32,123 research outputs found

    A Note On Asymptotic Smoothness Of The Extensions Of Zadeh

    Get PDF
    The concept of asymptotic smooth transformation was introduced by J. Hale [10]. It is a very important property for a transformation between complete metric spaces to have a global attractor. This property has also consequences on asymptotic stability of attractors. In our work we study the conditions under which the Zadeh's extension of a continuous map f : R n → R n is asymptotically smooth in the complete metric space JF(R n) of normal fuzzy sets with the induced Hausdorff metric d ∞ (see Kloeden and Diamond [8]).212141153Barros, L.C., Bassanezi, R.C., Tonelli, P.A., On the continuity of Zadeh's extension (1997) Proceedings Seventh IFSA World Congress, 2, pp. 3-8. , PragueBarros, L.C., Bassanezi, R.C., Tonelli, P.A., Fuzzy modeling in populations dynamics (2000) Ecological Modeling, 128, pp. 27-33Brumley, W.E., On the asymptotic behavior of solutions of differential difference equations of neutral type (1970) J. of Differential Equations, 7, pp. 175-188Cabrelli, C.A., Forte, B., Molter, U., Vrscay, E., Iterated Fuzzy Sets Systems: A new approach to the inverse for fractals and other sets (1992) J. of Math. Anal, and Appl., 171, pp. 79-100Cooperman, G., (1978) α-Condensing Maps and Dissipative Processes, , Ph. D. Thesis, Brown University, Providence, R. IDiamond, P., Chaos in iterated fuzzy systems (1994) J. of Mathematical Analysis and Applications, 184, pp. 472-484Diamond, P., Time Dependent Differential Inclusions, Cocycle Attractors and Fuzzy Differential Equations (1999) IEEE Trans. on Fuzzy Systems, 7, pp. 734-740Diamond, P., Kloeden, P., (1994) Metric Spaces of Fuzzy Sets: Theory and Applications, , World Scientific PubFriedmann, M., Ma, M., Kandel, A., Numerical solutions of fuzzy differential and integral equations (1999) Fuzzy Sets and Systems, 106, pp. 35-48Hale, J.K., Asymptotic Behavior of Dissipative Systems (1988) Math. Surveys and Monographs, 25. , American Mathematical Society, ProvidenceHüllermeier, E., An Approach to Modeling and Simulation of Uncertain Dynamical Systems (1997) J. Uncertainty, Fuzziness, Know Ledge-Bases Syst., 5, pp. 117-137Kloeden, P.E., Fuzzy dynamical systems (1982) Fuzzy Sets and Systems, 7, pp. 275-296Kloeden, P.E., Chaotic iterations of fuzzy sets (1991) Fuzzy Sets and Systems, 42, pp. 37-42Nguyen, H.T., A note on thé extension principle for fuzzy sets (1978) J. Math. Anal. Appl., 64, pp. 369-380Puri, M.L., Ralescu, D.A., Fuzzy Random Variables (1986) J. of Mathematical Analysis and Applications, 114, pp. 409-422Roman-Flores, H., Barros, L.C., Bassanezzi, R., A note on Zadeh's Extensions (2001) Fuzzy Sets and Systems, 117, pp. 327-331Roman-Flores, H., On the Compactness of E(X) (1998) Appl. Math. Lett., 11, pp. 13-17Zadeh, L.A., Fuzzy sets (1965) Inform. Control, 8, pp. 338-35

    The Phase Diagram of Scalar Field Theory on the Fuzzy Disc

    Get PDF
    Using a recently developed bootstrapping method, we compute the phase diagram of scalar field theory on the fuzzy disc with quartic even potential. We find three distinct phases with second and third order phase transitions between them. In particular, we find that the second order phase transition happens approximately at a fixed ratio of the two coupling constants defining the potential. We compute this ratio analytically in the limit of large coupling constants. Our results qualitatively agree with previously obtained numerical results.Comment: 1+17 pages, v2: typos fixed, published versio

    Relating branes and matrices

    Full text link
    We construct a general map between a Dp-brane with magnetic flux and a matrix configuration of D0-branes, by showing how one can rewrite the boundary state of the Dp-brane in terms of its D0-brane constituents. This map gives a simple prescription for constructing the matrices of fuzzy spaces corresponding to branes of arbitrary shape and topology. Since we explicitly identify the D0-brane degrees of freedom on the brane, we also derive the D0-brane charge of the brane in a very direct way including the A-genus term. As a check on our formalism, we use our map to derive the abelian-Born-Infeld equations of motion from the action of the D0-brane matrices.Comment: 28 pages, Late

    Classical dynamics on three dimensional fuzzy space: Connecting the short and long length scales

    Get PDF
    We derive the path integral action for a particle moving in three dimensional fuzzy space. From this we extract the classical equations of motion. These equations have rather surprising and unconventional features: They predict a cut-off in energy, a generally spatial dependent limiting speed, orbital precession remarkably similar to the general relativistic result, flat velocity curves below a length scale determined by the limiting velocity and included mass, displaced planar motion and the existence of two dynamical branches of which only one reduces to Newtonian dynamics in the commutative limit. These features place strong constraints on the non-commutative parameter and coordinate algebra to avoid conflict with observation and may provide a stringent observational test for this scenario of non-commutativity.Comment: 21 pages, 4 figure

    A survey on fuzzy fractional differential and optimal control nonlocal evolution equations

    Full text link
    We survey some representative results on fuzzy fractional differential equations, controllability, approximate controllability, optimal control, and optimal feedback control for several different kinds of fractional evolution equations. Optimality and relaxation of multiple control problems, described by nonlinear fractional differential equations with nonlocal control conditions in Banach spaces, are considered.Comment: This is a preprint of a paper whose final and definite form is with 'Journal of Computational and Applied Mathematics', ISSN: 0377-0427. Submitted 17-July-2017; Revised 18-Sept-2017; Accepted for publication 20-Sept-2017. arXiv admin note: text overlap with arXiv:1504.0515

    Large-small dualities between periodic collapsing/expanding branes and brane funnels

    Get PDF
    We consider space and time dependent fuzzy spheres S2pS^{2p} arising in D1D(2p+1)D1-D(2p+1) intersections in IIB string theory and collapsing D(2p)-branes in IIA string theory. In the case of S2S^2, where the periodic space and time-dependent solutions can be described by Jacobi elliptic functions, there is a duality of the form rr to 1r{1 \over r} which relates the space and time dependent solutions. This duality is related to complex multiplication properties of the Jacobi elliptic functions. For S4S^4 funnels, the description of the periodic space and time dependent solutions involves the Jacobi Inversion problem on a hyper-elliptic Riemann surface of genus 3. Special symmetries of the Riemann surface allow the reduction of the problem to one involving a product of genus one surfaces. The symmetries also allow a generalisation of the rr to 1r{1 \over r} duality. Some of these considerations extend to the case of the fuzzy S6S^6.Comment: Latex, 50 pages, 2 figures ; v2 : a systematic typographical error corrected + minor change
    corecore