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We derive the path integral action for a particle moving in three-dimensional fuzzy space. From this we
extract the classical equations of motion. These equations have rather surprising and unconventional
features: they predict a cutoff in energy, a generally spatial-dependent limiting speed, orbital precession
remarkably similar to the general-relativistic result, flat velocity curves below a length scale determined by
the limiting velocity and included mass, displaced planar motion, and the existence of two dynamical
branches of which only one reduces to Newtonian dynamics in the commutative limit. These features may
provide a stringent observational test for this scenario of noncommutativity.
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I. INTRODUCTION

The structure of space-time at short length scales and the
emergence of space-time as we perceive it at long length
scales are probably the most challenging problems facing
modern physics [1]. These issues are also at the core of the
struggle to combine gravity and quantum mechanics into a
unified theory and probably also links closely with the
observational challenges of dark matter and energy.
One of the difficulties facing our understanding of space-

time at short length scales is the lack of observational data
that can be accessed at energies and length scales available
to us, either through accelerators or astronomical observa-
tion. Mostly the short length scale structure of space-time
manifests itself at very high energies and short length scales
inaccessible to current observational techniques.
One scenario for space-time at short length scales is that

of noncommutative space-time, which has received con-
siderable attention in the past few decades. This was
originally proposed by Snyder [2] in an attempt to avoid
the ultraviolet infinities of field theories. The discovery of
renormalization pushed these ideas to the background until
more recently when they resurfaced in the search for a
consistent theory of quantum gravity. The compelling
arguments of Doplicher et al. [3] highlighted the need
for a revised notion of space-time at short length scales and
gave strong arguments in favor of a noncommutative
geometry. Shortly thereafter it was also noted that non-
commutative coordinates occurred quite naturally in certain

string theories [4], generally perceived to be the best
candidate for a theory of quantum gravity. This sparked
renewed interest in noncommutative space-time and the
formulation of quantum mechanics [5] and quantum field
theories on such spaces [6].
Despite the developments above, the observational

consequences of noncommutativity remain elusive due to
the smallness of the effect, especially on the microscopic
level. In Refs. [7–9] it was argued that noncommutativity
can have observational consequences at the macroscopic
scale for Fermi gases at very high densities and/or temper-
atures. Yet, again, if noncommutativity is assumed to
manifest itself at the Planck scale, these densities and
temperatures are outside our observational window.
One other possible manifestation of noncommutativity

on the macroscopic level may be in the modification of
classical dynamics and gravity. This has seemingly not yet
been explored systematically, which is the motivation for
the current paper that aims to fill this gap, at least in the case
of a fuzzy-space scenario. Modified Newtonian dynamics
(MOND) [10] and modified gravity [11] have of course
been topics of research for many years. Yet, although the
present paper contains elements of MOND, there are many
technical differences. Furthermore, in contrast to the
phenomenological approach of MOND, the modified
dynamics derived here follow from first principles using
the action of a particle moving in a noncommutative space.
The latter, in turn, is also systematically derived from the
Schrödinger equation.
As our aim here is to study the motion of macroscopic

objects, including planetary and galactic motion, it is
sufficient to limit ourselves to the nonrelativistic regime
of low velocities. The starting point of our derivation will
therefore be the nonrelativistic Schrödinger equation. There
are, of course, effects arising in planetary motion that stem
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from a general-relativistic description. The prime example
is precession of the perihelion of a planet’s orbit such as
Mercury. We show here that noncommutative dynamics
gives rise to the same effect, albeit numerically somewhat
different. In addition, another feature of relativity that
seems to emerge quite naturally is that of a limiting speed.
This paper is organized as follows. In Sec. II we give a

generic expression for the action of a particle on two- and
three-dimensional noncommutative space. In Sec. III we
specify to a two-dimensional noncommutative plane and
derive the modified equations of motion. In Sec. IV we
consider three-dimensional fuzzy space and derive the
modified equations of motion. Due to its observational
importance, we spend considerable time discussing the
implications of this modified dynamics in a number of
subsections. In Sec. V, we introduce a further generalization
of the modified dynamics found in Sec. IV. In Sec. VI we
discuss the core findings, their implications, and open
issues. Finally, we close with a summary and conclusions in
Sec. VII.

II. THE ACTION ON NONCOMMUTATIVE SPACE

In noncommutative space coordinates are no longer
commuting and simultaneous eigenstates of position can-
not be found. This eliminates the standard time-slicing
procedure using position eigenstates and the subsequent
representation of the transition amplitude as a functional
integral over position. Instead, one needs to replace the
eigenstates of position with minimum-uncertainty states,
which also form an overcomplete set, commonly referred to
as coherent states. The standard time-slicing procedure can
then again be implemented to write a coherent-state path-
integral representation of the transition amplitude. In
general, this representation reads [12]

hlf; tfjli; tii ¼
Z

lðtfÞ¼lf

lðtiÞ¼li

½dμðlÞ�ei
ℏS; ð1Þ

with the path-integral action

S ¼
Z

tf

ti

dthlðtÞjiℏ ∂
∂t −HjlðtÞi: ð2Þ

Here jli is a set of overcomplete coherent states, i.e.,

Z
dμðlÞjlihlj ¼ 1; ð3Þ

where 1 is the identity on the Hilbert space.
This is the strategy we employ here to derive the path-

integral action for a particle on noncommutative space. In
the next section we derive the action and classical dynamics
of a particle in the two-dimensional noncommutative plane.

III. THE TWO-DIMENSIONAL
NONCOMMUTATIVE PLANE

To start, we briefly recall the formulation of quantum
mechanics on two-dimensional noncommutative space [5].
In this case the coordinate algebra is given by

½x̂; ŷ� ¼ iθ; ð4Þ

where θ is a constant with dimensions of length squared,
which we can take without loss of generality to be positive,
and x̂, ŷ are Hermitian operators.
To develop the quantum theory [5], one first introduces a

representation of this coordinate algebra on some Hilbert
spaceHc, referred to as classical configuration space. In the
case at hand, one notes that b ¼ 1ffiffiffiffi

2θ
p ðx̂þ iŷÞ and b† ¼

1ffiffiffiffi
2θ

p ðx̂ − iŷÞ are standard creation and annihilation oper-

ators. The radius operator is r̂2 ¼ x̂2 þ ŷ2 ¼ θðb†bþ 1Þ. It
is then natural to choose for Hc the Fock space for one
oscillator [5] since each value of the quantized radius
appears exactly once in this representation and in this sense
the two-dimensional plane is completely covered once.
The next step is to introduce the quantum Hilbert space,

denoted by Hq. This is the space of all Hilbert-Schmidt
operators acting on Hc and that are generated by the
noncommutative coordinates. We denote states inHc by j·i
and states in Hq by j·Þ. The inner product on Hq is
ðϕjψÞ ¼ trcðϕ†ψÞ, where trc denotes the trace over Hc.
A general element of Hq thus has the form
jan;mÞ¼

P
n;man;mjnihmj, with

P
n;mjan;mj2 < ∞. Note

that the states jn;mÞ ¼ jnihmj form a complete orthonor-
mal basis in Hq.
From here the construction of the quantum theory

proceeds as normal: one introduces observables as self-
adjoint operators acting on Hq and the standard probabi-
listic interpretation. To distinguish these from operators on
Hc, we denote them by capitals. The only generalization is
that a position measurement must now be interpreted in the
context of a weak measurement or a positive-valued
measure. A detailed discussion of this can be found in
Ref. [5], where it was also shown that standard commu-
tative quantum mechanics is recovered in the limit θ → 0.
The most important observable for our current purposes

is the Hamiltonian given by [5]

H ¼ P̄P
2m

þ VðR̂Þ; VðR̂Þ† ¼ VðR̂Þ: ð5Þ

Here the action of the momentum operators on a generic
element ψ of Hq is defined as

PjψÞ ¼ j − iℏ

ffiffiffi
2

θ

r
½b;ψ �Þ; P̄jψÞ ¼ ji

ffiffiffi
2

θ

r
ℏ½b†;ψ �Þ: ð6Þ
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Similarly, the action of the position operators is defined as

X̂jψÞ ¼ jx̂ψÞ; ŶjψÞ ¼ jŷψÞ; R̂2 ¼ X̂2 þ Ŷ2: ð7Þ

Note that momentum involves left and right multiplication,
while position only involves left multiplication.
Another useful observable is the angular momentum,

which acts as follows:

LjψÞ ¼ jℏ½b†b;ψ �Þ: ð8Þ

If the potential is a function of R̂ only, this operator
commutes with the Hamiltonian and is a conserved quantity.
To find the coherent-state path-integral action is now

straightforward. One first introduces an overcomplete set of
minimum-uncertainty states on Hc and Hq. For Hc, they
are the standard normalized Glauber coherent states,

jzi ¼ e−jzj2=2ezb† j0i;
Z

dz̄dz
π

jzihzj ¼ 1c; ð9Þ

and represent the best approximation to a position eigen-
state or point in the plane. In this sense z must then be
interpreted as dimensionless complex coordinates on the
plane, as is clear from the expectation values x ¼ hzjx̂jzi ¼ffiffiffiffiffi
2θ

p
Rez and y ¼ hzjŷjzi ¼ ffiffiffiffiffi

2θ
p

Imz.
From this, the corresponding coherent states on Hq can

be easily written down,

jz; wÞ ¼ jzihwj: ð10Þ

Noting that

jz; wÞ ¼ e−
1
2
ðz̄zþw̄wÞ X∞

n;m¼0

znwmffiffiffiffiffiffiffiffiffiffi
n!m!

p jn;mÞ; ð11Þ

we have

Z
dz̄dzdw̄dw

π2
jz;wÞðz;wj ¼

X∞
n;m¼0

jn;mÞðn;mj ¼ 1q: ð12Þ

Keeping in mind that the time-evolution operator acts on
Hq, the path-integral representation of the transition
amplitude in the coherent-state representation (10) can
be easily found from Eq. (2) and is given by

S ¼
Z

tf

ti

dtðzðtÞ; wðtÞjiℏ ∂
∂t −HjzðtÞ; wðtÞÞ: ð13Þ

A simple computation yields the explicit form

S¼
Z

tf

ti

dt

�
iℏ
2
ðz̄ _z− _̄zzþ _̄ww− w̄ _wÞ−Hðz; z̄;w;w̄Þ

�
; ð14Þ

with

Hðz; z̄; w; w̄Þ ¼ ℏ2

mθ
ððz̄ − w̄Þðz − wÞ þ 1Þ þ ṼðRÞ: ð15Þ

Here R ¼ z̄z and ṼðRÞ ¼ ðz; wjVðR̂Þjz; wÞ ¼
trcðjwihzjVðR̂ÞjzihwjÞ ¼ hzjVðR̂Þjzi. Note that the function
Ṽ is different from V as a normal ordering is required to
replace R̂ by its expectation value. The rest of the terms in
the action are computed in a similar way, with the only
point of care being the right-acting operators in the kinetic
energy term. The constant that appears comes from the
normal ordering of right-acting operators to compute the
coherent-state expectation value.
A more restrictive set of coherent states in which z ¼ w

can also be introduced. They satisfy an overcompleteness
relation of the formZ

dz̄dz
π

jz; zÞ⋆ðz; zj ¼ 1q; ð16Þ

where ⋆ denotes the Voros product. In Ref. [13] these states
were used to derive the path-integral action for a particle in
the noncommutative plane. To make contact with that
result, we introduce a change of variables from w and z
to z and v with w ¼ vþ z. This gives the action

S¼
Z

tf

ti

dt

�
iℏð _̄zv− v̄ _z−v̄ _vÞ− ℏ2

mθ
v̄v−

�
ṼðRÞ þ ℏ2

mθ

��
:

ð17Þ

Noting that this action is quadratic in v, the v integration
can be performed explicitly to yield

S¼
Z

tf

ti

dt

�
mθ _̄z

�
1þ imθ

ℏ
∂t

�
−1
_z−

�
ṼðRÞþ ℏ2

mθ

��
; ð18Þ

in agreement with Ref. [13]. (Note that Ref. [13] contains a
sign misprint in the factor before ∂t.)
With the action in hand, we can give precise meaning to

the notion of classical dynamics in the sense of a saddle
point of the action. Returning to Eq. (14), we can easily
derive the equations governing the classical dynamics:

iℏ _̄wþ ℏ2

mθ
ðz̄ − w̄Þ ¼ 0; ð19Þ

−iℏ _wþ ℏ2

mθ
ðz − wÞ ¼ 0; ð20Þ

−iℏ _̄z −
ℏ2

mθ
ðz̄ − w̄Þ − ∂Ṽ

∂z ¼ 0; ð21Þ

iℏ_z −
ℏ2

mθ
ðz − wÞ − ∂Ṽ

∂z̄ ¼ 0: ð22Þ

Note that these equations still involve ℏ. In fact, the order of
the limits ℏ → 0 and θ → 0 is important here. Taking the
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θ → 0 limit first and then ℏ → 0 gives a well-defined result,
while the other order does not. In the former, one of course
expects (and indeed gets) the classical commutative result.
Assuming that the potential only depends on R, there are

two constants of motion related to a Uð1Þ symmetry
involving a global phase change on all variables and
time-translation invariance: the angular momentum and
energy,

L ¼ ℏðz̄z − w̄wÞ; E ¼ Hðz; z̄; w; w̄Þ: ð23Þ

Using the equations of motion (19), one can check
explicitly that these quantities are indeed conserved.
We are not interested in the dynamics of w, but only the

physical coordinates z and would like to eliminate the
former. As the two last equations of Eq. (19) are algebraic
equations for w and w̄, we can solve for them and compute
the equation of motion for z by substituting in the first two
equations of Eq. (19). This yields

̈z ¼ −
1

mθ

∂Ṽ
∂z̄ −

i
ℏ
d
dt

�∂Ṽ
∂z̄

�
;

̈z̄ ¼ −
1

mθ

∂Ṽ
∂z þ i

ℏ
d
dt

�∂Ṽ
∂z

�
: ð24Þ

We can return to the dimensionful coordinates x and y by
writing

z ¼ 1

2θ
ðxþ iyÞ; z̄ ¼ 1

2θ
ðx − iyÞ; ð25Þ

and

∂
∂z¼

ffiffiffi
θ

2

r � ∂
∂x− i

∂
∂y

�
;

∂
∂z̄¼

ffiffiffi
θ

2

r � ∂
∂xþ i

∂
∂y

�
: ð26Þ

This gives the equations of motion

ẍ ¼ −
1

m
∂V
∂x þ θ

ℏ
d
dt

�∂V
∂y

�
; ð27Þ

ÿ ¼ −
1

m
∂V
∂y −

θ

ℏ
d
dt

�∂V
∂x

�
: ð28Þ

These are the standard Newtonian equations of motion,
supplemented by a noncommutative correction. In the
θ → 0 limit, we recover standard Newtonian dynamics.
As already mentioned, the limit ℏ → 0 cannot be taken
before the commutative limit.
We do not explore the consequences of this modified

dynamics here, but rather postpone the in-depth analysis to
the three-dimensional case, which is much more interesting
and physically relevant.

IV. THREE-DIMENSIONAL FUZZY SPACE

In this section we study the modified classical dynamics
on three-dimensional fuzzy space. The noncommutative
quantum mechanics on three-dimensional fuzzy space has
been studied extensively in Refs. [8,14–16]. In these
studies it was shown that this formulation reduces to
commutative quantum mechanics in the commutative limit
and that it is a realistic description of the physics at low
energies. At high energies there are strong deviations from
commutative quantum mechanics, most notably the exist-
ence of an upper bound on the energy of a free particle
[14,16], given by Emax ¼ 2ℏ2

mλ2
, and a finite density of single-

particle states [9]. Our interest here is to see how this
translates into the classical dynamics and what observa-
tional consequences it may have.
We start by reviewing the formulation of noncommuta-

tive quantum mechanics on three-dimensional fuzzy space,
which follows essentially the same logic as for the two-
dimensional noncommutative plane. The main difference is
the modification of the coordinate algebra as the commu-
tation relations adopted in the case of the noncommutative
plane break rotational symmetry. To rectify this, we adopt
fuzzy-sphere commutation relations,

½x̂i; x̂j� ¼ 2iλεijkx̂k: ð29Þ

Here λ has units of length and εijk is the standard
completely antisymmetric tensor.
The representation we choose for this coordinate algebra

is the standard Schwinger realization of SUð2Þ. Thus,
classical configuration space Hc is a two-boson-mode
Fock space on which the coordinates are realized as

x̂i ¼ λa†ασ
ðiÞ
αβaβ: ð30Þ

Here a summation over repeated indices is implied, α,

β ¼ 1, 2, σðiÞαβ , i ¼ 1, 2, 3 are the Pauli spin matrices, and a†α
and aα are standard boson creation and annihilation
operators. The radius operator is

r̂2 ¼ x̂ix̂i ¼ λ2n̂ðn̂þ 2Þ; ð31Þ

where n̂ ¼ a†αaα is the boson-number operator. Note that
the radius operator is also the Casimir of SUð2Þ and
commutes with the coordinates. As a measure of the radius,
we use

r̂ ¼ λðn̂þ 1Þ; ð32Þ

which is to leading order in λ the square root of r̂2. Note that
this representation contains each SUð2Þ representation—
and thus each quantized radius—exactly once, and there-
fore again corresponds to a complete single covering of R3,
commonly referred to as fuzzy space.
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The quantum Hilbert spaceHq is now defined as the algebra of operators generated by the coordinates, i.e., the operators
acting on Hc that commute with r̂2 and have a finite norm with respect to a weighted Hilbert-Schmidt inner product [16]:

Hq ¼
�
ψ ¼

X∞
mi;ni¼0

Cm1;m2
n1;n2 ða†1Þm1ða†2Þm2an11 an22 ∶m1 þm2 ¼ n1 þ n2 and trcðψ†r̂ψÞ < ∞

�
: ð33Þ

The inner product on Hq is

ðψ jϕÞ ¼ 4πλ2trcðψ†r̂ϕÞ ¼ 4πλ3trcðψ†ðn̂þ 1ÞϕÞ; ð34Þ

with the trace taken over Hc. This choice of the inner
product is motivated by the observation that the norm of the
operator that projects onto the subspace of spheres with
radius r ≤ λðN þ 1Þ, with N large, corresponds to the
volume of a sphere in three-dimensional Euclidean
space [16].
We use the standard j·i notation for elements of Hc and

j·Þ for elements of Hq. It is important to note here that, in
contrast to the two-dimensional noncommutative plane, the
quantum Hilbert space is here restricted to only those
operators on Hc that commute with the Casimir operator.
This will be an important restriction in what follows.
Quantum observables are identified with self-adjoint

operators acting onHq. We again use capitals to distinguish
them from operators acting on Hc. These include the
coordinates which act through left multiplication as

X̂ijψÞ ¼ jx̂iψÞ ð35Þ

and the angular momentum operators which act adjointly
according to

L̂ijψÞ ¼
				 ℏ2λ ½x̂i;ψ �

�
; with ½L̂i; L̂j� ¼ iℏεijkL̂k: ð36Þ

The noncommutative analogue of the Laplacian is
defined as

Δ̂jψÞ ¼ −
				 1λr̂ ½â†α; ½âα;ψ ��

�
¼
				 1

λ2ðn̂þ 1Þ ½â
†
α; ½âα;ψ ��

�
ð37Þ

and can be shown to commute with the three angular
momentum operators [16].
The Hamiltonian is given by

Ĥ ¼ −
ℏ2

2m
Δ̂þ VðR̂Þ; ð38Þ

where R̂ is the radius operator that acts as

R̂jψÞ ¼ jλðn̂þ 1ÞψÞ; n̂ ¼ a†αaα: ð39Þ

From the discussion above it should be clear that the
angular momentum operators commute with the
Hamiltonian and are therefore conserved. There is a further
important conserved quantity, namely, the operator Γ̂,
which acts as follows:

Γ̂jψÞ ¼ j½a†αaα;ψ �Þ: ð40Þ

It is simple to check explicitly that it does in fact commute
with the Hamiltonian.
To facilitate the construction of the classical dynamics on

fuzzy space, we enlarge the quantum Hilbert space Hq to
include all Hilbert-Schmidt operators acting on Hc, i.e., all
operators with finite norm generated by the creation and
annihilation operators a†α and aα. The inner product is still
given by Eq. (34). We denote this enlarged space by H0

q.
Clearly, Hq ⊂ H0

q. From the definition of Hq, it is then
clear that physical states, i.e., states that belong to the
subspace Hq must satisfy the constraint

Γ̂jψÞ ¼ 0: ð41Þ

Note that since Γ̂ is conserved, initial states that satisfy this
condition will do so at all times. Below we use this property
explicitly in the construction of the path-integral represen-
tation of physical transition amplitudes.
We now proceed with the construction of the path-

integral representation of physical transition amplitudes.
The first step is to get rid of the weighted inner product in
Eq. (34). This can be done by redefining the wave functions
as follows:

ψ̃ ¼
ffiffiffî
r

p
ψ : ð42Þ

The inner product then assumes the standard form

ðψ̃ jϕ̃Þ ¼ 4πλ2trcðψ̃†ϕ̃Þ: ð43Þ

However, upon doing this we must also transform the
Hamiltonian, or any other observable, as follows:

ˆ̃H ¼
ffiffiffî
r

p
H

1ffiffiffî
r

p : ð44Þ
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From here on we work with this quantum Hilbert space in
which the inner product is given by Eq. (43) and observ-
ables are transformed as in Eq. (44). We denote this space
by H̃q and its enlargement by H̃0

q. Note that the constants of
motion Γ̂ and L̂i are unchanged by this transformation.

It is obvious that Γ̂ and L̂i also commute with ˆ̃H and are
conserved under the time evolution generated by this
Hamiltonian. It is also clear that physical states are still
characterized by the constraint

Γ̂jψ̃Þ ¼ 0: ð45Þ
We introduce the standard minimum-uncertainty states

on Hc as Glauber coherent states, which form an over-
complete basis

jzαi ¼ e−jz̄αzα=2ezαa
†
α j0i;

Z
dz̄αdzα
π2

jzαihzαj ¼ 1c: ð46Þ
The dimensionful physical coordinates are now identi-
fied as

xi ¼ hzαjx̂ijzαi ¼ λz̄ασ
ðiÞ
αβzβ: ð47Þ

As in the two-dimensional noncommutative plane, we
can correspondingly introduce coherent states on H̃0

q as

jzα; wαÞ ¼ jzαihwαj: ð48Þ

They are overcomplete andZ
dz̄αdzαdw̄αdwα

π4
jzα; zαÞðzα; wαj ¼ 1̃0q: ð49Þ

It is interesting to note the close relation between these
states and the “string states” introduced in Ref. [17]. It is
also important to note that the states jzα; wαÞ are not all
physical. However, we are interested in physical transition
amplitudes, which implies that if the initial state is physical,
all of the states at intermediate times are also physical as Γ̂
commutes with ˆ̃H. As the states jzα; wαÞ resolve the identity
on H̃0

q, we can safely use them to insert the identity at
intermediate times into a time-slicing procedure, provided
that the initial state is physical. Indeed, if this is done, the
constraint must appear as a conserved quantity in the
resulting action and we must simply require it to vanish
to satisfy the condition of physicality of the initial state.
Following this approach, the general result of Eq. (2) is

still applicable and to obtain the path-integral action we
therefore only have to compute the action

S ¼
Z

tf

ti

dtðzαðtÞ; wαðtÞjiℏ
∂
∂t −

ˆ̃HjzαðtÞ; wαðtÞÞ: ð50Þ

To simplify matters, it is convenient to introduce
dimensionless quantities from here on, which we denote

by capital letters. We introduce the following time scale t0,
energy scale e0, dimensionless time T, dimensionless
coordinates Xi, and dimensionless energy E:

t0¼
mλ2

ℏ
; e0¼

ℏ
t0
; T¼ t

t0
; Xi¼

xi
λ
; E¼ e

e0
: ð51Þ

The dimensionless action S̃ ¼ S
ℏ can than be explicitly

computed. The computation is slightly more involved than
in the case of the two-dimensional noncommutative plane,
but still straightforward. We find

S̃ ¼
Z

Tf

Ti

dT

�
i
2
ðz̄α _zα − _̄zαzα þ _̄wαwα − w̄α _wαÞ

− H̃ðzα; z̄α; wα; w̄αÞ
�
; ð52Þ

where

H̃ðz; z̄; w; w̄Þ ¼ ðf1ðRÞz̄αzα − f2ðRÞðz̄αwα þ zαw̄αÞ
þ f3ðRÞw̄αwαÞ þWðRÞ: ð53Þ

Here,

R ¼ z̄αzα; ð54Þ

f1ðRÞ ¼
1

2
hzαj

1

n̂þ 2
jzαi; ð55Þ

f2ðRÞ ¼
1

2
hzαj

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðn̂þ 1Þðn̂þ 2Þp jzαi; ð56Þ

f3ðRÞ ¼
1

2
hzαj

1

n̂þ 1
jzαi; ð57Þ

WðRÞ ¼ 1

e0
hzαjVðR̂Þjzαi þ 2f3ðRÞ≡ ṼðRÞ þ 2f3ðRÞ:

ð58Þ

Note that R, all of the fiðRÞ, and WðRÞ are dimensionless.
The equations of motion determining the classical

dynamics can now be easily derived and are given by

_zα ¼ −i
∂H̃
∂z̄α ; ð59Þ

_̄zα ¼ i
∂H̃
∂zα ; ð60Þ

_wα ¼ i
∂H̃
∂w̄α

; ð61Þ

_̄wα ¼ −i
∂H̃
∂w̄α

: ð62Þ
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There are five conserved quantities: four are related to a
Uð2Þ symmetry, and the fifth is a conserved energy related
to time-translation invariance. These are easily found to be

Γ ¼ z̄αzα − w̄αwα;

Li ¼ z̄ασ
ðiÞ
αβzβ − w̄ασ

ðiÞ
αβwβ;

E ¼ H̃ðz; z̄; w; w̄Þ: ð63Þ
It can be checked directly from Eqs. (59)–(62) that these
quantities are indeed constant in time. The first, Γ, is simply
the expectation value of the conserved quantity Γ̂ in the
state jzα; wαÞ and therefore is naturally conserved. This
quantity also determines whether states are physical or not
and must vanish for physical states. We must therefore
require Γ ¼ 0. The Li are just the expectation values of the
momentum operators L̂i in the same state and therefore are
also conserved. Finally, H̃ðz; z̄; w; w̄Þ is just the Hamiltonian
which—as it is not explicitly time dependent—is conserved.
Our interest is not in the equations of motion of the zα

and wα, but rather in the equations of motion of the
physical, dimensionless coordinates Xi ¼ xi

λ , with the xi
given in Eq. (47). We must therefore eliminate zα and wα in
favor of these. This is a long and tedious calculation that
can fortunately be done efficiently with MATHEMATICA. The
easiest way to proceed is to first parametrize the zα as
follows:

z1 ¼
ffiffiffiffi
R

p
cos

�
θ

2

�
e−i

ϕ
2eiγ;

z2 ¼
ffiffiffiffi
R

p
sin

�
θ

2

�
ei

ϕ
2eiγ; ð64Þ

and the corresponding complex conjugates where R > 0,
and θ, ϕ and γ are real. With this parametrization the
coordinates take the standard form in spherical coordinates,

X1 ¼ R sin θ cosϕ;

X2 ¼ R sin θ sinϕ;

X3 ¼ R cos θ: ð65Þ
Note that the global phase γ drops out of these expressions,
but not from the time derivatives.
One now proceeds as follows: solve for the wα from the

algebraic equations (59)–(60) in terms of the zα and their
time derivatives (these expressions also contain _γ); solve _γ
from the constraint Γ ¼ 0; substitute this back into the
expressions for the second-order time derivatives of
the coordinates, computed using the equations of motion
(59)–(62). Although the intermediate steps are involved,
the final result is fairly simple and reads as follows:

̈X⃗� ¼ a�ðR; VÞX⃗ þ b�ðR;VÞðX⃗ × _X⃗Þ
þ c�ðRÞððX⃗ × _X⃗Þ × _X⃗Þ: ð66Þ

Here, R2 ¼ X⃗ · X⃗ and

a�ðR;VÞ¼ 4R2f2ðRÞ2g1ðRÞ�
g02ðRÞ
R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4R2f2ðRÞ2− _⃗X · _⃗X

q
;

b�ðR;VÞ¼
g02ðRÞ
R

�g1ðRÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4R2f2ðRÞ2− _⃗X · _⃗X

q
;

c�ðRÞ¼ g1ðRÞ: ð67Þ

Here,

g1ðRÞ ¼
1

R2
þ f02ðRÞ
f2ðRÞR

;

g2ðRÞ ¼ Rðf1ðRÞ þ f3ðRÞÞ þWðRÞ; ð68Þ

and the prime denotes a derivative with respect to R.
The dimensionless conserved quantities can also be

computed, but now there are only four as the constraint
Γ ¼ 0 is satisfied by construction. They are

L⃗� ¼ 1

4f2ðRÞ2R2

×

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4R2f2ðRÞ2 − _X⃗ · _X⃗

q
ðX⃗ × _X⃗Þ � ðX⃗ × _X⃗Þ × _X⃗

�
;

ð69Þ

E� ¼ g2ðRÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4R2f2ðRÞ2 − _X⃗ · _X⃗

q
: ð70Þ

Note that there are two branches, denoted by�. Indeed, it is
clear from Eq. (70) that the branch is determined by the sign
of E − g2ðRÞ. The use of two branches in the equations of
motion is inconvenient, but it turns out that a unified
treatment is possible when one considers the radial motion
in terms of an effective potential. We return to this in the
next section.
One can benchmark these results in a number of ways.

First, one can check, using the equations of motion (66),
that the constants of motion are indeed constant in time,
which turns out to be the case. Second, one can solve the
equations of motion (59)–(62) numerically and check that
this also solves Eq. (66). This also checks out. In this
process one also finds that both branches are needed to
describe the full dynamics. We discuss these equations of
motion in more detail in the next section.
This is the most general form of the equations of motion.

Indeed, in this form one may view the fiðRÞ as arbitrary
functions, but note that if this is done there is a redundancy
in f1ðRÞ, f3ðRÞ, and WðRÞ as only the combination of
g2ðRÞ plays a role. Since this turns out to be a useful point
of view, we explore it further in Sec. V. For our current
purposes, though, we continue to compute the functions
fiðRÞ as they appear in Eqs. (55)–(57).
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To do this, we note that the coherent state (summation

over repeated indices is implied) jzαi ¼ e−
z̄αzα
2 ezβa

†
β j0i can

be rewritten, upon introducing a new creation operator
A† ¼ 1ffiffiffi

R
p zβa

†
β (R ¼ z̄αzα), as jzαi ¼ e−

R
2eRA

† j0i. It then

follows easily that for any function gðn̂þ 1Þ

gðRÞ≡ hzαjgðn̂þ 1Þjzαi ¼ e−R
X∞
n¼0

gðnþ 1ÞR
n

n!
: ð71Þ

From this we also easily deduce the general relation

hzαjgðn̂þ 2Þjzαi ¼ gðRÞ þ dgðRÞ
dR

: ð72Þ

Similar relations can be derived for gðn̂þ kÞ, for a positive
integer k, by iterating Eq. (72).
By explicit summation, we can now easily compute

f3ðRÞ exactly. Using Eq. (72), we can extract f1ðRÞ
exactly. Finally, upon noting that



zα

				 1

ðn̂þ 1Þk
				zα

�
¼ e−R

X∞
n¼0

1

ðnþ 1Þk
Rn

n!
∼

1

Rk ð73Þ

for large R, we can extract the large-R behavior of f2
through an expansion in orders of 1

n̂þ1
. The final result is

f1ðRÞ ¼
1

2R
−
1 − e−R

2R2
≈

1

2R
−

1

2R2
;

f2ðRÞ ≈
1

2R
−

1

4R2
−

1

16R3
;

f3ðRÞ ¼
1 − e−R

2R
≈

1

2R
: ð74Þ

When one is interested in long length scales, it is
sufficient to approximate these functions by

fiðRÞ ¼
1

2R
; ∀ i: ð75Þ

In the lowest-order approximation (75) the equations and
constant of motion simplify considerably and provide a
useful benchmark for understanding the dynamics. Let us
therefore consider this approximation. Substituting Eq. (75)
into Eqs. (66) and (67) yields

̈X⃗� ¼ W0ðRÞ
R

�
ðX⃗ × _X⃗Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − _X⃗ · _X⃗

q
X⃗

�
: ð76Þ

The dimensionless conserved quantities are

L⃗� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − _X⃗ · _X⃗

q
ðX⃗ × _X⃗Þ � ððX⃗ × _X⃗Þ × _X⃗Þ; ð77Þ

E� ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − _X⃗ · _X⃗

q
þWðRÞ: ð78Þ

Equations (66) and (76) have rather interesting conse-
quences as they suggest that the dimensionless speed V2 ¼
_X⃗ · _X⃗ of a projectile is limited in a generally spatial-
dependent way determined by the function f2ðRÞ. At long
length scales (R ≫ 1) it becomes spatially independent and
V2 ≤ 1. Related to this, the dimensionless kinetic energy

Ek ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − _X⃗ · _X⃗

q
is bounded by Ek ≤ 2. Note that

energies Ek > 1 are described by the plus branch. This
bound on the energy is in complete agreement with the
bound found on the quantum level [14,16]. The bound on
the speed of an object comes as a surprise and closer
scrutiny traces it back to the condition of physicality (41) of
the wave functions. More insight can be obtained by
considering the dimensionful form of the equations of
motion (76),

̈x⃗� ¼ w0ðrÞ
mr

�
mλ

ℏ
ðx⃗ × _x⃗Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
mλ

ℏ

�
2
_x⃗ · _x⃗

s
x⃗

�
; ð79Þ

and the conserved quantities

l⃗� ¼ ℏL⃗

¼ m

" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
mλ

ℏ

�
2
_x⃗ · _x⃗

s
ðx⃗ × ⃗_xÞ �mλ

ℏ
ððx⃗ × _x⃗Þ × _x⃗Þ

#
;

ð80Þ

e� ¼ ℏ2

mλ2

"
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
mλ

ℏ

�
2
_x⃗ · _x⃗

s #
þ wðrÞ: ð81Þ

Here wðrÞ ¼ VðrÞ þ 2ℏ2f3ðr=λÞ
mλ2

, where VðrÞ is the dimen-
sionful potential. In this form one recognizes the bound on
the speed of a projectile as v0 ¼ ℏ

mλ. Also note that upon
restoration of dimensions, the dimensionful length scale at
which the limiting speed becomes spatially independent is
the noncommutative parameter λ. As this is presumably a
very short scale, the limiting speed can essentially be
viewed as spatially independent. However, if the function
f2ðRÞ is treated more generally as described in Sec. V, this
may not be the case. We postpone further discussion of this
result to Sec. VI after we have established some other
results that have a bearing on this.
Finally, note that, apart from a singular correction in the

potential w, which vanishes in the ℏ → 0 limit, one
recovers the standard Newtonian equations in the λ → 0
limit for the minus branch. This again emphasizes that the
commutative and classical limits have to be taken with
great care, as the order matters. In fact, here it is not
possible to take either of these limits without encountering
a singularity: the only sensible limit seems to be one in
which the ratio between ℏ and λ is kept fixed. In Sec. VI, we

FG SCHOLTZ PHYS. REV. D 98, 104058 (2018)

104058-8



argue that this is in fact also necessary from other physical
considerations.

A. General properties of orbitals

The first step in understanding the motion implied by
Eqs. (66) and (76) is to understand the relationship between
the different conserved quantities, the velocities, and accel-
eration. For simplicity, we consider the dimensionless quan-
tities. It is straightforward to establish the following relations
that hold on both branches and for the general equation of
motion (66) and their long-scale approximation (76):

L⃗� · _X⃗ ¼ 0; ð82Þ

L⃗� · ̈X⃗� ¼ 0; ð83Þ

L⃗� · X⃗ ¼ ∓L⃗ · L⃗≡ ∓L2: ð84Þ

We note that L⃗ · X⃗ is conserved in time. Note that this
result contrasts with standard central-potential motion, for
which L⃗ · X⃗ ¼ 0. The motion is, however, still planar as in
the case of a standard central potential, but the plane is
displaced along the direction of L⃗, leading to L⃗ · X⃗ ≠ 0.
Specifically, in the case of gravity this implies that the mass
creating the gravitational force no longer lies in the plane of
motion.
Another important point to note is that the conserved

quantity X⃗ · L⃗ switches signs between the two branches.
This means that the dynamics of the two branches do not
mix, except in the case when L ¼ 0. The minus branch
reduces to standard Newtonian dynamics in the commu-
tative limit and has a kinetic energy Ek < 1. Note that this
also brings about an asymmetry: the plane of motion is
always displaced in the direction of L⃗ for the minus branch
and oppositely for the plus branch.

Finally, it is convenient to introduce the vector
X⃗⋆ ¼ X⃗ − L⃗, which describes the motion in the plane,

and to note that _X⃗ ¼ _X⃗
⋆
.

The dynamics implied by Eqs. (66) and (76) is quite
counterintuitive and it is useful to first develop some feeling
for its content. One of the outstanding features of these
equations of motion is the appearance of a limiting speed.
One of the obvious questions is, what happens if an object
is accelerated up to this limiting speed? To develop some
understanding of this, we focus on the long-scale approxi-
mation (76). Let us therefore consider these equations of
motion in the presence of a constant outward radial force,
i.e., a potential of the form −βR, β > 0. As a benchmark,
we first integrate the equations of motion (59)–(62) with
this potential. We take β ¼ 5 and as initial conditions z1 ¼
z̄1 ¼ w1 ¼ w̄1 ¼ 1 and compute w1 and w̄1 from the
constraint for physicality of the wave function in
Eq. (63). For the coordinates, this choice corresponds to
the initial conditions X⃗ ¼ f2; 0; 0g and V⃗ ¼ f0; 0; 0g. The
results are shown in Figs. 1(a) and 1(b).
The surprise is that the motion is not simply a constant

outward radial acceleration as onewould naively expect. The
projectile accelerates until it reaches the limiting speed
V ¼ 1, and then it starts to decelerate. When its speed
vanishes, its radial motion reverses and it continues accel-
erating radially inwards until it reaches the limiting speed,
afterwhich it again starts to decelerate until its speedvanishes
and the cycle is repeated. Exactly the same result is obtained
by integrating Eq. (76), but in this case one has to switch
between the branches at the turning points in the speed (the
change in sign of the acceleration is related to the flip in sign
between the two branches). To understand the origin of this
oscillatory motion, we return to the conserved energy and
compute the effective potential for the radial motion. We
therefore set WðRÞ ¼ −βR (we ignore the noncommutative
correction to the potential here):

(a) (b)

FIG. 1. Radius (a) and speed (b) of a particle subjected to a constant force in the outward radial direction.
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E� ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − _X⃗ · _X⃗

q
− βR: ð85Þ

Using _X⃗
2 ¼ _R2 þ L2

R2, which can easily be checked from
Eq. (77), this can be rewritten as

_R2 þ 2ðE − 1ÞβRþ β2R2 þ L2

R2
≡ _R2 þ Veff ¼ Eð2 − EÞ:

ð86Þ

We observe that this is indeed a harmonic oscillator potential
with a shifted minimum and a repulsive barrier at the origin.
Note that for E > 2, the left-hand side is positive but the
right-hand side is negative, and this equation cannot be
satisfied for these energies. This again demonstrates the
cutoff in energy at E ¼ 2 referred to earlier.
In the case above, L ¼ 0 and the repulsive barrier is

absent. In general, for L ≠ 0 it is present, and the generic
effective potential is shown in Fig. 2 with β ¼ 5, E ¼ −1,
and L ¼ 0.1. Also shown is the right-hand side of Eq. (86)
(horizontal line). The points where the horizontal line
intersects the curve of Veff are the turning points of the
radial motion, as _R ¼ 0 at these points. The origin of the
oscillatory motion seen in Fig. 1 should now be clear. Also
note that the analysis in terms of the effective potential is
independent of the branch. The message to take away from
this exercise is that the square-root-based dispersion
relation in Eq. (78), which is also the source of the limiting
speed, can give rise to rather peculiar and counterintuitive
dynamical behavior. However, when reformulated in terms
of an effective potential, the dynamical behavior becomes
very transparent.
We now turn to the case of gravity, for which the

dimensionless potential reads

WðRÞ ¼ −
β

R
; β ¼ GMm2λ

ℏ2
− 1: ð87Þ

For our present purposes it is again sufficient to consider
only the long-length-scale behavior where we can approxi-
mate the functions fiðRÞ as in Eq. (75). We again construct
the effective potential, which now reads

_R2þ2ðE−1Þβ
R

þβ2þL2

R2
≡ _R2þVeff ¼Eð2−EÞ: ð88Þ

First, note that the 1=R term in the effective potential (88)
switches sign between E < 1 and E > 1 and that the
effective potential is strictly repulsive for E > 1. This is
again a manifestation of the two branches already men-
tioned. Second, note that for E > 2, the left-hand side of
Eq. (88) is strictly positive, while the right-hand side is
negative, resulting in the energy cutoff E < 2 observed
before. Third, note that there is always a repulsive barrier,
even when L ¼ 0 on the short to medium length scales.
This is quite different to the commutative case where the
centrifugal term stabilizes the orbits. It should, however, be
kept in mind that the behavior of the effective potential at
short length scales may be drastically altered by the short-
length-scale corrections to the functions fiðRÞ.
Since _X⃗ ¼ _X⃗

⋆
, the points where Eð2 − EÞ − Veff van-

ishes are the turning points of the orbitals where _R¼ _R⋆¼0
[see also Eq. (96)]. These are the points where the line
Eð2 − EÞ intersects the curve of Veff in Fig. 3. This is
shown in Figs. 3(a), 3(b), and 3(c) for E < 0, 0 < E < 1,
and 1 < E < 2, respectively. When E < 0 as shown in
Fig. 3(a), there are two turning points, where R reaches its
maximum and minimum. The motion is elliptic and the
turning points represent the closest and furthest points of
the orbit. When 0 < E < 1 as in Fig. 3(b), there is only one

FIG. 2. Effective potential for the radial motion in the presence of a radially outwards constant force. In this figure β ¼ 5, E ¼ −1, and
L ¼ 0.1.
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turning point, despite the fact that the potential still has an
attractive tail. The particle is unbound and escapes to
infinity. When 1 < E < 2 as in Fig. 3(c), the potential is
repulsive and a particle placed anywhere accelerates to
infinity. Note, though, that its energy and speed is bounded
by 2 and 1, respectively. When the turning points coincide,
which only happens at the minimum of the potential, the
motion is circular. For this to happen E and L must be
related in a specific way.

B. Precession in a gravitational potential

One expects that the modified dynamics implied by the
noncommutativity can cause precession of elliptic orbitals,
and we investigate this possibility here. It turns out that this
is only possible if the short-length-scale corrections in the
functions fiðRÞ are included. Since we are interested in
bound orbitals, we take E < 0 from here on.
We start by deriving the general expression for the

precession angle. Without loss of generality, we can choose
L⃗ along the z direction and for our present purpose it is also
convenient to restore dimensions from here on. Let us
introduce the vector x⃗⋆ ¼ x⃗ − λ

ℏ l⃗. From Eq. (84) it has the

property l⃗ · x⃗⋆ ¼ 0 and thus represents the rotating vector
in the plane of motion. This vector only depends on the
azimuthal angle ϕ and not on θ, as is the case with x⃗. To
establish precession, we must therefore compute the
dependence of this vector on ϕ.
To do this, we note from Eq. (84) and our choice of l⃗

along the z axis (l̂ denotes the unit vector and l2 ¼ l⃗ · l⃗)
that

l̂ · x⃗ ¼ r cos θ ¼ λ

ℏ
l: ð89Þ

Introducing x⃗ · x⃗ ¼ r2 and x⃗⋆ · x⃗⋆ ¼ r⋆2, we also have

r2 ¼ r⋆2 þ λ2

ℏ2
l2: ð90Þ

From this we obtain

cos θ ¼ λl

ℏ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r⋆2 þ λ2l2

ℏ2

q ;

sin θ ¼ r⋆

ℏ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r⋆2 þ λ2l2

ℏ2

q : ð91Þ

Differentiating the second of these with respect to time
gives

_θ ¼ λl_r⋆

ℏ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r⋆2 þ λ2l2

ℏ2

q : ð92Þ

Combining this with

l2 ¼ m2λ2r2

4f2ðr=λÞ2
ð_θ2 þ sin2θ _ϕ2Þ ð93Þ

gives an equation for _ϕ:

_ϕ ¼ 2f2ðr=λÞl
r⋆mλ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

m2λ4ð_r⋆Þ2
4f2ðr=λÞ2ℏ2ðr⋆2 þ λ2l2

ℏ2 Þ

s
: ð94Þ

The final step is to eliminate _r⋆ from this equation. For this
we use Eq. (70) to write

_r2 ¼ 4f2ðr=λÞ2r2ℏ2

m2λ4
−
�
λ

ℏ

�
2

×

�
e −

ℏ2r
mλ3

ðf1ðr=λÞ þ f3ðr=λÞÞ − wðrÞ
�

2

−
4f2ðr=λÞ2l2

m2λ2
≡ ΔðrÞ: ð95Þ

Using

_r ¼ _r⋆r⋆ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r⋆2 þ λ2l2

ℏ2

q ð96Þ

and Eq. (90), we can write

(a) (b) (c)

FIG. 3. Turning points of the orbitals for (a) E < 0 (E ¼ −0.5), (b) 0 < E < 1 (E ¼ 0.5), and (c) 1 < E < 2 (E ¼ 1.1). The horizontal
lines are the values of Eð2 − EÞ:β ¼ 10 and L ¼ 0.1 in these plots.
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_r⋆ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr⋆2 þ λ2l2

ℏ2 ÞΔðr⋆Þ
q

r⋆ ; ð97Þ

with Δðr⋆Þ≡ Δ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r⋆2 þ λ2l2

ℏ2

q 

. Substituting this into

Eq. (94) gives

_ϕ ¼ 2f2ðr⋆=λÞl
r⋆mλ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

m2λ4Δðr⋆Þ
4f2ðr⋆=λÞ2r⋆2ℏ2

s
: ð98Þ

Here f2ðr⋆=λÞ ¼ f2
�
1
λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r⋆2 þ λ2l2

ℏ2

q 

. From this the pre-

cession angle for half of a cycle is easily obtained as

Δϕ ¼
Z

r⋆þ

r⋆−
dr⋆ 2f2ðr⋆=λÞl

mλ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr⋆2 þ λ2l2

ℏ2 ÞΔðr⋆Þ
q

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

m2λ4Δðr⋆Þ
4f2ðr⋆=λÞ2r⋆2ℏ2

s
: ð99Þ

Here r⋆� are the turning points.
This form is still inconvenient as it is difficult to solve for

the energy and angular momentum in terms of the turning
points r⋆�. It is much easier to solve for them in terms of the
turning points r�. We therefore make a change of variables
in the integral back to these quantities by using Eq. (90).
This yields

Δϕ ¼
Z

rþ

r−

dr
2f2ðr=λÞl

mλ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr2 − λ2l2

ℏ2 ÞΔðrÞ
q

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

m2λ4ΔðrÞ
4f2ðr=λÞ2ℏ2ðr2 − λ2l2

ℏ2 Þ

s
: ð100Þ

The way we proceed is as follows. We choose turning
points rþ and r− and solve for the energy e and angular
momentum l from the conditions [see Eq. (95)]

ΔðrþÞ ¼ Δðr−Þ ¼ 0: ð101Þ
There are two pairs of solutions, but the one pair has
positive energy and complex angular momentum and is
therefore unphysical. The second pair has negative energy
and real angular momentum and therefore describes elliptic
motion. The two solutions in this pair are simply related by
a change of sign of the angular momentum. We do not list
these expressions explicitly due to their length.
The resulting integral (100) cannot be performed exactly,

but we can attempt an expansion of the integrand in orders
of λ and integrate term by term. We do this for general
functions fiðRÞ, but it turns out to be convenient to write
these functions in the following way:

fiðRÞ ¼
1

R
hi

�
1

R

�
: ð102Þ

The only restriction at this point on the functions hiðxÞ is
that hið0Þ ¼ 1

2
, which ensures the desired asymptotic

behavior as reflected in Eq. (75). In the special case of
Eq. (74), it is easy to read off the explicit forms of these
functions. This long calculation yields for the precession
over half of a cycle

Δϕ ¼ �
�
π þ πGMðr− þ rþÞðh001ð0Þ − 2h002ð0Þ þ h003ð0ÞÞ

4r−rþð1þ h01ð0Þ − 2h02ð0Þ þ h03ð0ÞÞ2
�
λm
ℏ

�
2

þOðλ;ℏ0Þ þOðλ2;ℏ0Þ
�
: ð103Þ

The sign depends on the choice of solutions, i.e., positive or
negative angular momentum, which in turn depends on
whether 1þ h01ð0Þ − 2h02ð0Þ þ h03ð0Þ is positive or nega-
tive. For convenience we only consider the positive case
from here on. We note that if we take the limit λ → 0with ℏ
fixed, we recover the Newtonian result Δϕ ¼ π. Also note
that we cannot take the ℏ → 0 limit before the λ → 0 limit.
However, if we take the λ → 0 and ℏ → 0 limits such that λℏ
is a fixed ratio, i.e.,

λ

ℏ
¼ 1

mv0
; ð104Þ

where v0 is the limiting speed of the noncommutative
system, the terms Oðλ;ℏ0Þ þOðλ2;ℏ0Þ vanish and we get

Δϕ ¼ π þ πGMðr− þ rþÞðh001ð0Þ − 2h002ð0Þ þ h003ð0ÞÞ
4r−rþv20ð1þ h01ð0Þ − 2h02ð0Þ þ h03ð0ÞÞ2

:

ð105Þ
Introducing the length of the semimajor axis

a ¼ ðrþ þ r−Þ=2 and the eccentricity ϵ ¼ rþ−r−
rþþr−

, this reads

Δϕ ¼ π þ πGMðh001ð0Þ − 2h002ð0Þ þ h003ð0ÞÞ
2að1 − ϵ2Þv20ð1þ h01ð0Þ − 2h02ð0Þ þ h03ð0ÞÞ2

:

ð106Þ

Substituting the form of the functions hiðRÞ as extracted
from Eq. (74), one obtains
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Δϕ ¼ π þ πGM
8að1 − ϵ2Þv20

: ð107Þ

Note that since Eq. (106) depends at most on the second-
order derivatives of hiðRÞ, the inclusion of higher-order
terms for f2 in Eq. (74) cannot alter the result. Remarkably,
this result has the same form as the general-relativistic (GR)
result [18]

Δϕ ¼ π þ 3πGM
c2að1 − ϵ2Þ ; ð108Þ

except for a numerical factor and the appearance of the
limiting speed, rather then the speed of light. We discuss the
physical ramifications of this result in Sec. VI.

C. Stable circular orbitals in a gravitational potential

In this section we study the behavior of stable circular
orbits. We make the following ansatz for these orbitals:

xðtÞ¼rsinθcosðωtÞ; yðtÞ¼rsinθsinðωtÞ;
zðtÞ¼rcosθ: ð109Þ

The only time dependence is therefore in the azimuthal
angle ϕ that changes at a constant rate.
This ansatz is inserted into the equations of motion (66)

for the negative branch and with a gravitational potential as
in Eq. (87). We first consider the equation of motion in the z
direction, from which one can solve for cot θ in terms of the

speed V2 ¼ _X⃗ · _X⃗ as

cot θ ¼ Vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4R2f2ðRÞ2 − V2

p : ð110Þ

Using this result in the equation of motion for the x and y
directions, which collapse to the same equation, one
obtains the velocity as

V ¼ 4Rf2ðRÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ab
2ðabþ cþ d

ffiffiffi
e

p Þ

s
; ð111Þ

where

a ¼ β þ R2ðRðf01ðRÞ − 2f02ðRÞ þ f03ðRÞÞ þ f1ðRÞ − 2f2ðRÞ þ f3ðRÞÞ;
b ¼ β þ R2ðRðf01ðRÞ þ 2f02ðRÞ þ f03ðRÞÞ þ f1ðRÞ þ 2f2ðRÞ þ f3ðRÞÞ;
c ¼ 4R4ðf2ðRÞ2 − R2f02ðRÞ2Þ;
d ¼ β þ R2ðRðf01ðRÞ þ f03ðRÞÞ þ f1ðRÞ þ f3ðRÞÞ;
e ¼ β2 þ R2ðRð2f03ðRÞðβ þ R3f01ðRÞÞ þ R3f01ðRÞ2 þ 2βf01ðRÞ − 16R2f2ðRÞf02ðRÞ þ R3f03ðRÞ2Þ

þ 2f3ðRÞðβ þ R3ðf01ðRÞ þ f03ðRÞÞÞ þ 2f1ðRÞðβ þ R2ðRðf01ðRÞ þ f03ðRÞÞ
þ f3ðRÞÞÞ þ R2f1ðRÞ2 þ R2f3ðRÞ2Þ: ð112Þ

Substituting Eq. (111) into Eq. (110) gives cot θ as a
function of radius.
These equations do not provide much insight into the

behavior of the velocity and cot θ as a function of radius. To
simplify matters, we consider the long-length-scale behav-
ior in which we approximate the functions fiðRÞ as in
Eq. (75). After restoring dimensions using Eq. (51) and
setting β ¼ GMm2λ

ℏ2 − 1 ≈ r0
λ with r0 ¼ GM

v2
0

, this gives

vðrÞ ¼ v0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4ð rr0Þ2

q
vuut ;

cot θ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4ð rr0Þ2

q
− 1

vuut : ð113Þ

We note the following interesting behavior:

vðrÞ ¼ v0; r ≪ r0;

vðrÞ ¼
ffiffiffiffiffiffiffiffi
GM
r

r
; r ≫ r0: ð114Þ

Note, however, that the constant behavior does not extend
down to small radii as the short-length-scale corrections to
the functions fiðRÞ, which we neglected, become important
and at short lengths scales one must consider the full
expression (111). This result is intuitively simple to under-
stand. If there is a bounding speed, the dependence of the
velocity on radius must be modified at small distances to
avoid a violation of this limiting speed. The only question is
at what length scale this modification takes effect. We leave
the discussion of the physical implications for Sec. VI.
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V. GENERALIZED DYNAMICS

In this section we consider a generalization of the results
in the previous sections, based on the possible modification
of the functions fi that appear in Eqs. (55)–(57). The source
of such a modification of the functions fi relates to the
choice of inner product on the quantum Hilbert space. In
this regard it is crucial to realize that the choice of inner
product and Laplacian is intimately connected by the
requirement of Hermiticity of the Laplacian. Indeed, it
can easily be checked that Eq. (37) is Hermitian with
respect to Eq. (34). This choice of the inner product and
Laplacian in turn determines the form of the functions
fiðRÞ recorded in Eqs. (55)–(57). If one changes the inner
product from Eq. (34) to a more general form,

ðψ jϕÞ ¼ 4πλ3trcðψ†f2ðR̂=λÞϕÞ≡ 4πλ3trcðψ†f2ðn̂þ 1ÞϕÞ;
ð115Þ

for some nonvanishing, real function f, the Laplacian (37)
also needs to be changed to

Δ̂jψÞ ¼ −
				 1

λ2f2ðR̂=λÞ ½â
†
α; ½âα;ψ ��

�

¼
				 1

λ2f2ðn̂þ 1Þ ½â
†
α; ½âα;ψ ��

�
ð116Þ

in order to maintain Hermiticity. By doing this one can
quickly retrace the steps leading to the functions fiðRÞ
given in Eqs. (55)–(57) to find that the modified functions
are then

f1ðRÞ ¼
1

2



zα

				 1

f2ðn̂þ 2Þ
				zα

�
; ð117Þ

f2ðRÞ ¼
1

2



zα

				 1

fðn̂þ 1Þfðn̂þ 2Þ
				zα

�
; ð118Þ

f3ðRÞ ¼
1

2



zα

				 1

f2ðn̂þ 1Þ
				zα

�
: ð119Þ

Note that Eq. (34) corresponds to the choice fðxÞ ¼ ffiffiffi
x

p
.

This modification has two consequences: 1) the trace of the
operator that projects onto the subspace of spheres with
radius r ≤ λðn̂þ 1Þ no longer yields the volume of a sphere
in Euclidean space, and 2) the dispersion relation of the
free-particle Schrödinger equation is modified. Although
this is acceptable at short length scales, these modifications
are unwanted at long length scales and we therefore require
that fðxÞ has the asymptotic behavior fðxÞ → ffiffiffi

x
p

when
x → ∞. This generalization may therefore be interpreted as
introducing some form of curvature on configuration space,
but such that it is asymptotically flat. This provides a
paradigm for a generalized interpretation of the equations

of motion (67) and constants of motion (69) where the
functions fiðRÞ are treated as generalized functions as in
Eqs. (117)–(119). Note that these functions are not com-
pletely arbitrary, but rather are determined by one single
function fðxÞ.

VI. DISCUSSION

We have now collected the most important results
following from the noncommutative classical dynamics
on fuzzy space. The challenge that remains is to extract a
coherent physical scenario from these unconventional
results. We discuss each result separately. Our discussion
assumes a gravitational potential, which is the most
relevant from an observational point of view.

A. Limiting energy and speed

One of the central features, which has cropped up on
several occasions in the discussion above, is the existence
of a cutoff energy with value 2ℏ2

mλ2
, even for a free particle.

This result was also found in earlier studies of quantum
mechanics on fuzzy space where it essentially appears
because the de Broglie wavelength cannot be made smaller
than the noncommutative length scale. The existence of an
energy cutoff is certainly reasonable from the point of view
of gravitational stability and one may hope that it may help
to regulate ultraviolet divergences in a full-fledged field
theory.
Another striking result is the existence of a limiting

speed v0 ¼ ℏ
mλ. The existence of such a limiting speed in

itself is not so unconventional as we know that the speed of
light also presents such a limit, but rather its dependence on
the mass of the projectile creates interpretational difficul-
ties. In the case of gravity the minus branch of the equation
of motion (79), which reduces to the Newtonian limit, reads

̈x⃗ ¼ GM
r3

�
mλ

ℏ
ðx⃗ × _x⃗Þ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
mλ

ℏ

�
2
_x⃗ · _x⃗

s
x⃗

�
: ð120Þ

If we assume that λ is some fixed parameter only
determined by the properties of space, this seemingly
contradicts one of the most established principles in physics
that motion under a gravitational force is independent of the
mass, or indeed any other properties of the projectile, which
is clearly not the case for Eq. (120). This is also the
foundation for the geometrical interpretation of gravity as
developed by Einstein and has been experimentally verified
to great accuracy by the Dicke-Eötvös experiment.
There are two possible ways out of this dilemma. The

first point of view is that the noncommutative parameter is
so small and, correspondingly, the limiting speed so high
that the dependence on the mass of the projectile is
undetectable. This certainly requires the limiting speed
to be much greater than the speed of light to avoid any
observational conflict. This point of view is certainly also
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not out of step with current thinking on general relativity
and quantum gravity, which anticipates a possible modi-
fication in particle dynamics at short length scales.
However, this point of view also presents some difficulties.
If one believes that Eq. (120) can be applied to macroscopic
and astrophysical objects, which have very large masses, it
should be clear that the noncommutative parameter is
severely restricted to very small values, generally much
less than even the Planck length, to be compatible with the
motion observed for astrophysical objects. Indeed, a simple
order-of-magnitude estimate shows that the noncommuta-
tive parameter must be less than 10−62 m to avoid the
limiting speed of Earth to be less than the observed speed
relative to the Sun. If one takes the noncommutative
parameter to be a universal constant, this effectively forces
a commutative scenario with very small possibility of
observing any noncommutative effects.
One may object to the application of Eq. (120) on

macroscopic or astrophysical scales, arguing that these are
massive, extended objects composed of a huge number of
microscopic particles. The key element to keep in mind
here is that the basic entity on which we build both the
quantum and classical descriptions of a system is the action.
On the microscopic level the action feeds into the path
integral to compute quantum-mechanical transition ampli-
tudes, and on macroscopic scales the requirement that the
action is stationery provides us with the equations of
motion. Here, just as in the commutative case, we have
the action and consistency requires us to follow the same
philosophy in both cases. In the commutative case we
freely apply Newton’s equations on macroscopic and
astrophysical scales and it would certainly seem irrational
not to do the same in the case of Eq. (120). The rationale
behind this extrapolation to astrophysical scales is that the
size of astrophysical objects is still very small compared to
solar or galactic length scales and that a point-particle
approximation is therefore reasonable. This approximation
is even made in the relativistic case. Of course, we know
that size does matter and that the finite sizes of the Sun and
Mercury give rise to orbital precession effects that have to
be disentangled from the purely relativistic, or anomalous,
precession. In spirit, the application of Eq. (120) on solar
and galactic scales is the same.
Although the point of view presented above may very

well be true, it is worthwhile to explore alternatives. A
second point of view one can take to avoid the dilemma
posed by Eq. (120) is to assume that the limiting speed

ℏ
mλ

¼ v0 ð121Þ

is a universal constant, independent from any properties of
the projectile. This requires us to adopt the point of view
that the commutation relations of the coordinates of a
macroscopic particle with mass m are given by

½x̂i; x̂j� ¼
2ℏ
mv0

iεijkx̂k: ð122Þ

This implies that the properties of noncommutative space,
or at least the coordinates of a massive particle moving in
noncommutative space, must depend on the mass of
the projectile, i.e., the noncommutative parameter must
undergo some form of renormalization due to the presence
of the projectile. This is not a completely foreign notion as
we know from GR that the local properties of space-time
will be modified by the presence of a projectile.
One may be concerned that noncommutative effects may

now get out of control for microscopic objects. However,
what one must keep in mind is that Eq. (120) and the
argument leading to Eq. (122) lose their validity in this
case. In this regard it is important to realize that Eq. (120) is
only valid when both quantum fluctuations (controlled by
ℏ
m) and coordinate fluctuations (controlled by the non-
commutative parameter) are small. It is also for this reason
that the order of limits ℏ → 0 and λ → 0 is important.
Taking the ℏ → 0 limit while keeping λ fixed leads to
nonsensical results since the coordinate fluctuations remain
relevant. As the coordinate fluctuations are in this case
controlled by the momentum scale mv0, Eqs. (120) and
(122) are only valid when this momentum scale is large
enough. Note that in the ℏ → 0 limit these fluctuations
automatically vanish. Noncommutative effects can there-
fore not get out of control, unless one applies these
equations outside their range of validity. Indeed, when a
proper quantum-mechanical treatment is done as in
Refs. [14,16], complete consistency with standard quantum
mechanics is found. Note that Eqs. (120) and (122) remain
valid for massive projectiles even for small limiting speeds.
It is at this point not clear what the value of v0 should be.

It is, of course, tempting to adopt the speed of light as its
value, but there are no compelling arguments for this as the
equations of motion derived here only apply to massive
particles and have nothing to say about the propagation of
light. The latter has to concern itself with the formulation of
Maxwell’s equations on fuzzy space.
If one considers the result (107) for the precession and if

this must represent a small correction to the relativistic
anomalous precession (108), one concludes that v0 ≫ c, at
least on solar scales, as already argued above. Note that in
the limit v0 → ∞, one recovers the commutative scenario
with standard Newtonian dynamics. This scenario would
therefore represent a small perturbation to Newtonian
dynamics, which, depending on the value of v0, may be
completely undetectable with current observational tech-
niques. In this scenario any potential observational conflict
can therefore be avoided. Of course, in this scenario the
standard problems associated with the Newtonian para-
digm, such as the velocity curves of galaxies, are still
present.
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B. Velocity curves

One of the most attractive features of the current
dynamics is the flatness of the velocity curve below the
length scale r0 ¼ GM

v2
0

. From Eq. (114) we also note that

the plateau value of the speed is precisely v0. Clearly, in the
scenario above where v0 ≫ c the plateau value is too high
and the length scale r0 too short to have any observational
consequences. The above scenario certainly seems to be
forced on us on solar scales, but if one adopts the point of
view that the limiting speed may have a spatial dependence,
possibly as described in Sec. V, one may argue for much
lower limiting speeds on galactic scales that may have clear
observational consequences.
Although there are no compelling empirical or theoreti-

cal arguments for this assumption, let us assume the
existence of a possibly spatial-dependent limiting speed
much less than the speed of light (of the order of
100–300 km s−1) in the noncommutative scenario described
above. If one moves out from the center of a galaxy, the
velocity curve grows simply because the included mass
grows and several models for this exist [19]. However, once
the velocity reaches the limiting velocity, the curve must
saturate at this value and stay there up to the length scale r0,

after which it will assume the standard
ffiffiffiffiffiffi
GM
r

q
behavior as in

Eq. (114). This does, of course, require us to take the limiting
velocity as the plateau velocity, commonly denoted vf, of the
observed velocity curve. The important point to realize
though is that in this scenario flat velocity curves are natural
and indeed generic and no specific distribution of themass in
the galaxy has to be assumed for flatness. In fact, one may
assume that all of themass is concentrated at the center, aswe
indeed did when deriving Eq. (113).
Figure 4 shows data for the Milky Way from Ref. [20]

with galactic constants R0 ¼ 8 kpc and V0 ¼ 200 km s−1

up to 200 kpc. We also show a least-squares fit of the
velocity curve (113) to the data (solid line). This gives r0 ¼
76.5 kpc and v0 ¼ 215.6 km s−1, which requires a galactic
mass of 8.3 × 1011 M⊙. This is in complete agreement with
the mass Mð200 kpcÞ ¼ 6.8� 4.1 × 1011 M⊙ reported in
Ref. [20], but larger then the mass Mð100 kpcÞ ¼ 3 ×
1011 M⊙ reported in Ref. [19]. Note, however, the differ-
ence in radius so that a larger value is to be expected. Let us
also consider what happens if we just consider the baryonic
mass (stellar and gaseous). A reliable estimate of this can
be obtained from the empirical baryonic Tully-Fisher
relation [21]

a0GM ¼ v4f: ð123Þ
We take for the constant a0 the value reported in Ref. [21] of
a0 ¼ 1.3 × 10−10 ms−2 and vf ¼ 200 km s−1. Using these
values we find the baryonic mass of the Milky Way to be
9.3 × 1010 M⊙. This gives r0 ¼ 9.96 kpc for v0 ¼ vf ¼
200 km s−1. This velocity curve is also shown as the dotted
line in Fig. 4. Clearly, the value of r0 is too small if only
baryonic mass is considered to explain the extent of the
plateau observed in the velocity curve. Indeed, as usual, we
see that the baryonic mass only makes up around 11% of the
galactic mass required to explain the data. However, as
mentioned before, in this scenario no assumptions about the
distribution of this excess mass in the galaxy needs to be
made to explain the flatness of the velocity curve. It may
therefore even be possible that this mass is concentrated in
the center of the galaxy, e.g., in the form of a massive black
hole. One may be concerned that this concentration of mass
may be detectable through the motion of nearby stars such as
S2 [22], and this would certainly be the case in a Newtonian
paradigm. However, in the current paradigm the limiting
speedmay prevent such a detection if it is low enough and the
application of a Newtonian paradigm will lead to an under-
estimation of the mass. In fact, in the current paradigm the
only way that the included mass can be estimated accurately
is through the length scale r0 as the velocity is largely
independent from the included mass below this scale. This
does, however, pose a further difficulty. The speed of S2 at its
perihelion is around 5000 km s−1 [22], much larger than the
plateau value of the velocity curve of around 200 km s−1. If
all of the excess mass is concentrated at the center of the
galaxy, it requires us to assume that the limiting velocitymust
be spatially dependent, which can be accommodated through
a generalized function f2ðrÞ as described in Sec. V.
Finally, note that if we accept, as argued above, that

v0 ≫ c on solar scales, the standard Newtonian paradigm
holds and no observational conflict with the velocity curves
on solar scales can result.

C. Two branches

One of the features of the equations of motion derived
above is the existence of two branches with disconnected

FIG. 4. Velocity curve and data for the Milky Way. The data is
from Ref. [20] with galactic constants R0 ¼ 8 kpc and
V0 ¼ 200 km s−1. The dashed curve is for an estimated baryonic
mass of 9.3 × 1010 M⊙ and v0 ¼ 200 km s−1, which gives
r0 ¼ 9.96 kpc. The solid line is a least-squares fit of the velocity
curve (113) to the data with mass 8.3 × 1011 M⊙ and
vf ¼ v0 ¼ 215.6 km s−1.
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dynamics, of which only one reduces to standard Newtonian
dynamics in the commutative limit. The choice of branch is
determined by the value of the energy as reflected in Eq. (80)
and, since energy is conserved, is set by the initial conditions.
In particular, we note that for ℏ2

mλ2
< e < 2ℏ2

mλ2
or, equivalently,

ℏv0
λ < e < 2ℏv0

λ , the dynamics must be described by the plus
branch, which does not reduce toNewtonian dynamics in the
commutative limit. Note, however, from Eq. (80) that high
velocities are not required for this energy range. On the
unified level of the effective potential for the radial motion
discussed in Sec. IVA, the presence of these two branches
manifests itself in that the effective potential becomes
completely repulsive for the range of energies (88). This
implies that a projectile with energy in this range will
indefinitely accelerate radially outwards.

D. Displaced planar motion

A feature that sets the current dynamics apart from
Newtonian or general-relativistic dynamics is the offset of
the source of the gravitational potential from the plane of
motion. This is encoded in Eq. (89) where the offset of the
angle θ from π

2
measures this displacement. One can, of

course, also express it in terms of the absolute distance
r cos θ appearing in Eq. (89). Assuming the asymptotic
form (75) for the functions fi, one can easily check that the
magnitude of the angular momentum in Eq. (89) coincides
with the commutative result, i.e., l⃗ ¼ mðx⃗ × _x⃗Þ. Note,
though, that this is only true for the magnitude and not
the individual components of the commutative angular
momentum, which are in fact not even conserved. We have
a simple result for the magnitude of the commutative
angular momentum in terms of the parameters of the
elliptic orbit of the projectile:

l ¼ m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2GMrþr−
rþ þ r−

s
: ð124Þ

Using this in Eq. (89), we obtain for the displacement d,
which is also a constant of motion,

d ¼ r cos θ ¼ 1

v0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2GMrþr−
rþ þ r−

s
: ð125Þ

Hence, this displacement gives a direct measure of the
limiting speed v0 ¼ ℏ

mλ of the projectile.
We note that if a measurement of this offset gives a zero

value, this supports a commutative scenario or at least a
scenario in which v0 is large. If it yields a nonzero value,
this supports a noncommutative scenario. If this offset can
be measured for projectiles with different masses, one may
also be able to distinguish between the mass-independent
or mass-dependent noncommutative scenarios discussed in
Sec. VI A.

VII. SUMMARY AND CONCLUSIONS

We have derived the path-integral action for a particle
moving in fuzzy space and the corresponding classical
equations of motion. The main features of these equations
are a cutoff energy, a generally spatial-dependent limiting
speed, planetary precession remarkably similar to the
general-relativistic result, velocity curves that plateau
below the length scale GM

v2
0

, displaced planar motion, and
the existence of two dynamical branches of which only one
reduces to Newtonian dynamics in the commutative limit.
The branch that does not reduce to Newtonian dynamics
predicts a repulsive effective potential for the radial motion
and indefinite outward acceleration. Most of these features
are unconventional and observational data pose a severe
challenge for this scenario. Given that it is not easy to write
down symmetry-preserving noncommutative scenarios for
space-time, this may even present a challenge to any such
scenario.
We have also unpacked several physical scenarios that

are compatible with the above results. In particular, a
scenario with a universal limiting speed v0 ≫ c gives a
very standard paradigm that can avoid any possible
observational conflict. Of course, this scenario then also
does not offer any solutions to the problems associated with
the standard paradigm.
An interesting scenario that has not been explored here is

the possibility that relativistic effects may emerge out of a
noncommutative scenario. The emergence of a limiting
speed and the remarkable correspondence between the
noncommutative and relativistic orbital precessions cer-
tainly points in this direction.
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