], the parent of Sp[r] is defined to be
Pa[r] = PaSpli][pw]. By doing so, the corner Sp[Pa[r]] will be the
first spiral corner on the path from Splr] to the root.

In the following we describe how to choose the corners of the
polyline spiral. We assume that we have finished the revolution
of the spiral between wavefronts i —2 and i—1 and we show
how to make the revolution between wavefronts i — 1 and i. While
constructing the revolution between wavefrontsi — 2 andi — 1, we
have stored for each wavefront corner Wf[i — 1][z] the index

m:“ﬁ“w ‘*7 UIEH

(c)

Fig. 4. (a) The interpolation between the two blue wavefronts. The marked part of the diagram VD is in black, the rest is in gray. The red circles are the points Q[w]. The green
crosses are the resulting points of the polyline spiral stored in Sp after the convexification process. The violet box contains the detail shown in (b). (c) Related values for the
same interpolation: The points (D[w], T[w]) are red circles. The upper convex hull F of the points is a black curve, and the green crosses are the points (D[w], F(D[w])) on that

hull.

110 M. Abrahamsen /Journal of Computational Design and Engineering 6 (2019) 105-117

ps = PaSpli — 1][¢] such that Sp[ps] is the unique spiral corner on
the path from wet[i — 1][2] to its parent Wf[i — 2][PaWt[i — 1][v]].
Now, for each wavefront corner wf[iJ[w], we find the point Q[w]
on the path to wt[i — 1][pw], where pw = PaWf]i][w], with time
tw=(i— 1A+ =M A If Qw] is more than ¢ away from
Sp[PasSp[i — 1][pw]], we redefine Q[w] to be the point on the same
path with distance exactly §'. We mark the path from Q[w] to the
root of VD. See Fig. 4.

When we have done the marking for each w, we traverse wave-
front i once more. For each wavefront corner W<[ij][w], we find the
first marked point on the path to the root. We let P[w] be that point
and T[w] = 6(P[w]) be its time. We have that T[w] > t,, because a
later wavefront corner Wf[i][w'],w > w, can mark more of the path
from wt[i][w] to the root. Therefore, we can have Pjw] = P{w + 1] for
some w. Using this construction, there is exactly one distinct P-
point on each path from a wavefront corner to the root. Further-
more, we know that the distance from P[w] to the spiral corner
Sp[PasSp[i — 1][Pawf[i][w]]] is at most &'.

The polyline defined by the points P[0], P[1],... is basically our
interpolated spiral, but the points have a tendency to have unnec-
essarily sharp corners if VD is relatively dense, which is often the
case for polygons P occurring in real-world problems. To avoid
such corners, we apply a method which we denote as the convex-
ification, see Fig. 4. Let Dw] = Y"1 ||P[¢] — P[v + 1]|| be the length
of the polyline until P[w] and consider the points (D[w], T[w]). We
compute the upper convex hull of these points, e.g. using the
method of Graham and Yao (1983). Let F be the function whose
graph is the wupper hull. By definition, we have that
T[w] < F(D[w]) for each w =0, We now choose the corners of
Sp in the following way: For each wavefront corner Wf[ij[w] in
order, we find the point S on the path to the root with time
F(D[w]). If S is more than & away from the parent spiral corner
Sp[PasSp[i — 1][PaW£[i][w]] (which will be the parent of the spiral
corner we are constructing), we choose instead S to be the point
on the same path which is exactly &' away. To avoid repetitions
of the same point in Sp, we add S to the end of sp if S is different
from the last point in Sp. Since we get the spiral corners by moving
the P-points closer to wavefront i, we get exactly one distinct spiral
corner on each path from a wavefront corner to the root. When VD
is sparse like in Fig. 3, the convexification makes no visible differ-
ence between the P-points and the final points in Sp, but when VD
is dense as in Fig. 4, the effect is significant.

We also add one revolution around P to the end of Sp, which is
used to test that the last interpolated revolution respects the step-
over when the spiral is rounded later on.

The polyline spiral constructed as described clearly satisfies
that the distance from a point on one revolution to the neighboring
revolutions is at most &'. Furthermore, each revolution is between
two neighboring wavefronts since all the corners of the interpola-
tion between wavefronts i and i+ 1 have times in the interval
[iA, (i + 1)A[. The wavefronts do not intersect as mentioned earlier,
so different revolutions of the polyline spiral do not either. It is also
clear from the construction that one revolution does not intersect
itself. Therefore, the polyline spiral has all the properties that we

require of our spiral except being G' continuous. How to obtain
that is described in Section 2.8.

2.7. Modifying the Voronoi diagram

In this section, we outline some modifications we make on the
Voronoi diagram of P before doing anything else. The result is the
diagram VD = VD(P). An example of the process can be seen in
Fig. 1.

Long edges on P lead to long faces in the Voronoi diagram so
that the wave is not moving towards the boundary of P in a natural
way. It may result in degenerate one-dimensional wavefronts.
Therefore, we add extra edges from long edges of the Voronoi dia-
gram to the boundary in the following sense. Let /; and I, be two
leafs of VD which are neighbors on 9P. Such a pair of nodes are
on the same or on two neighboring corners of P. Assume the latter,
so that there is a segment S on 9P from [; to I, and a face f of the
Voronoi diagram to the left of S. Let s = Pt[l,] — Pt[l;] be the vector
from I; to I, d = ||s|| be the length of S and m = [d/5]. We want to
subdivide f into m faces. Let p; = Pt[li]+s-iL,i=1,...,m—1, be

_
interpolated points on S. Let h; = p;, p; + S be the half-line starting
at p; with direction s, where 5 is the counterclockwise rotation of
s. For each i=1,...,m—1, we find the first intersection point
between h; and the Voronoi diagram. Assume the intersection for
some i is a point g on an edge e. If the smallest angle between h;
and e is larger than 50°, we split e into two edges by introducing
a node at g and add a segment from that node to a new node at
p;. If the smallest angle is less than 50°, the Voronoi diagram is
moving fast enough towards the boundary so that the wavefronts
will be fine in that area without adding any additional edges.

The other modification we perform has to do with the concave
corners of P, which are the corners where the inner angle is more
than 180°. Each concave corner c on P leads to a face in the Voronoi
diagram of all the points in P being closer to c than to anything else
on the boundary of P. Therefore, there are two edges e; and e, of
the Voronoi diagram with an endpoint on c. We have found that
we get a better spiral if we remove these edges and instead add
an edge following the angle bisector of the edges, i.e., we follow
the bisector from ¢ and find the first intersection point g with
the Voronoi diagram and add an edge from q to c. The reason that
this process improves the resulting spiral is that the wavefronts
will resemble P more because they will have just one corner corre-
sponding to the corner c (on the bisector edge on P), instead of two
(one on each of e; and e;). We can only do this manipulation if the
resulting faces are also convex. That is checked easily by comput-
ing the new angles of the manipulated faces and it seems to be
the case almost always.

2.8. Rounding the polyline spiral

In this section, we describe a possible way for smoothing the
polyline spiral to get a G' continuous spiral. See Fig. 5 for a compar-
ison between the rounded and unrounded spiral from Fig. 2 using
this method. Note that some of the arcs of the rounded spiral round
multiple corners of the polyline spiral.

({d((

Fig. 5. The spirals from Fig. 2 together. The polyline spiral is blue and the rounded
spiral is black.

M. Abrahamsen /Journal of Computational Design and Engineering 6 (2019) 105-117 111

For each corner on the polyline spiral, we substitute a part of
the spiral containing the corner with a circular arc which is tangen-
tial to the polyline spiral in the endpoints. That gives a spiral which
is G' continuous, i.e., having no sharp corners. For each index i, let
s; = Spli|sp[i+ 1] be the segment from Spli] to Sp[i+1] and
v; = Spli + 1] — Spli] be the vector from Spli] to Sp[i + 1]. Each arc
has the start point p on some segment s, and the endpoint g on
another segment s,,a < b, so that the arc substitutes the part of
the polyline spiral from p to q. We say that the arc rounds the cor-
ners a + 1 to b. We call the arc tangential if it is counterclockwise

and its center is on the intersection of the half-lines p,p + 75 and

q,q + vy or it is clockwise and its center is on the intersection of

the half-lines p,p — 75 and q,q — 7,. It follows that if each corner
is substituted by a tangential arc with positive radius, the resulting
spiral is G' continuous.

We store a pointer Arcli] to the arc that substitutes the corner
Sp[i]. The same arc can substitute multiple consecutive corners, so
that Arcli] = Arc[i+ 1] =... = Arc[i+ k—1]. In that case, when
Arcli—1] # Arcli] # Arcli+ k], the neighbors of Arc[i] are
Arcli — 1] and Arcli + k]. Two different arcs must substitute disjoint
parts of the polyline spiral for the rounded spiral to be well-defined.
We subdivide each segment s, at a point p, € s, such that an arc
ending at s, must have its endpoint at the segment Sp[ajp, and an
arc beginning at s, must have its startpoint on the segment
D.Spla + 1]. The point p, is chosen as a weighted average of Spla]
and spla + 1] so that the arc rounding the sharpest of the corners
Spla] and Spla + 1] gets most space. Let ¢, € (—, 7] be the angle
at corner Sp[a] of the polyline spiral. We set w, = % and
choose p, as p, = (1 — w,) - Spla] + wg - Spla + 1].

We keep a priority queue Q (Cormen, Leiserson, Rivest, & Stein,
2009) of the arcs that can possibly be enlarged. After each enlarge-
ment of an arc, the resulting spiral respects the stepover é and no
self-intersections have been introduced. We say that an arc with
these properties is usable. Initially, we let each corner be rounded
by a degenerated zero-radius arc, and Q contains all these arcs.
Clearly, these initial zero-radius arcs are usable by definition. We
consider the front arc A in Q and try to find another usable arc A’
that substitutes a longer chain of the polyline spiral. The new arc
A’ normally has a larger radius than A. If possible, we choose A’

(a)

Fig. 6. (a) A polygon P with an island Z, both in black. The diagram VD of P\ Z is drawn with the cycle C in blue and the other edges in gray. (b) The resulting spiral.

so that it also substitutes one or, preferably, two of the neighbors
of A. Assume that we succeed in making a usable arc A’ substituting
both A and its neighbors B and C. Now A’ rounds the union of the
corners previously rounded by A,B, and C. For all these corners,
we update the Arc-pointers and we remove A,B, and C from Q.
We add A’ to Q. For every corner that A’ rounds, we also add the
arcs rounding the children and parents of that corner to Q, since
it is possible that these arcs can now be enlarged. If no larger
usable arc A’ is found, we just remove A from Q. The rounding pro-
cess terminates when Q is empty.

We test if an arc is usable by measuring the distance to the arcs
rounding the child and parent corners. That is easily done using
elementary geometric computations.

Here we describe how to find the largest usable arc rounding
the corners a + 1 to b, a < b. We find the possible radii of tangential
arcs beginning at a point on p,Spa + 1] and ending at a point on
Sp[b]p, using elementary geometry. There might be no such arcs,
in which case we give up finding an arc rounding these corners.
Otherwise, we have an interval [rmin, T'max] Of radii of tangential arcs
going from p,Spla + 1] and ending on Sp[b]p,. We check if the arc
with radius ry, is usable. If it is not, we give up. Otherwise, we
check if the arc with radius rp.y is usable. If it is, we use it. Other-
wise, we make a binary search in the interval [rmin, 'max] after the
usable arc with the largest radius. We stop when the binary search
interval has become sufficiently small, for instance 0.01 - §, and use
the arc with the smallest number in the interval as its radius.

The order of the arcs in Q is established in the following way:
We have found that giving the arc A the priority
P(A) =1(A)/r(Cmax) + 1/s(A) gives good results, where r(A) is the
radius of A, s(A) is the size of the subtended angle from the center
of A in radians, and r(Cnax) is the radius of the maximum circle con-
tained in P. The front arc in Q is the one with the smallest P-value.
We divide by r(Cnax) to make the rounding invariant when P and §
are scaled by the same number. r(Cpax) can be obtained from the
Voronoi diagram of P, since the largest inscribed circle has its cen-
ter on a node in the diagram. If s(A) = 0, we set P(A) = oo, since
there is no corner to round.

We see that arcs with small radii or large subtended angles are
chosen first for enlargement. In the beginning when all the arcs in
Q have zero radius, the arcs in the sharpest corners are chosen first
because their degenerated arcs have bigger subtended angles -

(b)

112 M. Abrahamsen /Journal of Computational Design and Engineering 6 (2019) 105-117

even though the radius is zero, we can still define the start and end
angle of the arc according to the slope of the segments meeting in
the corner and thus define the subtended angle of the arc.

If two or three arcs are substituted by one larger arc each time
we succeed in making a larger arc, we are sure that the rounding
process does terminate, since the complexity of the spiral
decreases. However, it is often not possible to merge two or three
arcs, but only to make a larger arc rounding the same corners as an
old one. The rounded spiral gets better, but we cannot prove that
the process terminates. In practice, we have seen fast termination
in any tested example. A possible remedy could be only to allow
each arc to increase in size without rounding more corners a fixed
number of times.

3. Computing a spiral in a pocket with an island

In many practical applications, the area to be machined is not
simply-connected but has one or more “islands” that should not
be machined. It might be because there are physical holes in the
part or areas of a thicker layer of material not to be machined in
the same depth. Therefore, assume that we are given a polygon
P and a single polygonal island Z in the interior of P. In Section 5
we suggest a method to deal with multiple islands. By P\ Z, we
denote the closed set of points which are in the interior or on
the boundary of P but not in the interior of Z. We want to compute
a spiral which is contained in P \ Z such that the user-defined step-
over ¢ is respected between (i) two consecutive revolutions, (ii) the
boundary of Z and the first revolution, and (iii) the boundary of P
and the last revolution. We also require that the spiral is G' contin-
uous and has no self-intersections. See Fig. 6(b) for an example.

As in the case with a simply-connected pocket, we use a wave
model to construct the spiral. We imagine a wave that has exactly
the shape of Z at time 0 and moves towards the boundary of P, so
that at the time 1, it has the shape of . We explain how to define a
polyline spiral. The spiral should be rounded by a method similar
to the one described in Section 2.8.

3.1. The Voronoi diagram of a pocket with an island

We use the Voronoi diagram of the set of line segments of P and
Z. As in the case with no islands, we modify the diagram slightly.
Let VD = VD(P \ Z) be the modified polygon. Like the true Voronoi
diagram, the modified diagram VD has the following properties:

<SHz
S
SV
SRR

XY LHALLE

(a)

. VD is a connected, plane graph contained in P\ Z,

. each leaf of VD is on the boundary of P or Z,

. there is at least one leaf of VD on each corner of P and Z,

. all the faces into which VD divides P \ Z are convex,

. VD contains exactly one cycle, the cycle is the locus of all points
being equally close to the boundaries of Z and P, and 7 is con-
tained in its interior.

U W=

The diagram VD is consisting of one cycle C, which we also
denote by the central cycle, and some trees growing out from C,
see Fig. 6(a). Each of the trees grows either outwards and has all
its leaves on the boundary of P or inwards and has all its leaves
on the boundary of Z. The general idea is to use the method
described in Section 2 to define wavefronts in each of these trees
separately. Afterward, we interpolate between the neighboring
wavefronts in each tree and connect the interpolated pieces to
get one contiguous spiral.

As in the case of a polygon without an island, we enrich the Vor-
onoi diagram and remove double edges going to concave corners as
described in Section 2.7.

We want the trees to be symmetric in the sense that there is a
tree P7, with root n € C and leafs on the boundary of P if and only
if there is a tree 77, with root n and leaves on the boundary of 7. If
for a node n € C we only have one of the trees, say 77 ,, we add an
edge from node n to the closest point on the boundary of P and let
PT . be the tree consisting of that single edge. It follows from the
properties of the Voronoi diagram that the added edge does not
intersect any of the other edges.

We store C as a vector [ny, ..., n._1] of the nodes on C in counter-
clockwise order, such that there are trees Z7, and PT,, for each
i=0,....c—1. A root node is a node n on C. We let
T, =PT,UIT, be the union of the two trees rooted at node
n € C and consider 7, as a tree rooted at node n.

3.2. Defining the movement of the wave

On each tree 7, we now define a wave model similar to the one
described in Section 2.1. The wave starts at time t = 0 on the leafs
on the boundary of Z and moves through 7, so that it hits the leafs
on the boundary of P at time t = 1. We compute the wavefronts
from n and towards Z and P.

Let the preferred time of a root node n be t, = Wﬂm

where BndHgt([n] and Is1Hgt[n] is the length of the longest path

” ST
‘\\\V".'"
SRS
‘03\\“\»,,",‘0

SN o

S\t
LR
7

X
$

N
o
N

S
R
#@\;\?\:\0
H
HH

¢_
S
S
N
02
7\
0‘ g

: ‘A

N
N
mw.\\‘\\\\\\~
TR
LS

S
'~

S
2%

XX
%

&2
&
ALK
S S,
ISSSS
o
QS
IS sy
% "’% \
SR N\
Sl
QLR
0.~.:.':'

(b)

Fig. 7. (a) Wavefronts in red when an appropriate smoothing has been applied to the times and speeds of the wave in the root nodes. C is in blue and the rest of VD is in gray.
(b) Wavefronts when the preferred times and speeds have been used to define the movement of the wave.

M. Abrahamsen /Journal of Computational Design and Engineering 6 (2019) 105-117 113

to a leaf in P7, and Z7,, respectively. Similarly, if the time TmNd[n]
has already been defined, we let the preferred speed of n be

IslHgt[n] BndHgt[n] }

Un = max{ TuNdn] T—TmNd[n]

A naive method to define the times and speeds of a root n is to
set TmNd[n] = t, and VeNd[n] = v,. That will minimize the number
of revolutions and give the most equidistant wavefronts on each
tree 7,. However, the abrupt changes in time and speed along
the central cycle C results in a spiral which curves a lot. Instead,
we might smooth the times and speeds in the root nodes around
C. This can be done in many different ways, and we shall leave
the details for the reader. See Fig. 7.

3.3. Creating wavefronts

For a given root node n € ¢, we want at least s;, = 2" reyo-
lutions of the spiral in the tree 77, in order to respect the stepover
& =0.95 - 6. Similarly, we want sp, = %gt[”] revolutions in P7,.
Therefore, the time between two revolutions should be at most

A, = min {M,%} Hence, we let A’ = min,{A,} be the

STy Spn
minimum over all such values. We let the number of revolutions
ber=[1/A"] and set A = 1/r.

Each tree 7, contains an interval of the corners of each wave-
front i. The corners of the subset are points on I7, if t < TmNd[n],

otherwise they are on P7T,. Let r, = L%‘”"U. The wavefronts
i=0,...,r, are on Z7,, while wavefronts i =r, +1,...,r are on
PT,. As explained in Section 3.2, we do not use the same time
TmNd[n] for every node n on C. Therefore, we may get wavefronts
crossing C and wavefronts crossing each other. We shall later
explain how to avoid that the polyline spiral has self-intersections.

We suggest to store the wavefront corners in a two-dimensional
array for each of the trees 77, and P7,. The wavefront corners on
IT, of one wavefront are stored in an array Is1Wf[n][j], where
index j corresponds to wavefront i =r, —j + 1. In PT,, the array
BndWf[n][j] stores corners of wavefront i =j + r,. Hence, the cor-
ners of each wavefront is stored locally in each tree 7.

In Z7,, the parents of the corners of wavefronti=0,...,r, — 1
are corners of wavefront i + 1. In P7,, the parents of the corners
of wavefront i=r,+2,...,r are corners of wavefront i— 1.
Therefore, all parents are on the wavefront one step closer to the
root n. In both 77, and PT,, we introduce fake wavefront corners
at the root n stored in the arrays Is1Wf[n][0] and BndWf[n][0],
respectively, which are the parents of the corners in the arrays
Is1Wf([n][1] and BndWf[n]{1]. Thus, these fake corners are not cor-
ners on wavefront i for any i =0,...,r, but are merely made to
complete the tree of parent pointers between corners of neighbor-
ing wavefronts.

We also need an array WfLng containing global information
about the length of each wavefront crossing all the trees {7}, in

Fig. 8. A polyline spiral in black and red arrows from each corner Sp[s] to its parents. The cycle C is in blue and the diagram VD is in gray.

114

order to do interpolation between the wavefronts later. We have
WfIng[i][0] = O for every wavefront i. If c,, and cp, 1 are the m’th
and (m+ 1)'st corners on wavefront i, respectively, we have
WELngl[i][m + 1] = WfLng[i][m] + ||Cmi1 — Cm|. Notice that ¢, and
Cm+1 €an be corners in different, however neighbouring trees 7,
and 7, and hence stored in different arrays. Tt1WfLng]i] stores
the total length of wavefront i.

3.4. Interpolating between wavefronts

We interpolate between two wavefronts i — 1 and i in each tree
T, separately, but using the same technique as in Section 2.6. If
i < r,, we interpolate between the wavefront fragments stored in
Is1Wf[n][j] and Is1Wf[n][j + 1], where j = r, — i+ 1, using the val-
ues of the length of wavefront i —1 stored in WfIng[i— 1]. If
i>r, + 1, we interpolate between BndWf[n][j — 1] and BndW£([n][j],
where j =i — rp,, using the values stored in WfLng]i]. A special case
occurs wheni = r, + 1, i.e,, when we are interpolating between the

first wavefront on each side of the root node n. In that case, let
t=(i—1)A+;2nelim A, when Bnawt[n][1][0] is the m'th corner
on wavefront i. If t< TmNd[n], we interpolate between
Is1Wfn][0] and Is1Wf[n]{1]. Otherwise, we interpolate on the
other side of C, that is, between BndWwf[n][0] and BndWf[n][1]. The

%%

S

(b)

S
S
o
sy
S m
4
A PSS munn
L st T

it
[

T

&
§%,

}}J; g\

0 0 \\}“
RS
~!~'!~l',‘“\:"/
\\.,.

M. Abrahamsen /Journal of Computational Design and Engineering 6 (2019) 105-117

convexification process described in Section 2.6 can be used in
each tree 7, separately.

We may store the interpolated spiral in a one-dimensional array
Sp. Before we add the first interpolated revolution to Sp, i.e., the
one between wavefront 0 and 1, we add wavefront 0 to Sp, that
is, all the corners of Z. Likewise, after the final revolution between
wavefronts r — 1 and r, we add wavefront r, which is all the corners
of P. These are used to ensure that the distance from the first and
last revolution to the boundaries of Z and P, respectively, does
respect the stepover when rounding the spiral.

For every corner Sp[s] we have a pointer Pa[s] such that Sp[Pals]]
is the first spiral corner we meet when traveling from Sp|s| to the
root n of the tree 7, containing Sp[s]. The parents are not defined
for the spiral corners closest to the root node n. Therefore, make
parent dependencies across C such that the parent nodes are on
the same side of C as Z. We want all the parent pointers to be
towards the island Z. Therefore, we reverse all the pointers
between pairs of corners in each tree Z7 ,. Now, the parent pointers
are defined for all spiral corners except for the ones on the bound-
ary of Z. See Fig. 8 for an example of a polyline spiral around an
island and red arrows indicating the parent pointers. Notice that
a corner can have multiple parents, but the parents are consecutive
and can thus be stored using two indices.

<TT
ST
SR

SR

s >
5% Q
LR %%
IS 'Q/

TSNS
Il,,.-\\‘\“t \
o ‘l\\“\""\\
S

a8t

(c)

Fig. 9. The same pocket and island as in Fig. 7. The cycle C is blue, the other edges of VD are gray. The interpolated spiral is black, and we have not introduced extra spiral
corners on C to avoid self-intersections. In order to make the intersection problems appear, we have not smoothed the times and speeds around C as described in Section 3.2,
but merely used the preferred time and speed of each node. (b) is a close-up of (a) of the area in the red rectangle. In (c), we have introduced new corners on C when the spiral
jumps from one side of C to the other when the union of the two faces on each side of C is not convex.

M. Abrahamsen /Journal of Computational Design and Engineering 6 (2019) 105-117 115

In Section 2.6, we stated that since there are no intersections
between different wavefronts, the polyline spiral has no self-
intersections when there is no island in P. The wavefronts do not
intersect in that case due to the convexity of the faces into which
the diagram VD(P) subdivides P. When there is an island 7 in P,
there are two kinds of faces into which VD(P\Z) subdivides
P\ Z, see Fig. 9. Some faces, like a; in the figure, are bounded by
edges of one tree 7, while some are between two trees, like a;
and ay. The latter kind is bounded by edges of two neighboring
trees 7, and 7, and an edge e from n to m on C, where n and m
are neighboring nodes on C. The first kind of faces is similar to
the faces in Section 2, so here we do not worry about self-
intersections of the spiral. The second, however, can lead to wave-
fronts crossing each other and therefore also a self-intersecting spi-
ral as is the case in the figure when the spiral jumps over C and
crosses a,. If the union of the faces on each side of e is convex, like
a; and its neighboring face on the other side of C, there is no prob-
lem. It can easily be tested if the union of the faces is convex by
considering the angles of the union at nodes n and m. If it is not,

we introduce a new corner on the edge on C whenever the spiral
jumps from one side of C to the other. The new corner is an inter-
polation of nodes n and m using the time of the spiral in the last
corner in tree 7 ,. Fig. 9(c) shows the result of introducing the extra
corners. Our experience is that these intersection problems occur
very rarely when the times and speeds have been appropriately
smoothed around C. Our experience is that these intersection prob-
lems occur very rarely if the time and speed of the wave have been
smoothed around C as described in Section 3.2.

4. The skeleton method for a spiral in a pocket without islands

The method from Section 2 is mainly applicable if the polygon P
is not too far from being a circle. If P is very elongated or branched,
the distance between neighboring revolutions will often be much
less than the maximum stepover. Therefore, the tool path will be
unnecessarily long and the cutting width will vary a lot. That leads
to long machining time and an uneven finish of the part. See Fig. 10
for an example. In such cases, we construct a skeleton in P, which is

XL

(a)

(b)

Fig. 10. Comparison of the basic spiral method from Section 2, figure (a), with the improved skeleton method from Section 4, figure (b). Note that the spiral obtained from the
skeleton method is significantly shorter and that the distance between neighboring revolutions is varying much less than when using the basic method.

s

(a)

i =

(b)

Fig. 11. (a) The diagram VD(P) of the polygon P from Fig. 10 in green, where the edges chosen for the skeleton are black. (b) The diagram VD(P \ Z) of P with the skeleton
considered an island Z. The cycle C is blue and the remaining edges are green. The resulting spiral from Fig. 10(b) is included in gray.

116 M. Abrahamsen /Journal of Computational Design and Engineering 6 (2019) 105-117

(a)

(b)

Fig. 12. (a) A polygon with 13 islands. The bridges chosen among the Voronoi edges to connect the islands are blue. The remaining Voronoi edges are red. (b) The resulting

spiral around the islands.

an island Z with zero area. We then use the method from Section 3
to make a spiral from the island to the boundary. It does not matter
for the construction of the spiral that the island Z has zero area. See
Fig. 10 for a comparison between the basic method from Section 2
with the skeleton method described here when applied to the
same polygon.

We choose the skeleton as a connected subset of the edges of
the diagram VD = VD(P). We traverse VD once starting at the root
and decide for each edge whether to include it in the skeleton. If an
edge from node n to m is not included, we do not include anything
from the sub-tree VD[m]. For any node n, let d(n) be the length of
the shortest path from n to a leaf in VD[n], and let
D = maxucypd(n). We have found that the following criteria for
including an edge e from node n to m gives good results. We
require all the criteria to be satisfied.

1. The longest path from n to a leaf in VD[n] goes through m or
lle] + Hgt[m] > 1.5 - D, where ¢[e] is the length of edge e.

2. The length of the spanned boundary® of m is larger than 2 - D.

3. Hgt[m] > D.

Criterion 1 is to avoid getting a skeleton that branches into
many short paths. Therefore, we only make a branch which is
not following the longest path from n if it seems to become at least
0.5 - D long (taking criterion 3 into account). When criterion 2 fails,
it seems to be a good indicator that an edge is not a significant, cen-
tral edge in VD, but merely one going straight to the boundary. Cri-
terion 3 ensures that we do not get too close to the boundary. If we
did, we would get very short distances between the neighboring
revolutions there. If criterion 3 is the only failing criterion, we find
the point p on e such that Hgt[m] + ||p — Pt[m]|| = D and include
the edge from node n to p in the skeleton.

If the polygon is close to being a circle, the method described
here results in a very small skeleton, and we get a better spiral
using the basic method from Section 2 in that case. This can be
tested automatically by falling back to the basic method if the
circumference of the skeleton is less than, say, 5% of the circumfer-
ence of P.

3 The spanned boundary of a leaf | of VD is half of the sum of the lengths of the edges
of P incident to I. The spanned boundary of a node m of VD is the sum of the spanned
boundaries of the leafs in VD[m].

5. Computing a spiral in a pocket with multiple islands

The method from Section 3 works only for polygons with a sin-
gle island. If there are many islands Z,,...,Z,_; in a polygon P, we
may connect them with bridges in a tree structure to form one big
connected island, see Fig. 12. The basic idea of reducing the num-
ber of islands by connecting them is also used by Chuang and Yang
(2007) and Held and Spielberger (2014). Our method is a variation
of the minimum spanning tree algorithm of Dijkstra (1959). We
choose the bridges as edges in the Voronoi diagram of the area

P\ U;’:’(}I,-. The algorithm creates an array of the edges to use as
bridges. We keep a growing set s of the nodes of the Voronoi dia-
gram that we have connected by bridges so far. We first find one
central node ng and s is only containing ny in the beginning. We
use Dijkstra’s algorithm to make all shortest paths from nodes in
s. When we reach an island Z; whose corners are not in s, we use
the shortest path to that island as a bridge and add the nodes on
the shortest path and the corners on Z; to s. We implement the
algorithm so that bridges starting at nodes close to 1 are preferred
over nodes far from ny. That makes the bridges grow from the cen-
ter node ng out in every direction. If we did not choose the bridges
in this careful way, the resulting connected island would possibly
make unnecessarily long dead ends that would require many
revolutions to fill out by the spiral.

6. Conclusion

We have described methods for the computation of spiral tool
paths suitable for many shapes of pockets for which no previously
described algorithms yield equally good results. Our main contri-
bution is the new possibility of making a spiral morphing an island
in a pocket to the boundary of the pocket.

Our algorithms works under the assumption that the input is
polygonal. An obvious improvement is to generalize to input con-
sisting of line segments and circular arcs, as done by Held and
Spielberger (2009), using ArcVRONI by Held and Huber (2009) to
compute the Voronoi diagrams for such input.

Further work could be focused on developing a hybrid method
of the skeleton method and the method for handling one or more
islands. Also, one could work on automatic subdivision of complex
pockets into pockets more suitable for spiral machining. Given the
new techniques described in this paper, this problem seems

M. Abrahamsen /Journal of Computational Design and Engineering 6 (2019) 105-117 117

different from the one handled by Held and Spielberger (2014) and
Patel and Lalwani (2017).

Conflict of interest
None.
Acknowledgments

I would like to thank my colleague at Autodesk, Niels Woo-Sang
Kjaersgaard, for numerous helpful discussions while I did the devel-
opment of the spiral algorithms and for many useful comments on
this paper. My thanks also go to Autodesk in general for letting me
do this research and publish the result.

References

Banerjee, A., Feng, H.-Y., & Bordatchev, E. (2012). Process planning for floor
machining of 21D pockets based on a morphed spiral tool path pattern.
Computers & Industrial Engineering, 63(4), 971-979.

Bieterman, M., & Sandstrom, D. (2003). A curvilinear tool-path method for pocket
machining. Journal of Manufacturing Science and Engineering, Transactions of the
ASME, 125(4), 709-715.

Chuang, J.-J., & Yang, D. (2007). A laplace-based spiral contouring method for
general pocket machining. The International Journal of Advanced Manufacturing
Technology, 34(7-8), 714-723.

Cormen, T., Leiserson, C., Rivest, R., & Stein, C. (2009). Introduction to algorithms. MIT
Press.

Dijkstra, E. (1959). A note on two problems in connexion with graphs. Numerische
Mathematik, 1(1), 269-271.

Graham, R., & Yao, F. (1983). Finding the convex hull of a simple polygon. Journal of
Algorithms, 4(4), 324-331.

Handler, G. (1973). Minimax location of a facility in an undirected tree graph.
Transportation Science, 7(3), 287-293.

Held, M. (2001). VRONI: An engineering approach to the reliable and efficient
computation of Voronoi diagrams of points and line segments. Computational
Geometry, 18(2), 95-123.

Held, M., & de Lorenzo, S. (2018). On the generation of spiral-like paths within
planar shapes. Journal of Computational Design and Engineering, 5(3), 348-357.

Held, M., & Huber, S. (2009). Topology-oriented incremental computation of
Voronoi diagrams of circular arcs and straight-line segments. Computer-Aided
Design, 41(5), 327-338.

Held, M., & Spielberger, C. (2009). A smooth spiral tool path for high speed
machining of 2D pockets. Computer-Aided Design, 41(7), 539-550.

Held, M., & Spielberger, C. (2014). Improved spiral high-speed machining of
multiply-connected pockets. Computer-Aided Design and Applications, 11(3),
346-357.

Huang, N., Lynn, R., & Kurfess, T. (2017). Aggressive spiral tool paths for pocket
machining based on medial axis transformation. Journal of Manufacturing
Science and Engineering, 139(5).

Huertas-Talén, J., Garcia-Hernandez, C., Berges-Muro, L., & Gella-Marin, R. (2014).
Obtaining a spiral path for machining STL surfaces using non-deterministic
techniques and spherical tool. Computer-Aided Design, 50, 41-50.

Patel, D., & Lalwani, D. (2017). Quantitative comparison of pocket geometry and
pocket decomposition to obtain improved spiral tool path: A novel approach.
Journal of Manufacturing Science and Engineering, 139(3).

Romero-Carrillo, P., Torres-Jimenez, E., Dorado, R, & Diaz-Garrido, F. (2015).
Analytic construction and analysis of spiral pocketing via linear morphing.
Computer-Aided Design, 69, 1-10.

Xu,], Sun, Y., & Zhang, X. (2013). A mapping-based spiral cutting strategy for pocket
machining. The International Journal of Advanced Manufacturing Technology, 67
(9-12), 2489-2500.

Zhou, B., Zhao, J., & Li, L. (2015). CNC double spiral tool-path generation based on
parametric surface mapping. Computer-Aided Design, 67, 87-106.

http://refhub.elsevier.com/S2288-4300(17)30245-2/h0005
http://refhub.elsevier.com/S2288-4300(17)30245-2/h0005
http://refhub.elsevier.com/S2288-4300(17)30245-2/h0005
http://refhub.elsevier.com/S2288-4300(17)30245-2/h0005
http://refhub.elsevier.com/S2288-4300(17)30245-2/h0010
http://refhub.elsevier.com/S2288-4300(17)30245-2/h0010
http://refhub.elsevier.com/S2288-4300(17)30245-2/h0010
http://refhub.elsevier.com/S2288-4300(17)30245-2/h0015
http://refhub.elsevier.com/S2288-4300(17)30245-2/h0015
http://refhub.elsevier.com/S2288-4300(17)30245-2/h0015
http://refhub.elsevier.com/S2288-4300(17)30245-2/h0020
http://refhub.elsevier.com/S2288-4300(17)30245-2/h0020
http://refhub.elsevier.com/S2288-4300(17)30245-2/h0025
http://refhub.elsevier.com/S2288-4300(17)30245-2/h0025
http://refhub.elsevier.com/S2288-4300(17)30245-2/h0030
http://refhub.elsevier.com/S2288-4300(17)30245-2/h0030
http://refhub.elsevier.com/S2288-4300(17)30245-2/h0035
http://refhub.elsevier.com/S2288-4300(17)30245-2/h0035
http://refhub.elsevier.com/S2288-4300(17)30245-2/h0040
http://refhub.elsevier.com/S2288-4300(17)30245-2/h0040
http://refhub.elsevier.com/S2288-4300(17)30245-2/h0040
http://refhub.elsevier.com/S2288-4300(17)30245-2/h0045
http://refhub.elsevier.com/S2288-4300(17)30245-2/h0045
http://refhub.elsevier.com/S2288-4300(17)30245-2/h0050
http://refhub.elsevier.com/S2288-4300(17)30245-2/h0050
http://refhub.elsevier.com/S2288-4300(17)30245-2/h0050
http://refhub.elsevier.com/S2288-4300(17)30245-2/h0055
http://refhub.elsevier.com/S2288-4300(17)30245-2/h0055
http://refhub.elsevier.com/S2288-4300(17)30245-2/h0060
http://refhub.elsevier.com/S2288-4300(17)30245-2/h0060
http://refhub.elsevier.com/S2288-4300(17)30245-2/h0060
http://refhub.elsevier.com/S2288-4300(17)30245-2/h0065
http://refhub.elsevier.com/S2288-4300(17)30245-2/h0065
http://refhub.elsevier.com/S2288-4300(17)30245-2/h0065
http://refhub.elsevier.com/S2288-4300(17)30245-2/h0070
http://refhub.elsevier.com/S2288-4300(17)30245-2/h0070
http://refhub.elsevier.com/S2288-4300(17)30245-2/h0070
http://refhub.elsevier.com/S2288-4300(17)30245-2/h0075
http://refhub.elsevier.com/S2288-4300(17)30245-2/h0075
http://refhub.elsevier.com/S2288-4300(17)30245-2/h0075
http://refhub.elsevier.com/S2288-4300(17)30245-2/h0080
http://refhub.elsevier.com/S2288-4300(17)30245-2/h0080
http://refhub.elsevier.com/S2288-4300(17)30245-2/h0080
http://refhub.elsevier.com/S2288-4300(17)30245-2/h0085
http://refhub.elsevier.com/S2288-4300(17)30245-2/h0085
http://refhub.elsevier.com/S2288-4300(17)30245-2/h0085
http://refhub.elsevier.com/S2288-4300(17)30245-2/h0090
http://refhub.elsevier.com/S2288-4300(17)30245-2/h0090

	Spiral tool paths for high-speed machining of 2D pockets with or without �islands
	1 Introduction
	2 Computing a spiral in a pocket without islands
	2.1 The wave model
	2.2 Choosing the starting point [$]{p}_{0}[$] and the number of revolutions of the spiral
	2.3 Our representation of [$]{\cal{VD}}[$]
	2.4 Defining the movement of the wave
	2.5 Constructing the wavefronts
	2.6 Interpolating between the wavefronts
	2.7 Modifying the Voronoi diagram
	2.8 Rounding the polyline spiral

	3 Computing a spiral in a pocket with an island
	3.1 The Voronoi diagram of a pocket with an island
	3.2 Defining the movement of the wave
	3.3 Creating wavefronts
	3.4 Interpolating between wavefronts

	4 The skeleton method for a spiral in a pocket without islands
	5 Computing a spiral in a pocket with multiple islands
	6 Conclusion
	Conflict of interest
	Acknowledgments
	References

