
ABSTRACT SPLINES IN KREIN SPACES

J. I. GIRIBET, A. MAESTRIPIERI, AND F. MARTÍNEZ PERÍA

Abstract. We present generalizations to Krein spaces of the abstract in-
terpolation and smoothing problems proposed by Atteia in Hilbert spaces:
given H, K Krein spaces and E a Hilbert space, (bounded) surjective operators
T : H → K and V : H → E , ρ > 0 and fixed z0 ∈ E , we study the existence of
solutions of the problems argmin{[Tx, Tx ]K : V x = z0} and

argmin
{

[Tx, Tx ]K + ρ‖V x− z0‖2E : x ∈ H
}
.

1. Introduction

Since I. J. Schoenberg introduced the spline functions [30], they have became
an important notion in several branches of mathematics such us approximation
theory, statistics, numerical analysis and partial differential equations, among
others. Moreover, they have been useful to solve some practical issues in signal
and image processing [18, 31, 32, 16], computer graphics [5, 23, 24], learning
theory [9, 10] and other applications.

In the sixties, a Hilbert space formulation of spline functions, known as abstract
splines, was introduced by M. Atteia [3] and developed by several authors, see
for instance [2, 13, 22, 29]. Given Hilbert spaces H, K and E , consider (bounded)
surjective operators T : H → K and V : H → E . The abstract interpolation
problem in Hilbert spaces can be stated as follows: fixed z0 ∈ E , find x0 ∈ H
such that V x0 = z0 and

(1.1) ‖Tx0‖2K = min{‖Tx‖2K : V x = z0}.
Observe that x0 ∈ V −1({z0}) is an abstract interpolating spline (i.e. x0 satisfies

Eq. (1.1)) if and only if Tx0 realizes the distance between TV †z0 and the subspace
T (N(V )), where V † stands for the Moore-Penrose inverse of V . So, the existence
of x0 depends on the existence of a suitable (contractive) projection of TV †z0

onto T (N(V )). Then, if T (N(V )) is a closed subspace of K, the existence of x0 is
guaranteed because the selfadjoint projection onto T (N(V )) is always contractive.

On the other hand, the abstract smoothing problem introduces a new param-
eter ρ > 0 in order to balance the amounts ‖Tx‖2 and ‖V x − z0‖2. Formally,
given ρ > 0 and fixed z0 ∈ E , it consists in minimizing the function Fρ : H → R+

defined by

(1.2) Fρ(x) = ‖Tx‖2K + ρ‖V x− z0‖2E .

Key words and phrases. Krein spaces, abstract splines, oblique projections.
1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Diposit Digital de Documents de la UAB

https://core.ac.uk/display/13293279?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 J. I. GIRIBET, A. MAESTRIPIERI, AND F. MARTÍNEZ PERÍA

This problem can be reduced to a least squares problem. In fact,

Fρ(x) = ‖Lx− (0, z0)‖2ρ,

where ‖ ‖ρ is the norm associated to the inner product on K × E defined by
〈 (y, z), (y′, z′) 〉ρ = 〈 y, y′ 〉K + ρ 〈 z, z′ 〉E if (y, z), (y′, z′) ∈ K × E , and L is an
auxiliar operator from H into K×E . Therefore, the abstract smoothing problem
is also related to the existence of a selfadjoint (contractive) projection onto R(L).

There is also a variational problem which mixes both abstract interpolation
and smoothing problems. In the abstract mixed problem (as it is known) the
“measurement operator” V : H → E splits up into two surjective operators. The
technique used by A. Rozhenko [26] to solve this problem is similar to the one
mentioned above to solve the abstract smoothing problem. So, the existence of
“abstract mixed splines” also depends on the existence of a suitable contractive
projection.

For a complete exposition on these subjects see the books by Atteia [4],
A. Bezhaev and V. Vasilenko [6], and the survey by R. Champion et al. [12].

In this work, mainly motivated by the ideas exposed above, we present gener-
alizations of the abstract interpolation, smoothing and mixed problems to Krein
spaces. As we have mentioned before, the techniques used to solve these problems
in the Hilbert space setting, involved contractive projections onto some subspaces.
So, they (or their complementary subspaces) are asked to be closed. In order to
reproduce this geometrical approach for Krein spaces, the hypothesis on the sub-
spaces has to be modified. Recall that to guarantee the existence of a selfadjoint
projection onto a subspace of a Krein space, it has to be regular. Moreover, if the
projection has to be contractive then its nullspace has to be uniformly J-positive,
where J stands for the fundamental symmetry of the Krein space (see [17]).

First, we study the indefinite abstract interpolation problem. Specifically, if H
and K are two Krein spaces and E is a Hilbert space, given (bounded) surjective
operators T : H → K and V : H → E and fixed z0 ∈ E , we are interested in
characterizing (if there is any) those x0 ∈ H such that V x0 = z0 and

[Tx0, Tx0 ]K = min{[Tx, Tx ]K : V (x) = z0}.
Using a similar argument as in the definite interpolation problem, it can be shown
that the existence of x0 depends on the existence of a suitable (contractive)
projection of TV †z0 onto the J-orthogonal companion of T (N(V )) in K. Then,
if T (N(V )) is a closed uniformly positive subspace of K, the existence of x0 is
guaranteed.

On the other hand, in the indefinite abstract smoothing problem, we look for
the minimizers of the function Fρ : H → R defined by

(1.3) Fρ(x) = [Tx, Tx ]K + ρ‖V x− z0‖2E , x ∈ H.
This problem can be no longer restated as a least squares problem, but as an
indefinite least squares problem. The technique used to describe its solutions
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is similar to the one used in the definite smoothing problem, but a particular
orthogonal decomposition of the range of a given operator is needed.

The last problem we consider is the indefinite abstract mixed problem. If H
and K are Krein spaces and E1 and E2 are Hilbert spaces, consider (bounded)
surjective operators T : H → K, V1 : H → E1 and V2 : H → E2. Given ρ > 0 and
fixed (z1, z2) ∈ E1 × E2, we look for those x0 ∈ H such that V1x0 = z1 which are
minimizers of the function

(1.4) Gρ(x) = [Tx, Tx ]K + ρ‖V2x− z2‖2E2 , x ∈ V −1
1 ({z1}).

Spline functions in indefinite metric spaces have already been studied in [9] to
solve numerical aspects related to learning theory problems. Although the prob-
lems presented there are different from those studied in this work, they are closely
related. In [10] another version of the abstract indefinite smoothing problem is
studied: given z0 ∈ E , instead of finding the minimum of the function Fρ given
in Eq. (1.3), the authors are interested in stabilizing it.

The paper is organized as follows: Section 2 contains the preliminaries. In
Section 3 we study the indefinite abstract interpolation problem, we give nec-
essary and sufficient conditions for the existence (and uniqueness) of solutions
of this problem, and characterize them. Also, given a frame {fn}n∈N for the
Hilbert space E , we give conditions to obtain different frames for subspaces of |H|
(the Hilbert space associated toH) composed by interpolating splines correspond-
ing to the family {fn}n∈N.

Section 4 is devoted to the study of the indefinite abstract smoothing problem:
after characterizing its set of solutions (for a fixed ρ), we show that it is related
to the set of solutions of an indefinite interpolation problem for a certain zρ ∈ E .
Then, as it was studied by Atteia in Hilbert spaces, we analyze the convergence of
the solutions of the indefinite smoothing problem to the solutions of the indefinite
interpolation problem as ρ goes to infinity.

In section 5 the abstract mixed problem studied by A. Rozhenko and
V. Vasilenko [26, 27, 28], is extended to Krein spaces.

2. Preliminaries

Along this work E denotes a complex (separable) Hilbert space. If F is another
Hilbert space then L(E ,F) is the algebra of bounded linear operators from E
into F , L(E) = L(E , E) and denote by Q the set of (oblique) projections, i.e.
Q = {Q ∈ L(E) : Q2 = Q}. If T ∈ L(E ,F) then T ∗ ∈ L(F , E) denotes the
adjoint operator of T , R(T ) stands for its range and N(T ) for its nullspace. Also,
if T ∈ L(E ,F) has closed range, T † denotes the Moore-Penrose inverse of T .

If S and T are two (closed) subspaces of E , denote by S u T the direct sum of
S and T , S ⊕T the (direct) orthogonal sum of them and S 	T := S ∩ (S ∩T )⊥.
If E = SuT , the oblique projection onto S along T , PS//T , is the unique Q ∈ Q
with R(PS//T ) = S and N(PS//T ) = T . In particular, PS := PS//S⊥ is the
orthogonal projection onto S.
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2.1. Krein spaces. In what follows we present the standard notation and some
basic results on Krein spaces. For a complete exposition on the subject (and the
proofs of the results below) see the books by J. Bognár [7] and T. Ya. Azizov
and I. S. Iokhvidov [19], the monographs by T. Ando [1] and by M. Dritschel and
J. Rovnyak [15] and the paper by J. Rovnyak [25].

Given a Krein space (H, [ , ]) with a fundamental decomposition H = H+uH−,
the direct (orthogonal) sum of the Hilbert spaces (H+, [ , ]) and (H−,−[ , ]) is
denoted by (|H|, 〈 , 〉). Sometimes we use the notation [ , ]H instead of [ , ] to
emphasize the Krein space considered.

Observe that the indefinite metric ofH and the inner product of |H| are related
by means of a fundamental symmetry, i.e. a unitary selfadjoint operator J ∈ L(H)
which satisfies:

[x, y ] = 〈 Jx, y 〉 , x, y ∈ H.
If H and K are Krein spaces then L(H,K) stands for L(|H|, |K|), and L(H) for
L(|H|). Given T ∈ L(H,K), the J-adjoint operator of T is defined by T# =
JHT

∗JK, where JH and JK are the fundamental symmetries associated to H and
K, respectively. An operator T ∈ L(H) is said to be J-selfadjoint if T = T#.

Given a subspace S of a Krein space H, the J-orthogonal companion to S is
defined by

S [⊥] = {x ∈ H : [x, s ] = 0, for every s ∈ S}.
Notice that if T ∈ L(H,K) and S is a closed subspace of K then

(2.1) T#(S)[⊥]H = T−1(S [⊥]K).

A subspace S of H is non degenerated if S ∩ S [⊥] = {0}. A vector x ∈ H is
J-positive if [x, x ] > 0. A subspace S of H is J-positive if every x ∈ S, x 6= 0, is
a J-positive vector. Moreover, it is said to be uniformly J-positive if there exists
α > 0 such that

[x, x ] ≥ α‖x‖2, for every x ∈ S,
where ‖ ‖ stands for the norm of the associated Hilbert space |H|. J-nonnegative,
J-neutral, J-negative and J-nonpositive vectors (and subspaces) are defined anal-
ogously. Notice that if S is a J-definite subspace of H then it is non degenerated.

Definition. Let H be a Krein space with fundamental symmetry J . A subspace
S of H is called regular if S is the range of a J-selfadjoint projection.

Proposition 2.1 ([19], Cor. 7.17). Let H be a Krein space with fundamental
symmetry J and S a J-nonnegative closed subspace of H. Then, S is regular if
and only if S is uniformly J-positive.

Corollary 2.2 ([7], Thm. 8.4). Let H be a Krein space with fundamental symme-
try J and S a closed uniformly J-positive subspace of H. If Q is the J-selfadjoint
projection onto S then, given x ∈ H,

[x−Qx, x−Qx ] = min
y∈S

[x− y, x− y ].
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2.2. Angles between subspaces and reduced minimum modulus.

Definition. Let S and T be two closed subspaces of a Hilbert space E . The
cosine of the Friedrichs angle between S and T is defined by

c(S, T ) = sup{| 〈x, y 〉 | : x ∈ S 	 T , ‖x‖ = 1, y ∈ T 	 S, ‖y‖ = 1}.

It is well known that

c(S, T ) < 1 ⇔ S + T is closed ⇔ S⊥ + T ⊥ is closed ⇔ c(S⊥, T ⊥) < 1.

Furthermore, if PS and PT are the orthogonal projections onto S and T , respec-
tively, then c(S, T ) < 1 if and only if (I−PS)PT has closed range, or equivalently,
(I − PT )PS has closed range. See [14] for further details.

Proposition 2.3 ([8, 20]). Given a Hilbert space H, let A,B ∈ L(H) be closed
range operators. Then, AB has closed range if and only if

c(R(B), N(A)) < 1.

The next definition is due to T. Kato, see [21, Ch. IV, § 5] for a complete
exposition on this subject.

Definition. The reduced minimum modulus γ(T ) of an operator T ∈ L(E) is
defined by

γ(T ) = inf{‖Tx‖ : ‖x‖ = 1; x ∈ N(T )⊥}.

It is well known that γ(T ) = γ(T ∗) = γ(T ∗T )1/2. Also, it can be shown
that an operator T 6= 0 has closed range if and only if γ(T ) > 0. In this case,
γ(T ) = ‖T †‖−1.

3. Indefinite abstract splines: definitions and basic results

Recently, some interpolation methods in Reproducing Kernel Hilbert Spaces
(RKHS) have shown to be useful to deal with machine learning problems. Given a
data set X = {x1, . . . , xm} ⊆ X and labels Y = {y1, . . . , ym} ⊂ R, it is necessary
to estimate the minimal norm function f ∈ H such that f(xi) = yi, where H is
a RKHS with kernel

k : X × X → R.
If E : H → Rm is the evaluation map given by Ef = (f(x1), . . . , f(xm)), the
above interpolation problem consists in finding f ∈ H such that

Ef = (y1, . . . , ym) = y and ‖f‖2 = min
g∈E−1(y)

‖g‖2.

Notice that the adjoint operator E∗ : Rm → H is given by

E∗α =
m∑
i=1

αik(xi, x),
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where α = (α1, . . . , αm) ∈ Rm. Then, it follows that K = EE∗ is the Gram
matrix associated to the kernel k, i.e. Kij = k(xi, xj).

Since H = R(E∗)⊕N(E), it is easy to see that there is a solution to the above
problem if and only if there exists f ∈ R(E∗) such that Ef = y, or equivalently,
there exists α ∈ Rm such that Kα = y (in this case the minimizing function is
reconstructed as f(x) = E∗α =

∑m
i=1 αik(xi, x)). So, the interpolation spline can

be defined without using the norm of the RKHS but only its kernel.
In order to admit indefinite kernels to study machine learning problems,

S. Canu et al. provided a definition of interpolating splines in a Reproducing
Kernel Krein Space (RKKS), see [10, Definition 3.3]. Since the interpolation
problem in RKHS mentioned above is a particular case of the abstract interpola-
tion problem considered by M. Atteia (see Eq. (1.1)), it is natural to considerer
a general indefinite version of the abstract interpolation problem.

Throughout this work, H and K are Krein spaces with fundamental symmetries
JH and JK, respectively, E is a Hilbert space and the operators T ∈ L(H,K) and
V ∈ L(H, E) are surjective. Consider the following generalization of the abstract
interpolation problem [3]:

Problem 1. Given z0 ∈ E , find x0 ∈ V −1({z0}) such that

(3.1) [Tx0, Tx0 ]K = min{[Tx, Tx ]K : V x = z0}.
Definition. Any element x0 ∈ V −1({z0}) satisfying Eq. (3.1) is called an indef-
inite abstract spline or, more specifically, a (T, V )-interpolant to z0 ∈ E . The set
of (T, V )-interpolants to z0 is denoted by sp(T, V, z0).

Considering the Moore-Penrose inverse of V , the above problem can be restated
as: Fixed z0 ∈ E , find u0 ∈ N(V ) such that

(3.2) [T (V †z0 + u0), T (V †z0 + u0) ]K = min
u∈N(V )

[T (V †z0 + u), T (V †z0 + u) ]K.

As it was mentioned in the introduction, the following lemma shows under
which conditions indefinite abstract splines do exists.

Lemma 3.1. Given z0 ∈ E, x0 ∈ V −1({z0}) is a (T, V )-interpolant to z0 if and
only if T (N(V )) is a JK-nonnegative subspace of K and Tx0 ∈ T (N(V ))[⊥]K.

Proof. Suppose that x0 ∈ H is a (T, V )-interpolant to z0. Then, for every u ∈
N(V ) and α ∈ R,

[Tx0, Tx0 ] ≤ [T (x0 + αu), T (x0 + αu) ]

= [Tx0, Tx0 ] + 2αRe[Tx0, Tu ] + α2[Tu, Tu ].

Therefore, 2αRe[Tx0, Tu ] + α2[Tu, Tu ] ≥ 0 for every α ∈ R, and a standard
argument shows that Re[Tx0, Tu ] = 0. Analogously, if β = iα, α ∈ R, it
follows that Im[Tx0, Tu ] = 0. Then, [Tx0, Tu ] = 0 and [Tu, Tu ] ≥ 0 for every
u ∈ N(V ).
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Conversely, suppose that T (N(V )) is a JK-nonnegative subspace of K and there
exists x0 ∈ V −1({z0}) such that Tx0 [⊥]K T (N(V )). If u0 = x0 − V †z0 ∈ N(V )
then, for every u ∈ N(V ),

[T (V †z0 + u), T (V †z0 + u) ] = [T (V †z0 + u0), T (V †z0 + u0) ]

+ [T (u− u0), T (u− u0) ] ≥ [Tx0, Tx0 ].

Therefore, x0 is a (T, V )-interpolant to z0. �

As a consequence of Eq. (2.1), sp(T, V, z0) can be characterized as the inter-
section of a subspace and an affine manifold of H.

Corollary 3.2. Suppose that T (N(V )) is a JK-nonnegative subspace of K and
let z0 ∈ E. Then,

sp(T, V, z0) = (V †z0 +N(V )) ∩ T#T (N(V ))[⊥]H .

Proof. Given z0 ∈ E , suppose that x0 ∈ H is a (T, V )-interpolant to z0. Then,
u0 = x0 − V †z0 ∈ N(V ) and by the above lemma, Tx0 ∈ T (N(V ))[⊥]K , or
equivalently by Eq. (2.1), x0 ∈ T#T (N(V ))[⊥]H . Therefore, x0 ∈ (V †z0+N(V ))∩
T#T (N(V ))[⊥]H .

On the other hand, if x = V †z0 + u ∈ T#T (N(V ))[⊥]H with u ∈ N(V ), then
Tx ∈ T (N(V ))[⊥]K and V x = z0. So, applying Lemma 3.1, it follows that x ∈
sp(T, V, z0). �

The following lemma shows how regularity conditions on T (N(V )) determine
relationships between the subspaces N(T ) and T#T (N(V ))[⊥]H .

Lemma 3.3.

(1) If T (N(V )) is non degenerated, then N(V ) ∩ T#T (N(V ))[⊥]H = N(V ) ∩
N(T ).

(2) If T (N(V )) is regular, then H = N(V ) + T#T (N(V ))[⊥]H.

Proof. (i.) The inclusion N(T ) ∩ N(V ) ⊆ N(V ) ∩ T#T (N(V ))[⊥] is straight-
forward, see Eq. (2.1). On the other hand, if x ∈ N(V ) ∩ T#T (N(V ))[⊥] then
Tx ∈ T (N(V )) ∩ T (N(V ))[⊥] = {0}. Thus, x ∈ N(V ) ∩N(T ).
(ii.) If T (N(V )) is a regular subspace of K then K = T (N(V )) + T (N(V ))[⊥].
Therefore,

H = T−1(T (N(V ))) + T−1(T (N(V ))[⊥]) = N(V ) + T#T (N(V ))[⊥]

(see Eq. (2.1)). �

As mentioned above, if T (N(V )) is a regular subspace of K then H = N(V ) +
T#T (N(V ))[⊥]. But this may not be a direct sum. Therefore, there is a family
of closed subspaces of T#T (N(V ))[⊥] which are complementary to N(V ). Along
this work, if T (N(V )) is a regular subspace of K we will consider the following
projection:

(3.3) Q0 = PN(V )//T#T (N(V ))[⊥]	N(V ).
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Proposition 3.4. Suppose that T (N(V )) is a closed subspace of K. Then, the set
sp(T, V, z) 6= ∅ for every z ∈ E if and only if T (N(V )) is uniformly JK-positive.
In this case, sp(T, V, z) is an affine manifold parallel to N(V ) ∩N(T ).

Proof. Suppose that T (N(V )) is a closed uniformly JK-positive subspace of K.
Then, by Proposition 2.1, T (N(V )) is a regular subspace of K, and Q0 ∈ Q
(see Lemma 3.3). Fixed z ∈ E , let x = (I − Q0)V

†z ∈ H. Then, V x = z and
Tx ∈ T (N(V ))[⊥]. So, by Lemma 3.1, x ∈ sp(T, V, z), i.e. sp(T, V, z) 6= ∅ for
every z ∈ E .

Conversely, suppose that sp(T, V, z) 6= ∅ for every z ∈ E . Then, as a con-
sequence of Lemma 3.1, T (N(V )) is a JK-nonnegative subspace of K. Further-
more, for each z ∈ E , there exists a vector xz ∈ H such that V xz = z and
Txz ∈ T (N(V ))[⊥]K . Since V †z = (V †z − xz) + xz and V (V †z − xz) = 0 for
every z ∈ E , it is easy to see that N(V )⊥ ⊆ N(V ) + T#T (N(V ))[⊥]. Therefore,
H = N(V ) + T#T (N(V ))[⊥] and K = T (N(V )) + T (N(V ))[⊥]. So, T (N(V )) is
a regular JK-nonnegative subspace of K, i.e. T (N(V )) is a uniformly JK-positive
subspace of K (see Proposition 2.1).

Assuming that T (N(V )) is uniformly JK-positive, if x1, x2 ∈ sp(T, V, z) then,
by Lemma 3.3,

x1 − x2 ∈ N(V ) ∩ T#T (N(V ))[⊥] = N(V ) ∩N(T ). �

Corollary 3.5. Suppose that T (N(V )) is a closed uniformly JK-positive subspace
of K and N(T ) ∩ N(V ) = {0}. Then, given z ∈ E, sp(T, V, z) is a singleton.
More precisely,

sp(T, V, z) = {PT#T (N(V ))[⊥]//N(V )V
†z}.

In what follows, fixed z0 ∈ E , it is shown that sp(T, V, z0) can be parametrized
by means of a family of projections onto N(V ).

Proposition 3.6. Suppose that T (N(V )) is a closed uniformly JK-positive sub-
space of K. Given z0 ∈ E, x ∈ sp(T, V, z0) if and only if there exists Q ∈ Q with
R(Q) = N(V ) and N(Q) ⊆ T#T (N(V ))[⊥]H such that x = (I −Q)V †z0.

To prove the above proposition, we need the following lemma.

Lemma 3.7. Let Q ∈ Q and suppose that T (N(V )) is a regular subspace of K.
Then, R(Q) = N(V ) and N(Q) ⊆ T#T (N(V ))[⊥]H if and only if Q = Q0 + Z,
where Z ∈ L(H) is such that N(V ) ⊆ N(Z) and R(Z) ⊆ N(V ) ∩N(T ).

Proof. IfQ ∈ L(H) is a projection with R(Q)=N(V ) andN(Q)⊆T#T (N(V ))[⊥],
let Z = Q − Q0. Since R(Q) = R(Q0) = N(V ) it is trivial that N(V ) ⊆ N(Z).
On the other hand, consider y = Zx ∈ R(Z): y = Qx − Q0x ∈ N(V ) and
y = (I −Q0)x− (I −Q)x ∈ T#T (N(V ))[⊥]. Then y ∈ N(V ) ∩ T#T (N(V ))[⊥] =
N(V ) ∩N(T ).

Conversely, given Z ∈ L(H) with N(V ) ⊆ N(Z) and R(Z) ⊆ N(V ) ∩ N(T ),
consider Q = Q0 + Z. Then, Q2 = Q because Z2 = 0, Q0Z = Z and ZQ0 = 0.
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It is easy to see that R(Q) ⊆ N(V ) and, if x ∈ N(V ) then Qx = Q0x = x.
Therefore, R(Q) = N(V ). Finally, observe that if x ∈ N(Q) then x = (I−Q)x =
(I −Q0)x− Zx ∈ T#T (N(V ))[⊥], because N(Q0) +R(Z) ⊆ T#T (N(V ))[⊥]. �

Proof. ( of Proposition 3.6) If x = (I−Q)V †z0, where Q ∈ Q with R(Q) = N(V )
and N(Q) ⊆ T#T (N(V ))[⊥], it is easy to see that V x = z0 and Tx ∈ T (N(V ))[⊥].
Then, by Lemma 3.1, x ∈ sp(T, V, z0).

Conversely, as a consequence of Proposition 3.4, sp(T, V, z0) = (I −Q0)V
†z0 +

N(V )∩N(T ) because (I−Q0)V
†z0 ∈ sp(T, V, z0). Then, if x ∈ sp(T, V, z0) there

exists u ∈ N(V )∩N(T ) such that x = (I −Q0)V
†z0 + u. So, consider Z ∈ L(H)

such that Z(V †z0) = −u and Zy = 0 if y⊥V †z0. Then,

x = (I −Q0)V
†z0 − ZV †z0 = (I − (Q0 + Z))V †z0,

N(V ) ⊆ N(Z) and R(Z) ⊆ N(V ) ∩ N(T ). Therefore, by the above lemma,
Q = Q0 + Z ∈ Q with R(Q) = N(V ) and N(Q) ⊂ T#T (N(V ))[⊥]. �

3.1. Frames of indefinite abstract splines. Recall that given a sequence
{fn}n∈N in a Banach space X, it is called a Schauder basis of X if for every
x ∈ X there is a unique sequence of scalars {cn}n∈N so that x =

∑∞
n=1 cnfn,

where the series converges in the norm topology. A vector sequence {fn}n∈N in
X is a Riesz basis if there exist constants 0 < A < B such that

(3.4) A
m∑
n=1

|cn|2 ≤

∥∥∥∥∥
m∑
n=1

cnfn

∥∥∥∥∥
2

≤ B
m∑
n=1

|cn|2,

for all finite sequences c1, . . . , cm.
On the other hand, given a Hilbert space E , a sequence {fn}n∈N in E is a frame

for E if there exist constants 0 < A < B such that

(3.5) A‖z‖2 ≤
∞∑
n=1

| 〈 z, fn 〉 |2 ≤ B‖z‖2, for every z ∈ E .

Observe that, if E is a Hilbert space, {fn}n∈N is a Riesz basis of E if and only
if {fn}n∈N is a frame for E such that, if

∑∞
n=1 cnfn = 0, then cn = 0 for every

n ∈ N. See [11, 33] for further details on this subject.

In what follows, recall that T ∈ L(H,K) and V ∈ L(H, E) are surjective
operators and suppose that T (N(V )) is a closed uniformly JK-positive subspace
of K.

Proposition 3.8. Given a sequence {fn}n∈N in E, suppose that there exists a
frame {gn}n∈N for W = T#T (N(V ))[⊥]H such that gn ∈ sp(T, V, fn) for every
n ∈ N. Then, {fn}n∈N is a frame for E.

Proof. If gn ∈ sp(T, V, fn) then, by Proposition 3.6, there exists Qn ∈ Q with
R(Qn)=N(V ) and N(Qn)⊆W , such that gn=(I −Qn)V †fn. Since V (I −Qn)V †
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= IE for every n ∈ N, it is easy to see that
∞∑
n=1

| 〈 z, fn 〉 |2 =
∞∑
n=1

|
〈
V ∗z, (I −Qn)V †fn

〉
|2 =

∞∑
n=1

| 〈PWV ∗z, gn 〉 |2,

for every z ∈ E , since PW(I − Qn) = (I − Qn). Therefore, if {gn}n∈N is a frame
for W with frame bounds 0 < A < B,

A‖PWV ∗z‖2 ≤
∞∑
n=1

| 〈 z, fn 〉 |2 ≤ B‖PWV ∗z‖2 ≤ B‖V ‖2‖z‖2,

for every z ∈ E . But ‖PWV ∗z‖2 ≥ γ(PWV
∗)2‖z‖2 = γ(V PW)2‖z‖2. Since

c(W , N(V )) < 1 it follows by Proposition 2.3 that V PW has closed range,
so γ(V PW) > 0. Then, {fn}n∈N is a frame for E , with frame bounds 0 <
Aγ(V PW)2 < B‖V ‖2. �

The next result shows that, given a frame {fn}n∈N for E , it is possible to obtain
frames of splines for any complement of N(V ) contained in T#T (N(V ))[⊥].

Proposition 3.9. Given a sequence {fn}n∈N in E, consider gn = (I −Q)V †fn ∈
sp(T, V, fn), n ∈ N, where Q ∈ L(H) is any fixed projection such that R(Q) =
N(V ) and N(Q) ⊆ T#T (N(V ))[⊥]H. Then,

(1) {fn}n∈N is a frame for E if and only if {gn}n∈N is a frame for N(Q).
(2) {fn}n∈N is a Riesz basis of E if and only if {gn}n∈N is a Riesz basis of

N(Q).
(3) {fn}n∈N is a (Schauder) basis of E if and only if {gn}n∈N is a (Schauder)

basis of N(Q).

Proof. Observe that, if W = (I − Q)V †, then R(W ) = R(I − Q) = N(Q) is
closed. Then, γ(W ) > 0.
(i.) Suppose that {fn}n∈N is a frame for E . Notice that

∞∑
n=1

| 〈x, gn 〉 |2 =
∞∑
n=1

| 〈x,Wfn 〉 |2 =
∞∑
n=1

| 〈W ∗x, fn 〉 |2 for every x ∈ H.

So, if 0 < A < B are frame bounds for {fn}n∈N then

Aγ(W )2‖x‖2 = Aγ(W ∗)2‖x‖2 ≤ A‖W ∗x‖2 ≤
∞∑
n=1

| 〈x, gn 〉 |2

≤ B‖W ∗x‖2 ≤ B‖W‖2‖x‖2,

for every x ∈ N(W ∗)⊥ = N(Q). Therefore, {gn}n∈N is a frame for N(Q). The
other implication is a consequence of Proposition 3.8.

(ii.) Suppose that {fn}n∈N is a Riesz basis of E . Then it is also a frame for
E and, by item 1, the sequence {gn}n∈N is a frame for N(Q). Furthermore, if
there exists a sequence (αk)k∈N such that

∑∞
k=1 αkgk = 0, then applying V to

both sides of the equation we obtain that
∑∞

k=1 αkfk = 0. So, αk = 0 for every
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k ∈ N because {fn}n∈N is a Riesz basis of E . Therefore, {gn}n∈N is a Riesz basis
of N(Q). The other implication follows in the same way.

(iii.) It is analogous to the proof of [4, Ch. III, Proposition 1.1]. �

Given a sequence {fn}n∈N in E , if N(T ) ∩ N(V ) = {0} it is easy to see that
{fn}n∈N is a frame for E if and only if {gn}n∈N is a frame for T#T (N(V ))[⊥],
where gn is the (unique) (T, V )-interpolant to fn (see Proposition 3.9). However,
the following example shows that, if N(T )∩N(V ) 6= {0}, given a frame {fn}n∈N
for E it is easy to construct gn ∈ sp(T, V, fn) (for every n ∈ N) such that {gn}n∈N
is not a frame.

Example 1. Observe that if {fn}n∈N is a frame with frame bounds 0 < A < B
then ‖fn‖2 ≤ B. Given u ∈ N(T ) ∩N(V ) with ‖u‖ = 1, define

Zn(x) =

{
nαu if x = αV †fn, α ∈ C;

0 if x⊥V †fn.

Then, Zn ∈ L(H) and satisfies N(V ) ⊆ N(Zn) and R(Zn) ⊆ N(T ) ∩ N(V ).
Furthermore, by Lemma 3.7, Qn = Q0 + Zn is a projection with R(Qn) = N(V )
and N(Qn) ⊆ T#T (N(V ))[⊥]. Therefore, gn = (I − Qn)V †fn ∈ sp(T, V, fn) for
every n ∈ N.

But observe that {gn}n∈N can not be a frame because ‖gn‖ → +∞ as n→∞.
Indeed, it is easy to see that

‖gn‖ ≥ ‖ZnV †fn‖ − ‖(I −Q0)V
†fn‖ ≥ n− ‖I −Q0‖‖V †‖B1/2 → +∞,

as n→∞.

4. Indefinite abstract smoothing splines

Let H and K be Krein spaces with fundamental symmetries JH and JK, respec-
tively, and consider a Hilbert space E . Given surjective operators T ∈ L(H,K)
and V ∈ L(H, E), consider the following generalization of the abstract smoothing
problem [4]:

Problem 2. Given ρ > 0 and fixed z0 ∈ E , find x0 ∈ H such that

(4.1) [Tx0, Tx0 ]K + ρ‖V x0 − z0‖2E = min
x∈H

(
[Tx, Tx ]K + ρ‖V x− z0‖2E

)
.

Definition. Any element x0 ∈ H satisfying Eq. (4.1) is called a (T, V, ρ)-
smoothing spline to z0 ∈ E . The set of (T, V, ρ)-smoothing splines to z0 is denoted
by sm(T, V, ρ, z0).

To study this problem consider the indefinite metric defined on K × E by:

(4.2) [ (y, z), (y′, z′) ]ρ = [ y, y′ ]K + ρ 〈 z, z′ 〉E , (y, z), (y′, z′) ∈ K × E .
Notice thatK×E is a Krein space with the indefinite metric defined above. In fact,
considering the fundamental symmetry JK of K and the inner product 〈 , 〉ρ in
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K×E given by 〈 (y, z), (y′, z′) 〉ρ = 〈 y, z 〉K+ρ 〈 z, z′ 〉E where (y, z), (y′, z′) ∈ K×E ,

the operator Jρ ∈ L(K × E) defined as

Jρ(y, z) = (JKy, z), (y, z) ∈ K × E ,

is a fundamental symmetry associated to (K × E , [ , ]ρ). Also, considering the
operator L : H → K× E defined by

Lx = (Tx, V x), x ∈ H,

observe that Problem 2 can be restated as the following indefinite least squares
problem: given ρ > 0 and fixed z0 ∈ E , find x0 ∈ H such that

(4.3) [Lx0 − (0, z0), Lx0 − (0, z0) ]ρ = min
x∈H

[Lx− (0, z0), Lx− (0, z0) ]ρ.

Using the formulation given above, the next results characterize the solutions
of the indefinite abstract smoothing problem.

Lemma 4.1. Given z0 ∈ E, x0 ∈ H is a solution of Problem 2 if and only if
R(L) is Jρ-nonnegative and x0 is a solution of the equation:

(T#T + ρV #V )x = ρV #z0.

Proof. Following the same arguments as in Lemma 3.1, it is easy to see that
x0 ∈ H satisfies Eq. (4.3) if and only if R(L) is Jρ-nonnegative and

[Lx0 − (0, z0), Lx ]ρ = 0, for every x ∈ H.

or equivalently, L#(Lx0 − (0, z0)) = 0. Since L# ∈ L(K × E ,H) is given by
L#(y, z) = T#y + ρV #z, (y, z) ∈ K × E , it follows that (T#T + ρV #V )x0 =
ρV #z0. �

In order to obtain some alternative characterizations for the solutions of
Problem 2, it is necessary to consider the particular case of a closed range op-
erator L. The next lemma gives a condition between the operators V and T
that guarantees that L has closed range. The proof is similar to the one given in
[4, Ch. III, Lemma 2.1] for the Hilbert space case.

Lemma 4.2. If T (N(V )) is a closed subspace of K then R(L) is a closed subspace
of K × E.

Proof. Given (y, z) ∈ K × E , suppose that {xn}n≥1 ⊆ N(L)⊥ is such that
Lxn → (y, z). If vn = V †V xn ∈ N(V )⊥ ⊆ N(L)⊥, then vn → V †z ∈ H and
un = xn−vn ∈ N(V )∩N(L)⊥. Therefore, V vn = V xn → z and Tun → y−TV †z.

Since T (N(V )) is a closed subspace ofK, the operatorW = T |N(V ) : N(V )→ K
has closed range and, for every n ≥ 1, un = W †Tun because un ∈ N(V ) ∩
N(L)⊥ = N(W )⊥. Thus, xn = vn + un = vn + W †Tun → V †z + W †(y − TV †z).
Furthermore, if x = V †z + W †(y − TV †z), it follows that Tx = y and V x = z
because y−TV †z ∈ T (N(V )). Therefore, R(L) is a closed subspace of K×E . �
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As a consequence of Corollary 2.2, if there exists

arg min
x∈H

[Lx− (y, z), Lx− (y, z) ]ρ

for every (y, z) ∈ K×E , then R(L) is a regular subspace of K×E . The following
proposition shows that this assertion also holds considering the proper subspace
of K × E obtained by embedding E into K × E .

Proposition 4.3. Problem 2 admits a solution for every z ∈ E if and only if
R(L) is a closed uniformly Jρ-positive subspace of K × E.

Proof. Suppose that, Problem 2 admits a solution for every z ∈ E . Applying
Lemma 4.1, it follows that R(L) is Jρ-nonnegative. Given (y, z) ∈ K×E , consider
w = u+ T †y, where u ∈ H satisfies [Lu− (0, z − V T †y), Lu− (0, z − V T †y) ]ρ =
minx∈H[Lx− (0, z − V T †y), Lx− (0, z − V T †y) ]ρ.

Then, for every x ∈ H,

[Lw − (y, z), Lw − (y, z) ]ρ =

= [Lu+ (y, V T †y)− (y, z), Lu+ (y, V T †y)− (y, z) ]ρ

= [Lu− (0, z − V T †y), Lu− (0, z − V T †y) ]ρ

≤ [L(x− T †y)− (0, z − V T †y), L(x− T †y)− (0, z − V T †y) ]ρ

= [Lx− (y, z), Lx− (y, z) ]ρ.

Therefore, for every (y, z) ∈ K × E , there exists w ∈ H such that

[Lw − (y, z), Lw − (y, z) ]ρ = min
x∈H

[Lx− (y, z), Lx− (y, z) ]ρ.

Then, as in Lemma 3.1, it is easy to see that for every (y, z) ∈ K×E there exists
w ∈ H such that Lw − (y, z) ∈ R(L)[⊥]ρ . So, K × E = R(L) + R(L)[⊥]ρ , i.e.
R(L) is a regular subspace of K × E . Thus, by Proposition 2.1, R(L) is a closed
uniformly Jρ-positive subspace of K × E .

The converse implication follows from Corollary 2.2, considering the Jρ-
selfadjoint projection Q ∈ L(K × E) onto R(L). �

4.1. Every indefinite smoothing spline is an indefinite interpolating
spline. This subsection is devoted to show that sm(T, V, ρ, z0) = sp(T, V, z′)
for a suitable z′ ∈ E . In order to do so, a particular decomposition of R(L) is
needed. If T (N(V )) is a regular subspace of K and Q0 is the projection considered
in Eq. (3.3), consider the (bounded) operator U : E → K × E given by

Uz = (T (I −Q0)V
†z, z), z ∈ E .

Observe that N(U) = {0} and R(U) is closed (because it is isometrically isomor-
phic to the graph of the bounded operator T (I −Q0)V

†).
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Lemma 4.4. If T (N(V )) is a regular subspace of K then

R(L) = (T (N(V ))× {0}) u R(U),

and this decomposition of R(L) is orthogonal in the Krein space (K × E , [ , ]ρ).

Proof. Since R(Q0) = N(V ), observe that R(L) = L(N(V )) + L(N(Q0)) and
L(N(V )) = T (N(V ))×{0}. In order to compute L(N(Q0)), observe that I−Q0 =
(I − Q0)PN(V )⊥ = (I − Q0)V

†V because N(I − Q0) = N(PN(V )⊥) = N(V ).
Therefore, if x ∈ N(Q0),

Lx = (Tx, V x) = (T (I −Q0)x, V x) = (T (I −Q0)V
†V x, V x) =

= (T (I −Q0)V
†z, z) = Uz,

where z=V x. Since V (N(Q0))=E , it follows that L(N(Q0))={(T (I−Q0)V
†z, z) :

z ∈ E} = R(U). Finally, since T (N(Q0)) ⊆ T (N(V ))[⊥], it follows that
L(N(V )) [⊥]ρ L(N(Q0)). �

The next theorem shows the existence of a vector z′∈E such that sm(T, V, ρ, z0)
= sp(T, V, z′). Also, along the proof, an expression of such z′ is given in terms of
the Jρ-selfadjoint projection onto one of the subspaces of R(L) presented in the
above decomposition.

Theorem 4.5. Suppose that T (N(V )) is a closed subspace of K and R(L) is a
uniformly Jρ-positive subspace of K × E. Then, given z0 ∈ E,

sm(T, V, ρ, z0) = sp(T, V, z′),

where z′ is an adequate vector in E.

Proof. If z0 = 0 then sm(T, V, ρ, 0) = N(L) = N(T ) ∩ N(V ) = sp(T, V, 0). On
the other hand, notice that R(L) is closed (see Lemma 4.2). Then, by Proposition
2.1, R(L) and T (N(V )) are regular subspaces of K × E and K, respectively. So,
the projection considered in Eq. (3.3) is bounded. Given x ∈ H, it can be
decomposed as

x = Q0x+ (I −Q0)x = Q0x+ (I −Q0)PN(V )⊥x = v + (I −Q0)V
†z,

where v = Q0x ∈ N(V ) and z = V x ∈ E . Observe that, by Lemma 4.4,

[Lx− (0, z0), Lx− (0, z0) ]ρ = [ (Tv, 0), (Tv, 0) ]ρ + [Uz − (0, z0), Uz − (0, z0) ]ρ.

So, x0 ∈ sm(T, V, ρ, z0) if and only if [TQ0x0, TQ0x0 ]K = min
u∈N(V )

[Tu, Tu ]K and

z1 = V x0 satisfies

[Uz1 − (0, z0), Uz1 − (0, z0) ]ρ = min
z∈E

[Uz − (0, z0), Uz − (0, z0) ]ρ.

Notice that minu∈N(V )[Tu, Tu ]K is attained at every u ∈ N(T )∩N(V ), because
T (N(V )) is uniformly JK-positive. Therefore, Q0x0 ∈ N(T ) ∩N(V ).

On the other hand, since R(U) is a regular subspace of R(L) (see Lemma 4.4),
R(U) is a (closed) uniformly Jρ-positive subspace ofK×E . Thus, by Corollary 2.2,
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z1 satisfies the above equation if and only if Uz1 = P (0, z0), where P is the
Jρ-selfadjoint projection onto R(U).

If S : K × E → E is defined as S(y, z) = z then SU = IE and z1 = SUz1 =
SP (0, z0). So, (I −Q0)V

†z1 = (I −Q0)V
†SP (0, z0).

Therefore, x0 ∈ sm(T, V, ρ, z0) if and only if x0 ∈ (I − Q0)V
†SP (0, z0) +

N(T ) ∩N(V ), i.e.

sm(T, V, ρ, z0) = sp(T, V, SP (0, z0)). �

4.2. The smoothing splines converge to the interpolating spline. In the
following paragraph we show that, given z0 ∈ E , if {xρ}ρ≥1 is a net in H such that
xρ ∈ sm(T, V, ρ, z0), then it converges to an interpolating spline x0 ∈ sp(T, V, z0)
as ρ→∞. The proof of this result is analogous to [4, Ch. III, Proposition 2.2].

Proposition 4.6. Given a fixed vector z0 ∈ E, suppose that T (N(V )) is a closed
subspace of K and R(L) is a uniformly Jρ-positive subspace of K × E. Let xρ ∈
sm(T, V, ρ, z0) for every ρ ≥ 1. Then, there exists x0 ∈ sp(T, V, z0) such that

lim
ρ→∞
‖xρ − x0‖ = 0.

Proof. First, notice that if xρ ∈ sm(T, V, ρ, z0) then {[Txρ, Txρ ]}ρ≥1 is an in-
creasing net in R with an upper bound, and ‖V xρ − z0‖ → 0 as ρ→∞. Indeed,
given ρ1, ρ2 ≥ 1, notice that [Txρi , Txρi ] + ρi‖V xρi − z0‖2 ≤ [Txρj , Txρj ] +
ρi‖V xρj−z0‖2, if i 6= j. Then, if ρ1 < ρ2 it follows that ‖V xρ1−z0‖2−‖V xρ2−z0‖2 ≥
0 and

[Txρ2 , Txρ2 ]− [Txρ1 , Txρ1 ] ≥ ρ1(‖V xρ1 − z0‖2 − ‖V xρ2 − z0‖2) ≥ 0.

Furthermore, if x ∈ sp(T, V, z0) for every ρ ≥ 1, [Txρ, Txρ ] + ρ‖V xρ − z0‖2 ≤
[Tx, Tx ]+ρ‖V x−z0‖2 = [Tx, Tx ]. So, [Tx, Tx ]−[Txρ, Txρ ] ≥ ρ‖V xρ−z0‖2 ≥
0 for every ρ ≥ 1, and this inequality implies that

lim
ρ→∞
‖V xρ − z0‖ = 0.

The next step is to prove that limρ→∞ ‖xρ − x0‖ = 0, where x0 = V †z0 + u for
some u ∈ N(V ). Let yρ = PN(V )⊥xρ and observe that yρ = V †V xρ → V †z0 as
ρ→∞.

If uρ = xρ − yρ = PN(V )xρ ∈ N(V ), then {uρ}ρ≥1 converges to some u ∈
N(V ). To prove this assertion, consider the closed range operator W = T |N(V ) :
N(V )→ K (see Lemma 4.2). If Q is the JK-selfadjoint projection onto T (N(V )),
let W ′ = W †Q. Then, W ′ satisfies WW ′W = W , W ′WW ′ = W ′ and N(W ′) =
T (N(V ))[⊥]. By Theorem 4.5, xρ ∈ sp(T, V, zρ) for a suitable zρ ∈ E ; then, it
follows that Txρ ∈ T (N(V ))[⊥] (see Lemma 3.1). Therefore, W ′Txρ = 0 for every
ρ ≥ 1, and

W ′Tuρ = −W ′Tyρ → −W ′TV †z0 = u ∈ R(W ′) ⊆ N(V ) as ρ→∞. �
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5. The indefinite abstract mixed problem

Given Hilbert spaces E1 and E2, and Krein spaces H and K with fundamental
symmetries JH and JK respectively, let T ∈ L(H,K), V1 ∈ L(H, E1) and V2 ∈
L(H, E2) be surjective operators. Then, consider the following problem:

Problem 3. Let ρ > 0. Fixed (z1, z2) ∈ E1×E2, find x0 ∈ H such that V1x0 = z1

and (
[Tx0, Tx0 ]K + ρ‖V2x0 − z2‖2E2

)
= min

V1x=z1

(
[Tx, Tx ]K + ρ‖V2x− z2‖2E2

)
.

This is a generalization to Krein spaces of the mixed problem in Hilbert spaces
proposed by A. I. Rozhenko in [26] (see also [27, 28]).

It is clear that the indefinite abstract and smoothing problems are the partial
cases of the indefinite abstract mixed problem corresponding to E2 = {0}, V2 = 0
and E1 = {0}, V1 = 0, respectively. Thus, it is expected that similar results
to those given in the previous sections, can be stated with some additional re-
strictions. We prefer to introduce the indefinite abstract mixed problem after
studying the other problems in order to motivate it.

As in the previous section, K × E2 is a Krein space with the indefinite metric
defined in Eq. (4.2) and its fundamental symmetry Jρ ∈ L(K × E2) is given
by Jρ(y, z) = (JKy, z), where (y, z) ∈ K × E2. Also, consider the operators
L ∈ L(H,K × E2) given by

Lx = (Tx, V2x), x ∈ H,

and L1 = LPN(V1) ∈ L(H,K × E2). Then, Problem 3 can be restated as: given
ρ > 0 and fixed (z1, z2) ∈ E1 × E2, find x0 ∈ H such that

(5.1) [L1x0−(w1, w2), L1x0−(w1, w2) ]ρ = min
x∈H

[L1x−(w1, w2), L1x−(w1, w2) ]ρ,

where w1 = −TV †1 z1 and w2 = z2 − V2V
†
1 z1.

Lemma 5.1. Given (z1, z2) ∈ E1 × E2, x0 ∈ H is a solution of Problem 3 if and
only if R(L1) is Jρ-nonnegative and x0 is a solution of the equation:

P#
N(V1)(T

#T + ρV #
2 V2)PN(V1)x0 = P#

N(V1)(T
#w1 + ρV #

2 w2).

Proof. It is analogous to the proof of Lemma 4.1. Notice that, in this case,
L#

1 ∈ L(K×E2,H) is given by L#
1 (y, z) = P#

N(V1)L
#(y, z) = P#

N(V1)(T
#y+ρV #

2 z),

(y, z) ∈ K × E2. �

Proposition 5.2. Problem 3 admits a solution for every (z1, z2) ∈ E1×E2 if and
only if R(L1) is a closed uniformly Jρ-positive subspace of K × E2.
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Proof. Suppose that, Problem 3 admits a solution for every (z1, z2) ∈ E1 × E2.
Given (y, z) ∈ K×E2, let z1 = −V1T

†y and z2 = z−V2T
†y. Consider x0 = u+T †y,

where u ∈ H satisfies

[L1u− (w1, w2), L1u− (w1, w2) ]ρ = min
x∈H

[L1x− (w1, w2), L1x− (w1, w2) ]ρ,

for this particular pair (z1, z2) ∈ E1 × E2.
Observe that L1x0− (y, z) = L1u+(TPN(V1)T

†y, V2PN(V1)T
†y)− (y, z) = L1u−

(−TV †1 z1, z2 − V2V
†
1 z1) = L1u− (w1, w2). Then, for every x ∈ H,

[L1x0 − (y, z), L1x0 − (y, z) ]ρ = [L1u− (w1, w2), L1u− (w1, w2) ]ρ

≤ [L1(x−T †y)− (w1, w2), L1(x−T †y)−(w1, w2) ]ρ

= [L1x− (y, z), L1x− (y, z) ]ρ,

because L1x−(y, z) = L1(x−T †y)−(w1, w2). Therefore, for every (y, z) ∈ K×E2,
there exists x0 ∈ H such that

[L1x0 − (y, z), L1x0 − (y, z) ]ρ = min
x∈H

[L1x− (y, z), L1x− (y, z) ]ρ.

Following the same arguments as in the proof of Proposition 4.3, it is easy to
see that the above condition holds if and only if R(L1) is a closed uniformly
Jρ-positive subspace of K × E2. �

5.1. Parametrization of the set of solutions of the indefinite abstract
mixed problem. The following paragraphs follow analogous ideas to those
presented in the previous section to show that every smoothing spline is an in-
terpolating spline.

Consider the operator V ∈ L(H, E1×E2) given by V x = (V1x, V2x), x ∈ H, and
notice that N(V ) = N(V1)∩N(V2) but V is not surjective. However, Lemma 3.3
also holds in this case. So, if T (N(V )) is a regular subspace of K then, denoting
W = T#T (N(V ))[⊥] 	N(V ), the projection Q0 = PN(V )//W is bounded. Before
stating the main theorem, we need the following key lemma.

Lemma 5.3. Suppose that T (N(V )) is a regular subspace of K and N(V1)+N(V2)
is closed in H. Then,

(1) M1 = (I − Q0)(N(V1)) and M2 = V2(N(V1)) are closed subspaces of H
and E2, respectively.

(2) V2|M1 : M1 →M2 is an isomorphism.
(3) R(L1) = (T (N(V ))× {0}) u L(M1). Furthermore, L(M1) is closed in
K × E2 and the decomposition is orthogonal in the Krein space
(K × E2, [ , ]ρ).

Proof. ( i.) First of all, notice that M1 = R(I − Q0) ∩ N(V1). Therefore, it is
closed and N(V1) = N(V )uM1 because Q0(N(V1)) = N(V ). On the other hand,
by Proposition 2.3,M2 = R(V2PN(V1)) is closed if and only if c(N(V2), N(V1))<1,
or equivalently, N(V1) +N(V2) is closed. Therefore, M2 is closed.
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(ii.) To show that V2|M1 : M1 →M2 is an isomorphism observe that V2(M1) =
V2(M1 + N(V )) = V2(N(V1)) = M2, so it only remains to prove that V2|M1 is
injective. But, if x ∈M1 and V2x = 0 then x ∈ N(V2)∩M1 = N(V )∩R(I−Q0) =
{0}.

(iii.) Observe that R(L1) = L(N(V1)) = L(N(V )) + L(M1) because N(V1) =
N(V )uM1. Furthermore, if x ∈ N(V1) then Q0x ∈ N(V ) and (I −Q0)x ∈M1.
So, Lx = (TQ0x, 0) + L(I − Q0)x. Therefore, R(L1) = L(N(V )) + L(M1) =
(T (N(V ))× {0}) + L(M1).

If (y, 0) ∈ (T (N(V ))× {0}) ∩ L(M1), there exists m ∈M1 such that Tm = y
and V2m = 0. Then, m = 0 because V2|M1 is an isomorphism. So, y = Tm = 0
and R(L1) = L(N(V )) u L(M1). As in Lemma 4.4, it is easy to see that this
decomposition is orthogonal respect to the indefinite metric defined on K × E2.

It only remains to prove that L(M1) is a closed subspace of K × E2. Given

(y, z) ∈ L(M1) consider {mk}k≥1 ⊆M1 such that Tmk → y and V2mk → z as
k → ∞. Notice that mk = (V2|M1)

−1V2mk, because V2|M1 : M1 → M2 is an
isomorphism. Therefore, mk→(V2|M1)

−1z∈M1 and (y, z)=L((V2|M1)
−1z). �

Corollary 5.4. If T (N(V )) is a regular subspace of K and N(V1) + N(V2) is
closed in H then R(L1) is closed in K × E2.

The next theorem shows that that every mixed spline is an interpolating spline.

Theorem 5.5. Suppose that N(V1) +N(V2) is closed in K, T (N(V )) is a closed
subspace of K and R(L1) is a (closed) uniformly Jρ-positive subspace of K × E2.
Then, given (z1, z2) ∈ E1 × E2, an element x0 ∈ H is a solution of Problem 3 if
and only if

x0 ∈ sp(T, V, (e1, e2)),

where (e1, e2) is a suitable vector in E1 × E2.

Proof. Given (z1, z2) ∈ E1 × E2, recall that if x0 ∈ H is a solution of Problem3

then V1x0 = z1, or equivalently, PN(V1)⊥x0 = V †1 z1. Assuming that T (N(V ))

is a regular subspace of K, V †1 z1 can be decomposed as V †1 z1 = u1 + v1, where

u1 = Q0V
†
1 z1 ∈ N(V ) and v1 = (I − Q0)V

†
1 z1 ∈ W . Then, the pair (w1, w2)

considered in Eq. (5.1) satisfies

−w1 = TV †1 z1 = Tu1 + Tv1 ∈ T (N(V ))u T (N(V ))[⊥] and w2 = z2 − V2v1.

If N(V1) + N(V2) is a closed subspace of H, given x ∈ H there exist (unique)
u ∈ N(V ) and m ∈ M1 such that PN(V1)x = u + m (see Lemma 5.3). Thus,
x = u+m+ PN(V )⊥x and

L1x− (w1, w2) = (T (u+ u1), 0) + Lm− (−Tv1, w2).
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Observe that Lm−(−Tv1, w2) = L(m+v1)−(0, z2) ∈ (T (N(V ))×{0})[⊥] because
m+ v1 ∈ N(Q0). Then,

[L1x− (w1, w2), L1x− (w1, w2) ]ρ =

[T (u+ u1), T (u+ u1) ]K + [Lm− (−Tv1, w2), Lm− (−Tv1, w2) ]ρ.

Therefore, x0 is a solution to Problem 3 if and only if PN(V1)x0 = u0 + m0,
with u0 ∈ N(V ) and m0 ∈ M1 satisfying [T (u0 + u1), T (u0 + u1) ]K =
minu∈N(V )[T (u+ u1), T (u+ u1) ]K and

[Lm0 − (−Tv1, w2), Lm0 − (−Tv1, w2) ]ρ =

min
m∈M1

[Lm− (−Tv1, w2), Lm− (−Tv1, w2) ]ρ.

Notice that, if R(L1) is a closed uniformly Jρ-positive subspace of K×E2, then
T (N(V )) is a closed uniformly JK-positive subspace of K and
minu∈N(V )[T (u+ u1), T (u+ u1) ]K is attained at every y ∈ −u1 +N(V ) ∩N(T ).

On the other hand, consider the bounded operator U : M2 → K × E2 defined
by

Uz = (T (V2|M1)
−1z, z).

Observe that U has closed range, because it is isometrically isomorphic to the
graph of the bounded operator T (V2|M1)

−1, and

min
m∈M1

[Lm− (−Tv1, w2), Lm− (−Tv1, w2) ]ρ =

min
z∈M2

[Uz − (−Tv1, w2), Uz − (−Tv1, w2) ]ρ.

Thus, following the same argument as in Theorem 4.5 and observing that R(U) =
L(M1) is a closed uniformly Jρ-positive subspace of K × E2, this last problem
admits a (unique) solution given by z0 = V2m0 = SP (−Tv1, w2), where P is
the Jρ-selfadjoint projection onto L(M1) and S : K × E2 → E2 is defined by
S(y, z) = z. So, x0 ∈ H is a solution to Problem 3 if and only if

x0 = V †1 z1 + PN(V1)x0 = u1 + v1 + u0 +m0

∈ (v1 + (V2|M1)
−1SP (−Tv1, w2)) +N(T ) ∩N(V ).

Therefore, x0 ∈ H solves Problem 3 if and only if x0 ∈ sp(T, V, (e1, e2)), where

e1 =z1+V1(V2|M1)
−1SP (−Tv1, w2) ∈ E1 and e2 =V2V

†
1 z1+SP (−Tv1, w2)∈E2. �
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